liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
123 1 - 50 av 146
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Heasman, Patrick
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Birla Inst Technol & Sci, India.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A computational study of cellulose regeneration: All-atom molecular dynamics simulations2023Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 311, artikel-id 120768Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Processing natural cellulose requires its dissolution and regeneration. It is known that the crystallinity of re-generated cellulose does not match that of native cellulose, and the physical and mechanical properties of re-generated cellulose can vary dependent on the technique applied. In this paper, we performed all-atom molecular dynamics simulations attempting to simulate the regeneration of order in cellulose. Cellulose chains display an affinity to align with one another on the nanosecond scale; single chains quickly form clusters, and clusters then interact to form a larger unit, but the end results still lack that abundance of order. Where aggregation of cel-lulose chains occurs, there is some resemblance of the 1-10 surfaces found in Cellulose II, with certain indication of 110 surface formation. Concentration and simulation temperature show an increase of aggregation, yet it appears that time is the major factor in reclaiming the order of "crystalline" cellulose.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Pang, Jiu
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mehandzhiyski, Aleksandar Y.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations2023Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 313, artikel-id 120853Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Understanding the microscopic mechanisms of regeneration of cellulose is prerequisite for engineering and controlling its material properties. In this paper, we performed coarse-grained Martini 3 molecular dynamics simulations of cellulose regeneration at a scale comparable to the experiments. The X-ray diffraction (XRD) curves were monitored to follow the structural changes of regenerated cellulose and trace formation of cellulose sheets and crystallites. The calculated coarse-grained morphologies of regenerated cellulose were backmapped to atomistic ones. After the backmapping we find that the regenerated coarse-grained cellulose structures calculated for both topology parameters of cellulose I beta and cellulose II/III, are transformed to cellulose II, where the calculated XRD curves exhibit the main peak at approximately 20-21 degrees, corresponding to the (110)/(020) planes of cellulose II. This result is in good quantitative agreement with the available experimental observations.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Wang, Zhen
    et al.
    KTH Royal Inst Technol, Sweden.
    Heasman, Patrick
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rostami, Jowan
    KTH Royal Inst Technol, Sweden.
    Benselfelt, Tobias
    KTH Royal Inst Technol, Sweden.
    Linares, Mathieu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Hailong
    Stockholm Univ, Sweden.
    Iakunkov, Artem
    KTH Royal Inst Technol, Sweden.
    Sellman, Farhiya
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Ostmans, Rebecca
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Hamedi, Mahiar Max
    KTH Royal Inst Technol, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wagberg, Lars
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithium-Ion Batteries2023Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 33, nr 30, artikel-id 2212806Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tunable dynamic networks of cellulose nanofibrils (CNFs) are utilized to prepare high-performance polymer gel electrolytes. By swelling an anisotropically dewatered, but never dried, CNF gel in acidic salt solutions, a highly sparse network is constructed with a fraction of CNFs as low as 0.9%, taking advantage of the very high aspect ratio and the ultra-thin thickness of the CNFs (micrometers long and 2-4 nm thick). These CNF networks expose high interfacial areas and can accommodate massive amounts of the ionic conductive liquid polyethylene glycol-based electrolyte into strong homogeneous gel electrolytes. In addition to the reinforced mechanical properties, the presence of the CNFs simultaneously enhances the ionic conductivity due to their excellent strong water-binding capacity according to computational simulations. This strategy renders the electrolyte a room-temperature ionic conductivity of 0.61 +/- 0.12 mS cm(-1) which is one of the highest among polymer gel electrolytes. The electrolyte shows superior performances as a separator for lithium iron phosphate half-cells in high specific capacity (161 mAh g(-1) at 0.1C), excellent rate capability (5C), and cycling stability (94% capacity retention after 300 cycles at 1C) at 60 degrees C, as well as stable room temperature cycling performance and considerably improved safety compared with commercial liquid electrolyte systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Hultmark, Sandra
    et al.
    Chalmers Univ Technol, Sweden.
    Craighero, Mariavittoria
    Chalmers Univ Technol, Sweden.
    Zokaei, Sepideh
    Chalmers Univ Technol, Sweden.
    Kim, Donghyun
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Järsvall, Emmy
    Chalmers Univ Technol, Sweden.
    Farooqi, Furqan
    Chalmers Univ Technol, Sweden.
    Marina, Sara
    Univ Basque Country UPV EHU, Spain.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Wallenberg Wood Science Center.
    Martin, Jaime
    Univ Basque Country UPV EHU, Spain.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Wallenberg Wood Science Center.
    Müller, Christian
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acid2023Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 11, nr 24, s. 8091-8099Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interplay between the nanostructure of a doped polythiophene with oligoether side chains and its electrical as well as mechanical properties is investigated. The degree of order of the polymer is found to strongly vary when co-processed with bistriflimidic acid (H-TFSI). The neat polythiophene as well as strongly oxidized material are largely disordered while intermediate concentrations of H-TFSI give rise to a high degree of pi-stacking. The structural disorder of strongly oxidized material correlates with a decrease in the kinetic fragility with H-TFSI concentration, suggesting that positive interactions between TFSI anions and the polymer reduce the ability to crystallize. The electrical conductivity as well as the Youngs modulus first increase upon the addition of 4-10 mol% of H-TFSI, while the loss of pi-stacking observed for strongly oxidized material more significantly affects the latter. As a result, material comprising 25 mol% H-TFSI displays an electrical conductivity of 58 S cm(-1) but features a relatively low Youngs modulus of only 80 MPa. Decoupling of the electrical and mechanical properties of doped conjugated polymers may allow the design of soft conductors that are in high demand for wearable electronics and bioelectronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Zhao, Dan
    et al.
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA; Univ Elect Sci & Technol China, Peoples R China; City Univ Hong Kong, Peoples R China.
    Kim, Donghyun
    Chalmers Univ Technol, Sweden.
    Ghosh, Sarbani
    Birla Inst Technol & Sci, India.
    Wang, Gang
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Huang, Wei
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA; Univ Elect Sci & Technol China, Peoples R China.
    Zhu, Zonglong
    City Univ Hong Kong, Peoples R China.
    Marks, Tobin J.
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Facchetti, Antonio
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA; Georgia Inst Technol, GA 30332 USA.
    Mechanical, Morphological, and Charge Transport Properties of NDI Polymers with Variable Built-in ?-Conjugation Lengths Probed by Simulation and Experiment2023Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mechanically deformable polymeric semiconductors are a key material for fabricating flexible organic thin-film transistors (FOTFTs)-the building block of electronic circuits and wearable electronic devices. However, for many pi-conjugated polymers achieving mechanical deformability and efficient charge transport remains challenging. Here the effects of polymer backbone bending stiffness and film microstructure on mechanical flexibility and charge transport are investigated via experimental and computational methods for a series of electron-transporting naphthalene diimide (NDI) polymers having differing extents of pi-conjugation. The results show that replacing increasing amounts of the pi-conjugated comonomer dithienylvinylene (TVT) with the pi-nonconjugated comonomer dithienylethane (TET) in the backbone of the fully pi-conjugated polymeric semiconductor, PNDI-TVT100 (yielding polymeric series PNDI-TVTx, 100 >= x >= 0), lowers backbone rigidity, degree of texturing, and pi-pi stacking interactions between NDI moieties. Importantly, this comonomer substitution increases the mechanical robustness of PNDI-TVTx while retaining efficient charge transport. Thus, reducing the TVT content of PNDI-TVTx suppresses film crack formation and dramatically stabilizes the field-effect electron mobility upon bending (e.g., 2 mm over 2000 bending cycles). This work provides a route to tune pi-pi stacking in pi-conjugated polymers while simultaneously promoting mechanical flexibility and retaining good carrier mobility in FOTFTs.

  • 6.
    Sedghamiz, Tahereh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Modarresi, Mohsen
    Ferdowsi Univ Mashhad, Iran.
    Linares, Mathieu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    What Can We Learn about PEDOT:PSS Morphology from Molecular Dynamics Simulations of Ionic Diffusion?2023Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 35, nr 14, s. 5512-5523Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS)is one of the most important mixed electron-ion conducting polymers,where the efficiency of the ion transport is crucial for many of itsapplications. Despite the impressive experimental progress in thedetermination of ionic mobilities in PEDOT:PSS, the fundamentals ofion transport in this material remain poorly understood, and the theoreticalinsight into the ion diffusion on the microscopical level is completelymissing. In the present paper, a Martini 3 coarse-grained moleculardynamics (MD) model for PEDOT:PSS is developed and applied to calculatethe ion diffusion coefficients and ion distribution in the film. Wefind that the ion diffusion coefficients for Na+ ions arepractically the same in the PEDOT-rich and PSS-rich regions and donot show sensitivity to the oxidation level. We compare the calculateddiffusion coefficients with available experimental results. Basedon this comparison and based on the MD morphology simulation of PEDOT:PSSrevealing the formation of pores inside the film, we revise a commonlyaccepted granular morphological model of PEDOT:PSS. Namely, we arguethat PEDOT:PSS films, in addition to PEDOT-rich and PSS-rich regions,must contain a network of pores where the ion diffusion takes place.

  • 7.
    Keene, Scott T.
    et al.
    Univ Cambridge, England.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Malliaras, George G.
    Univ Cambridge, England.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Exploiting mixed conducting polymers in organic and bioelectronic devices2022Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, nr 32, s. 19144-19163Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Abdullaeva, Oliya
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sahalianov, Ihor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jakesova, Marie
    Brno Univ Technol, Czech Republic.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liin, Sara
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Brno Univ Technol, Czech Republic.
    Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels2022Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 9, nr 3, artikel-id 2103132Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    H2O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2O2). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2O2-sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2O2 delivery system, paving the way to ROS-based organic bioelectronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Chennit, Khalil
    et al.
    Univ Paris Cite, France.
    Delavari, Najmeh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mekhmoukhen, Samia
    Univ Paris Cite, France.
    Boukraa, Rassen
    Univ Paris Cite, France.
    Fillaud, Laure
    Sorbonne Univ, France.
    Zrig, Samia
    Univ Paris Cite, France.
    Battaglini, Nicolas
    Univ Paris Cite, France.
    Piro, Benoit
    Univ Paris Cite, France.
    Noel, Vincent
    Univ Paris Cite, France.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mattana, Giorgio
    Univ Paris Cite, France.
    Inkjet-Printed, Coplanar Electrolyte-Gated Organic Field-Effect Transistors on Flexible Substrates: Fabrication, Modeling, and Applications in Biodetection2022Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 8, nr 2, artikel-id 2200300Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The first example of inkjet-printed, electrolyte-gated organic field-effect transistors, fabricated on flexible polyimide substrates is presented. The inter-digitated source and drain electrodes, and the coplanar gate electrodes, are inkjet-printed using a homemade gold nanoparticle ink. A semiconducting ink based on the p-type, organic semiconductor poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b] thiophene)] (DPP-DTT) is formulated and inkjet-printed onto the channel. The performances of inkjet-printed, coplanar devices are compared to those of transistors whose gate electrode consists in a metallic wire inserted in the electrolyte. Printed transistors show excellent electrical properties with field-effect mobility as high as 0.04 cm(2) V-1 s(-1). The electrical behavior of inkjet-printed, coplanar devices is also modeled using the Nernst-Planck-Poisson (NPP) equations, where the output and transfer curves are calculated based on the charge and potential distribution inside the device. Good quantitative agreement between the simulation and experiments is achieved, outlining the attainable use of NPP simulations as predictive tools for device design and optimization. To demonstrate an example of application, printed transistors are functionalized for the detection of complementary DNA strands. This study opens an avenue for the next generation of low-cost, flexible sensors and circuits, both through experimental studies and device modeling.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Pang, Jiu
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Martini 3 model of surface modified cellulose nanocrystals: investigation of aqueous colloidal stability2022Ingår i: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 29, s. 9493-9509Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Martini coarse-grained force field is one of the most popular coarse-grained models for molecular dynamics (MD) modelling in biology, chemistry, and material science. Recently, a new force field version, Martini 3, had been reported with improved interaction balance and many new bead types. Here, we present a new cellulose nanocrystal (CNC) model based on Martini 3. The calculated CNC structures, lattice parameters, and mechanical properties reproduce experimental measurements well and provide an improvement over previous CNC models. Then, surface modifications with COO- groups and interactions with Na+ ions were fitted based on the atomistic MD results to reproduce the interactions between surface-modified CNCs. Finally, the colloidal stability and dispersion properties were studied with varied NaCl concentrations and a good agreement with experimental results was found. Our work brings new progress toward CNC modelling to describe different surface modifications and colloidal solutions that were not available in previous coarse-grained models. [GRAPHICS] .

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Mehandzhiyski, Alexandar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engel, Emile
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Larsson, Per A.
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Lo Re, Giada
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Microscopic Insight into the Structure-Processing-Property Relationships of Core-Shell Structured Dialcohol Cellulose Nanoparticles2022Ingår i: ACS Applied Bio Materials, E-ISSN 2576-6422Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the quest to develop sustainable and environmentally friendly materials, cellulose is a promising alternative to synthetic polymers. However, native cellulose, in contrast to many synthetic polymers, cannot be melt-processed with traditional techniques because, upon heating, it degrades before it melts. One way to improve the thermoplasticity of cellulose, in the form of cellulose fibers, is through chemical modification, for example, to dialcohol cellulose fibers. To better understand the importance of molecular interactions during melt processing of such modified fibers, we undertook a molecular dynamics study of dialcohol cellulose nanocrystals with different degrees of modification. We investigated the structure of the nanocrystals as well as their interactions with a neighboring nanocrystal during mechanical shearing, Our simulations showed that the stress, interfacial stiffness, hydrogen-bond network, and cellulose conformations during shearing are highly dependent on the degree of modification, water layers between the crystals, and temperature. The melt processing of dialcohol cellulose with different degrees of modification and/ or water content in the samples was investigated experimentally by fiber extrusion with water used as a plasticizer. The melt processing was easier when increasing the degree of modification and/or water content in the samples, which was in agreement with the conclusions derived from the molecular modeling. The measured friction between the two crystals after the modification of native cellulose to dialcohol cellulose, in some cases, halved (compared to native cellulose) and is also reduced with increasing temperature. Our results demonstrate that molecular modeling of modified nanocellulose fibers can provide fundamental information on the structure-property relationships of these materials and thus is valuable for the development of new cellulose based biomaterials.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Gerasimov, Jennifer Yevgenia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Halder, Arnab
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mousa, Abdelrazek H.
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden..
    Ghosh, Sarbani
    Birla Inst Technol & Sci BITS, Dept Chem Engn, Pilani 333031, Rajasthan, India..
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden..
    Strandberg, Jan
    Res Inst Sweden, RISE, Printed Elect, SE-60221 Norrkoping, Sweden..
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olsson, Roger
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden.;Lund Univ, Chem Biol & Therapeut, Dept Expt Med Sci, SE-22184 Lund, Sweden..
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rational Materials Design for In Operando Electropolymerization of Evolvable Organic Electrochemical Transistors2022Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, nr 32, artikel-id 2202292Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors formed by in operando electropolymerization of the semiconducting channel are increasingly becoming recognized as a simple and effective implementation of synapses in neuromorphic hardware. However, very few studies have reported the requirements that must be met to ensure that the polymer spreads along the substrate to form a functional conducting channel. The nature of the interface between the substrate and various monomer precursors of conducting polymers through molecular dynamics simulations is investigated, showing that monomer adsorption to the substrate produces an increase in the effective monomer concentration at the surface. By evaluating combinatorial couples of monomers baring various sidechains with differently functionalized substrates, it is shown that the interactions between the substrate and the monomer precursor control the lateral growth of a polymer film along an inert substrate. This effect has implications for fabricating synaptic systems on inexpensive, flexible substrates.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Nordenström, Malin
    et al.
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Benselfelt, Tobias
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Hollertz, Rebecca
    KTH Royal Inst Technol, Sweden.
    Wennmalm, Stefan
    KTH Royal Inst Technol, Sweden.
    Larsson, Per A.
    KTH Royal Inst Technol, Sweden.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rolland, Nicolas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Soderberg, Daniel
    KTH Royal Inst Technol, Sweden.
    Wågberg, Lars
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    The structure of cellulose nanofibril networks at low concentrations and their stabilizing action on colloidal particles2022Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 297, artikel-id 120046Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The structure and dynamics of networks formed by rod-shaped particles can be indirectly investigated by measuring the diffusion of spherical tracer particles. This method was used to characterize cellulose nanofibril (CNF) networks in both dispersed and arrested states, the results of which were compared with coarse-grained Brownian dynamics simulations. At a CNF concentration of 0.2 wt% a transition was observed where, below this concentration tracer diffusion is governed by the increasing macroscopic viscosity of the dispersion. Above 0.2 wt%, the diffusion of small particles (20-40 nm) remains viscosity controlled, while particles (100-500 nm) become trapped in the CNF network. Sedimentation of silica microparticles (1-5 mu m) in CNF dispersions was also determined, showing that sedimentation of larger particles is significantly affected by the presence of CNF. At concentrations of 0.2 wt%, the sedimentation velocity of 5 mu m particles was reduced by 99 % compared to pure water.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Zokaei, Sepideh
    et al.
    Chalmers Univ Technol, Sweden.
    Kim, Donghyun
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Järsvall, Emmy
    Chalmers Univ Technol, Sweden.
    Fenton, Abigail M.
    Penn State Univ, PA 16802 USA.
    Weisen, Albree R.
    Penn State Univ, PA 16802 USA.
    Hultmark, Sandra
    Chalmers Univ Technol, Sweden.
    Nguyen, Phong H.
    Univ Calif Santa Barbara, CA 93106 USA.
    Matheson, Amanda M.
    Univ Calif Santa Barbara, CA 93106 USA.
    Lund, Anja
    Chalmers Univ Technol, Sweden.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Chalmers Univ Technol, Sweden.
    Chabinyc, Michael L.
    Univ Calif Santa Barbara, CA 93106 USA.
    Gomez, Enrique D.
    Penn State Univ, PA 16802 USA; Penn State Univ, PA 16802 USA.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Müller, Christian
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Tuning of the elastic modulus of a soft polythiophene through molecular doping2022Ingår i: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 9, nr 1, s. 433-443Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm(-1) and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m(-3). These changes arise because molecular doping strongly influences the glass transition temperature T-g and the degree of pi-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Modarresi, Mohsen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Ferdowsi Univ Mashhad, Iran.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Why does solvent treatment increase the conductivity of PEDOT : PSS? Insight from molecular dynamics simulations2022Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, nr 36, s. 22073-22082Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT : PSS) is one of the most important conducting polymers. In its pristine form its electrical conductivity is low, but it can be enhanced by several orders of magnitude by solvent treatment, e.g. dimethyl sulfoxide (DMSO). There are various (and often conflicting) explanations of this effect suggested in the experimental literature, but its theoretical understanding based on simulation and modelling accounting for the complex realistic morphology of PEDOT : PSS is missing. Here, we report Martini coarse-grained molecular dynamics simulation for the DMSO solvent treatment of the PEDOT : PSS film. We show that during solvent treatment a part of the deprotonated PSS chains are dissolved in the electrolyte. After the solvent treatment and subsequent drying, the PEDOT-rich regions become closer to each other, with a part of the PEDOT chains penetrating into the PSS-rich regions. This leads to an efficient coupling between PEDOT-rich regions, leading to the enhancement of the conductivity. Another factor leading to the conductivity improvement is the pi-pi stacking enhancement resulting in more pi-pi stacks in the film and in the increased average size of PEDOT crystallites. Our results demonstrate that course-grained molecular dynamics simulations of a realistic system represent a powerful tool enabling theoretical understanding of important morphological features of conducting polymers, which, in turn, represents a prerequisite for materials design and improvement.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Peterson, Anna
    et al.
    Chalmers Univ Technol, Sweden.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Svenningsson, Leo
    Chalmers Univ Technol, Sweden.
    Ziolkowska, Agnieszka
    Umea Univ, Sweden.
    kadar, Roland
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Lund, Anja
    Chalmers Univ Technol, Sweden.
    Sandblad, Linda
    Umea Univ, Sweden.
    Evenas, Lars
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Re, Giada Lo
    Chalmers Univ Technol, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Chalmers Univ Technol, Sweden.
    Muller, Christian
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite2021Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 54, nr 7, s. 3507-3516Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study composites of cellulose nanocrystals (CNCs) in an ionomer matrix of poly(ethylene-stat-sodium acrylate) and find that direct cellulose/cellulose interactions in the composite are not a requirement for achieving reinforcement. While isotropic composites only show a slightly enhanced stiffness compared to the neat ionomer, a more substantial increase in Youngs modulus by a factor of up to 5 is achieved by uniaxial alignment of the composites through melt spinning. The orientation of CNC in melt-spun composites reduces the probability of cellulose/cellulose interactions, which suggests that cellulose/polymer interactions must be present that lead to the observed reinforcement. Molecular dynamics simulations confirm strong cellulose/polymer interactions in the form of ionic interactions as well as hydrogen bonding. These cellulose/polymer interactions facilitate efficient stress transfer, leading to the high reinforcing effect of CNC, while cellulose/cellulose interactions play a minor role in the mechanical response of the composite.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Moser, Maximilian
    et al.
    University of Oxford, Department of Chemistry, Oxford, UK.
    Gladisch, Johannes
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Birla Institute of Technology and Science (BITS), Department of Chemical Engineering, Pilani, India.
    Hidalgo, Tania Cecilia
    King Abdullah University of Science and Technology (KAUST), Biological Sciences and Engineering Division, Thuwal, Saudi Arabia.
    Ponder Jr., James F.
    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
    Sheelamanthula, Rajendar
    King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, Saudi Arabia.
    Thiburce, Quentin
    Stanford University, Department of Materials Science and Engineering, Stanford, CA, USA.
    Gasparini, Nicola
    Imperial College London, Department of Chemistry and Center for Plastic Electronics, London, UK.
    Wadsworth, Andrew
    University of Oxford, Department of Chemistry, Oxford, UK.
    Salleo, Alberto
    Stanford University, Department of Materials Science and Engineering, Stanford, CA, USA.
    Inal, Sahika
    King Abdullah University of Science and Technology (KAUST), Biological Sciences and Engineering Division, Thuwal, Saudi Arabia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    University of Oxford, Department of Chemistry, Oxford, UK; King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, Saudi Arabia.
    Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices2021Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Advanced Functional Materials, Vol. n/a, nr n/aArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemically induced volume changes in organic mixed ionic-electronic conductors (OMIECs) are particularly important for their use in dynamic microfiltration systems, biomedical machinery, and electronic devices. Although significant advances have been made to maximize the dimensional changes that can be accomplished by OMIECs, there is currently limited understanding of how changes in their molecular structures impact their underpinning fundamental processes and their performance in electronic devices. Herein, a series of ethylene glycol functionalized conjugated polymers is synthesized, and their electromechanical properties are evaluated through a combined approach of experimental measurements and molecular dynamics simulations. As demonstrated, alterations in the molecular structure of OMIECs impact numerous processes occurring during their electrochemical swelling, with sidechain length shortening decreasing the number of incorporated water molecules, reducing the generated void volumes and promoting the OMIECs to undergo different phase transitions. Ultimately, the impact of these combined molecular processes is assessed in organic electrochemical transistors, revealing that careful balancing of these phenomena is required to maximize device performance.

  • 18.
    Sarrami, Farzaneh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical oxygen reduction reaction at conductive polymer PEDOT: Insight from ab initio molecular dynamics simulations2021Ingår i: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 551, artikel-id 111308Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers such as poly (3,4-ethylenedioxythiophene) (PEDOT) have attracted research attention as promising effective electrocatalytic materials for Oxygen Reduction Reaction (ORR). However, the complete reaction pathways leading to the hydrogen peroxide, H2O2, formation still remained unexplored. In this study, ab initio Born-Oppenheimer molecular dynamics (MD) calculations with an explicit solvent, were carried out to investigate the detailed mechanisms of the ORR on PEDOT via monitoring MD trajectories and analysing electronic energies. We confirm the outer-sphere nature of the first electron transfer and describe the essentially concerted electron-proton transfer nature of both oxygen reduction steps. Proton transfer is found to be involved in the first and second reduction steps and the role of water as an explicit solvent is outlined. Formation of the hydrogen peroxide is observed via either the reduction of hydroperoxyl radical HO2 center dot or cleavage of its peroxoadduct with PEDOT. It is therefore theoretically validated that the O2 reduction on a PEDOT may proceed a series pathway occurring simultaneously in acidic media. This approach provides an efficient and reliable means to rationalize and predict reaction mechanisms in solvent environment.

  • 19.
    Zozoulenko, Igor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Franco-Gonzalez, Juan Felipe
    HPCNow, Spain.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Modarresi, Mohsen
    Ferdowsi Univ Mashhad, Iran.
    Rolland, Nicolas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective2021Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 54, nr 13, s. 5915-5934Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Among all conducting polymers, PEDOT or poly(3,4-ethylenedioxythiophene) has a special place within the field of organic electronics due to its outstanding conductivity, stability, and processability. Since PEDOT was first synthesized in the late 1980s, a massive amount of knowledge has been accumulated about its morphological, structural, electrical, and optical properties, along with its applications in various devices. Notably, however, is that the vast majority of the reports in the field are purely experimental, without any theoretical support from simulation and modeling. In many other fields of material science, molecular modeling has already become a standard tool for guiding the experimental work. For PEDOT, the lack of the theoretical understanding of many important aspects of the material properties and device functionality leads to misconceptions and controversial issues hindering the progress in the field. The purpose of this Perspective is to fill the knowledge gaps and to present the current state-of-the art of the theoretical understanding of PEDOT. As theoretical understanding is essential to correctly interpretate experimental results and for the design of materials and devices with better performance, this Perspective targets equally experimental and theoretical communities working on PEDOT and related materials. We also hope that this Perspective will attract further attention of the computational community, which would help to bring the theoretical understanding of PEDOT to the levels already achieved in many other fields of material science.

  • 20.
    Ghosh, Sarbani
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Birla Inst Technol & Sci BITS, India.
    Rolland, Nicolas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electronic structure, optical properties, morphology and charge transport in naphthalenediimide (NDI)-based n-type copolymer with altered pi-conjugation: A theoretical perspective2021Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 118, nr 22, artikel-id 223302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Future developments of the thermoelectric technologies based on conducting polymer require to find n-type polymers with performance, especially electrical conductivity, comparable to the one of the state-of-the-art p-type conducting polymers. In this regard, naphthalenediimide based donor-acceptor copolymers have appeared as promising candidates. The backbone of the polymer can be engineered to control the electronic structure and the morphology of the chains in order to maximize both the charge carrier density and mobility. However, at the moment a complete theoretical insight from electronic structures to charge transport is missing. Here, we use a multiscale theoretical framework to study naphthalenediimide based donor-acceptor copolymers where the donor pi-conjugated dithienylvinylene moieties are replaced by pi non-conjugated dithienylethane in various amounts, and we show that this approach is in position to rationalize many experimental data. The resulting gradual change in electronic structure of polymer chains is investigated by the density functional theory and correlated with experimental absorption spectra. The morphology of a polymer film is studied by means of molecular dynamics simulations, showing that an extended network of inter-chain pi-pi stacking is preserved upon introduction of non-conjugated units in the polymer backbone. This finding is supported by a subsequent calculation of the charge transport, which shows only a moderate impact of the morphology on the mobility, while the experimental data can be retrieved by considering the effect of the pi non-conjugated moiety on the electronic structure. Such a multiscale description of conducting polymers paves the way toward fully theoretical design of future high performances materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Chen, Yongzhen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Experimental and Theoretical Investigation into the Polaron Structure of K-Doped Polyfluorene Films2021Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 125, nr 1, s. 937-945Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The evolution of the electronic structure and optical transition upon n-doping of poly(9,9-dioctylfluorene) (PFO) films is elucidated with photoelectron spectroscopy, optical absorption, density functional theory (DFT), and time-dependent DFT (TD-DFT) calculations. Optical absorption measurements extending into near infrared show two low-energy absorption features at low doping ratios and an additional peak at a higher energy of similar to 2.2 eV that disappears with increasing doping ratios. A gap state (i.e., polaronic state) close to the Fermi level and a significantly destabilized highest valence band appear in the experimentally measured ultraviolet photoelectron spectra. These experimental results are interpreted by the TD-DFT calculations, which show that the lower energy peaks originate from the excitation from polaronic states to the conduction band, while the higher energy peak mainly originates from the destabilized valence band to conduction band transitions and only appears at low doping ratios (c(red) <= 50%, 0.5 potassium atom per fluorene monomer). The DFT calculations further indicate that polaron pairs rather than bipolarons are preferentially formed at high doping ratios. Comparing the results of doped glassy and beta-phase films, we find that the ordered segments in the beta-phase film disappear due to the dopant (potassium) insertion, resulting in a similar polaronic structure.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Kim, Donghyun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Felipe Franco-Gonzalez, Juan
    Spanish Natl Res Council, Spain.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    How Long are Polymer Chains in Poly(3,4-ethylenedioxythiophene):Tosylate Films? An Insight from Molecular Dynamics Simulations2021Ingår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 125, nr 36, s. 10324-10334Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most important conductive polymers utilized in a variety of applications in organic electronics and bioelectronics and energy storage. PEDOT chains are believed to be rather short, but detailed knowledge of their length is missing because of the challenges in its experimental determination due to insolubility of PEDOT films. Here, we report a molecular dynamics (MD) study of in situ oxidative chemical polymerization and simultaneous crystallization of molecularly doped PEDOT focusing on the determination of its chain lengths at different polymerization temperatures. We find the average chain length to be 6, 7, and 11 monomers for 298, 323 and 373 K, respectively. At the same time, the length distribution is rather broad, for example, between 2 and 16 monomer units for T = 323 K. We demonstrate that the limiting factor determining the chain length is the diffusivity of the reactants (PEDOT monomers and oligomers). We also study the polymer film formation during solvent evaporation, and we find that although crystallization starts and proceeds already during the polymerization and doping phases, it mostly occurs during the evaporation phase. Finally, we believe that our results providing the oligomer chain length and polymerization and crystallization mechanisms obtained by means of MD "computational microscopy" provide an important insight into the morphology of PEDOT that cannot be obtained by other means.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Apostolopoulou-Kalkavoura, Varvara
    et al.
    Stockholm Univ, Sweden.
    Hu, Shiqian
    Univ Tokyo, Japan.
    Lavoine, Nathalie
    NC State Univ, NC 27695 USA.
    Garg, Mohit
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Munier, Pierre
    Stockholm Univ, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shiomi, Junichiro
    Univ Tokyo, Japan.
    Bergstrom, Lennart
    Stockholm Univ, Sweden.
    Humidity-Dependent Thermal Boundary Conductance Controls Heat Transport of Super-Insulating Nanofibrillar Foams2021Ingår i: Matter, ISSN 2590-2393, E-ISSN 2590-2385, Vol. 4, nr 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanomaterial (CNM)-based foams and aerogels with thermal conductivities substantially below the value for air attract significant interest as super-insulating materials in energy-efficient green buildings. However, the moisture dependence of the thermal conductivity of hygroscopic CNM-based materials is poorly understood, and the importance of phonon scattering in nanofibrillar foams remains unexplored. Here, we show that the thermal conductivity perpendicular to the aligned nanofibrils in super-insulating icetemplated nanocellulose foams is lower for thinner fibrils and depends strongly on relative humidity (RH), with the lowest thermal conductivity (14 mW m(-1) K-1) attained at 35% RH. Molecular simulations show that the thermal boundary conductance is reduced by the moisture-uptake-controlled increase of the fibril-fibril separation distance and increased by the replacement of air with water in the foam walls. Controlling the heat transport of hygroscopic super-insulating nanofibrillar foams by moisture uptake and release is of potential interest in packaging and building applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Pang, Jiu
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden.
    Baitenov, Adil
    Department of Applied Physics, School of Engineering Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Montanari, Céline
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
    Samanta, Archana
    Department of Applied Physics, School of Engineering Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Berglund, Lars
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
    Popov, Sergei
    Department of Applied Physics, School of Engineering Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden.
    Light Propagation in Transparent Wood: Efficient Ray‐Tracing Simulation and Retrieving an Effective Refractive Index of Wood Scaffold2021Ingår i: Advanced Photonics Research, Vol. 2, nr 11, s. 2100135-2100135Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transparent wood (TW), a biocomposite material demonstrating optical transparency in the visible range, has attracted much interest in recent years due to great potential for ecofriendly applications, for instance, in construction industry and functionalized organic materials. Optical properties of TW, including transparency and haze, depend on a particular structure of cellulose-based backbone compound, (mis-)matching of the refractive indices (RIs) between TW compounds, and the polymer matrix. Although there are data of cellulose RIs for various forms of cellulose (fibers, powder, hot-pressed films, etc.), these values might differ from an effective RI of the TW substrate. Herein, a numerical model of light propagation in the TW, based on the real cellular structure in wood, is presented and applied to estimate an effective RI of the delignified wood reinforcement in the experimentally investigated TW material. Ray-tracing and rigorous electromagnetic approaches are compared for modeling light propagation in the TW. Ray tracing demonstrates considerably simplified yet accurate and efficient solutions. The work brings substantial progress toward realistic and practical wood modeling for the purpose of applications, materials design, and fundamental studies.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Garg, Mohit
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Apostolopoulou-Kalkavoura, Varvara
    Stockholm Univ, Sweden.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Kaldéus, Tahani
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Malmström, Eva
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Bergström, Lennart
    Stockholm Univ, Sweden; KTH Royal Inst Technol, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Moisture uptake in nanocellulose: the effects of relative humidity, temperature and degree of crystallinity2021Ingår i: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 28, s. 9007-9021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Foams made from cellulose nanomaterials are highly porous and possess excellent mechanical and thermal insulation properties. However, the moisture uptake and hygroscopic properties of these materials need to be better understood for their use in biomedical and bioelectronics applications, in humidity sensing and thermal insulation. In this work, we present a combination of hybrid Grand Canonical Monte Carlo and Molecular Dynamics simulations and experimental measurements to investigate the moisture uptake within nanocellulose foams. To explore the effect of surface modification on moisture uptake we used two types of celluloses, namely TEMPO-oxidized cellulose nanofibrils and carboxymethylated cellulose nanofibrils. We find that the moisture uptake in both the cellulose nanomaterials increases with increasing relative humidity (RH) and decreases with increasing temperature, which is explained using the basic thermodynamic principles. The measured and calculated moisture uptake in amorphous cellulose (for a given RH or temperature) is higher as compared to crystalline cellulose with TEMPO- and CM-modified surfaces. The high water uptake of amorphous cellulose films is related to the formation of water-filled pores with increasing RH. The microscopic insight of water uptake in nanocellulose provided in this study can assist the design and fabrication of high-performance cellulose materials with improved properties for thermal insulation in humid climates or packaging of water sensitive goods.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Vagin, Mikhail
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mitraka, Evangelia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Negatively-Doped Conducting Polymers for Oxygen Reduction Reaction2021Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 11, nr 3, artikel-id 2002664Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The oxygen reduction reaction (ORR) limits the efficiency of oxygen-associated energy conversion in fuel cells and air-metal batteries. Today, expensive noble metal catalysts are often utilized to enhance the ORR and the resulting conversion efficiency in those devices. Hence, there is an intensive research to find efficient electrodes, exhibiting a favorable electronic structure, for ORR based on abundant materials that can be manufactured using low cost processes. In that context, metal-free carbon-based nanostructures and conducting polymers have been actively investigated. The negatively doped poly(benzimidazobenzophenanthroline) (BBL) as an efficient and stable oxygen cathode material is reported here. Compared to the benchmark p-doped conducting polymer poly(3,4-ethylendioxythiophene) (PEDOT), the BBL provides electrocatalysis that fully reduces dioxygen into water, via a (2 + 2)-electron transfer pathway with hydrogen peroxide (H2O2) as an intermediate; while PEDOT limits the ORR to H2O2. It is demonstrated that n-doped BBL is a promising air electrode material for low-cost and ecofriendly model fuel cells, without the need of any co-catalysts, and its performance is found to be superior to p-doped PEDOT air electrodes.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Delavari, Najmeh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Piro, Benoit
    Univ Paris, France.
    Noel, Vincent
    Univ Paris, France.
    Mattana, Giorgio
    Univ Paris, France.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nernst-Planck-Poisson analysis of electrolyte-gated organic field-effect transistors2021Ingår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 54, nr 41, artikel-id 415101Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrolyte-gated organic field-effect transistors (EGOFETs) represent a class of organic thin-film transistors suited for sensing and biosensing in aqueous media, often at physiological conditions. The EGOFET device includes electrodes and an organic semiconductor channel in direct contact with an electrolyte. Upon operation, electric double layers are formed along the gate-electrolyte and the channel-electrolyte interfaces, but ions do not penetrate the channel. This mode of operation allows the EGOFET devices to run at low voltages and at a speed corresponding to the rate of forming electric double layers. Currently, there is a lack of a detailed quantitative model of the EGOFETs that can predict device performance based on geometry and material parameters. In the present paper, for the first time, an EGOFET model is proposed utilizing the Nernst-Planck-Poisson equations to describe, on equal footing, both the polymer and the electrolyte regions of the device configuration. The generated calculations exhibit semi-qualitative agreement with experimentally measured output and transfer curves.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Jain, Karishma
    et al.
    KTH Royal Inst Technol, Sweden.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wagberg, Lars
    KTH Royal Inst Technol, Sweden.
    PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential2021Ingår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 584, s. 57-66Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PEDOT:PSS is the most widely used conducting polymer in organic and printed electronics. PEDOT:PSS films have been extensively studied to understand the morphology, ionic and electronic conductivity of the polymer. However, the polymer dispersion, which is used to cast or spin coat the films, is not well characterized and not well understood theoretically. Here, we study in detail the particle morphology, size, charge density and zeta potential (z-potential) by coarse-grained MD simulations and dynamic light scattering (DLS) measurements, for different pH levels and ionic strengths. The PEDOT:PSS particles were found to be 12 nm-19 nm in diameter and had a z-potential of -30 mV to -50 mV when pH was changed from 1.7 to 9, at an added NaCl concentration of 1 mM, as measured by DLS. These values changed significantly with changing pH and ionic strength of the solution. The charge density of PEDOT:PSS particles was also found to be dependent on pH and ionic strength. Besides, the distribution of different ions (PSS-, PEDOT+, Na+, Cl-) present in the solution is simulated to understand the particle morphology and molecular origin of z-potential in PEDOT:PSS dispersion. The trend in change of particle size, charge density and z-potential with changing pH and ionic strength are in good agreement between the simulations and experiments. Our results show that the molecular model developed in this work represents very well the PEDOT:PSS nano-particles in aqueous dispersion. With this study, we hope to provide new insight and an in-depth understanding of the morphology and z-potential evolution in PEDOT:PSS dispersion. (C) 2020 The Author(s). Published by Elsevier Inc.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Sahalianov, Ihor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Say, Mehmet Girayhan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abdullaeva, Oliya
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ahmed, Fareed
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Brno Univ Technol, Czech Republic.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer PEDOT and Cellulose2021Ingår i: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 4, nr 8, s. 8629-8640Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Energy storage technology incorporating conducting polymers as the active component in electrode structures, in part based on natural materials, is a promising strategy toward a sustainable future. Electronic and ionic charge transport in poly(3,4-ethylenedioxythiophene) (PEDOT) provides fundamentals for energy storage, governed by volumetric PEDOT:counterion double layers. Despite extensive experimental investigations, a solid understanding of the capacitance in PEDOT-based nanocomposites remains unsatisfactory. Here, we report on the charge storage mechanism in PEDOT composited with cellulose nanofibrils (termed as "power paper") from three different perspectives: experimental measurements, density functional theory atomistic simulations, and device-scale simulations based on the NernstPlanck-Poisson equations. The capacitance of the power paper was investigated by varying the film thickness, charging currents, and electrolyte ion concentrations. We show that the volumetric capacitance of the power paper originates from electrostatic molecular double layers defined at atomistic scales, formed between holes, localized in the PEDOT backbone, and their counterions. Experimental galvanostatic cycling characteristics of the power paper is well reproduced within the electrostatic Nernst-PlanckPoisson model. The difference between the specific capacitance and the intrinsic volumetric capacitance is also outlined. Substantial oxygen reduction reactions were identified and recorded in situ in the vicinity of the power paper surface at negative potentials. Purging of dissolved oxygen from the electrolyte leads to the elimination of currents originating from the oxygen reduction reactions and allows us to obtain well-defined electrostatic-capacitive behavior (box-shaped cyclic voltammetry and triangular galvanostatic charge-discharge characteristics) at a large operational potential window from -0.6 V to +0.6 V. The obtained results reveal that the fundamental charge storage is a result of electrostatic Stern double layers in both oxidized and reduced electrodes, and the developed theoretical approaches provide a predictive tool to optimize performance and device design for energy storage devices based on highperformance conducting polymer electrodes.

  • 30.
    Delavari, Najmeh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gladisch, Johannes
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Modarresi, Mohsen
    Ferdowsi Univ Mashhad, Iran.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation2021Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 54, nr 13, s. 6552-6562Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conductive polymer PEDOT:Tos (3,4-ethylenedioxythiophene doped with molecular tosylate) gained considerable attention in various devices for bioelectronic applications, such as organic transistors and sensors. Many of these devices function upon oxidation/reduction processes in contact with aqueous electrolytes. So far, theoretical insight into morphological changes, ion injection, and water intake during these processes was rather limited. In the present work, we combined experiments and molecular dynamics simulations to study the water intake, swelling, and exchange of ions in the PEDOT:Tos film during cyclic voltammetry. We showed that the film underwent significant changes in morphology and mass during the redox processes. We observed both experimentally and in simulations that the film lost its mass during reduction, as tosylate and Na were expelled and gained mass during oxidation mainly due to the uptake of anions, i.e., tosylate and Cl. The results were in line with the UV-VIS-NIR absorption measurements and X-ray photoelectron spectroscopy (XPS) measurements, which revealed that during the redox process a portion of Tos was replaced by Cl- as the counterion for PEDOT. Also, the relative mass change between the most oxidized and reduced states was similar to 10 to 14% according to both experiments and simulations. We detected an overall material loss of the film during voltammetry cycles indicating that a portion of the material leaving the film during reduction did not return to the film during the consecutive oxidation. Our combined experimental/simulation study unraveled the underlying molecular processes in the PEDOT:Tos film upon the redox process, providing the essential understanding needed to improve and assess the performance of bioelectronic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Wadnerkar, Nitin Shriram
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Warsaw Univ Technol, Poland.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Density Functional Theory Mechanistic Study on H2O2 Production Using an Organic Semiconductor Epindolidione2020Ingår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 124, nr 46, s. 9605-9610Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic semiconductors have recently emerged as promising catalytic materials for oxygen reduction to hydrogen peroxide, H2O2, a chemical of great importance in industry as well as biology. While examples of organic semiconductor-mediated photocatalytic and electrocatalytic processes for H2O2 production become more numerous and improve in performance, fundamental understanding of the reaction mechanisms at play have been explored far less. The aim of the present work is to computationally test hypotheses of how selective oxygen reduction to H2O2 generally occurs on carbonyl dyes and pigments. As an example material, we consider epindolidione (EPI), an industrial pigment with demonstrated semiconductor properties, which photocatalytic activity in oxygen reduction reaction (ORR) and thereby producing hydrogen peroxide (H2O2) in low pH environment has been recently experimentally demonstrated. In this work, the ability of the reduced form of EPI, viz. EPI-2H (which was formed after a photoinduced 2e(-)/2H(+) process), to reduce molecular triplet oxygen to peroxide and the possible mechanism of this reaction are computationally investigated using density functional theory. In the main reaction pathway, the reduction of O-2 to H2O2 reaction occurs via abstraction of one of the hydrogen atoms of EPI-2H by triplet dioxygen to produce an intermediate complex consisting of the radicals of hydrogen peroxide (HOW) and EPI-H at the initial stage. HOO center dot thus released can abstract another hydrogen atom from EPI-H-center dot to produce H2O2 and regenerates EPI; otherwise, it can enter another pathway to abstract hydrogen from a neighboring EPI-2H to form EPI-H-center dot and H2O2. EPI, after reduction, thus plays in ORR the role of hydrogen atom transfer (HAT) agent via its OH group, similar to anthraquinone in the industrial process, while HAT from its amino hydrogen is found unfavorable.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Ghosh, Sarbani
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Effect of Substrate on Structural Phase Transition in a Conducting Polymer during Ion Injection and Water Intake: A View from a Computational Microscope2020Ingår i: ACS APPLIED ELECTRONIC MATERIALS, ISSN 2637-6113, Vol. 2, nr 12, s. 4034-4041Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers operating in aqueous electrolyte represent mixed electron-ion conductors, where the ion injection and water intake can lead to structural and morphological changes that can strongly affect the material morphology and device performance. In the present paper, using molecular dynamics simulations, we provide an atomistic understanding of the structural phase transitions during electrochemical oxidation and ion injection in a conjugated polymer with glycolated side chains recently reported by Bischak et al. [J. Am. Chem. Soc., 2020, 142, 7434], where the polymer switched between two structurally distinct phases corresponding to different oxidation levels. To outline the structural changes, we calculated the polymer film morphology and X-ray diffraction patterns at different oxidation levels. We demonstrated that the observed phase transition arises due to interplay between several factors, including the effect of the substrate leading to the preferential edge-on arrangement of the chains and formation of lamellas; unzipping of the interdigitated polymer chains during oxidation and ion intake; and changes in the morphology when pi-pi stacking is absent at low oxidation level and forms at the high oxidation level facilitating the electron mobility and enabling the oxidation of the polymer film. Our calculations quantitatively reproduce the experimental data, which outlines the predictive power of the molecular modeling of the polymer systems that can be utilized for the design of materials and devices with improved performance.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Rolland, Nicolas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Modarresi, Mohsen
    Ferdowsi Univ Mashhad, Iran.
    Felipe Franco-Gonzalez, Juan
    CIB CSIC, Spain.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Large scale mobility calculations in PEDOT (Poly(3,4-ethylenedioxythiophene)): Backmapping the coarse-grained MARTINI morphology2020Ingår i: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 179, artikel-id 109678Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Designing new high performances materials based on conducting polymers necessitates the development of multiscale models to investigate the charge transport in large realistic systems. In this work, we utilize CoarseGrained (CG) Molecular Dynamics (MD) simulations to generate morphologies of Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with Tosylate (TOS) ions, and we develop a backmapping protocol to retrieve the atomistic details of the molecules afterwards. We demonstrate that the proposed protocol corrects for the nanostructure distortions induced by Coarse-Graining the system, namely a wrong density and an over-estimated pi - pi stacking distance. Quantum chemical calculations are performed on the systems obtained after backmapping in order to calculate hopping rates for charge transport, and charge mobilities as a function of the PEDOT chain length and hydration level are then calculated by solving a master equation for transport. The results are identical to the calculations performed on PEDOT morphologies obtained by direct All-Atomistic (AA) MD simulations: the mobility increases with the chain length and decreases with the hydration level, this last effect being more pronounced for short chains. This definitely shows that the workflow CG MD -> backmapping -> mobility calculations is in position to calculate charge mobility in PEDOT based materials, paving the way for theoretical investigations of transport in more complex materials such as PEDOT doped with Polystyrene Sulfonate (PSS).

    Ladda ner fulltext (pdf)
    fulltext
  • 34.
    Modarresi, Mohsen
    et al.
    Ferdowsi Univ Mashhad, Iran.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS2020Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 53, nr 15, s. 6267-6278Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conjugated polymer poly(3,4-ethylenedioxythiophene) polymerized and stabilized in the presence of polystyrenesulfonate (best known as PEDOT:PSS) is a working horse of organic electronics and bioelectronics and one of the most important conductive polymers. While its morphology is complex and depends on the details in synthesis and post-treatment, its distinctive and common feature is a two-phase granular structure attributed to PEDOT- and PSS-rich regions. Yet, there is still no well-established consensus concerning the precise nature of PEDOT- and PSS-rich regions as well as their chemical composition and structure. In this study we perform coarse-grained MARTINI molecular dynamics simulations of PEDOT:PSS focusing on understanding its two-phase morphology as well as water intake and ion exchange. We demonstrate that PEDOT:PSS is an essentially three-component system consisting of positively charged PEDOT chains, PSS chains with mostly deprotonated sulfonate groups, and protonated PSS chains. PEDOT-rich regions are predominantly composed of PEDOT and deprotonated PSS chains, whereas PSS-rich regions are composed of protonated PSS chains. Our calculations unravel how PEDOT-and PSS-rich regions are formed from the solution phase during the drying process. We show that when the dry polymer film is immersed in water, its swells by nearly 60%, and we demonstrate that the origin of swelling is related to deprotonation of the sulfonate groups in the PSS-rich regions. It is mostly PSS-rich regions that swell while the PEDOT-rich regions remain rather unchanged. We demonstrate that swelling of the film is rather insignificant during reduction/oxidation within the cyclic voltammetry (CV) conditions. We show that during CV experiments each counterion brings on overage approximate to 4 water molecules into the polymer region. Our simulations of swelling, CV experiments, and pi-pi stacking formation in PEDOT and PSS match well the experimental results. Our theoretical studies unravel the most important morphological aspects of one of the most important polymers for organic electronics, providing the essential insight needed for the material and device design and improvements.

  • 35.
    Gueskine, Viktor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Molecular Oxygen Activation at a Conducting Polymer: Electrochemical Oxygen Reduction Reaction at PEDOT Revisited, a Theoretical Study2020Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 124, nr 24, s. 13263-13272Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Molecular oxygen requires activation in order to be reduced, which prompts extensive searching for efficient and sustainable electrode materials to drive electrochemical oxygen reduction reaction (ORR), of primary importance for energy production and storage. A conjugated polymer PEDOT is a metal-free material for which promising ORR experimental results have been obtained. However, sound theoretical understanding of this reaction at an organic electrode is insufficient, as the concepts inherited from electrocatalysis at transition metals are not necessarily relevant for a molecular organic material. In this work, we critically analyze the basics of electrochemical ORR and build a model for our DFT calculations of the reaction thermodynamics based on this analysis. Altogether, this work leads to a conclusion that outer sphere electron transfer that currently attracts increasing attention in the context of ORR is a viable mechanism at a conducting polymer electrode.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Rolland, Nicolas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mehandzhiyski, Alexandar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Garg, Mohit
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal2020Ingår i: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 16, nr 6, s. 3699-3711Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Self-assembly is ubiquitous in nature and underlies the formation of many complex systems from the molecular to the macroscopic scale. Kern-Frenkel-like patchy particles are powerful models to investigate this phenomenon by computational methods such as Monte Carlo or molecular dynamics simulations. However, in these models the interactions are mediated by circular patches at the particle surface, which can be hardly mapped to realistic systems, containing for instance faceted particles with rectangular surfaces. In this paper we extend the model to take into account such geometries, and we use it to build a supra coarse-grained model of the cellulose nanocrystal where the interactions are parametrized against all-atomistic molecular dynamics simulations. The formation of cholesteric ribbons and defects in cholesteric droplets of the cellulose nanocrystal are investigated and confirm experimental behavior reported in the literature. The flexibility of this new patchy particle model makes it a powerful tool to develop supra coarse-grained models of self-assembly for large space and time scales and should find a broad range of applications for self-assembly in chemical and biological systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 37.
    Gladisch, Johannes
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Giovannitti, Alexander
    Imperial Coll London, England.
    Moser, Maximilian
    Imperial Coll London, England.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    Imperial Coll London, England; KAUST, Saudi Arabia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Reversible Electronic Solid-Gel Switching of a Conjugated Polymer2020Ingår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 7, nr 2, artikel-id 1901144Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000-10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid-state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.

  • 38.
    Moser, Maximilian
    et al.
    Imperial Coll London, England.
    Hidalgo, Tania Cecilia
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Surgailis, Jokubas
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Gladisch, Johannes
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sheelamanthula, Rajendar
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Thiburce, Quentin
    Stanford Univ, CA 94305 USA.
    Giovannitti, Alexander
    Stanford Univ, CA 94305 USA.
    Salleo, Alberto
    Stanford Univ, CA 94305 USA.
    Gasparini, Nicola
    Imperial Coll London, England.
    Wadsworth, Andrew
    Imperial Coll London, England.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Inal, Sahika
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    McCulloch, Iain
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia; Univ Oxford, England.
    Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability2020Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 32, artikel-id 2002748Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [mu C*] and current retentions up to 98% over 700 electrochemical switching cycles are developed.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Garg, Mohit
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Theoretical Rationalization of Self-Assembly of Cellulose Nanocrystals: Effect of Surface Modifications and Counterions2020Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 21, nr 8, s. 3069-3080Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hierarchical self-assembly of cellulose nanocrystals (CNCs) is an important phenomenon occurring naturally in plant cell walls. Utilization of this assembly for advanced applications requires a fundamental theoretical understanding of interactions between the CNCs, which is still incomplete. Hence, in this work, we used molecular dynamics simulations to study the effect of surface modification on the interactions between the CNCs and the resulting bundling process. We consider two types of common surface modifications of native CNCs, sulfated CNCs (SCNCs) and TEMPO-oxidized CNCs (TCNCs), in the presence of two types of counterions, Na+ and Ca2+, in solution. We used the umbrella sampling method to calculate the potential of the mean force (PMF), and we found that the strength of interaction between the modified CNCs decreases, compared with the native CNCs. The strength of interaction for TCNCs is almost similar to that for SCNCs at the same level of surface substitution, whereas the type of counterion has a strong effect on the PMF with a higher interaction energy between the CNCs in the presence of a divalent counterion as compared to a monovalent counterion. Finally, we studied the self-assembly of CNCs into a hexagonal bundle for the native CNCs and sulfated CNCs focusing on the twist of the bundle, bound water inside the bundle, inter-CNC gap, and interaction energy between the CNCs in the bundle, and the effect of the counterions on the morphology of the bundle. The equilibrium spacing of the CNCs within the bundle is found to be consistent with the results of PMF calculations for the minimum separation distance between the respective crystal surfaces.

  • 40.
    Sahalianov, Ihor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hynynen, Jonna
    Chalmers Univ Technol, Sweden.
    Barlow, Stephen
    Georgia Inst Technol, GA 30332 USA.
    Marder, Seth R.
    Georgia Inst Technol, GA 30332 USA.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory2020Ingår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 124, nr 49, s. 11280-11293Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The UV-to-IR transitions in p-doped poly(3-hexylthiophene) (P3HT) with alkyl side chains and polar polythiophene with tetraethylene glycol side chains are studied experimentally by means of the absorption spectroscopy and computationally using density functional theory (DFT) and tight-binding DFT. The evolution of electronic structure is calculated as the doping level is varied, while the roles of dopant ions, chain twisting, and pi-pi stacking are also considered, each of these having the effect of broadening the absorption peaks while not significantly changing their positions. The calculated spectra are found to be in good agreement with experimental spectra obtained for the polymers doped with a molybdenum dithiolene complex. As in other DFT studies of doped conjugated polymers, the electronic structure and assignment of optical transitions that emerge are qualitatively different from those obtained through earlier "traditional" approaches. In particular, the two prominent bands seen for the p-doped materials are present for both polarons and bipolarons/polaron pairs. The lowest energy of these transitions is due to excitation from the valence band to a spin-resolved orbitals located in the gap between the bands. The higher-energy band is a superposition of excitation from the valence band to a spin-resolved orbitals in the gap and an excitation between bands.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Rolland, Nicolas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Royal Inst Technol KTH, Sweden.
    Franco-Gonzalez, Juan Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Can Mobility Negative Temperature Coefficient Be Reconciled with the Hopping Character of Transport in Conducting Polymers?2019Ingår i: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, nr 11, s. 2833-2839Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) (PEDOT) is a conducting polymer that is used in a wide range of applications such as electronics, optoelectronics, and bio-electronics, where the fundamental understanding of the charge transport, and in particular of the electrical conductivity sigma, is a prerequisite to develop new high performance devices. There are many reports in the literature where the conductivity of archetypical conducting polymer PEDOT doped with tosylate (PEDOT:TOS) exhibits a dry negative temperature coefficient, d sigma/dT amp;lt; 0, which is strikingly different from the activated-type behavior with d sigma/dT amp;gt; 0 commonly observed in most conducting polymers. This unusual temperature dependence was attributed to the transition from the photon-assisted hopping to the metallic behavior, which is however difficult to rationalize taking into account that this transition occurs at high temperatures. In order to understand the origin of this unusual behavior, multiscale mobility calculations in PEDOT:TOS for the model of hopping transport were performed, where changes in the morphology and the density of states (DOS) with the temperature were explicitly taken into account. The morphology was calculated using the Molecular Dynamics simulations, and the hopping rates between the chains were calculated quantum-mechanically following the Miller-Abrahams formalism. Our results reproduce the observed negative temperature coefficient, where however the percolation analysis shows that this behavior mainly arises because of the changes in morphology upon heating when the system becomes less ordered. This results in a less efficient pi-pi stacking and hence lower mobility in the system. We therefore conclude that experimentally observed negative mobility temperature coefficient in conducting polymers at high temperatures is consistent with the hopping transport, and does not necessarily reflect the transition to a metallic band-like transport. Based on our multiscale modeling, we introduce a simple Gaussian Disorder Model for the efficient mobility calculations, where the DOS broadening is a function of the temperature, and where the transfer integral distribution is a bimodal distribution evolving with temperature.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Modarresi, Mohsen
    et al.
    Ferdawsi Univ Mashhad, Iran.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Autonomous Univ Madrid, Spain.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Computational microscopy study of the granular structure and pH dependence of PEDOT:PSS2019Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, nr 12, s. 6699-6711Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Computational microscopy based on Martini coarse grained molecular dynamics (MD) simulations of a doped conducting polymer poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (best known as PEDOT:PSS) was performed focussing on the formation of the granular structure and PEDOT crystallites, and the effect of pH on the material morphology. The PEDOT:PSS morphology is shown to be sensitive to the initial distribution of PEDOT and PSS in the solution, and the results of the modelling suggest that the experimentally observed granular structure of PEDOT:PSS can be only obtained if the PEDOT/PSS solution is in the dispersive state in the initial crystallization stages. Variation of the pH is demonstrated to strongly affect the morphology of PEDOT:PSS films, altering their structure between granular-type and homogeneous. It also affects the size of crystallites and the relative arrangement of PEDOT and PSS chains. It is shown that the crystallites in PEDOT:PSS are smaller than those in PEDOT with molecular counterions such as PEDOT:tosylate, which is consistent with the available experimental data. The predicted changes of the PEDOT:PSS morphology with variation of the pH can be tested experimentally, and the calculated atomistic picture of PEDOT:PSS films (not accessible by conventional experimental techniques) is instrumental for understanding the material structure and building realistic models of PEDOT:PSS morphology.

    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Kim, Nara
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electric transport properties in PEDOT thin films2019Ingår i: Conjugated polymers: properties, processing, and applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, 4, s. 45-128Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

  • 44.
    Mitraka, Evangelia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gryszel, Maciej
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Warczak, Magdalena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mitrakas, Manassis
    Aristotle University of Thessaloniki, Thessaloniki, Greece.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-ethylenedioxythiophene) Electrodes2019Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, nr 2, s. 1-6, artikel-id 1800110Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrocatalysis for energy‐efficient chemical transformations is a central concept behind sustainable technologies. Numerous efforts focus on synthesizing hydrogen peroxide, a major industrial chemical and potential fuel, using simple and green methods. Electrochemical synthesis of peroxide is a promising route. Herein it is demonstrated that the conducting polymer poly(3,4‐ethylenedioxythiophene), PEDOT, is an efficient and selective heterogeneous catalyst for the direct reduction of oxygen to hydrogen peroxide. While many metallic catalysts are known to generate peroxide, they subsequently catalyze decomposition of peroxide to water. PEDOT electrodes can support continuous generation of high concentrations of peroxide with Faraday efficiency remaining close to 100%. The mechanisms of PEDOT‐catalyzed reduction of O2 to H2O2 using in situ spectroscopic techniques and theoretical calculations, which both corroborate the existence of a chemisorbed reactive intermediate on the polymer chains that kinetically favors the selective reduction reaction to H2O2, are explored. These results offer a viable method for peroxide electrosynthesis and open new possibilities for intrinsic catalytic properties of conducting polymers.

  • 45.
    Valiollahi Bisheh, Roudabeh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Shoolini Univ, India.
    Grigoriev, Sergey A.
    Natl Res Ctr Kurchatov Inst, Russia.
    Pushkarev, Artem S.
    Natl Res Ctr Kurchatov Inst, Russia; Natl Res Univ Moscow Power Engn Inst, Russia.
    Pushkareva, Irina V.
    Natl Res Ctr Kurchatov Inst, Russia; Natl Res Univ Moscow Power Engn Inst, Russia.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical hydrogen production on a metal-free polymer2019Ingår i: Sustainable Energy & Fuels, E-ISSN 2398-4902, Vol. 3, nr 12, s. 3387-3398Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The exploration for true electrocatalytic reactions at organic conducting polymer electrodes, including chemisorption of a reactant and desorption of a product, is receiving renewed interest due to the profound implications it could have on low-cost large area electrochemical energy technology. Here, we finalize the debate about the ability of an organic electrode, more specifically poly(3,4-ethylenedioxythiophene) (PEDOT), to be an electrocatalyst for hydrogen production. This paper proves and covers fundamental studies of the hydrogen evolution reaction (HER) on PEDOT films. Both theory based on DFT (Density Functional Theory) and experimental studies using electrochemical techniques and operando mass spectrometry suggest a Volmer-Heyrovsky mechanism for the actual HER on PEDOT. It is shown that PEDOT reaches an exchange current density comparable to that of metals (i.e. Cu, Ni, and Au) and in addition does not form passivating oxide layers or suffer from chemical corrosion in acidic media. Finally, an electrolyzer stack using the organic polymer electrode demonstrates HER performance in real applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Ghosh, Sarbani
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels2019Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 25, s. 15467-15476Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Theoretical understanding of the electronic structure and optical transitions in n-doped conducting polymers is still controversial for polaronic and bipolaronic states and is completely missing for the case of a high doping level. In the present paper, the electronic structure and optical properties of the archetypical n-doped conducting polymer, double-stranded benzimidazo-benzophenanthroline ladder (BBL), are studied using the density functional theory (DFT) and the time dependent DFT method. We find that a polaronic state in the BBL chain is a spin-resolved doublet where the spin degeneracy is lifted. The ground state of two electrons corresponds to a triplet polaron pair, which is in stark contrast to a commonly accepted picture where two electrons are postulated to form a spinless bipolaron. The total spin gradually increases until the reduction level reaches c(red) = 100% (i.e., one electron per monomer unit). With further increase of the reduction level, the total spin decreases until it becomes 0 for the reduction level c(red) = 200%. The calculated results reproduce the experimentally observed spin signal without any phenomenological parameters. A detailed analysis of the evolution of the electronic structure of BBL and its absorption spectra with increase in reduction level is presented. The calculated UV-vis-NIR spectra are compared with the available experimental results. The electronic structure and optical absorption for different reduction levels presented here are generic to a wide class of conducting polymers, which is illustrated by the corresponding calculations for another archetypical conducting polymer, poly(3,4-ethylenedioxythiophene) (best known as PEDOT).

    Ladda ner fulltext (pdf)
    fulltext
  • 47.
    Sekretareva, Alina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Uppsala Univ, Sweden.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Volkov, Anton
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Evaluation of the Electrochemically Active Surface Area of Microelectrodes by Capacitive and Faradaic Currents2019Ingår i: ChemElectroChem, E-ISSN 2196-0216, Vol. 6, nr 17, s. 4411-4417Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two experimental methods to estimate the electrochemically active surface area (EASA) of microelectrodes are investigated. One method is based on electrocapacitive measurements and depends significantly on the surface roughness as well as on other parameters. The other method is based on faradaic current measurements and depends on the geometric surface area. The experimental results are supplemented with numerical modeling of electrodes with different surface roughness. A systematic study reveals a strong influence of the scale and arrangement of the surface roughness, the measurement potential and the electrolyte concentration on the EASA of microelectrodes estimated from the electrocapacitive measurements. The results show that electrocapacitive measurements should not be used to estimate the faradaic EASA of microelectrodes with a non-negligible surface roughness.

    Ladda ner fulltext (pdf)
    fulltext
  • 48.
    Wadnerkar, Nitin Shriram
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Exploring Hydrogen Storage in PEDOT: A Computational Study2019Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 4, s. 2066-2074Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A reliable hydrogen-based energy technology requires promising materials for safe storage and transport of hydrogen. Here, the storage of hydrogen in the organic polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is explored using density functional theory calculations. It is demonstrated that hydrogen chemisorption on PEDOT is feasible with the maximum gravimetric uptake of similar to 2.8 wt % in ambient condition, whereas physisorption is possible only at very low temperatures or at high pressure. The Gibbs absorption energies, electronic structure, and absorption spectra are calculated for the cases of chemisorption of a single hydrogen atom, a hydrogen pair, and hydrogen saturated chain for both neutral and oxidized PEDOT. Various experimental routes for PEDOT hydrogenations are discussed.

  • 49.
    Berggren, Magnus
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 22, artikel-id 1805813Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    Ladda ner fulltext (pdf)
    fulltext
  • 50.
    Zozoulenko, Igor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Chalmers Univ Technol, Sweden.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT2019Ingår i: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, nr 1, s. 83-94Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronic structure and optical absorption spectra of poly(3,4-ethyl-enedioxythiophene) (PEDOT) for different oxidation levels were studied using density functional theory (DFT) and time-dependent DFT. It is shown, that the DFT-based predictions for the polaronic and bipolaronic states and the nature of corresponding optical transitions are qualitatively different from the widely used traditional picture based on semi-empirical pre-DFT approaches that still dominate the current literature. On the basis of the results of our calculations, the experimental Vis/NIR absorbance spectroscopy and the electron paramagnetic resonance spectroscopy are re-examined, and a new interpretation of the measured spectra and the spin signal, which is qualitatively different from the traditional interpretation, is provided. The findings and conclusions concerning the nature of polaronic and bipolaronic states, band structure and absorption spectra presented for PEDOT, are generic for a wide class of conducting polymers (such as polythiophenes and their derivatives) that have a similar structure of monomer units.

123 1 - 50 av 146
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf