liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 76
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Polley, C. M.
    et al.
    Lund Univ, Sweden; Chalmers Univ Technol, Sweden.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Fedderwitz, H.
    Lund Univ, Sweden.
    Balasubramanian, T.
    Lund Univ, Sweden.
    Leandersson, M.
    Lund Univ, Sweden.
    Adell, J.
    Lund Univ, Sweden.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jacobi, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Univ Luxembourg, Luxembourg.
    Origin of the pi-band replicas in the electronic structure of graphene grown on 4H-SiC(0001)2019Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, nr 11, artikel-id 115404Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The calculated electronic band structure of graphene is relatively simple, with a Fermi surface consisting only of six Dirac cones in the first Brillouin zone-one at each (K) over bar. In contrast, angle-resolved photoemission measurements of graphene grown on SiC(0001) often show six satellite Dirac cones surrounding each primary Dirac cone. Recent studies have reported two further Dirac cones along the (Gamma) over bar-(K) over bar line, and argue that these are not photoelectron diffraction artifacts but real bands deriving from a modulation of the ionic potential in the graphene layer. Here we present measurements using linearly polarized synchrotron light which show all of these replicas as well as several additional ones. Using information obtained from dark corridor orientations and angular warping, we demonstrate that all but one of these additional features-including those previously assigned as real initial-state bands-are possible to explain by simple final-state photoelectron diffraction.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Xia, Chao
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Tal, Alexey
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Olovsson, Weine
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Effects of rhenium on graphene grown on SiC(0001)2018Ingår i: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 222, s. 117-121Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the effects of Rhenium (Re) deposited on epitaxial monolayer graphene grown on SiC(0001) and after subsequent annealing at different temperatures, by performing high resolution photoelectron spectroscopy (PES) and angle resolved photoelectron spectroscopy (ARPES). The graphene-Re system is found to be thermally stable. While no intercalation or chemical reaction of the Re is detected after deposition and subsequent annealing up to 1200 degrees C, a gradual decrease in the binding energy of the Re 4f doublet is observed. We propose that a larger mobility of the Re atoms with increasing annealing temperature and hopping of Re atoms between different defective sites on the graphene sample could induce this decrease of Re 4f binding energy. This is corroborated by first principles density functional theory (DFT) calculations of the Re core-level binding energy shift. No change in the doping or splitting of the initial monolayer graphene electronic band structure is observed after Re deposition and annealing up to 1200 degrees C, only a broadening of the bands. (C) 2017 Elsevier B.V. All rights reserved.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Nuala, M.Caffrey
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. NUST MISIS, Russia; Tomsk State University, Russia.
    Jacobi, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Structural and electronic properties of Li-intercalated graphene on SiC(0001)2016Ingår i: Physical Review B: covering condensed matter and materials physics, ISSN 2469-9950, Vol. 93, nr 19, s. 195421-1-195421-9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the structural and electronic properties of Li-intercalated monolayer graphene on SiC(0001) using combined angle-resolved photoemission spectroscopy and first-principles density functional theory. Li intercalates at room temperature both at the interface between the buffer layer and SiC and between the two carbon layers. The graphene is strongly n-doped due to charge transfer from the Li atoms and two pi bands are visible at the (K) over bar point. After heating the sample to 300 degrees C, these pi bands become sharp and have a distinctly different dispersion to that of Bernal-stacked bilayer graphene. We suggest that the Li atoms intercalate between the two carbon layers with an ordered structure, similar to that of bulk LiC6. An AA stacking of these two layers becomes energetically favourable. The pi bands around the (K) over bar point closely resemble the calculated band structure of a C6LiC6 system, where the intercalated Li atoms impose a superpotential on the graphene electronic structure that opens gaps at the Dirac points of the two pi cones.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Xia, Chao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Niu, Yuran
    Lund University, Sweden.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Effects of aluminum on epitaxial graphene grown on C-face SiC2015Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, nr 19, s. 195306-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of Al layers deposited on graphene grown on C-face SiC substrates are investigated before and after subsequent annealing using low energy electron diffraction (LEED), photoelectron spectroscopy, and angle resolved photoemission. As-deposited layers appear inert. Annealing at a temperature of about 400 degrees C initiates migration of Al through the graphene into the graphene/SiC interface. Further annealing at temperatures from 500 degrees C to 700 degrees C induces formation of an ordered compound, producing a two domain root 7 x root 7R19 degrees LEED pattern and significant changes in the core level spectra that suggest formation of an Al-Si-C compound. Decomposition of this compound starts after annealing at 800 degrees C, and at 1000 degrees C, Al is no longer possible to detect at the surface. On Si-face graphene, deposited Al layers did not form such an Al-Si-C compound, and Al was still detectable after annealing above 1000 degrees C.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Johansson, Leif I
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Jacobi, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Li induced effects in the core level and pi-band electronic structure of graphene grown on C-face SiC2015Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 33, nr 6, artikel-id 061405Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10(14) cm(-2) after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 degrees C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 degrees C, Li can no longer be detected on the sample. The single pi-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 degrees C, the p-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 degrees C look very similar to earlier calculated distribution patterns for monolayer graphene. (C) 2015 Author(s).

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Watcharinyanon, Somsakul
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Niu, Yuran
    Lund University, Sweden.
    Zakharov, Alexei A.
    Lund University, Sweden.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Soft X-ray Exposure Promotes Na Intercalation in Graphene Grown on Si-Face SiC2015Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 8, nr 8, s. 4768-4777Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An investigation of how electron/photon beam exposures affect the intercalation rate of Na deposited on graphene prepared on Si-face SiC is presented. Focused radiation from a storage ring is used for soft X-ray exposures while the electron beam in a low energy electron microscope is utilized for electron exposures. The microscopy and core level spectroscopy data presented clearly show that the effect of soft X-ray exposure is significantly greater than of electron exposure, i.e., it produces a greater increase in the intercalation rate of Na. Heat transfer from the photoelectrons generated during soft X-ray exposure and by the electrons penetrating the sample during electron beam exposure is suggested to increase the local surface temperature and thus the intercalation rate. The estimated electron flux density is 50 times greater for soft X-ray exposure compared to electron exposure, which explains the larger increase in the intercalation rate from soft X-ray exposure. Effects occurring with time only at room temperature are found to be fairly slow, but detectable. The graphene quality, i.e., domain/grain size and homogeneity, was also observed to be an important factor since exposure-induced effects occurred more rapidly on a graphene sample prepared in situ compared to on a furnace grown sample.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Xia, Chao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Zakharov, A A
    MAX-lab, Lund University, Lund, Sweden.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Effects of Al on epitaxial graphene grown on 6H-SiC(0001)2014Ingår i: Materials Research Express, E-ISSN 2053-1591, Vol. 1, nr 1, s. 1-13, artikel-id 015606Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Aluminum was deposited on epitaxial monolayer-grown graphene on SiC(0001). The effects of annealing up to 1200 °C on the surface and interface morphology, chemical composition, and electron band structure were analyzed in situ by synchrotron-based techniques at the MAX Laboratory. After heating at around 400 °C, Al islands or droplets are observed on the surface and the collected Si 2p, Al 2p, and C 1s core levels spectra indicate Al intercalation at the graphene SiC interface. Also, the original single π -band splits into two, indicating decoupling of the carbon buffer layer and the formation of a quasi-free-standing bilayer-like electronic structure. Further heating at higher temperatures from 700 to 900 °C yields additional chemical reactions. Broader core level spectra are then observed and clear changes in the π -bands near the Dirac point are detected. More electron doping was detected at this stage since one of the π -bands has shifted to about 1.1 eV below the Fermi level. Different ordered phases of (7x7), (4x4), (1x1)Al , and (1x1)G were also observed on the surface in this temperature range. The original single π π-band was restored after heating at ~1200°C, although an Al signal was still able to be detected.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Xia, Chao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Niu, Yuran
    MAX-lab, Lund University, Sweden .
    Zakharov, Alexei A.
    MAX-lab, Lund University, Sweden .
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    High thermal stability quasi-free-standing bilayer graphene formed on 4H-SiC(0 0 0 1) via platinum intercalation2014Ingår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 79, s. 631-635Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Influences on electronic structure induced by platinum (Pt) deposited on monolayer graphene grown on SiC(0 0 0 1) are investigated by photoelectron spectroscopy (PES), selected area low energy electron diffraction (μ-LEED) and angle resolved photoelectron spectroscopy (ARPES) techniques at the MAX Laboratory. Stable monolayer graphene electronic properties are observed after Pt deposition and after annealing at temperatures below 600 °C. At ⩾600 °C platinum silicide forms at the graphene/SiC interface. Annealing at 900 °C results in an efficient decoupling of the carbon buffer layer from the SiC substrate and transformation into a second graphene layer. At this stage a quasi-free standing bi-layer graphene sample is obtained. The new superstructure spots then appearing in μ-LEED pattern suggest formation of an ordered platinum silicide at the interface. This silicide is found to be stable even after annealing at temperature up to 1200 °C.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Johansson, Leif I.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Avila, Jose
    Synchrotron SOLEIL, France .
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Lorcy, Stephan
    Synchrotron SOLEIL, France .
    Igor A., Abrikosov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Asensio, Maria C.
    Synchrotron SOLEIL, France .
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Multiple π-bands and Bernal stacking of multilayer graphene on C-face SiC, revealed by nano-Angle Resolved Photoemission2014Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 4, nr 4157Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Only a single linearly dispersing π-band cone, characteristic of monolayer graphene, has so far been observed in Angle Resolved Photoemission (ARPES) experiments on multilayer graphene grown on C-face SiC. A rotational disorder that effectively decouples adjacent layers has been suggested to explain this. However, the coexistence of μm-sized grains of single and multilayer graphene with different azimuthal orientations and no rotational disorder within the grains was recently revealed for C-face graphene, but conventional ARPES still resolved only a single π-band. Here we report detailed nano-ARPES band mappings of individual graphene grains that unambiguously show that multilayer C-face graphene exhibits multiple π-bands. The band dispersions obtained close to the K-point moreover clearly indicate, when compared to theoretical band dispersion calculated in the framework of the density functional method, Bernal (AB) stacking within the grains. Thus, contrary to earlier claims, our findings imply a similar interaction between graphene layers on C-face and Si-face SiC.

    Ladda ner fulltext (pdf)
    srep04157.pdf
  • 10.
    Johansson, Leif I
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Properties of epitaxial graphene grown on C-face SiC compared to Si-face2014Ingår i: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 29, nr 3, s. 426-438Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Epitaxial graphene of uniform thickness prepared on SiC is of great interest for various applications. On the Si-face, large area uniformity has been achieved, and there is a general consensus about the graphene properties. A similar uniformity has yet not been demonstrated on the C-face where the graphene has been claimed to be fundamentally different. A rotational disorder between adjacent graphene layers has been reported and suggested to explain why multilayer C-face graphene show the pi-band characteristic of monolayer graphene. Utilizing low energy electron microscopy, x-ray photoelectron electron microscopy, low energy electron diffraction, and photoelectron spectroscopy, we investigated the properties of C-face graphene prepared by sublimation growth. We observe the formation of micrometer-sized crystallographic grains of multilayer graphene and no rotational disorder between adjacent layers within a grain. Adjacent grains are in general found to have different azimuthal orientations. Effects on C-face graphene by hydrogen treatment and Na exposure were also investigated and are reported. Why multilayer C-face graphene exhibits single layer electronic properties is still a puzzle, however.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Xia, Chao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A.
    Lund University, Sweden .
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Detailed studies of Na intercalation on furnace-grown graphene on 6H-SiC(0001)2013Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 613, s. 88-94Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects induced by Na deposited on furnace grown graphene on SiC(0001) and after subsequent annealing are investigated using LEEM, mu-LEED, mu-PES and XPEEM. Intercalation in between carbon layers and at the interface is observed to occur both on the 1 ML and 2 ML areas directly after Na deposition. Annealing at a temperature around 100 degrees C is found to strongly promote Na intercalation. Exposure to the electron beam or the focused synchrotron radiation in the LEEM/XPEEM is also found to promote the intercalation, which is confirmed to begin at domain boundaries between the 1 ML and 2 ML areas, and also as stripe/streak-like features on the 1 ML areas. The XPEEM data show Na adsorption on the surface and intercalation at the interface to be quite non-uniform. When annealing at higher temperatures Na starts to de-intercalate and leave the sample, but Na is still detectable on the sample after annealing at 240 degrees C.

  • 12.
    Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    ul Hassan, Jawad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zarharov, Alexei A.
    MAX-lab, Lund University, Lund 22100, Sweden.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Is the Registry Between Adjacent Graphene Layers Grown on C-Face SiC Different Compared to That on Si-Face SiC2013Ingår i: Crystals, ISSN 2073-4352, Vol. 3, nr 1, s. 1-13Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Graphene grown on C-face SiC substrates using two procedures, high and low growth temperature and different ambients, was investigated using Low Energy Electron Microscopy (LEEM), X-ray Photo Electron Electron Microscopy (XPEEM), selected area Low Energy Electron Diffraction (μ-LEED) and selected area Photo Electron Spectroscopy (μ-PES). Both types of samples showed formation of μm-sized grains of graphene. The sharp (1 × 1) μ-LEED pattern and six Dirac cones observed in constant energy photoelectron angular distribution patterns from a grain showed that adjacent layers are not rotated relative to each other, but that adjacent grains in general have different azimuthal orientations. Diffraction spots from the SiC substrate appeared in μ-LEED patterns collected at higher energies, showing that the rotation angle between graphene and SiC varied. C 1s spectra collected did not show any hint of a carbon interface layer. A hydrogen treatment applied was found to have a detrimental effect on the graphene quality for both types of samples, since the graphene domain/grain size was drastically reduced. From hydrogen treated samples, μ-LEED showed at first a clear (1 × 1) pattern, but within minutes, a pattern containing strong superstructure spots, indicating the presence of twisted graphene layers. The LEED electron beam was found to induce local desorption of hydrogen. Heating a hydrogenated C-face graphene sample did not restore the quality of the original as-grown sample.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Johansson, Leif I
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Na induced changes in the electronic band structure of graphene grown on C-face SiC2013Ingår i: Graphene, ISSN 2169-3439, Vol. 2, nr 1, s. 1-7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies of the effects induced on the electron band structure after Na deposition, and subsequent heating, on a C-face 2 MLs graphene sample are reported. Na deposition shifts the Dirac point downwards from the Fermi level by about 0.5 eV due to electron doping. After heating at temperatures from around 120℃ to 300℃,thep-band appears considerably broadened. Collected Si 2p and Na 2p spectra then indicate Na intercalation in between the graphene layers and at the graphene SiC interface. The broadening is therefore interpreted to arise from the presence of two slightly shifted, but not clearly resolved,p-bands. Constant energy photoelectron distribution patterns, E(kx,ky);s, extracted from the clean 2MLs graphene C-face sample look very similar to earlier calculated distribution patterns for monolayer, but not Bernal stacked bilayer, graphene. After Na deposition the patterns extracted at energies below the Dirac point appear very similar so the doping had no pronounced effect on the shape or intensity distribution. At energies above the Dirac point the extracted angular distribution patterns show the flipped, “mirrored”, intensity distribution predicted for monolayer graphene at these energies. An additional weaker outer band is also discernable at energies above the Dirac point, which presumably is induced by the deposited Na.

  • 14.
    Watcharinyanon, Somsakul
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Ytterbium oxide formation at the graphene-SiC interface studied by photoemission2013Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 31, nr 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Synchrotron-based core level and angle resolved photoemission spectroscopy was used to study the formation of ytterbium (Yb) oxide at the graphene-SiC substrate interface. Oxide formation at the interface was accomplished in two steps, first intercalation of Yb into the interface region and then oxygen exposure while heating the sample at 260 degrees C to oxidize the Yb. After these processes, core level results revealed the formation of Yb oxide at the interface. The Yb 4f spectrum showed upon oxidation a clear valence change from Yb2+ to Yb3+. After oxidation the spectrum was dominated by emission from oxide related Yb3+ states and only a small contribution from silicide Yb2+ states remained. In addition, the very similar changes observed in the oxide related components identified in the Si 2p and Yb 4f spectra after oxidation and after subsequent heating suggested formation of a Si-Yb-O silicate at the interface. The electronic band structure of graphene around the (K) over bar -point was upon Yb intercalation found to transform from a single pi band to two pi bands. After Yb oxide formation, an additional third pi band was found to appear. These pi bands showed different locations of the Dirac point (E-D), i.e., two upper bands with E-D around 0.4 eV and a lower band with E-D at about 1.5 eV below the Fermi level. The appearance of three pi-bands is attributed to a mixture of areas with Yb oxide and Yb silicide at the interface.

  • 15.
    Watcharinyanon, Somsakul
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Changes in structural and electronic properties of graphene grown on 6H-SiC(0001) induced by Na deposition2012Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 111, nr 8, s. 083711-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of Na deposited on monolayer graphene on SiC(001) were investigated by synchrotron-based photoelectron spectroscopy and angle resolved photoelectron spectroscopy. The experimental results show that Na prefers to adsorb on the graphene layer after deposition at room temperature. Nonetheless, part of the Na atoms are able to intercalate in between the graphene and the buffer layer and some go even further into the substrate interface as indicated by the shift of the bulk SiC component in the C 1s and Si 2p core level spectra. The ARPES spectrum exhibits a lowering of the Dirac point indicating increased n-type doping of the monolayer graphene induced by the deposited Na atoms. Upon subsequently heating the sample, we found that a slightly elevated temperature is essential in order to promote Na intercalation. A fully Na intercalation at the graphene-SiC interface is obtained after heating at a temperature of about 75 degrees C. The intercalated Na decouples the buffer layer and transforms it into a second graphene layer so two pi-bands are observed in the ARPES spectra. Interestingly, the two bands show different locations of the Dirac point but both exhibit linear dispersion in the vicinity of the (K) over bar point and not the hyperbolic dispersion observed for AB stacked bi-layer graphene. When heating the sample to about 125 degrees C or higher, Na is found to leave the interface and the second graphene layer is transformed back to the carbon buffer layer.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    ul-Hassan, Jawad
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Meyer, A.
    Institute of Solid State Physics, University of Bremen, Germany.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Flege, J. I.
    Institute of Solid State Physics, University of Bremen, Germany.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Falta, J
    Institute of Solid State Physics, University of Bremen, 28359 Bremen, Germany.
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Control of epitaxial graphene thickness on 4H-SiC(0001) and bufferlayer removal through hydrogen intercalation2012Ingår i: Materials Science Forum (Volumes 717 - 720), Trans Tech Publications Inc., 2012, Vol. 717-720, s. 605-608Konferensbidrag (Refereegranskat)
    Abstract [en]

    We report graphene thickness, uniformity and surface morphology dependence on thegrowth temperature and local variations in the off-cut of Si-face 4H-SiC on-axis substrates. Thetransformation of the buffer layer through hydrogen intercalation and the subsequent influence onthe charge carrier mobility are also studied. A hot-wall CVD reactor was used for in-situ etching,graphene growth in vacuum and the hydrogen intercalation process. The number of graphene layersis found to be dependent on the growth temperature while the surface morphology also depends onthe local off-cut of the substrate and results in a non-homogeneous surface. Additionally, the influence of dislocations on surface morphology and graphene thickness uniformity is also presented.

  • 17.
    I Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A.A.
    MAX-lab, Lund University, S-22100 Lund, Sweden.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Detailed studies of graphene grown on C-face SiC2012Ingår i: Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012, 2012, s. 200-202Konferensbidrag (Refereegranskat)
    Abstract [en]

    Graphene samples were grown on the C-face of SiC, at high temperature in a furnace and an Ar ambient, and were investigated using LEEM, XPEEM, LEED, XPS and ARPES. Formation of fairly large grains (crystallographic domains) of graphene exhibiting sharp (1x1) patterns in μ-LEED was revealed and that different grains showed different azimuthal orientations. Selective area constant initial energy photoelectron angular distribution patterns recorded showed the same results, ordered grains and no rotational disorder between adjacent layers. A grain size of up to a few μm was obtained on some samples.

  • 18.
    Xia, Chao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Si intercalation/deintercalation of graphene on 6H-SiC(0001)2012Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 85, nr 4, s. 045418-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The intercalation and deintercalation mechanisms of Si deposited on monolayer graphene grown on SiC(0001) substrates and after subsequent annealing steps are investigated using low-energy electron microscopy (LEEM), photoelectron spectroscopy (PES), and micro-low-energy electron diffraction (mu-LEED). After Si deposition on samples kept at room temperature, small Si droplets are observed on the surface, but no intercalation can be detected. Intercalation is revealed to occur at an elevated temperature of about 800. C. The Si is found to migrate to the interface region via defects and domain boundaries. This observation may provide an answer to the problem of controlling homogeneous bi-/multilayer graphene growth on nearly perfect monolayer graphene samples prepared on SiC(0001). Likewise, Si penetrates more easily small monolayer graphene domains because of the higher density of domain boundaries. Upon annealing at 1000-1100 degrees C, formation of SiC on the surface is revealed by the appearance of a characteristic surface state located at about 1.5 eV below the Fermi level. A streaked mu-LEED pattern is also observed at this stage. The SiC formed on the surface is found to decompose again after annealing at temperatures higher than 1200 degrees C.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Watcharinyanon, Somsakul
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A. A.
    MAX-lab, Lund University.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Studies of Li intercalation of hydrogenated graphene on SiC(0001)2012Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 606, nr 3-4, s. 401-406Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of Li deposition on hydrogenated bilayer graphene on SiC(0001) samples, i.e. on quasi-freestanding bilayer graphene samples, are studied using low energy electron microscopy, micro-low-energy electron diffraction and photoelectron spectroscopy. After deposition, some Li atoms form islands on the surface creating defects that are observed to disappear after annealing. Some other Li atoms are found to penetrate through the bilayer graphene sample and into the interface where H already resides. This is revealed by the existence of shifted components, related to H–SiC and Li–SiC bonding, in recorded core level spectra. The Dirac point is found to exhibit a rigid shift to about 1.25 eV below the Fermi level, indicating strong electron doping of the graphene by the deposited Li. After annealing the sample at 300–400 °C formation of LiH at the interface is suggested from the observed change of the dipole layer at the interface. Annealing at 600 °C or higher removes both Li and H from the sample and a monolayer graphene sample is re-established. The Li thus promotes the removal of H from the interface at a considerably lower temperature than after pure H intercalation.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Johansson, Leif I.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A. A.
    MAX-lab, Lund University, Sweden.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    The registry of graphene layers grown on SiC(000-1)2012Ingår i: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, s. 613-616Konferensbidrag (Refereegranskat)
    Abstract [en]

    Graphene samples were grown on the C-face of SiC, at high temperature in a furnace andan Ar ambient, and were investigated using LEEM, XPEEM, LEED, XPS and ARPES. Formationof fairly large grains (crystallographic domains) of graphene exhibiting sharp 1x1 patterns in μ-LEED was revealed and that different grains showed different azimuthal orientations. Selective areaconstant initial energy photoelectron angular distribution patterns recorded showed the same results,ordered grains and no rotational disorder between adjacent layers. A grain size of up to a few μmwas obtained on some samples.

  • 21.
    Watcharinyanon, Somsakul
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Osiecki, Jacek
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik.
    Zakharov, A A
    Lund University.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Uhrberg, Roger
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Hydrogen intercalation of graphene grown on 6H-SiC(0001)2011Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 605, nr 17-18, s. 1662-1668Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Atomic hydrogen exposures on a monolayer graphene grown on the SiC(0001) surface are shown to result in hydrogen intercalation. The hydrogen intercalation induces a transformation of the monolayer graphene and the carbon buffer layer to bi-layer graphene without a buffer layer. The STM, LEED, and core-level photoelectron spectroscopy measurements reveal that hydrogen atoms can go underneath the graphene and the carbon buffer layer and bond to Si atoms at the substrate interface. This transforms the buffer layer into a second graphene layer. Hydrogen exposure results initially in the formation of bi-layer graphene islands on the surface. With larger atomic hydrogen exposures, the islands grow in size and merge until the surface is fully covered with bi-layer graphene. A (root 3 x root 3)R30 degrees periodicity is observed on the bi-layer areas. ARPES and energy filtered XPEEM investigations of the electron band structure confirm that after hydrogenation the single pi-band characteristic of monolayer graphene is replaced by two pi-bands that represent bi-layer graphene. Annealing an intercalated sample, representing bi-layer graphene, to a temperature of 850 degrees C. or higher, re-establishes the monolayer graphene with a buffer layer on SiC(0001).

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Zakharov, A. A
    et al.
    MAX-lab, Lund University.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Nano-scale 3D (E,kx,ky) band structure imaging on graphene and intercalated graphene2011Ingår i: IBM Journal of Research and Development, ISSN 0018-8646, E-ISSN 2151-8556, Vol. 55, nr 4, s. 6:1-6:6Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An x-ray photoemission electron microscope (X-PEEM) equipped with a hemispherical energy analyzer is capable of fast acquisition of momentum-resolved photoelectron angular distribution patterns in a complete cone. We have applied this technique to observe the 3-D $(E, k_{x}, k_{y})$ electronic band structure of zero-, one-, and two-monolayer (ML) graphene grown ex situ on 6H-SiC(0001) substrates where a carbon buffer layer (zero ML) forms underneath the graphene layer(s). We demonstrate that the interfacial buffer layer can be converted into quasi-free-standing graphene upon intercalation of Li atoms at the interface and that such a graphene is structurally and electronically decoupled from the SiC substrate. High energy and momentum resolution of the X-PEEM, along with short data acquisition times from submicrometer areas on the surface demonstrates the uniqueness and the versatility of the technique and broadens its impact and applicability within surface science and nanotechnology.

  • 23.
    Watcharinyanon, Somsakul
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Rb and Cs deposition on epitaxial graphene grown on 6H-SiC(0001)2011Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 605, nr 21-22, s. 1918-1922Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Epitaxial graphene grown on the silicon-terminated SiC(0001) is doped by alkali metals deposited on the surface. The synchrotron radiation based photoelectron spectroscopy results presented reveal that Rb and Cs deposited on monolayer graphene samples, grown on the silicon-terminated SiC(0001), gives rise to n-type doping, i.e. electron transfer from the metal to the graphene layer. The Dirac point of the single pi-cone is found to shift downwards away from the Fermi level by ca. 1.0 eV after alkali metal depositions. The adsorbed Rb and Cs atoms do initially disrupt the bonds in the graphene layer but after heating the bonds appear to be recreated when the alkali metal coverage start to decrease due to thermal desorption. None of these two alkali metals do intercalate into the graphene and buffer layer after depositing at room temperature or after heating. This is contrary to the case of Li where intercalation occurred directly after deposition.

  • 24.
    Johansson, Leif I
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Reactions on the SiC(0001) root 3 x root 3 R30 degrees surface after Ti deposition and annealing2011Ingår i: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 248, nr 3, s. 667-673Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interactions of thin Ti layers deposited on the SiC(0001) root 3 x root 3 R30 degrees surface at room temperature and after annealing at temperatures from 450 to 1200 degrees C was investigated using photoemission and LEED. Chemically shifted components were revealed in the Si 2p spectrum and found to be more intense and pronounced than the shifted component in the C 1s spectrum after Ti deposition and annealing. The relative intensity of these shifted components were found to increase initially upon annealing at temperatures up to around 700 degrees C. At temperatures above 800 degrees C only the shifted component in the C 1s spectrum remained which indicate that only TiC then remains on the surface. At annealing temperatures of 600-700 degrees C formation of the ternary Ti(3)SiC(2) phase and an interface TiSi(x) layer is suggested from shifts and relative intensities observed for these components. That the formation and decomposition of the ternary phase occurs at a considerably lower temperature than earlier reported is attributed to the fact that we investigated the interaction of considerably thinner Ti layers with SiC substrates than in those earlier reported studies.

  • 25.
    Johansson, Leif I
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Stacking of adjacent graphene layers grown on C-face SiC2011Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, nr 12, s. 125405-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Graphene was grown on the C-face of nominally on-axis SiC substrates using high-temperature sublimation with Ar as the buffer inert gas. The results of studies of the morphology, thickness, and electronic structure of these samples using low-energy electronmicroscopy (LEEM), x-ray photoelectron emission microscopy, photoelectron spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), and low-energy electron diffraction (LEED) are presented. The graphene thickness is determined to vary from 1 or 2 to 6 or 7 monolayers (MLs), depending on the specific growth conditions utilized. The formation of fairly large grains (i.e., crystallographic domains) of graphene exhibiting sharp 1 x 1 spots in micro-LEED is revealed. Adjacent grains are found to show different azimuthal orientations. Macro-LEED patterns recorded mimic previously published, strongly modulated, diffraction ring LEED patterns, indicating contribution from several grains of different azimuthal orientations. We collected selected area constant initial energy photoelectron angular distribution patterns that show the same results. When utilizing a small aperture size, one Dirac cone centered on each of the six K-points in the Brillouin zone is clearly resolved. When using a larger aperture, several Dirac cones from differently oriented grains are detected. Our findings thus clearly show the existence of distinct graphene grains with different azimuthal orientations; they do not show adjacent graphene layers are rotationally disordered, as previously reported for C-face graphene. The graphene grain size is shown to be different on the different samples. In some cases, a probing area of 400 nm is needed to detect the grains. On one sample, a probing area of 5 mu m can be used to collect a 1 x 1 LEED pattern from a multilayer graphene grain. ARPES is used to determine the position of the Dirac point relative to the Fermi level on two samples that LEEM shows have dominant coverage of 2 and 3 MLs of graphene, respectively. The Dirac point is found to be located within 75 meV of the Fermi level on both samples, which indicates that the electron carrier concentration induced in the second and third graphene layers on the C-face is less than similar to 4x10(11) cm(-2). Formation of patches of silicate is revealed on some samples, but the graphene formed on such nonhomogenous surfaces can contain fairly large ordered multilayer graphene grains.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    A low-energy electron microscopy and x-ray photo-emission electron microscopy study of Li intercalated into graphene on SiC(0001)2010Ingår i: New Journal of Physics, E-ISSN 1367-2630, Vol. 12, nr 125015Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects induced by the deposition of Li on 1 and 0 ML graphene grown on SiC(0001) and after subsequent heating were investigated using low-energy electron microscopy (LEEM) and x-ray photo-emission electron microscopy (XPEEM). For 1 ML samples, the collected photoelectron angular distribution patterns showed the presence of single pi-cones at the six equivalent K-points in the Brillouin zone before Li deposition but the presence of two pi-cones (pi-bands) after Li deposition and after heating to a few hundred degrees C. For 0 ML samples, no pi-band could be detected close to the Fermi level before deposition, but distinct pi-cones at the K-points were clearly resolved after Li deposition and after heating. Thus Li intercalation was revealed in both cases, transforming the carbon buffer layer (0 ML) to graphene. On 1 ML samples, but not on 0 ML, a (root 3 x root 3) R30 degrees diffraction pattern was observed immediately after Li deposition. This pattern vanished upon heating and then wrinkles/cracks appeared on the surface. Intercalation of Li was thus found to deteriorate the quality of the graphene layer, especially for 1 ML samples. These wrinkles/cracks did not disappear even after heating at temperatures andgt;= 500 degrees C, when no Li atoms remained on the substrate.

  • 27.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gogova, Daniela
    Leibniz Institute for Crystal Growth, Berlin, Germany.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Siche, D.
    Leibniz Institute for Crystal Growth, Berlin, Germany.
    Larsson, Krister
    Department of Materials Chemistry, Uppsala University, Uppsala, Sweden.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates2010Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2 / [ed] Bauer, AJ; Friedrichs, P; Krieger, M; Pensl, G; Rupp, R; Seyller, T, Trans Tech Publications Inc., 2010, Vol. 645-648, s. 565-568Konferensbidrag (Refereegranskat)
    Abstract [en]

    We are aiming at understanding the graphene formation mechanism on different SiC polytypes (6H, 4H and 3C) and orientations with the ultimate goal to fabricate large area graphene (up to 2 inch) with controlled number of monolayers and spatial uniformity. To reach the objectives we are using high-temperature atmospheric pressure sublimation process in an inductively heated furnace. The epitaxial graphene is characterized by ARPES, LEEM and Raman spectroscopy. Theoretical studies are employed to get better insight of graphene patterns and stability. Reproducible results of single layer graphene on the Si-face of 6H and 4H-SiC polytypes have been attained. It is demonstrated that thickness uniformity of graphene is very sensitive to the substrate miscut.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Buffer layer free large area bi-layer graphene on SiC(0001)2010Ingår i: SURFACE SCIENCE, ISSN 0039-6028, Vol. 604, nr 2, s. L4-L7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence of hydrogen exposures on monolayer graphene grown on the silicon terminated SiC(0 0 0 1) surface is investigated using photoelectron spectroscopy (PES), low-energy electron microscopy (LEEM) and micro low-energy electron diffraction (mu-LEED). Exposures to ionized hydrogen are shown to have a pronounced effect on the carbon buffer (interface) layer. Exposures to atomic hydrogen are shown to actually convert/transform the monolayer graphene plus carbon buffer layer to bi-layer graphene, i.e. to produce carbon buffer layer free bi-layer graphene on SiC(0 0 0 1). This process is shown to be reversible, so the initial monolayer graphene plus carbon buffer layer situation is recreated after heating to a temperature of about 950 degrees C. A tentative model of hydrogen intercalation is suggested to explain this single to bi-layer graphene transformation mechanism. Our findings are of relevance and importance for various potential applications based on graphene-SiC structures and hydrogen storage.

  • 29.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Johansson, Leif I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Epitaxial graphene on 6H-SiC and Li intercalation2010Ingår i: PHYSICAL REVIEW B, ISSN 1098-0121, Vol. 82, nr 20, s. 205402-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence of lithium (Li) exposures on monolayer graphene grown on the silicon-terminated SiC(0001) surface is investigated using low-energy electron microscopy, photoelectron spectroscopy, and micro-low-energy electron diffraction. After Li deposition, islands or Li droplets are observed on the surface, and are found to coalesce together with time. Formation of a dipole layer at the interface, interpreted to originate from Li-Si bonding, is observed directly after Li deposition, and manifested by a 2 eV shift of the C 1s and Si 2p bulk SiC peaks. This indicates that Li atoms penetrate through the graphene and carbon buffer layer directly after deposition at room temperature since three pi bands are then moreover observed at the K point, instead of the single pi band for monolayer graphene. The existence of three pi bands is interpreted as a mixture of bilayer and monolayer graphene plus a difference in doping levels due to an uneven distribution of Li atoms. Li gives rise to electron doping of the graphene and results in a lowering of the Dirac point. After annealing to a few hundred degrees Celsius, a more even Li distribution and intercalation is obtained since then two distinct pi bands appear at the K point.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 30.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Large homogeneous mono-/bi-layer graphene on 6H-SiC(0001) and buffer layer elimination2010Ingår i: JOURNAL OF PHYSICS D-APPLIED PHYSICS, ISSN 0022-3727, Vol. 43, nr 37, s. 374010-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper we discuss and review results of recent studies of epitaxial growth of graphene on silicon carbide. The presentation is focused on high quality, large and uniform layer graphene growth on the SiC(0 0 0 1) surface and the results of using different growth techniques and parameters are compared. This is an important subject because access to high-quality graphene sheets on a suitable substrate plays a crucial role for future electronics applications involving patterning. Different techniques used to characterize the graphene grown are summarized. We moreover show that atomic hydrogen exposures can convert a monolayer graphene sample on SiC(0 0 0 1) to bi-layer graphene without the carbon buffer layer. Thus, a new process to prepare large, homogeneous stable bi-layer graphene sheets on SiC(0 0 0 1) is presented. The process is shown to be reversible and should be very attractive for various applications, including hydrogen storage.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 31.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik.
    Syväjärvi, Mikael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik.
    Yakimova, Rositsa
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik.
    Johansson, Leif
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik.
    Zakharov, A.A.
    Balasubramanian, T.
    Single Layer Graphene Growth on 6H-SiC(0001)2009Konferensbidrag (Refereegranskat)
  • 32.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Osiecki, Jacek
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik.
    Syväjärvi, Mikael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Uhrberg, Roger
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik.
    Johansson, Leif
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Zakharov, A A
    Lund University.
    Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC(0001)2009Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 603, nr 15, s. L87-L90Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence of substrate orientation on the morphology of graphene growth on 6H-SiC(0 0 0 1) was investigated using low-energy electron and scanning tunneling microscopy (LEEM and STM). Large area monolayer graphene was successfully furnace-grown on these substrates. Larger terrace widths and smaller step heights were obtained on substrates with a smaller mis-orientation from on-axis (0.03 degrees) than on those with a larger (0.25 degrees). Two different types of a carbon atom networks, honeycomb and three-for-six arrangement, were atomically resolved in the graphene monolayer. These findings are of relevance for various potential applications based on graphene-SiC structures.

  • 33.
    Virojanadara, Chariya
    et al.
    Max- Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Hetzel, M.
    Max- Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Choyke, Wolfgang J.
    Department of Physics and Astronomy, University of Pittsburgh, USA.
    Starke, Ulrich
    Max- Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Atomic and Electronic Structure of the (2x1) and c(2x2) 4H-SiC(1(1)over-bar02) Surfaces2008Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2007, PTS 1 AND 2 / [ed] Suzuki, A; Okumura, H; Kimoto, T; Fuyuki, T; Fukuda, K; Nishizawa, S, Trans Tech Publications Inc., 2008, Vol. 600-603, s. 291-296Konferensbidrag (Refereegranskat)
    Abstract [en]

    The atomic and electronic structure of 4H-SiC(1 1 02) surfaces were investigated usingscanning tunneling microscopy (STM), low-energy electron diffraction (LEED) and photoemission(PES). Two well ordered phases existing on this surface, i.e. (2×1) and c(2×2) are discussed. The(2×1) phase consists of a Si adlayer which is topped by an array of ordered Si-nanowires withelectronic states confined to one dimension. For the c(2×2) phase STM indicates the presence ofadatoms and PES a surface composition close to bulk SiC stoichiometry. A detailed atomic modelfor this c(2×2) phase is proposed.

  • 34.
    Virojanadara, Chariya
    et al.
    Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
    Hetzel, M.
    Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Choyke, W.J.
    Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States.
    Starke, U.
    Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
    Electronic and atomic structure of the 4 H-SiC (1 over(1, ¯) 0 2) -c (2 × 2) surface2008Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 602, nr 2, s. 525-533Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The (1 over(1, ¯) 0 2) orientated plane of hexagonal silicon carbide of the 4H polytype consists of a periodic arrangement of stripes with alternating bond configuration on a nanometer scale. The two stripe configurations of the bulk truncated surface have an atomic structure very close to the carbon-face SiC basal plane and the cubic SiC(1 0 0) surface, respectively. The structural and electronic properties of the c(2 × 2) reconstruction on the 4 H-SiC (1 over(1, ¯) 0 2) surface were investigated using photoemission spectroscopy (PES), scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The core level photoemission spectra reveal two surface shifted Si2p components and one shifted C1s component in addition to the SiC bulk peaks. In accordance with the periodicity observed in LEED, atomically resolved STM micrographs show a c(2 × 2) arrangement of bright features which are accounted as Si adatoms. The electronic structure of this SiC (1 over(1, ¯) 0 2) -c (2 × 2) phase is experimentally determined by angle resolved PES studies of the valence band revealing four surface states. Based on the experimental observations and a comparison to similar phases on other SiC surfaces, a tentative surface model can be developed which consists of Si adatoms in so-called H3 sites on the basal-plane type stripes and carbon dimers in Si bridging configuration on the cubic stripes of the bulk truncated surface. © 2007 Elsevier B.V. All rights reserved.

  • 35.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik. Linköpings universitet, Tekniska högskolan.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Balasubramanian , T
    Lund University.
    Homogeneous large-area graphene layer growth on 6H-SiC(0001)2008Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 78, nr 24, s. 245403-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Homogeneous large-area graphene monolayers were successfully prepared ex situ on 6H-SiC(0001). The samples have been studied systematically and the results are compared with those from a sample cut from the same wafer and prepared by in situ heating. The formation of smaller graphene flakes was found on the in situ prepared sample, which is in line with earlier observations. Distinctly different results are observed from the ex situ graphene layers of different thicknesses, which are proposed as a guideline for determining graphene growth. Recorded C 1s spectra consisted of three components: bulk SiC, graphene (G), and interface (I), the latter being a 6 root 3 layer. Extracted intensity ratios of G/I were found to give a good estimate of the thickness of graphene. Differences are also revealed in micro low energy electron diffraction images and electron reflectivity curves. The diffraction patterns were distinctly different from a monolayer thickness up to three layers. At a larger thickness only the graphitelike spot was visible. The electron reflectivity curve showed a nice oscillation behavior with kinetic energy and as a function of the number of graphene layers. The graphene sheets prepared were found to be very inert and the interface between the substrate and the layer(s) was found to be quite abrupt. No free Si could be detected in or on the graphene layers or at the interface.

  • 36.
    Virojanadara, Chariya
    et al.
    Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Hetzel, M.
    Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Riedl, C.
    Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Choyke, W. J.
    Department of Physics and Astronomy, University of Pittsburgh, United States.
    Starke, U.
    Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
    Silicon adatom chains and one-dimensionally confined electrons on 4H-SiC(1-102): The (2x1) reconstruction2008Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 602, nr 22, s. 3506-3509Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The electronic and atomic structure of the 4H-SiC surface was investigated. Photoemission data indicate that the surface contains about 2 Si layers on top of the bulk layers. Scanning tunneling microscopy images show that these adlayers are terminated by an ordered array of adatom chains separated by the unit cell size. An electronic surface state located at a binding energy of 0.8 eV shows one-dimensional confinement with dispersion only along the chains. Based on the experimental observations, a tentative (2 × 1) surface model is derived with the surface terminated by alternating chains of Si adatoms and Si dimers in between.

  • 37.
    Gauthier, Y.
    et al.
    Institut Néel, UPR 2940 - CNRS, 25 av. des Martyrs, 38042 Grenoble, France.
    Zasada, I.
    Solid State Physics Department, University of Lodz, ul. Pomorska 149/153, 90-236 Lodz, Poland.
    De, Santis M.
    De Santis, M., Institut Néel, UPR 2940 - CNRS, 25 av. des Martyrs, 38042 Grenoble, France.
    Langlais, V.
    Institut Néel, UPR 2940 - CNRS, 25 av. des Martyrs, 38042 Grenoble, France, Universitat Autonoma de Barcelona, Departamento de Fisica, 08193 Bellaterra, Barcelona, Spain.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Surface structure and composition of the missing-row reconstruction of VC0.8(1 1 0): A LEED, GIXRD and photoemission study2007Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 601, nr 16, s. 3383-3394Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low energy electron diffraction, grazing incidence X-ray diffraction and photoemission were used to decipher the detailed structural arrangement and chemical composition of the surface region of a transition metal carbide, VC0.8(1 1 0). In agreement with previous scanning tunneling microscopy (STM) studies, we find that the surface reconstructs with a ridge-and-valley grating structure along the [1 over(1, ¯) 0] direction resulting from {0 0 1} faceting for the (3 × 1) and the (4 × 1) phases. Both superstructures terminate on the vacuum side with a nearly stoïchiometric VC region due to C segregation, in contrast with the conclusions drawn from this previous STM study. However, the present experiments clearly show that these phases are metastable, and slow cooling results in a (1 × 1) surface, which is highly C depleted, similarly to the (1 0 0) face. © 2007 Elsevier B.V. All rights reserved.

  • 38.
    Karlsson, P.G.
    et al.
    Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Richter, J.H.
    Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Blomquist, J.
    Chemical Physics, Lund University, Box 118, SE-22100 Lund, Sweden.
    Uvdal, P.
    Chemical Physics, Lund University, Box 118, SE-22100 Lund, Sweden.
    Sandell, A.
    Department of Physics, Uppsala University, Box 530, SE-75121 Uppsala, Sweden.
    Ultrathin ZrO2 films on Si-rich SiC(0 0 0 1)-(3 × 3): Growth and thermal stability2007Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 601, nr 11, s. 2390-2400Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The growth and thermal stability of ultrathin ZrO2 films on the Si-rich SiC(0 0 0 1)-(3 × 3) surface have been explored using photoelectron spectroscopy (PES) and X-ray absorption spectroscopy (XAS). The films were grown in situ by chemical vapor deposition using the zirconium tetra tert-butoxide (ZTB) precursor. The O 1s XAS results show that growth at 400 °C yields tetragonal ZrO2. An interface is formed between the ZrO2 film and the SiC substrate. The interface contains Si in several chemically different states. This gives evidence for an interface that is much more complex than that formed upon oxidation with O2. Si in a 4+ oxidation state is detected in the near surface region. This shows that intermixing of SiO2 and ZrO2 occurs, possibly under the formation of silicate. The alignment of the ZrO2 and SiC band edges is discussed based on core level and valence PES spectra. Subsequent annealing of a deposited film was performed in order to study the thermal stability of the system. Annealing to 800 °C does not lead to decomposition of the tetragonal ZrO2 (t-ZrO2) but changes are observed within the interface region. After annealing to 1000 °C a laterally heterogeneous layer has formed. The decomposition of the film leads to regions with t-ZrO2 remnants, metallic Zr silicide and Si aggregates. © 2007 Elsevier B.V. All rights reserved.

  • 39.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik.
    Johansson, Leif
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Electronic structure study of reconstructed Au-SiC(0 0 0 1) surfaces2006Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 600, nr 2, s. 436-441Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A study of surface and interface properties of reconstructed Au-SiC(0 0 0 1) surfaces is reported. Two reconstructions were prepared on SiC(0 0 0 1), a v3 × v3R30° and a Si-rich 3 × 3, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 3 × 3 surface the existence of three stable reconstructions 2v3 × 2v3R30°, 3 × 3 and 5 × 5 are revealed after deposition of Au layers, 4-8 Å thick, and annealing at progressively higher temperatures between 500 and 950 °C. For the 2v3 surface two surface shifted Si 2p components are revealed and the Au 4f spectra clearly indicate silicide formation. The variation in relative intensity for the different core level components with photon energy suggests formation of an ordered silicide layer with some excess Si on top. Similar core level spectra and variations in relative intensity with photon energy are obtained for the 3 × 3 and 5 × 5 phases but the amount of excess Si on top is observed to be smaller and an additional weak Si 2p component becomes discernable. For the v3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 3 × 3 surface and only one stable reconstruction, a 3 × 3 phase, is observed at similar annealing temperatures. © 2005 Elsevier B.V. All rights reserved.

  • 40.
    Magnuson, Martin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Uhrberg, Roger
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Yt- och Halvledarfysik.
    Johansson, Leif
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Total of 100 authors in alphabetical orders, -
    MAX IV Conceptual Design Report (CDR)2006Rapport (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 41.
    Eklund, Per
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Emmerlich, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Högberg, Hans
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films2006Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 74, nr 4, s. 045417-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Photoemissionstudies using synchrotron radiation have been performed on epitaxial Ti3SiC2(0001)and compound nanocrystalline (nc-)TiC/amorphous (a-)SiC thin films deposited by magnetronsputtering. As-introduced samples were found to be covered by surfaceoxides, SiOx and TiOx. These oxides could be removed byin-situ annealing to ~1000  °C. For as-annealed Ti3SiC2(0001), surface Si wasobserved and interpreted as originating from decomposition of Ti3SiC2 throughSi out-diffusion. For nc-TiC/a-SiC annealed in situ to ~1000  °C, thesurface instead exhibited a dominant contribution from graphitic carbon, alsowith the presence of Si, due to C and Siout-diffusion from the a-SiC compound or from grain boundaries.

  • 42.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Core level photoelectron spectroscopy studies of a √7 × √7 R19° reconstructed Au/4H-SiC(0 0 0 1¯) surface2005Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 585, nr 3, s. 163-169Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A study of surface and interface properties of thin Au layers deposited on SiC(0001¯) surfaces is reported. Two reconstructions were prepared, a Si-rich 2 × 2 and a C-rich 3 × 3 surface, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 2 × 2 surface a stable v7 × v7 R19° reconstruction is obtained after Au deposition and annealing at temperatures between 400 and 850 °C. On this surface two surface shifted Si2p components are revealed and the Au4f spectra clearly indicate silicide formation. The variations in relative intensity for the different core level components with electron emission angle suggest: -formation of an ordered silicide layer on the surface, -excess Au ("bulk Au") to form a layer underneath the ordered silicide, -and silicide formation also at the interface between "bulk Au" and SiC. The "bulk Au" component is found to decrease rapidly with annealing temperature. This decrease is due to Au diffusion into the SiC sample as confirmed by annealing at similar temperatures of Au films deposited onto deliberately oxidized SiC(0001¯) surfaces. For the C-rich 3 × 3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 2 × 2 and no new stable reconstruction is observed. © 2005 Elsevier B.V. All rights reserved.

  • 43.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Materiefysik.
    Johansson, Leif
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Photoemission study of Si-rich 4H-SiC surfaces and initial SiO2 SiC interface formation2005Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 71, nr 19Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Photoemission studies of Si-rich polar and nonpolar 4H-SiC surfaces before and after oxygen exposures are reported. For the clean Si-rich (0001) -3×3 surface, three prominent surface-shifted components are revealed in the Si 2p spectrum. This observation agrees well with the structural model suggested for this surface but disagrees with earlier results where only two surface-shifted Si 2p components were identified. Also for the other three Si-rich surfaces investigated three similar surface components are revealed although with different relative strengths. The C 1s spectrum exhibits only one sharp bulk peak for the clean Si-rich surfaces. This is different compared to earlier results from the same surfaces prepared by in situ heating only. The effects induced upon initial oxidation of these Si-rich surfaces are investigated. Recorded Si 2p spectra show only one suboxide, Si+1 and Si+2, for the polar (0001) and (000 1¯) surfaces, respectively, besides the fully developed Si+4 oxide (Si O2). For the nonpolar surfaces two suboxide, Si+1 and Si+2, are observed. Similarities and differences compared to earlier findings are discussed. Valence band spectra collected from clean surfaces, before Si deposition, are presented for the nonpolar surfaces. The presence of a sharp structure at binding energies of about 2.0 and 2.7 eV for the (10 1¯ 0) and the (11 2¯ 0) surfaces, respectively, is observed. This structure shows no dispersion with photon energy and is very sensitive to oxygen exposures and is therefore tentatively suggested to be a surface resonance state. © 2005 The American Physical Society.

  • 44.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif I.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Surface and Interface Studies of Si-rich 4H-SiC and SiO22005Ingår i: Materials Science Forum Vols. 483-485, Trans Tech Publications Inc., 2005, s. 581-584Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    A photoemission study of Si-rich polar and nonpolar 4H-SiC surfaces before andafter initial oxidation are presented. Core level and valence band data recorded usingsynchrotron radiation are utilized to explore the properties of these surfaces and of theinterfaces.The Si-rich surfaces showed three prominent surface Si 2p components. These componentsare strongly attenuated upon oxygen exposures and can not be detected after an exposure of3000 L. After exposures of ≥200 L the number of oxidation states, i.e. Si+1, Si+2 and Si+4oxidation states, and also their shifts are found to be the same as after initial oxidation of thesame surfaces prepared by in situ heating.Only one sharp C 1s core level is observed on the Si-rich surfaces. This is quite differentcompared to earlier findings on the same surfaces prepared by in situ heating whereprominent surface shifted C 1s components are found. After oxygen exposure of ~ 200 L theC 1s peak is broadened and an asymmetry is observed on the high binding energy side. Thistogether with the Si 2p results show that oxygen exposures of ~200 L affect not only the Sioverlayers. Layers in the SiC substrate are also affected since the C 1s peak is broadened andthe Si 2p spectrum show the same oxidation states as after large exposures and after oxidationof these surfaces prepared without Si overlayers.

  • 45.
    Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Eickhoff, Th.
    Drube, W.
    A comparative photoemission study of polar and nonpolar SiC surfaces oxidized in N2O2004Ingår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 552, nr 1-3, s. 251-259Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Photoemission studies of oxidized SiC samples grown ex situ in N 2O, at a temperature of 900 °C, on the (0001), (0001̄), (112̄0) and (101̄0) surfaces are reported. Angle resolved data from the Si 1s and Si 2p core levels and the Si KL2,3L2,3 Auger transitions are analyzed and compared to data from a sample grown in O2 on the (0001) surface. The results show oxide growth and no oxy-nitride formation. The growth rate is found to be smallest for the Si-terminated (0001) surface and highest for the nonpolar (101̄0) surface. The presence of two oxidation states, Si+4 and a suboxide, are required to explain and model recorded Si 1s, Si 2p and Si KLL spectra. The SiO2 shift is found to be smaller on the (0001) surface than on the other three surfaces, which is attributed to an oxide thickness dependence of the shift. A layer attenuation model describes satisfactorily the intensity variations observed in the core level components versus electron emission angle when assuming the suboxide at the interface. Estimates made of the thickness of the oxide layers show that the oxidation rate for the (0001) surfaces is about half of that for the (101̄0) surface and that the oxidation rate for the (112̄0) and (0001̄) surfaces are similar but somewhat smaller than for the (101̄0) surface. The amount of suboxide is found to be smaller on the nonpolar than on the polar surfaces. © 2004 Elsevier B.V. All rights reserved.

  • 46.
    Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Eickhoff, T
    Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Hamburg, Germany.
    Drube, W
    Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron DESY, Hamburg, Germany.
    A photoemission study of polar and non-polar SiC surfaces oxidized in N2O.2004Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2003, PRTS 1 AND 2, Trans Tech Publications Inc., 2004, Vol. 457-460, s. 1329-1332Konferensbidrag (Refereegranskat)
    Abstract [en]

    Angle resolved photoemission studies of SiO2/SiC samples grown ex situ in N2O on polar and non-polar 4H-SiC surfaces are reported. Data from the Si 1s and Si 2p core levels and the Si KL2,3L2,3 Auger transitions are analyzed and compared to data from a sample grown in O-2 on the (0001) surface. The results show oxide growth without nitride or oxy-nitride formation. Presence of two oxidation states, SiO2 and a sub-oxide explains recorded Si 1s. Si 2p and Si KLL spectra. Estimates of the oxide layer thickness show that the oxidation rate is highest for the (10 (1) under bar0) surface, somewhat smaller and similar for the (11 (2) under bar0) and (000 (1) under bar) surfaces, and smaller by a factor of about two for the (0001) surface.

  • 47.
    Glans, P.-A.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Balasubramanian, T.
    MAX-Lab., Lund University, S-221 00 Lund, Sweden.
    Blake, R.J.
    Daresbury Laboratory, CCLRC, Warrington WA4 4AD, United Kingdom.
    Assignment of the surface core-level shifts to the surface layers of Be(101¯0)2004Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 70, nr 3Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Photoemission studies and layer resolved Korringa-Kohn-Rostoker (KKR) multiple scattering calculations are used to find the assignment of the surface core-level shifts to the top layers of the Be(1010) surface. Striking similarities between experimental and calculated data make it possible to assign the largest shift to layer two, the second largest shift to layers three and four, and the smallest shift to layer one.

  • 48.
    Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Wettergren, Håkan
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Computation of the pressure distribution in hydrodynamic bearings using Newton's method2004Ingår i: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 126, nr 2, s. 404-407Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper an algorithm is developed where Reynolds' equation, equilibrium equations and non-negativity of pressure are formulated as a system of equations, which are not differentiable in the usual sense. This system is then solved using Pang's Newton method for B-differentiable equations.

  • 49.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Oxidation Studies of Non-Polar 4H-SiC Surfaces2004Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2003, PRTS 1 AND 2, Trans Tech Publications Inc., 2004, s. 1321-1324Konferensbidrag (Refereegranskat)
    Abstract [en]

    The results of a photoemission study of clean and oxidized non-polar (1010) and (1120) surfaces of 4H-SiC crystals are reported. The effects induced in the core levels and valence bands upon initial oxidation were investigated. The surfaces were oxidized gradually from 1 L to 10(6) L while keeping the substrate at a temperature of 800degreesC. Recorded Si 2p spectra show three oxidation states for both surfaces and these are interpreted to originate from Si+1, Si+2 and Si+4, respectively. This is quite different compared to earlier results for the polar surfaces where only Si+4 and one sub-oxide were revealed on each surface. It is concluded that the Si+4 oxide (SiO2) grow as a layer on top of the Si+1 and Si+2 sub-oxides that are located at the interface. The surface/interface related carbon is found to decrease dramatically, but not to be totally eliminated, after the large oxygen exposures made

  • 50.
    Virojanadara, Chariya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Studies of NO on 4H-SiC (0001) using Synchrotron Radiation2004Ingår i: JOURNAL OF PHYSICS-CONDENSED MATTER,  ISSN (0953-8984): Volume: 16   Issue: 33   Special Issue: SI, Institute of Physics Publishing (IOPP), 2004, s. S3435-S3439Konferensbidrag (Refereegranskat)
    Abstract [en]

    Detailed studies of the effects induced on the root3 x root3 R30degrees 4H-SiC(0001) surface after different NO exposures, at a substrate temperature of 800degreesC, have been made. Photoemission experiments using synchrotron radiation were performed in order to study the properties of the interface formed after gas exposures. Recorded Si 2p spectra show three shifted components, besides the bulk SiC peak. These are assigned as originating from Si(3)N(4) or Si(1+) sub-oxide, N-Si-O and SiO(2). It was concluded that SiO(2) does grow on top of N-Si-O and that Si(3)N(4)/Si(1+) is located at the interface. Two N 1s components are observed after NO exposures. The main one, located at around 398.05 eV, is assigned as originating from Si(3)N(4) and the weaker one is suggested to correspond to N-Si-O bonding. The assignments are made with the aid of Si 2p and N 1s spectra collected after NH(3) and O(2) exposures under similar conditions. No graphite-like carbon or carbon by-product at the interface can be detected after large NO or O(2) exposures.

12 1 - 50 av 76
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf