liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bai, Jianan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
    Larsson, Erik G
    Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
    Activity Detection in Distributed MIMO: Distributed AMP via Likelihood Ratio Fusion2022Ingår i: IEEE Wireless Communications Letters, ISSN 2162-2337, E-ISSN 2162-2345, Vol. 11, nr 10, s. 2200-2204Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We develop a new algorithm for activity detection for grant-free multiple access in distributed multiple-input multiple-output (MIMO). The algorithm is a distributed version of the approximate message passing (AMP) based on a soft combination of likelihood ratios computed independently at multiple access points. The underpinning theoretical basis of our algorithm is a new observation that we made about the state evolution in the AMP. Specifically, with a minimum mean-square error denoiser, the state maintains a block-diagonal structure whenever the covariance matrices of the signals have such a structure. We show by numerical examples that the algorithm outperforms competing schemes from the literature.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Bai, Jianan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
    Chen, Zheng
    Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
    Larsson, Erik G.
    Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten.
    Multi-agent Policy Optimization for Pilot Selection in Delay-constrained Grant-free Multiple Access2021Ingår i: 2021 55th Asilomar Conference on Signals, Systems, and Computers, IEEE, 2021, s. 1477-1481Konferensbidrag (Refereegranskat)
    Abstract [en]

    Grant-free multiple access (GFMA) mitigates the uplink handshake overhead to support low-latency communication by transmitting payload data together with the pilot (preamble). However, the channel capacity with random access is limited by the number of available orthogonal pilots and the incoordination among devices. We consider a delay-constrained GFMA system, where each device with randomly generated data traffic needs to deliver its data packets before some pre-determined deadline. The pilot selection problem is formulated to minimize the average packet drop rate of the worst user. A priority-sorting based centralized policy is derived by introducing a fairness promoting function. For decentralization, we propose a multi-agent policy optimization algorithm with improved sample efficiency by exploring the model structure. Simulation results show that our proposed scheme facilitates near-optimal coordination between devices by using only partial state information.

  • 3.
    Bai, Jianan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska fakulteten. Virgnia Tech, VA 24060 USA.
    Song, Hao
    Virginia Tech, VA 24060 USA.
    Yi, Yang
    Virginia Tech, VA 24060 USA.
    Liu, Lingjia
    Virginia Tech, VA 24060 USA.
    Multiagent Reinforcement Learning Meets Random Access in Massive Cellular Internet of Things2021Ingår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 8, nr 24, s. 17417-17428Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Internet of Things (IoT) has attracted considerable attention in recent years due to its potential of interconnecting a large number of heterogeneous wireless devices. However, it is usually challenging to provide reliable and efficient random access control when massive IoT devices are trying to access the network simultaneously. In this article, we investigate methods to introduce intelligent random access management for a massive cellular IoT network to reduce access latency and access failures. Toward this end, we introduce two novel frameworks, namely, local device selection (LDS) and intelligent preamble selection (IPS). LDS enables local communication between neighboring devices to provide cluster-wide cooperative congestion control, which leads to a better distribution of the access intensity under bursty traffics. Taking advantage of the capability of reinforcement learning in developing cooperative multiagent policies, IPS is introduced to enable the optimization of the preamble selection policy in each IoT clusters. To handle the exponentially growing action space in IPS, we design a novel reinforcement learning structure, named branching actor-critic, to ensure that the output size of the underlying neural networks only grows linearly with the number of action dimensions. Simulation results indicate that the introduced mechanism achieves much lower access delays with fewer access failures in various realistic scenarios of interests.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf