liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 53
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    2D noble metals: growth peculiarities and prospects for hydrogen evolution reaction catalysis2023Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 25, nr 12, s. 8281-8292Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-performance electrocatalysts for the hydrogen evolution reaction are of interest in the development of next-generation sustainable hydrogen production systems. Although expensive platinum-group metals have been recognized as the most effective HER catalysts, there is an ongoing requirement for the discovery of cost-effective electrode materials. This paper reveals the prospects of two-dimensional (2D) noble metals, possessing a large surface area and a high density of active sites available for hydrogen proton adsorption, as promising catalytic materials for water splitting. An overview of the synthesis techniques is given. The advantages of wet chemistry approaches for the growth of 2D metals over deposition techniques show the potential for kinetic control that is required as a precondition to prevent isotropic growth. An uncontrolled presence of surfactant-related chemicals on a 2D metal surface is however the main disadvantage of kinetically controlled growth methods, which stimulates the development of surfactant-free synthesis approaches, especially template-assisted 2D metal growth on non-metallic substrates. Recent advances in the growth of 2D metals using a graphenized SiC platform are discussed. The existing works in the field of practical application of 2D noble metals for hydrogen evolution reaction are analyzed. This paper shows the technological viability of the "2D noble metals" concept for designing electrochemical electrodes and their implementation into future hydrogen production systems, thereby providing an inspirational background for further experimental and theoretical studies.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    A DFT Study of Phosphate Ion Adsorption on Graphene Nanodots: Implications for Sensing2023Ingår i: Sensors, E-ISSN 1424-8220, Vol. 23, nr 12, artikel-id 5631Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The optical properties of graphene nanodots (GND) and their interaction with phosphate ions have been investigated to explore their potential for optical sensing applications. The absorption spectra of pristine GND and modified GND systems were analyzed using time-dependent density functional theory (TD-DFT) calculation investigations. The results revealed that the size of adsorbed phosphate ions on GND surfaces correlated with the energy gap of the GND systems, leading to significant modifications in their absorption spectra. The introduction of vacancies and metal dopants in GND systems resulted in variations in the absorption bands and shifts in their wavelengths. Moreover, the absorption spectra of GND systems were further altered upon the adsorption of phosphate ions. These findings provide valuable insights into the optical behavior of GND and highlight their potential for the development of sensitive and selective optical sensors for phosphate detection.

  • 3.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. IM Frantsevich Inst Problems Mat Sci, Ukraine; NAS Ukraine, Ukraine.
    Cd-substitution effect on photoexcitation properties of ZnO nanodots surrounded by carbon moiety2023Ingår i: Molecular Physics, ISSN 0026-8976, E-ISSN 1362-3028, Vol. 121, nr 15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The geometrical structure and photoexcitation properties of Zn27-nCdnO27C42 complexes are investigated by density functional theory (DFT) and time-dependent DFT calculations at the PBE0/6-31G*/SDD level of theory. The cohesive energy and frequency analysis indicate that the hybrid materials are energetically stable. In presence of Cd substituting atoms, the energy gap of the ZnO nanodots surrounded by carbon moiety is shown to decrease, as compared to Cd-free complex. In-depth excited state analysis including charge density difference (CDD) mapping and absorption spectrum decomposition is performed to reveal the nature of the dominant excited states and to comprehend the Cd-to-Zn substitution effect on the photoexcitation properties of Zn27-nCdnO27C42. A principal possibility to enhance the intramolecular charge transfer through incorporation of certain number of Cd atoms into the ZnO nanodots is shown. Such Cd-induced modifications in optical properties of semi-spherical Zn27-nCdnO27C42 complexes could potentially enable use of this hybrid material in optoelectronic and photocatalytic applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NAS Ukraine, Ukraine.
    Defect-Induced Modulation of a 2D ZnO/Graphene Heterostructure: Exploring Structural and Electronic Transformations2023Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 13, nr 12, artikel-id 7243Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a theoretical study on the effects of selected defects (oxygen vacancies and substitutional Fe-Zn atoms) on the structural and electronic properties of a 2D ZnO/graphene heterostructure. Spin-polarized Hubbard- and dispersion-corrected density functional theory (DFT) was used to optimize the geometrical configurations of the heterostructure and to analyze the equilibrium distance, interlayer distance, adhesion energy, and bond lengths. Charge density difference (CDD) analysis and band structure calculations were also performed to study the electronic properties of the heterostructure. The results show that the presence of defects affects the interlayer distance and adhesion energy, with structures including oxygen vacancies and Fe-Zn substitutional atoms having the strongest interaction with graphene. It is demonstrated that the oxygen vacancies generate localized defect states in the ZnO bandgap and lead to a shift of both valence and conduction band positions, affecting the Schottky barrier. In contrast, Fe dopants induce strong spin polarization and high spin density localized on Fe atoms and their adjacent oxygen neighbors as well as the spin asymmetry of Schottky barriers in 2D ZnO/graphene. This study presents a comprehensive investigation into the effects of graphene on the electronic and adsorption properties of 2D ZnO/graphene heterostructures. The changes in electronic properties induced by oxygen vacancies and Fe dopants can enhance the sensitivity and catalytic activity of the 2D ZnO/graphene system, making it a promising material for sensing and catalytic applications.

  • 5.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jian, Jing-Xin
    Shantou Univ, Peoples R China.
    Pliatsikas, Nikolaos
    Aristotle Univ Thessaloniki, Greece.
    Schiliro, Emanuela
    CNR IMM, Italy.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yazdi, Gholamreza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, Filippo
    CNR IMM, Italy.
    Sarakinos, Kostas
    Univ Helsinki, Finland; KTH Royal Inst Technol, Sweden.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Electrochemical performance of gold-decorated graphene electrodes integrated with SiC2023Ingår i: Microelectronic Engineering, ISSN 0167-9317, E-ISSN 1873-5568, Vol. 278, artikel-id 112042Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here we investigate the interface properties of gold (Au) decorated graphenized surfaces of 4H-SiC intended for electrochemical electrodes. These are fabricated using a two-step process: discontinuous Au layers with a nominal thickness of 2 nm are sputter-deposited onto 4H-SiC substrates with different graphenization extent-zero-layer graphene (ZLG) and monolayer epitaxial graphene) -followed by thermal annealing. By performing combined morphometric analysis, Raman mapping analysis, conductive atomic force microscopy, and electrochemical impedance spectroscopy measurements, we shed light on the relationship between physical processes (Au intercalation, particle re-shaping, and de-wetting) caused by thermal annealing and the intrinsic properties of graphenized SiC (vertical electron transport, charge-transfer properties, vibrational properties, and catalytic activity). We find that the impedance spectra of all considered structures exhibit two semicircles in the high and low frequency regions, which may be attributed to the graphene/ZLG/SiC (or Au/graphene/ZLG/SiC) and SiC/ZLG/graphene/electrolyte (or SiC/ZLG//Au/electrolyte) interfaces, respectively. An equivalent circuit model is proposed to estimate the interface carrier transfer parameters. This work provides an in-depth comprehension of the way by which the Au/2D carbon/SiC interaction strength influences the interface properties of heterostructures, which can be helpful for developing high performance catalytic and sensing devices.

  • 6.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NAS Ukraine, Ukraine.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Nature of photoexcited states in ZnO-embedded graphene quantum dots2023Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 25, nr 15, s. 10525-10535Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The combination of wide-band gap semiconductors such as zinc oxide (ZnO) and graphene quantum dots (GQDs) is a promising strategy to tune the optoelectronic properties of GQDs and develop new functionalities. Here we report on a theoretical design of not-yet-synthesized hybrid materials composed of ZnO clusters surrounded by carbon moieties, hereinafter referred to as ZnO-embedded graphene quantum dots. Their structure and light absorption properties are presented, with an in-depth analysis of the nature of the photoexcited states. The stability of the (ZnO)(n)C96-2n system with n = 1, 3, 4, 7, 12 and 27 is investigated by performing vibrational mode analysis and estimating cohesive energy and zinc vacancy formation energy. A strong dependence of the structural and optoelectronic properties of the hybrid material on the amount of ZnO pairs is revealed and discussed. Strong light absorption and unexpected enhancement of Raman modes related to the vibrations in carbon moiety are observed for the highly symmetric (ZnO)(27)C-42 system that makes it an ideal study subject. Complementary excited state analysis, charge density difference (CDD) analysis and interfragment charge transfer analysis present insights deep into the nature of the excited states. An equal contribution of doubly degenerate locally excited states and charge transfer states in broadband light absorption by (ZnO)(27)C-42 is identified. The present results are helpful to elucidate the nature of the fundamental internal mechanisms underlying light absorption in ZnO-embedded graphene quantum dots, thereby providing a scientific background for future experimental study of low-dimensional metal-oxygen-carbon material family.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Substrate mediated properties of gold monolayers on SiC2023Ingår i: RSC Advances, E-ISSN 2046-2069, Vol. 13, nr 2, s. 1125-1136Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In light of their unique physicochemical properties two-dimensional metals are of interest in the development of next-generation sustainable sensing and catalytic applications. Here we showcase results of the investigation of the substrate effect on the formation and the catalytic activity of representative 2D gold layers supported by non-graphenized and graphenized SiC substrates. By performing comprehensive density functional theory (DFT) calculations, we revealed the epitaxial alignment of gold monolayer with the underlying SiC substrate, regardless of the presence of zero-layer graphene or epitaxial graphene. This is explained by a strong binding energy (similar to 4.7 eV) of 2D Au/SiC and a pronounced charge transfer at the interface, which create preconditions for the penetration of the related electric attraction through graphene layers. We then link the changes in catalytic activity of substrate-supported 2D Au layer in hydrogen evolution reaction to the formation of a charge accumulation region above graphenized layers. Gold intercalation beneath zero-layer graphene followed by its transformation to quasi-free-standing epitaxial graphene is found to be an effective approach to tune the interfacial charge transfer and catalytic activity of 2D Au. The sensing potential of substrate-supported 2D Au was also tested through exploring the adsorption behaviour of NH3, NO2 and NO gas molecules. The present results can be helpful for the experimental design of substrate-supported 2D Au layers with targeted catalytic activity and sensing performance.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Vagin, Mikhail
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Bidirectional Hydrogen Electrocatalysis on Epitaxial Graphene2022Ingår i: ACS Omega, E-ISSN 2470-1343, Vol. 7, nr 15, s. 13221-13227Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The climate change due to human activities stimulates the research on new energy resources. Hydrogen has attracted interest as a green carrier of high energy density. The sustainable production of hydrogen is achievable only by water electrolysis based on the hydrogen evolution reaction (HER). Graphitic materials are widely utilized in this technology in the role of conductive catalyst supports. Herein, by performing dynamic and steady-state electrochemical measurements in acidic and alkaline media, we investigated the bidirectional electrocatalysis of the HER and hydrogen oxidation reaction (HOR) on metal- and defect-free epigraphene (EG) grown on 4H silicon carbide (4HSiC) as a ground level of structural organization of general graphitic materials. The absence of any signal degradation illustrates the high stability of EG. The experimental and theoretical investigations yield the coherent conclusion on the dominant HER pathway following the Volmer-Tafel mechanism. We ascribe the observed reactivity of EG to its interaction with the underlying SiC substrate that induces strain and electronic doping. The computed high activation energy for breaking the O-H bond is linked to the high negative overpotential of the HER. The estimated exchange current of HER/HOR on EG can be used in the evaluation of complex electrocatalytic systems based on graphite as a conducing support.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zakharov, Alexei A.
    Lund Univ, Sweden.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, Filippo
    CNR, Italy.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Understanding of the Electrochemical Behavior of Lithium at Bilayer-Patched Epitaxial Graphene/4H-SiC2022Ingår i: Nanomaterials, E-ISSN 2079-4991, Vol. 12, nr 13, artikel-id 2229Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Novel two-dimensional materials (2DMs) with balanced electrical conductivity and lithium (Li) storage capacity are desirable for next-generation rechargeable batteries as they may serve as high-performance anodes, improving output battery characteristics. Gaining an advanced understanding of the electrochemical behavior of lithium at the electrode surface and the changes in interior structure of 2DM-based electrodes caused by lithiation is a key component in the long-term process of the implementation of new electrodes into to a realistic device. Here, we showcase the advantages of bilayer-patched epitaxial graphene on 4H-SiC (0001) as a possible anode material in lithium-ion batteries. The presence of bilayer graphene patches is beneficial for the overall lithiation process because it results in enhanced quantum capacitance of the electrode and provides extra intercalation paths. By performing cyclic voltammetry and chronoamperometry measurements, we shed light on the redox behavior of lithium at the bilayer-patched epitaxial graphene electrode and find that the early-stage growth of lithium is governed by the instantaneous nucleation mechanism. The results also demonstrate the fast lithium-ion transport (similar to 4.7-5.6 x 10(-7) cm(2).s(-1)) to the bilayer-patched epitaxial graphene electrode. Raman measurements complemented by in-depth statistical analysis and density functional theory calculations enable us to comprehend the lithiation effect on the properties of bilayer-patched epitaxial graphene and ascribe the lithium intercalation-induced Raman G peak splitting to the disparity between graphene layers. The current results are helpful for further advancement of the design of graphene-based electrodes with targeted performance.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Zaman, Quaid
    et al.
    Pontificia Univ Catolica Rio de Janeiro, Brazil; Univ Buner, Pakistan.
    Tahir,
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Freire, Fernando Lazaro Jr.
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Shtepliuk, Ivan I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Barbosa, Andre N.
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    da Costa, Marcelo E. H. Maia
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Diaz Mendoza, Cesar Augusto
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Araujo, Jefferson F. D. F.
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Concas, Guilherme C.
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Cremona, Marco
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Ahmed, Zubair
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Pandoli, Omar Ginoble
    Pontificia Univ Catolica Rio de Janeiro, Brazil; Univ Genoa, Italy.
    Aucelio, Ricardo Q.
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Dmitriev, Victor
    Fed Univ Para, Brazil.
    da Costa, Karlo Q.
    Fed Univ Para, Brazil.
    Cruz, Andre Felipe S.
    Fed Univ Para, Brazil.
    Fibbi, Gabriella
    Univ Florence, Italy.
    Laurenzana, Anna
    Univ Florence, Italy.
    Margheri, Francesca
    Univ Florence, Italy.
    Chilla, Anastasia
    Univ Florence, Italy.
    Scavone, Francesca
    Univ Florence, Italy.
    Frediani, Elena
    Univ Florence, Italy.
    Khan, Rajwali
    Univ Lakki Marwat, Pakistan.
    Daldosso, Nicola
    Univ Verona, Italy.
    Chiste, Elena
    Univ Verona, Italy.
    Mariotto, Gino
    Univ Verona, Italy.
    Santos, Evelyn C. S.
    Brazilian Ctr Res Phys CBPF, Brazil.
    Del Rosso, Tommaso
    Pontificia Univ Catolica Rio de Janeiro, Brazil.
    Water Diffusion Effectsat Gold-Graphene Interfaces Supporting Surface Plasmon Polaritons2022Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 126, nr 32, s. 13905-13919Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a detailed investigation on the effects of water diffusion at the different interfaces of gold-graphene plasmonic sensors on the propagation of the supported surface plasmon polaritons (SPPs). The substrate/metal interfacial chemical reactions are investigated by monitoring the full width at half-maximum of the SPR reflectivity curve. Although protection by single-layer graphene (SLG) grown by chemical vapor deposition inhibits the chemical reactions happening at the metal-dielectric interfaces, SPR experimental results confirm that water diffusion paths through the borders of graphene domains are still present into the plasmonic sensors. Density functional theory calculations show that the doping level of SLG after the transfer on gold as well as interfacial charge transfer can be tuned in the presence of water molecules. On these bases, we propose a simplified effective medium approach for heterogeneous metal-carbon interfaces, where the interaction between the surface atomic layers of the gold thin film, water molecules, and the SLG induces the creation of an extended charge density difference region crossing the Au/H2O/SLG/H2O heterointerface. The latter is modeled as an ultrathin effective medium with a thickness and extraordinary optical susceptivity and conductivity that are different from those of the free-standing graphene. In this context, the extraordinary refractive index and thickness of the graphene-gold effective medium are measured in the near-infrared on the low-damping SPR platforms by applying the two-medium SPR method. The results are coherent with graphene n-doping in water environment, showing that the optically excited electrons along the extraordinary axis have a substantial bonding character and that the enhancement of the sensitivity of the gold-graphene plasmonic sensors is not related to a shift in the plasma frequency of the metal layer but to the changes in the extraordinary polarizability of graphene. The research highlights the importance of the SLG-substrate and SLG-environment interactions in graphene-protected plasmonics and optoelectronics.

  • 11.
    Beshkova, Milena
    et al.
    Bulgarian Acad Sci, Bulgaria.
    Deminskyi, Petro
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Hsu, Chih-Wei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Avramova, Ivalina
    Bulgarian Acad Sci, Bulgaria.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Atomic Layer Deposition of AlN on Graphene2021Ingår i: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 218, nr 17, artikel-id 2000684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Graphene is a material with great promise for several applications within electronics. However, using graphene in any such application requires its integration in a stack of thin layers of materials. The ideal structure of graphene has a fully saturated surface without any binding sites for chemisorption of growth species, making film growth on graphene highly challenging. Herein, an attempt to deposit very thin layers of AlN using an atomic layer deposition approach is reported. It is demonstrated using X-ray photoelectron spectroscopy that Al-N are formed in the films deposited on graphene and shown by scanning electron microscopy and atomic force microscopy that the films have an island morphology. These results may be considered promising toward the development of a growth protocol for AlN on graphene and possibly also for 2D AlN fabrication.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pliatsikas, Nikolaos
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Lara-Avila, Samuel
    Chalmers Univ Technol, Sweden.
    Kim, Kyung Ho
    Chalmers Univ Technol, Sweden.
    Ben Sedrine, Nabiha
    Univ Aveiro, Portugal; Univ Aveiro, Portugal.
    Kubatkin, Sergey E.
    Chalmers Univ Technol, Sweden.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Clustering and Morphology Evolution of Gold on Nanostructured Surfaces of Silicon Carbide: Implications for Catalysis and Sensing2021Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, nr 2, s. 1282-1293Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A fundamental understanding of the behavior of gold (Au) nanostructures deposited on functional surfaces is imperative to discover and leverage interface-related phenomena that can boost the efficiency of existing electronic devices in sensorics, catalysis, and spintronics. In the present work, Au layers with nominal thickness of 2 nm were sputter-deposited on graphenized SiC substrates represented by buffer layer (BuL)/4H-SiC and monolayer epitaxial graphene (MLG)/4H-SiC. Morphometric analysis by means of scanning electron microscopy shows that Au on BuL self-assembles in nearly round-shaped plasmonically active islands, while on MLG, a fractal growth of considerably larger and ramified islands is observed. To correlate the experimentally established differences in surface morphology on the two types of graphenized substrates with energetics and kinetics of Au nanostructure growth, the deposit-substrate interaction strength was studied using density functional theory (DFT) calculations, molecular dynamics simulations, and optical measurements. The theoretical considerations involve participation of Au clusters with different sizes and energetics at the initial stages of the metal nanostructure formation. The results indicate that gold exhibits a considerably stronger interaction with BuL than with MLG, which can be considered as a key aspect for explaining the experimentally observed morphological differences. From the statistical analysis of Raman spectra, indications of Au intercalation of MLG are discussed. The current research shows that, due to its unique surface chemistry, buffer layer has peculiar affinity to gold when compared to other atomically flat surfaces, which is beneficial for boosting high-performance catalytic and sensing technologies based on low-dimensional materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Computational Appraisal of Silver Nanocluster Evolution on Epitaxial Graphene: Implications for CO Sensing2021Ingår i: ACS Omega, E-ISSN 2470-1343, Vol. 6, nr 38, s. 24739-24751Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Early stages of silver nucleation on a two-dimensional (2D) substrate, here, monolayer epitaxial graphene (MEG) on SiC, play a critical role in the formation of application-specific Ag nanostructures. Therefore, it is of both fundamental and practical importance to investigate the growth steps when Ag adatoms start to form a new phase. In this work, we exploit density functional theory to study the kinetics of early-stage nuclei Ag-n (n = 1-9) assembly of Ag nanoparticles on MEG. We find that the Ag-1 monomer tends to occupy hollow site positions of MEG and interacts with the surface mainly through weak dispersion forces. The pseudoepitaxial growth regime is revealed to dominate the formation of the planar silver clusters. The adsorption and nucleation energies of Ag-n clusters exhibit evident odd-even oscillations with cluster size, pointing out the preferable adsorption and nucleation of odd-numbered clusters on MEG. The character of the interaction between a chemisorbed Ag-3 cluster and MEG makes it possible to consider this trimer as the most stable nucleus for the subsequent growth of Ag nanoparticles. We reveal the general correlation between Ag/MEG interaction and Ag-Ag interaction: with increasing cluster size, the interaction between Ag adatoms increases, while the Ag/MEG interaction decreases. The general trend is also supported by the results of charge population analysis, according to which the average charge per Ag adatom in a Ag-n cluster demonstrates a drastic decrement with cluster size increase. 2D-3D structural transition in Ag-n clusters was investigated. We anticipate that the present investigation is beneficial by providing a better understanding of the early-stage nucleation of Ag nanoparticles on MEG at the atomic scale. Specific interaction between odd-numbered Ag clusters preadsorbed onto the MEG surface and carbon monoxide (CO) as well as clusters stability at 300 K is discussed in terms of sensing applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Pliatsikas, Nikolaos
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Karabinaki, O.
    Aristotle Univ Thessaloniki, Greece.
    Zarshenas, Mohammad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Almyras, Georgios
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Arvanitidis, J.
    Aristotle Univ Thessaloniki, Greece.
    Christofilos, D.
    Aristotle Univ Thessaloniki, Greece.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten. Univ Helsinki, Finland.
    Energetic bombardment and defect generation during magnetron-sputter-deposition of metal layers on graphene2021Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 566, artikel-id 150661Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the present work, we elucidate the interplay among energetic bombardment effects in magnetron sputtering and defect generation in two-dimensional (2D) materials. Using deposition of gold (Au) layers on single-layer graphene (SLG) as a model system, we study the effect of pressure-distance (pd) product during magnetron sputtering on the pristine SLG properties. Raman spectroscopy, complemented by X-ray photoelectron spectroscopy, shows that for pd = 8.2 Pa center dot cm, Au layer deposition causes defects in the SLG layer, which gradually diminish and eventually disappear with increasing pd to 82.5 Pa center dot cm. Stochastic and deterministic simulations of the sputtering process, the gas-phase transport, and the interaction of sputtered and plasma species with the substrate surface suggest that defects in SLG primarily emanate from ballistic damage caused by backscattered Ar atoms with energies above 100 eV. With increasing pd, and thereby gas-phase scattering, such high energy Ar species become thermalized and hence incapable of causing atomic displacements in the SLG layer. The overall results of our study suggest that control of backscattered Ar energy is a potential path toward enabling magnetron sputtering for fabrication of multifunctional metal contacts in devices founded upon 2D materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, Filippo
    CNR IMM, Italy.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Epitaxial Graphene on 4H-SiC (0001) as a Versatile Platform for Materials Growth: Mini-Review2021Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 11, nr 13, artikel-id 5784Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Material growth on a dangling-bond-free interface such as graphene is a challenging technological task, which usually requires additional surface pre-treatment steps (functionalization, seed layer formation) to provide enough reactive sites. Being one of the most promising and adaptable graphene-family materials, epitaxial graphene on SiC, due to its internal features (substrate-induced n-doping, compressive strain, terrace-stepped morphology, bilayer graphene nano-inclusions), may provide pre-conditions for the enhanced binding affinity of environmental species, precursor molecules, and metal atoms on the topmost graphene layer. It makes it possible to use untreated pristine epitaxial graphene as a versatile platform for the deposition of metals and insulators. This mini-review encompasses relevant aspects of magnetron sputtering and electrodeposition of selected metals (Au, Ag, Pb, Hg, Cu, Li) and atomic layer deposition of insulating Al2O3 layers on epitaxial graphene on 4H-SiC, focusing on understanding growth mechanisms. Special deliberation has been given to the effect of the deposited materials on the epitaxial graphene quality. The generalization of the experimental and theoretical results presented here is hopefully an important step towards new electronic devices (chemiresistors, Schottky diodes, field-effect transistors) for environmental sensing, nano-plasmonics, and biomedical applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pliatsikas, Nikolaos
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Beshkova, Milena
    Bulgarian Acad Sci, Bulgaria.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Exploring the Interface Landscape of Noble Metals on Epitaxial Graphene2021Ingår i: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 218, nr 17, artikel-id 2000673Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Understanding the interaction between noble metals (NMs) and epitaxial graphene is essential for the design and fabrication of novel devices. Within this framework, a combined experimental and theoretical investigation of the effect of vapor-deposited NM (silver [Ag] and gold [Au]) nanostructures on the vibrational and electronic properties of monolayer epitaxial graphene (MLG) on 4H-SiC is presented. Large sets of Raman scattering data are analyzed using supervised classification and statistical methods. This analysis enables identification of the specific Raman fingerprints of Au- and Ag-decorated MLG originating from different dispersion interactions and charge transfer at the metal nanostructure/MLG interface. It is found that Raman scattering spectra of Au-decorated MLG feature a set of allowed phonon modes similar to those in pristine MLG, whereas the stronger Ag physisorption triggers an activation of defect-related phonon modes and electron doping of MLG. A principal component analysis (PCA) and linear discriminant analysis (LDA) are leveraged to highlight the features in phonon dispersion of MLG that emanate from the NM deposition process and to robustly classify large-scale Raman spectra of metal-decorated graphene. The present results can be advantageous for designing highly selective sensor arrays on MLG patches decorated with different metals.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Interaction of H and Li with epitaxial graphene on SiC: A comparative analysis by first principles study2021Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 568, artikel-id 150988Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ever-growing energy consumption in the world fosters the development of innovative energy technologies for sustainable energy production and storage. In this view, monolayer epitaxial graphene grown on 4H-SiC (MLEG/SiC) may be considered as a potential component of energy-related systems. The current paper deals with modelling of adsorption, diffusion and intercalation of hydrogen and lithium using MLEG/SiC model encompassing 2 x 2 graphene on root 3 x root 3R30 degrees surface reconstructed nine-bilayer 4H-SiC. The obtained results demonstrate a strong and stable chemisorption of hydrogen on top site of epitaxial graphene with limited surface mobility, while lithiation process occurs via formation of LiC6 phase. The stages of hydrogen and lithium intercalation beneath graphene are studied in detail by performing potential energy scan. Energetic preferences for MLEG/SiC with intercalated hydrogen and lithium atoms versus MLEG/SiC with top-adsorbed H and Li are revealed. Li intercalant-induced complete decoupling of the buffer layer from the SiC substrate followed by the formation of bilayer graphene with inequivalent doping per layer is proposed as an explanation of experimentally observed Raman G peak splitting in electrochemically lithiated epitaxial graphene on 4H-SiC. This work provides deep insights into the nature of atomic-scale processes at epitaxial graphene, which is essential for improving performance of energy-related devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pliatsikas, Nikolaos
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Jian, Jingxin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Shantou Univ, Peoples R China.
    Ben Sedrine, N.
    Univ Aveiro, Portugal.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten. Univ Helsinki, Finland.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Sun, Jianwu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Silver nanoparticle array on weakly interacting epitaxial graphene substrate as catalyst for hydrogen evolution reaction under neutral conditions2021Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 119, nr 15, artikel-id 153902Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The paucity of research on hydrogen evolution reaction (HER) under neutral conditions, which is a more sustainable way to produce H-2 compared to acidic and alkaline HER, encourages the development of efficient catalytic materials and devices and deeper investigation of the mechanisms behind neutral HER. We present an electrode concept for facilitating HER under neutral conditions. The concept entails the use of annealing-reshaped silver (Ag) nanoparticle array on monolayer epitaxial graphene (MEG) on 4H-SiC. Measurements of HER performance show more positive onset potential of the cathodic HER for Ag-decorated MEG compared to that for pristine MEG, indicating improved water dissociation at Ag/MEG electrodes. Complementary morphological characterization, absorption measurements, and Raman mapping analysis enable us to ascribe the enhanced catalytic performance of electrodes decorated with 2 nm thick annealed Ag on the synergetic effect originating from simultaneous water reduction on circular Ag nanoparticles of 31 nm in diameter and on compressively strained Ag-free graphene regions. The overall results pave the way toward development of stable van der Waals heterostructure electrodes with a tunable metal-carbon interaction for fast HER under neutral conditions. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Special Issue "Fundamentals and Recent Advances in Epitaxial Graphene on SiC"2021Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 11, nr 8, artikel-id 3381Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    The aim of this Special Issue is to provide a scientific platform for recognized experts in the field of epitaxial graphene on SiC to present their recent studies towards a deeper comprehension of growth mechanisms, property engineering and device processing. This Special Issue gives readers the possibility to gain new insights into the nature of buffer layer formation, control of electronic properties of graphene and usage of epitaxial graphene as a substrate for deposition of different substances, including metals and insulators. We believe that the papers published within the current Special Issue develop cumulative knowledge on matters related to device-quality epaxial graphene on SiC, bringing this material closer to realistic practical applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ievtushenko, Arsenii
    NASU, Ukraine.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Temperature-Dependent Photoluminescence of ZnO Thin Films Grown on Off-Axis SiC Substrates by APMOCVD2021Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 14, nr 4, artikel-id 1035Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0 degrees to 8 degrees by using the atmospheric pressure meta-organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4 degrees-3.5 degrees) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8 degrees provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Electrochemical Deposition of Copper on Epitaxial Graphene2020Ingår i: Applied Sciences, E-ISSN 2076-3417, APPLIED SCIENCES-BASEL, Vol. 10, nr 4, artikel-id 1405Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Understanding the mechanism of metal electrodeposition on graphene as the simplest building block of all graphitic materials is important for electrocatalysis and the creation of metal contacts in electronics. The present work investigates copper electrodeposition onto epitaxial graphene on 4H-SiC by experimental and computational techniques. The two subsequent single-electron transfer steps were coherently quantified by electrochemistry and density functional theory (DFT). The kinetic measurements revealed the instantaneous nucleation mechanism of copper (Cu) electrodeposition, controlled by the convergent diffusion of reactant to the limited number of nucleation sites. Cu can freely migrate across the electrode surface. These findings provide fundamental insights into the nature of copper reduction and nucleation mechanisms and can be used as a starting point for performing more sophisticated investigations and developing real applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU Natl Acad Sci Ukraine, Ukraine.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Gogova, D.
    Univ Oslo, Norway.
    Danilson, M.
    Tallinn Univ Technol, Estonia.
    Krunks, M.
    Tallinn Univ Technol, Estonia.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Excitonic emission in heavily Ga-doped zinc oxide films grown on GaN2020Ingår i: Journal of Luminescence, ISSN 0022-2313, E-ISSN 1872-7883, Vol. 223, artikel-id 117265Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    n/a

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pliatsikas, Nikolaos
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Ben Sedrine, N.
    Univ Aveiro, Portugal; Univ Aveiro, Portugal.
    Andersson, O.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jamnig, Andreas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Interplay between thin silver films and epitaxial graphene2020Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 381, artikel-id 125200Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thin Ag films, with nominal thickness in the range 2 to 30 nm, are deposited using direct current magnetron sputtering and film morphology is studied by means of plan-view scanning electron microscopy. We find that for 2 mn nominal thickness the film surface consists of isolated circular nanoscale islands, which become interconnected as further material is deposited, leading to a continuous film at a nominal thickness of 30 nm. Our experimental findings are discussed in the context of the density functional theory results, which show that van der Waals forces dominate the interaction between Ag and epitaxial graphene. We also performed micro-Raman analysis and we find that the G and 2D modes of epitaxial graphene exhibit a red-shift upon Ag-layer deposition; which is interpreted as a result of charge transfer at the Ag/graphene interface. Moreover, we observed a pronounced enhancement of the G peak amplitude and area irrespective of the film nominal thickness and morphology, which we attribute to a combination of the charge transfer and plasmonic resonance effects. Our observations provide a critical information on the interaction between Ag and epitaxial graphene, which can be useful to design electronic and sensing devices based on Ag-epitaxial graphene hybrids.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pliatsikas, Nikolaos
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, F.
    CNR, Italy.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Manipulation of epitaxial graphene towards novel properties and applications2020Ingår i: MATERIALS TODAY-PROCEEDINGS, ELSEVIER , 2020, Vol. 20, s. 37-45Konferensbidrag (Refereegranskat)
    Abstract [en]

    The integration of epitaxial graphene on 4H-SiC with different metals may allow tunability of electronic and optical properties of graphene, enabling novel high-performance devices. Here we present a Raman spectroscopy study on epitaxial graphene decorated with electrodeposited Pb and Li adatoms and with magnetron sputtered 5 nm-thick Ag nano-island films. We find that the presence of metals on the epitaxial graphene surface generates defects and induces n-type doping, which is evidenced by the observation of the defect related Raman modes (namely D, D and D + G) and systematic red-shift of the main characteristic modes of graphene. In-depth statistical analysis of the Raman data before and after metal deposition complemented by density functional theory (DFT) calculations allowed to link the interaction strength between the three selected metals and graphene with the metal-induced changes in the vibrational/electronic properties of graphene. Large-area uniform electron doping of epitaxial graphene and surface-enhanced Raman scattering (SERS) effect are reached by room temperature deposition of Ag nano-island films. Very promising results have been obtained from graphene subjected to electrochemical intercalation by Li, which can serve as prerequisites of the construction of Li batteries. The strong interaction between Li or Pb with graphene implies the possibility to exploit the epitaxial graphene as an efficient material for energy storage or for heavy metal sensing, while predominant van der Waals interaction between Ag and graphene favors the formation of extremely thin silver coatings towards two-dimensional metal systems. The present results give better understanding of the nature of epitaxial graphene response to metal deposition and can be useful to design high-performance energy storage devices, optical sensors and heavy metal detection systems. (C) 2019 Elsevier Ltd. All rights reserved.

  • 25.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Natl Acad Sci Ukraine, Ukraine.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Pliatsikas, Nikolaos
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jamnig, Andreas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanodesign. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Probing the uniformity of silver-doped epitaxial graphene by micro-Raman mapping2020Ingår i: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 580, artikel-id 411751Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a Raman spectroscopy study on epitaxial graphene decorated with thin Ag films (2-15 nm), which are deposited using magnetron sputtering. We find that the presence of Ag on the graphene surface induces doping, the uniformity and efficiency of which is determined by Ag nominal thickness. Deposition of Ag films with thicknesses up to 5 nm favors the effective electron transfer from Ag to epitaxial graphene. A significant redshift and broadening of the 2D peak are observed with increasing the Ag-layer thickness above 5 nm, which is indicative of large strain and doping fluctuations. We also observe a non-trivial linear growth of 2D/G peak intensity ratio with increasing D/G ratio for all Ag-decorated samples, which is explained by increase of peak amplitude due to surface enhanced Raman scattering and charged impurity-induced screening caused by the presence of Ag on the graphene surface.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Cattelan, Mattia
    et al.
    School of Chemistry, University of Bristol, Cantocks Close, Bristol, United Kingdom.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fox, Neil A.
    School of Chemistry, University of Bristol, Cantocks Close, Bristol, United Kingdom.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Anodization study of epitaxial graphene: insights on the oxygen evolution reaction of graphitic materials2019Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 30, nr 28, artikel-id 285701Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The photoemission electron microscopy and x-ray photoemission spectroscopy were utilized for the study of anodized epitaxial graphene (EG) on silicon carbide as a fundamental aspect of the oxygen evolution reaction on graphitic materials. The high-resolution analysis of surface morphology and composition quantified the material transformation during the anodization. We investigated the surface with lateral resolution amp;lt;150 nm, revealing significant transformations on the EG and the role of multilayer edges in increasing the film capacitance.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Yazdi, Gholamreza
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Akhtar, Fatima
    IHP, Germany.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Schmidt, Susann
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Zakharov, Alexei
    Lund Univ, Sweden.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Effect of epitaxial graphene morphology on adsorption of ambient species2019Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 486, s. 239-248Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work illustrates the impact of atmospheric gases on the surface of epitaxial graphene. The different rate of adsorption on different parts of graphene samples provides a concrete evidence that the surface morphology of graphene plays a significant role in this process. The uneven adsorption occurs only on the surface of the monolayer graphene and not on bilayer graphene. The second monolayer is distinguished and verified by the phase contrast mode of atomic force microscopy and the low energy electron microscopy, respectively. Raman spectroscopy is used to study the strain on the surface of graphene; results indicate that monolayer and bilayer graphene exhibit different types of strain. The bilayer is under more compressive strain in comparison with monolayer graphene that hinders the process of adsorption. However, the wrinkles and edges of steps of the bilayer are under tensile strain, hence, facilitate adsorption. Samples were subjected to X-ray photoelectron spectroscopy which confirms that the adsorbates on the epitaxial graphene are carbon clusters with nitrogen and oxygen contamination. For reversing the adsorption process the samples are annealed and a method for the removal of these adsorbates is proposed.

  • 28.
    Colibaba, G. V
    et al.
    Moldova State Univ, Moldova.
    Avdonin, A.
    Polish Acad Sci, Poland.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Frantsevich Inst Problems Mat Sci NASU, Ukraine.
    Caraman, M.
    Moldova State Univ, Moldova.
    Domagala, J.
    Polish Acad Sci, Poland.
    Inculet, I.
    Moldova State Univ, Moldova.
    Effects of impurity band in heavily doped ZnO:HCl2019Ingår i: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 553, s. 174-181Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A comparative study of properties of ZnO:HCl single crystals obtained by various methods is presented. Characterization by photoluminescence, optical and electrical measurements in the wide temperature range has allowed to analyze the energy spectra of Cl-containing stable defects in ZnO. Presence of shallow Cl donors, deeper donor complexes, incorporating several Cl atoms or stable H-Cl pairs and presence of compensating deep acceptors, attributed to VznClo centers, are demonstrated. The presence of shallow donor impurity band, as well as strong dependence of its activation energy on the doping level is shown. The controversy of various models for estimation of this dependence is discussed. It is demonstrated, that 90% of this dependence is caused by feature of temperature dependence of Hall coefficient related to conductive impurity band, and a more correct equation for activation energy is suggested. An abnormally low efficiency of neutral impurity scattering of charge carriers and strong optical absorption in the near-IR spectral range are demonstrated and attributed to upper conductive impurity band of negatively charged donors with an extra electron.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Santangelo, Francesca
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Puglisi, Donatella
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Epitaxial Graphene Sensors Combined with 3D-Printed Microfluidic Chip for Heavy Metals Detection2019Ingår i: Sensors, E-ISSN 1424-8220, Vol. 19, nr 10, artikel-id 2393Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, we investigated the sensing performance of epitaxial graphene on Si-face 4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb and Cd), showing fast and stable response and low detection limit. The sensing platform proposed includes 3D-printed microfluidic devices, which incorporate all features required to connect and execute lab-on-chip (LOC) functions. The obtained results indicate that EG exhibits excellent sensing activity towards Pb and Cd ions. Several concentrations of Pb2+ solutions, ranging from 125 nM to 500 mu M, were analyzed showing Langmuir correlation between signal and Pb2+ concentrations, good stability, and reproducibility over time. Upon the simultaneous presence of both metals, sensor response is dominated by Pb2+ rather than Cd2+ ions. To explain the sensing mechanisms and difference in adsorption behavior of Pb2+ and Cd2+ ions on EG in water-based solutions, we performed van-der-Waals (vdW)-corrected density functional theory (DFT) calculations and non-covalent interaction (NCI) analysis, extended charge decomposition analysis (ECDA), and topological analysis. We demonstrated that Pb2+ and Cd2+ ions act as electron-acceptors, enhancing hole conductivity of EG, due to charge transfer from graphene to metal ions, and Pb2+ ions have preferential ability to binding with graphene over cadmium. Electrochemical measurements confirmed the conductometric results, which additionally indicate that EG is more sensitive to lead than to cadmium.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Rodner, Marius
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Puglisi, Donatella
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Ekeroth, Sebastian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Skallberg, Andreas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Schutze, Andreas
    Saarland Univ, Germany.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds2019Ingår i: Sensors, E-ISSN 1424-8220, Vol. 19, nr 4, artikel-id 918Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Gases, such as nitrogen dioxide, formaldehyde and benzene, are toxic even at very low concentrations. However, so far there are no low-cost sensors available with sufficiently low detection limits and desired response times, which are able to detect them in the ranges relevant for air quality control. In this work, we address both, detection of small gas amounts and fast response times, using epitaxially grown graphene decorated with iron oxide nanoparticles. This hybrid surface is used as a sensing layer to detect formaldehyde and benzene at concentrations of relevance (low parts per billion). The performance enhancement was additionally validated using density functional theory calculations to see the effect of decoration on binding energies between the gas molecules and the sensor surface. Moreover, the time constants can be drastically reduced using a derivative sensor signal readout, allowing the sensor to work at detection limits and sampling rates desired for air quality monitoring applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Kyiv, Ukraine.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Insights into the Electrochemical Behavior of Mercury on Graphene/SiC Electrodes2019Ingår i: C — Journal of Carbon Research, ISSN 2311-5629, Vol. 5, nr 3, artikel-id 51Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fast and real time detection of Mercury (Hg) in aqueous solutions is a great challenge due to its bio-accumulative character and the detrimental effect on human health of this toxic element. Therefore, development of reliable sensing platforms is highly desirable. Current research is aiming at deep understanding of the electrochemical response of epitaxial graphene to Mercury exposure. By performing cyclic voltammetry and chronoamperometry measurements as well as density functional theory calculations, we elucidate the nature of Hg-involved oxidation-reduction reactions at the graphene electrode and shed light on the early stages of Hg electrodeposition. The obtained critical information of Hg behavior will be helpful for the design and processing of novel graphene-based sensors.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Interaction of epitaxial graphene with heavy metals: towards novel sensing platform2019Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 30, nr 29, artikel-id 294002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Development of next-generation sensors based on graphene materials, especially epitaxial graphene (EG) as the most promising representative, with desirable cross-reactivity to heavy metals (HMs) is of great technological significance in the virtue of enormous impact on environmental sensorics. Nevertheless, the mechanisms by which EG responds to toxic HMs exposure and then produces the output signal are still obscure. In the present study, the nature of interaction of toxic HMs, e.g. Cd, Hg and Pb in neutral charge state and EG on Si-face SiC in the absence and in the presence of pure water solution has been investigated using density functional theory with the inclusion of dispersion correction and cluster model of EG. The gas-phase calculations showed that adsorbed electron-donating Cd and Hg adatoms on EG are most stable when bonded to hollow sites, while Pb species prefer to sit above bridge sites. By using non-covalent interaction analysis, charge decomposition analysis, overlap population density of states analysis and topological analysis, it was found that the interaction between Cd or Hg and EG is non-bonding in nature and is mainly governed by van der Waals forces, while Pb adsorption is followed by the formation of anti-bonding orbitals in vacuum conditions and bonding orbitals in water. The role of solvent in the adsorption behavior of HMs is studied and discussed. The present theoretical analysis is in good agreement with recent experimental results towards discriminative electrochemical analysis of the toxic HMs in aqueous solutions at critically low concentrations.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Giannazzo, F.
    et al.
    CNR, Italy.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kakanakova-Gueorguieva, Anelia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Schiliro, E.
    CNR, Italy.
    Fiorenza, P.
    CNR, Italy.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Probing the uniformity of hydrogen intercalation in quasi-free-standing epitaxial graphene on SiC by micro-Raman mapping and conductive atomic force microscopy2019Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 30, nr 28, artikel-id 284003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, micro-Raman mapping and conductive atomic force microscopy (C-AFM) were jointly applied to investigate the structural and electrical homogeneity of quasi-free-standing monolayer graphene (QFMLG), obtained by high temperature decomposition of 4H-SiC(0001) followed by hydrogen intercalation at 900 degrees C. Strain and doping maps, obtained by Raman data, showed the presence of sub-micron patches with reduced hole density correlated to regions with higher compressive strain, probably associated with a locally reduced hydrogen intercalation. Nanoscale resolution electrical maps by C-AFM also revealed the presence of patches with enhanced current injection through the QFMLG/SiC interface, indicating a locally reduced Schottky barrier height (Phi(B)). The Phi(B) values evaluated from local I-V curves by the thermionic emission model were in good agreement with the values calculated for the QFMLG/SiC interface using the Schottky-Mott rule and the graphene holes density from Raman maps. The demonstrated approach revealed a useful and non-invasive method to probe the structural and electrical homogeneity of QFMLG for future nano-electronics applications.

  • 34.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kakanakova-Gueorguieva, Anelia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Fiorenza, Patrick
    CNR IMM, Italy.
    Giannazzo, Filippo
    CNR IMM, Italy.
    Raman probing of hydrogen-intercalated graphene on Si-face 4H-SiC2019Ingår i: Materials Science in Semiconductor Processing, ISSN 1369-8001, E-ISSN 1873-4081, Vol. 96, s. 145-152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report the results of in-depth Raman study of quasi-free-standing monolayer graphene on the (0001) Si- face of 4H-SiC, which contains similar to 0.1-2.10(11) cm(-2) sp(3) defects that have been introduced by hydrogen intercalation. The nature of the intercalation-induced defects is elucidated and ascribed to the formation of the C-H bonds. At the higher intercalation temperature in the formed monolayer graphene the defect-related Raman scattering displays a great enhancement and new spectral features attributed to D and D+D modes appear. Comprehensive statistical analysis of the Raman data enabled us to estimate the homogeneity of the Raman scattering processes and to separate strain and doping effects. Analysis of the compressive strain and carrier density maps revealed that the intercalation temperature of 900 degrees C and intercalation time of 1 h are more favorable conditions for conversion of the buffer layer to uniformly relaxed and p-doped monolayer graphene in comparison to annealing at 1100 degrees C for 30 min.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Santangelo, Francesca
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Real-time sensing of lead with epitaxial graphene-integrated microfluidic devices2019Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 288, s. 425-431Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Since even low concentrations of toxic heavy metals can seriously damage human health, it is important to develop simple, sensitive and accurate methods for their detection. Graphene, which is extremely sensitive to foreign species, is a key element in the development of a sensing platform where low concentrations of analyte have to be detected. This work discusses the proof of concept of a sensing platform for liquid-phase detection of heavy metals (e.g. Pb) based on epitaxial graphene sensors grown on Si-face 4H-SiC substrate (EG/SiC). The sensing platform developed includes a microfluidic chip incorporating all the features needed to connect and execute the Lab-on-chip (LOC) functions using 3D printing fast prototyping technology. Herein, we present the response of EG to concentrations of Pb2+ solutions ranging from 125 nM to 500 mu M, showing good stability and reproducibility over time and an enhancement of its conductivity with a Langmuir correlation between signal and Pb2+ concentration. Density functional theory (DFT) calculations are performed and clearly explain the conductivity changes and the sensing mechanism in agreement with the experimental results reported, confirming the strong sensitivity of the sensor to the lowest concentrations of the analyte. Furthermore, from the calibration curve of the system, a limit of detection (LoD) of 95 nM was extrapolated.

  • 36.
    Ievtushenko, A.
    et al.
    NASU, Ukraine.
    Karpyna, V.
    NASU, Ukraine.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tsiaoussis, I.
    Aristotle Univ Thessaloniki, Greece.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Lashkarev, G.
    NASU, Ukraine.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures2018Ingår i: Superlattices and Microstructures, ISSN 0749-6036, E-ISSN 1096-3677, Vol. 117, s. 121-131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 degrees C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 degrees C) is more favorable for p-type doping of ZnO. (C) 2018 Elsevier Ltd. All rights reserved.

  • 37.
    Santangelo, Maria Francesca
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Puglisi, Donatella
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Epitaxial graphene sensors combined with 3D printed microfluidic chip for heavy metals detection2018Ingår i: Proceedings, ISSN 2504-3900, Vol. 2, nr 13, artikel-id 982Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-dimensional materials may constitute key elements in the development of a sensing platform where extremely high sensitivity is required, since even minimal chemical interaction can generate appreciable changes in the electronic state of the material. In this work, we investigate the sensing performance of epitaxial graphene on Si-face 4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb). The integration of preparatory steps needed for sample conditioning is included in the sensing platform, exploiting fast prototyping using a 3D printer, which allows direct fabrication of a microfluidic chip incorporating all the features required to connect and execute the Lab-on-chip (LOC) functions. It is demonstrated that interaction of Pb2+ ions in water-based solutions with the EG enhances its conductivity exhibiting a Langmuir correlation between signal and Pb2+ concentration. Several concentrations of Pb2+ solutions ranging from 125 nM to 500 µM were analyzed showing good stability and reproducibility over time.

  • 38.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Interband Absorption in Few-Layer Graphene Quantum Dots: Effect of Heavy Metals2018Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 11, nr 7, artikel-id 1217Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Monolayer, bilayer, and trilayer graphene quantum dots (GQDs) with different binding abilities to elemental heavy metals (HMs: Cd, Hg, and Pb) were designed, and their electronic and optical properties were investigated theoretically to understand deeply the optical response under heavy metal exposure. To gain insight into the nature of interband absorption, we performed density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations for thickness-varying GQDs. We found that the interband absorption in GQDs can be efficiently tuned by controlling the thickness of GQDs to attain the desirable coloration of the interacting complex. We also show that the strength of the interaction between GQDs and Cd, Hg, and Pb is strongly dependent on the number of sp(2)-bonded layers. The results suggest that the thickness of GQDs plays an important role in governing the hybridization between locally-excited (LE) and charge-transfer (CT) states of the GQDs. Based on the partial density-of-states (DOS) analysis and in-depth knowledge of excited states, the mechanisms underlying the interband absorption are discussed. This study suggests that GQDs would show an improved sensing performance in the selective colorimetric detection of lead by the thickness control.

    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner fulltext (pdf)
    Supplementary Materials
  • 39.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Interband transitions in closed-shell vacancy containing graphene quantum dots complexed with heavy metals2018Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 33, s. 21528-21543Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-performance optical detection of toxic heavy metals by using graphene quantum dots (GQDs) requires a strong interaction between the metals and GQDs, which can be reached through a functionalization/immobilization procedure or doping effect. However, commonly used surface activation approaches induce toxicity into the analysis system and, therefore, are ineligible from the environmental point of view. Here, we show that artificial creation of vacancy-type defects in GQDs can be a helpful means of intentional control of the active sites available for reaction with cadmium (Cd), mercury (Hg) and lead (Pb). Using restricted density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, we predict the effect of vacancy complexes not previously studied to describe the binding ability of GQDs towards metal adsorbates. We also show that the interband absorption in closed-shell GQDs complexed with Cd, Hg and Pb is strongly dependent on the vacancy type and can be efficiently tuned to attain the desired coloration of the analysis system. The results suggest that the vacancy defects play an important role in governing the hybridization between locally-excited (LE) and charge-transfer (CT) states of the GQDs. Based on the molecular orbital analysis and in-depth knowledge of excited states, the mechanisms underlying the interband absorption are discussed.

    Ladda ner fulltext (pdf)
    fulltext
  • 40.
    Shtepliuk, Ivan I.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yazdi, Gholamreza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Lead (Pb) interfacing with epitaxial graphene2018Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 25, s. 17105-17116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here, we report the electrochemical deposition of lead (Pb) as a model metal on epitaxial graphene fabricated on silicon carbide (Gr/SiC). The kinetics of electrodeposition and morphological characteristics of the deposits were evaluated by complementary electrochemical, physical and computational methods. The use of Gr/SiC as an electrode allowed the tracking of lead-associated redox conversions. The analysis of current transients passed during the deposition revealed an instantaneous nucleation mechanism controlled by convergent mass transport on the nuclei locally randomly distributed on epitaxial graphene. This key observation of the deposit topology was confirmed by low values of the experimentally-estimated apparent diffusion coefficient, Raman spectroscopy and scanning electron microscopy (SEM) studies. First principles calculations showed that the nucleation of Pb clusters on the graphene surface leads to weakening of the interaction strength of the metal-graphene complex, and only spatially separated Pb adatoms adsorbed on bridge and/or edge-plane sites can affect the vibrational properties of graphene. We expect that the lead adatoms can merge in large metallic clusters only at defect sites that reinforce the metal-graphene interactions. Our findings provide valuable insights into both heavy metal ion electrochemical analysis and metal electroplating on graphene interfaces that are important for designing effective detectors of toxic heavy metals.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Santangelo, Maria Francesca
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Understanding Graphene Response to Neutral and Charged Lead Species: Theory and Experiment2018Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 11, nr 10, artikel-id 2059Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Deep understanding of binding of toxic Lead (Pb) species on the surface of two-dimensional materials is a required prerequisite for the development of next-generation sensors that can provide fast and real-time detection of critically low concentrations. Here we report atomistic insights into the Lead behavior on epitaxial graphene (Gr) on silicon carbide substrates by thorough complementary study of voltammetry, electrical characterization, Raman spectroscopy, and Density Functional Theory (DFT). It is verified that the epitaxial graphene exhibits quasi-reversible anode reactions in aqueous solutions, providing a well-defined redox peak for Pb species and good linearity over a concentration range from 1 nM to 1 mu M. The conductometric approach offers another way to investigate Lead adsorption, which is based on the formations of stable charge-transfer complexes affecting the p-type conductivity of epitaxial graphene. Our results suggest the adsorption ability of the epitaxial graphene towards divalent Lead ions is concentration-dependent and tends to saturate at higher concentrations. To elucidate the mechanisms responsible for Pb adsorption, we performed DFT calculations and estimated the solvent-mediated interaction between Lead species in different oxidative forms and graphene. Our results provide central information regarding the energetics and structure of Pb-graphene interacting complexes that underlay the adsorption mechanisms of neutral and divalent Lead species. Such a holistic understanding favors design and synthesis of new sensitive materials for water quality monitoring.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Khranovskyy, Volodymyr
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. NAS Ukraine, Ukraine.
    Vines, L.
    UIO, Norway.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Complementary study of the photoluminescence and electrical properties of ZnO films grown on 4H-SiC substrates2017Ingår i: Journal of Luminescence, ISSN 0022-2313, E-ISSN 1872-7883, Vol. 181, s. 374-381Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have studied the photoluminescence and electrical properties of ZnO films grown epitaxially by atmospheric pressure MOCVD on 4H-SiC substrates. The dominating DA line on the low temperature PL spectrum is attributed to the emission of an exciton bound to the neutral donor. The intensity of this line correlates with the electrical properties of the films: the decrease of DA intensity occurs simultaneously with the increase of the carriers mobility. This we explain as donor activation providing free electrons to the conduction band. Based on the comparison of the calculated value of donor binding energy, the literature data and complementary SIMS analysis a suggested donor impurity is aluminum (Al). The exciton localization energy is 16.3 meV, and agrees well with localization energy of 15.3 meV for Al impurity reported by other authors (e.g. Ref. [33]). The thermal activation energy E-D=22 meV, determined from the Hall data and is in agreement with the optical activation energy 20 meV, which is derived from the temperature-dependent PL study. The calculated value of the donor binding energy of 54.3 eV is in agreement with the ionization energy of 53 meV mentioned in earlier reports for Al in ZnO films. Our results prove that the commonly observed line at similar to 3.3599 eV on low temperature PL spectra of ZnO is a neutral donor bound exciton emission due to the Al impurity. (C) 2016 Elsevier B.V. All rights reserved.

  • 43.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Insights into the origin of the excited transitions in graphene quantum dots interacting with heavy metals in different media2017Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 45, s. 30445-30463Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Exploring graphene quantum dots (GQDs) is an attractive way to design novel optical and electrochemical sensors for fast and reliable detection of toxic heavy metals (HMs), such as Cd, Hg and Pb. There are two main strategies for achieving this: (i) surface modification of an electrochemical working electrode by nanoscale GQDs and (ii) using a GQD solution electrolyte for optical sensing. Further development of these sensing technologies towards reaching or exceeding the WHO permissible limits implies deep understanding of the interaction between GQDs and HMs in different dielectric media. Solvent is expected to be one of the key factors affecting the binding ability of the GQDs to HMs and their electronic and optical properties. Here we show that the solvent-solute interaction changes the geometrical configuration, stability and absorption spectra of zigzag/armchair-edged GQDs after complexation with neutral and charged HM species. We observe physisorption behavior of Cd and Hg adatoms on the sp(2) surface with a solvent-mediated enhancement of the binding energy with increasing solvent polarity. For Pb adatoms, an opposite picture is revealed. We find that the solvent effect also manifests itself in weakening of the chemisorption strength in the HM cation-pi system with increasing dielectric constant of the solvent. Thus, a solvent engineering strategy based on control of the dielectric permittivity can be a promising approach to reach the desired binding energy in the HM@GQDs and to provide high sensitivity and selectivity of both optical and electrochemical sensors to toxic HMs we are interested in.

    Ladda ner fulltext (pdf)
    fulltext
  • 44.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Caffrey, Nuala M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Trinity Coll Dublin, Ireland; Trinity Coll Dublin, Ireland.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. National University of Science and Technology MISIS, Russia.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene2017Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 7, artikel-id 3934Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The promise of graphene and its derivatives as next generation sensors for real-time detection of toxic heavy metals (HM) requires a clear understanding of behavior of these metals on the graphene surface and response of the graphene to adsorption events. Our calculations herein were focused on the investigation of the interaction between three HMs, namely Cd, Hg and Pb, with graphene quantum dots (GQDs). We determine binding energies and heights of both neutral and charged HM ions on these GQDs. The results show that the adsorption energy of donor-like physisorbed neutral Pb atoms is larger than that of either Cd or Hg. In contrast to the donor-like behavior of elemental HMs, the chemisorbed charged HM species act as typical acceptors. The energy barriers to migration of the neutral adatoms on GQDs are also estimated. In addition, we show how the substitution of a carbon atom by a HM adatom changes the geometric structure of GQDs and hence their electronic and vibrational properties. UV-visible absorption spectra of HM-adsorbed GQDs vary with the size and shape of the GQD. Based on our results, we suggest a route towards the development of a graphene-based sensing platform for the optical detection of toxic HMs.

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, Filippo
    CNR IMM, Italy.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Role of the Potential Barrier in the Electrical Performance of the Graphene/SiC Interface2017Ingår i: Crystals, ISSN 2073-4352, Vol. 7, nr 6, artikel-id 162Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In spite of the great expectations for epitaxial graphene (EG) on silicon carbide (SiC) to be used as a next-generation high-performance component in high-power nano- and micro-electronics, there are still many technological challenges and fundamental problems that hinder the full potential of EG/SiC structures and that must be overcome. Among the existing problems, the quality of the graphene/SiC interface is one of the most critical factors that determines the electroactive behavior of this heterostructure. This paper reviews the relevant studies on the carrier transport through the graphene/SiC, discusses qualitatively the possibility of controllable tuning the potential barrier height at the heterointerface and analyses how the buffer layer formation affects the electronic properties of the combined EG/SiC system. The correlation between the sp(2)/sp(3) hybridization ratio at the interface and the barrier height is discussed. We expect that the barrier height modulation will allow realizing a monolithic electronic platform comprising different graphene interfaces including ohmic contact, Schottky contact, gate dielectric, the electrically-active counterpart in p-n junctions and quantum wells.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Khranovskyy, Volodymyr
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Sendova, Mariana
    New Coll Florida, FL 34243 USA.
    Hosterman, Brian
    New Coll Florida, FL 34243 USA.
    McGinnis, Navin
    New Coll Florida, FL 34243 USA.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy2017Ingår i: Materials Science in Semiconductor Processing, ISSN 1369-8001, E-ISSN 1873-4081, Vol. 69, s. 62-67Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report the specific features of basal plane stacking faults (BSFs) in ZnO nanorods (NRs), studied by temperature dependent photoluminescence and Raman spectroscopy. At low temperature (4 K) the intense band of emission at 3.321 eV is attributed to the presence of BSFs defects and Ag as an acceptor dopant in ZnO. This specific peak red-shifts with the temperature increase, occupying the position 3.210 eV at RT. The nature of the emission is explained as exciton recombination of the electrons, confined in the homo-heterojunction QW, with the holes, localized near the Ag atoms close to SFs. Raman spectroscopy revealed that Ag: ZnO nanorods have slightly downshifted positions of the modes 330 cm(-1) and 440 cm(-1) by 4 cm(-1), which we explain as due to the presence of BSFs. It was also observed, that the longitudinal optical phonon mode ALO, which is common polar mode for ZnO, was not detected by Raman spectroscopy in the samples with high BSFs density. This feature can be explained as due to existence of the bound charge induced by the BSFs in the NRs.

  • 47.
    Shavanova, Kateryna
    et al.
    National University of Life and Environm Science Ukraine, Ukraine.
    Bakakina, Yulia
    National Academic Science Belarus, Byelarus.
    Burkova, Inna
    National University of Life and Environm Science Ukraine, Ukraine.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Viter, Roman
    University of Latvia, Latvia.
    Ubelis, Arnolds
    University of Latvia, Latvia.
    Beni, Valerio
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Starodub, Nickolaj
    National University of Life and Environm Science Ukraine, Ukraine.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology2016Ingår i: Sensors, E-ISSN 1424-8220, Vol. 16, nr 2Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 48.
    Shtepliuk, Ivan I.
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. NASU, Ukraine.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Combining graphene with silicon carbide: synthesis and properties - a review2016Ingår i: Semiconductor Science and Technology, ISSN 0268-1242, E-ISSN 1361-6641, Vol. 31, nr 11, s. 113004-Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Being a true two-dimensional crystal, graphene possesses a lot of exotic properties that would enable unique applications. Integration of graphene with inorganic semiconductors, e.g. silicon carbide (SiC) promotes the birth of a class of hybrid materials which are highly promising for development of novel operations, since they combine the best properties of two counterparts in the frame of one hybrid platform. As a specific heterostructure, graphene on SiC performs strongly, dependent on the synthesis method and the growth modes. In this article, a comprehensive review of the most relevant studies of graphene growth methods and mechanisms on SiC substrates has been carried out. The aim is to elucidate the basic physical processes that are responsible for the formation of graphene on SiC. First, an introduction is made covering some intriguing and not so often discussed properties of graphene. Then, we focus on integration of graphene with SiC, which is facilitated by the nature of SiC to assume graphitization. Concerning the synthesis methods, we discuss thermal decomposition of SiC, chemical vapor deposition and molecular beam epitaxy, stressing that the first technique is the most common one when SiC substrates are used. In addition, we briefly appraise graphene synthesis via metal mediated carbon segregation. We address in detail the main aspects of the substrate effect, such as substrate face polarity, off-cut, kind of polytype and nonpolar surfaces on the growth of graphene layers. A comparison of graphene grown on the polar faces is made. In particular, growth of graphene on Si-face SiC is critically analyzed concerning growth kinetics and growth mechanisms taking into account the specific characteristics of SiC (0001) surfaces, such as the step-terrace structure and the unavoidable surface reconstruction upon heating. In all subtopics obstacles and solutions are featured. We complete the review with a short summary and concluding remarks.

    Ladda ner fulltext (pdf)
    fulltext
  • 49.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Frantsevich Institute Problems Mat Science NAS Ukraine, Ukraine.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Effect of c-axis inclination angle on the properties of ZnO/Zn1-xCdxO/ZnO quantum wells2016Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 603, s. 139-148Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The development of optoelectronic devices based on highly-promising Zn1 - xCdxO semiconductor system demands deep understanding of the properties of the Zn1 - xCdxO-based quantum wells (QWs). In this regard, we carried out a numerical study of the polarization-related effects in polar, semi-polar and non-polar ZnO/ Zn1 - xCd xO/ZnO QWs with different parameters of the quantum well structure. The effects of well width, barrier thickness, cadmium content in the active layer and c-axis inclination angle on the distribution of the electron and hole wave function and transition energy were investigated using the 6 x 6 k center dot p Hamiltonian and one-dimensional self-consistent solutions of nonlinear Schrodinger-Poisson equations with consideration of spatially varying dielectric constant and effective mass. The strong sensitivity of the internal electric field, transition energy and overlap integral to cadmium content and well thickness in the angle range from 0 to 40 degrees was revealed. An unexpected change of the internal electric fields sign was observed at the angles ranging from 70 to 90 degrees. We also found a difference in the electronic properties between (0001)-, (11 (2) over bar2)-and (10 (1) over bar0)-oriented QWs.

    Ladda ner fulltext (pdf)
    fulltext
  • 50.
    Khranovskyy, Volodymyr
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shtepliuk, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Tsiaoussis, I.
    Aristotle University of Thessaloniki, Thessaloniki, Greece.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Light emission enhancement from ZnO nanostructured films grown on Gr/SiC substrates2016Ingår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 99, s. 295-301Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on the application of a single layer graphene substrates for the growth of polycrystalline ZnO films with advanced light emission properties. Unusually high ultraviolet (UV) and visible (VIS) photoluminesce was observed from the ZnO/Gr/SiC structures in comparison to identical samples without graphene. The photoluminescence intensity depends non-monotonically on the films thickness, reaching its maximum for 150 nm thick films. The phenomena observed is explained as due to the dual graphene role: i) the dangling bond free substrate, providing growth of relaxed thin ZnO layers ii) a back reflector active mirror of the Fabry-Perot cavity that is formed. The reported results demonstrate the potential of two-dimensional carbon materials integration with light emitting wide band gap semiconductors and can be of practical importance for the design of future optoelectronic devices.

    Ladda ner fulltext (pdf)
    fulltext
12 1 - 50 av 53
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf