liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 423
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Gerasimov, Jennifer
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hitaishi, Vivek
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Karami Rad, Meysam
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Donahue, Mary
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Biologically Interfaced Evolvable Organic Pattern Classifier2023Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 10, nr 14, artikel-id 2207023Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifiers output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Wu, Zhixing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Ding, Penghui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric Daniel
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Conducting Polymer‐Based e‐Refinery for Sustainable Hydrogen Peroxide Production2023Ingår i: ENERGY & ENVIRONMENTAL MATERIALS, E-ISSN 2575-0356, artikel-id e12551Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources. De-centralized production of hydrogen peroxide (H2O2) from water and oxygen of air is highly desirable for daily life and industry. We report an effective electrochemical refinery (e-refinery) for H2O2 by means of electrocatalysis-controlled comproportionation reaction (2(H)O + O -> 2(HO)), feeding pure water and oxygen only. Mesoporous nickel (II) oxide (NiO) was used as electrocatalyst for oxygen evolution reaction (OER), producing oxygen at the anode. Conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) drove the oxygen reduction reaction (ORR), forming H2O2 on the cathode. The reactions were evaluated in both half-cell and device configurations. The performance of the H2O2 e-refinery, assembled on anion-exchange solid electrolyte and fed with pure water, was limited by the unbalanced ionic transport. Optimization of the operation conditions allowed a conversion efficiency of 80%.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Yang, Hongli
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Cross-Linked Nanocellulose Membranes for Nanofluidic Osmotic Energy Harvesting2023Ingår i: ACS Applied Energy Materials, E-ISSN 2574-0962Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Osmotic energy generated from the salinity gradient is a kind of clean and renewable energy source, where the ion-exchange membranes play a critical role in its operation. The nanofluidic technique is emerging to overcome the limitations of high resistance and low mass transport of traditional ion-exchange membranes and thus improve osmotic power conversion. However, the currently reported nanofluidic materials suffer from high cost and complicated fabrication processes, which limits their practical application. Here, we report low-cost nanocellulose membranes that can be facilely prepared by a chemical cross-linking approach. The obtained membranes exhibit excellent ion transport characteristics as high-performance nanofluidic osmotic power generators. The control of cross-linker dosage enables the simultaneous tunability of the surface charge density and size of nanofluidic channels created between the interwoven cellulose nanofibrils. The maximum osmotic power generated by the membrane is reached when the cross-linker weight content is 20 wt %. Furthermore, the cross-linked nanocellulose membranes exhibit long-term working stability in osmotic energy harvesting under a wide range of pH values (3.2-9.7). This nanocellulose membrane derived from green and sustainable natural materials demonstrates a promising potential for renewable osmotic energy harvesting.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Ghorbani Shiraz, Hamid
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pere, Daniel
    IMRA Europe SAS, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Coppel, Yannick
    Univ Toulouse, France.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chmielowski, Radoslaw
    IMRA Europe SAS, France.
    Kahn, Myrtil L.
    Univ Toulouse, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Effect of Oxygen Poisoning on the Bidirectional Hydrogen Electrocatalysis in TaS2 Nanosheets2023Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 127, nr 12, s. 5825-5832Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sustainable production of hydrogen gas, a green energy carrier of high density, is possible only by electrolysis of water based on the hydrogen evolution reaction (HER). Here, we report the effect of oxygen poisoning on the efficiency of hydrogen production and the consumption by the HER and the hydrogen oxidation reaction (HOR), respectively, on the interface of platinum group metal-free electrocatalyst TaS2 in pristine form and intercalated by the organic Lewis base hexylamine. The state of the surface probed by photoelectron spectroscopy was significantly altered by both Lewis base doping and oxygen poisoning. This alteration dramatically affects the hydrogen production efficiency in the HER, while the back process by the HOR was less sensitive to the changes in the surface states of the electrocatalysts. The oxygenated and intercalated electrocatalyst shows more than 2 x 105 times lower exchange current density of the HER compared to pristine oxygenated materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Tran, Van Chinh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mastantuoni, Gabriella G.
    Division of Glycoscience, Department of Chemistry and Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden.
    Zabihipour, Marzieh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Lengwan
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden.
    Berglund, Lars
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhou, Qi
    Division of Glycoscience, Department of Chemistry and Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrical current modulation in wood electrochemical transistor2023Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 120, nr 118, artikel-id e2218380120Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm−1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.

  • 6.
    Roy, Arghyamalya
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bersellini Farinotti, Alex
    Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
    Arbring Sjöström, Theresia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Cherian, Dennis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Karaday, Michal
    Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences; Faculty of Science of Palacký University, Olomouc, Czech Republic.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, David
    Department of Printed Electronics, Research Institute of Sweden, Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Svensson, Camilla I.
    Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrophoretic Delivery of Clinically Approved Anesthetic Drug for Chronic Pain Therapy2023Ingår i: Advanced Therapeutics, E-ISSN 2366-3987Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite a range of available pain therapies, most patients report so-called “breakthrough pain.” Coupled with global issues like opioid abuse, there is a clear need for advanced therapies and technologies for safe and effective pain management. Here the authors demonstrate a candidate for such an advanced therapy: precise and fluid-flow-free electrophoretic delivery via organic electronic ion pumps (OEIPs) of the commonly used anesthetic drug bupivacaine. Bupivacaine is delivered to dorsal root ganglion (DRG) neurons in vitro. DRG neurons are a good proxy for pain studies as they are responsible for relaying ascending sensory signals from nociceptors (pain receptors) in the peripheral nervous system to the central nervous system. Capillary based OEIPs are used due to their probe-like and free-standing form factor, ideal for interfacing with cells. By delivering bupivacaine with the OEIP and recording dose versus response (Ca2+ imaging), it is observed that only cells close to the OEIP outlet (≤75 µm) are affected (“anaesthetized”) and at concentrations up to 10s of thousands of times lower than with bulk/bolus delivery. These results demonstrate the first effective OEIP deliveryof a clinically approved and widely used analgesic pharmaceutical, and thus are a major translational milestone for this technology.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Priyadarshini, Diana
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Musumeci, Chiara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lindholm, Caroline
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Strakosas, Xenofon
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olsson, Roger
    Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden;Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gerasimov, Jennifer Y.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Enzymatically Polymerized Organic Conductors on Model Lipid Membranes2023Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 39, nr 23, s. 8196-8204Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Seamless integration between biological systems and electrical components is essential for enabling a twinned biochemical–electrical recording and therapy approach to understand and combat neurological disorders. Employing bioelectronic systems made up of conjugated polymers, which have an innate ability to transport both electronic and ionic charges, provides the possibility of such integration. In particular, translating enzymatically polymerized conductive wires, recently demonstrated in plants and simple organism systems, into mammalian models, is of particular interest for the development of next-generation devices that can monitor and modulate neural signals. As a first step toward achieving this goal, enzyme-mediated polymerization of two thiophene-based monomers is demonstrated on a synthetic lipid bilayer supported on a Au surface. Microgravimetric studies of conducting films polymerized in situ provide insights into their interactions with a lipid bilayer model that mimics the cell membrane. Moreover, the resulting electrical and viscoelastic properties of these self-organizing conducting polymers suggest their potential as materials to form the basis for novel approaches to in vivo neural therapeutics.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Cherian, Dennis
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Roy, Arghyamalya
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Farinotti, Alex Bersellini
    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Arbring Sjöström, Theresia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, David
    Unit of Printed Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Svensson, Camilla I.
    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Flexible Organic Electronic Ion Pump Fabricated Using Inkjet Printing and Microfabrication for Precision In Vitro Delivery of Bupivacaine2023Ingår i: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The organic electronic ion pump (OEIP) is an on-demand electrophoretic drug delivery device, that via electronic to ionic signal conversion enables drug delivery without additional pressure or volume changes. The fundamental component of OEIPs is their polyelectrolyte membranes which are shaped into ionic channels that conduct and deliver ionic drugs, with high spatiotemporal resolution. The patterning of these membranes is essential in OEIP devices and is typically achieved using laborious micro processing techniques. Here, we report the development of an inkjet printable formulation of polyelectrolyte, based on a custom anionically functionalized hyperbranched polyglycerol (i-AHPG). This polyelectrolyte ink greatly simplifies the fabrication process, and is used in the production of free standing, OEIPs on flexible polyimide substrates. Both i-AHPG and the OEIP devices are characterized, exhibiting favorable iontronic characteristics of charge selectivity and ability to transport aromatic compounds. Further, the applicability of these technologies is demonstrated by transport and delivery of the pharmaceutical compound bupivacaine to dorsal root ganglion cells with high spatial precision and effective nerve-blocking, highlighting the applicability of these technologies for biomedical scenarios.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Bernacka Wojcik, Iwona
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Talide, Loic
    Swedish Univ Agr Sci, Sweden.
    Abdel Aziz, Ilaria
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simura, Jan
    Swedish Univ Agr Sci, Sweden.
    Oikonomou, Vasileios
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rossi, Stefano
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mohammadi, Mohsen
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Manan Dar, Abdul Manan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Seitanidou, Maria S
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ljung, Karin
    Swedish Univ Agr Sci, Sweden.
    Niittyla, Totte
    Swedish Univ Agr Sci, Sweden.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Swedish Univ Agr Sci, Sweden.
    Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants2023Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 10, nr 14, artikel-id 2206409Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Massetti, Matteo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Silan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Burtscher, Bernhard
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Diacci, Chiara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fully 3D-printed organic electrochemical transistors2023Ingår i: NPJ FLEXIBLE ELECTRONICS, ISSN 2397-4621, Vol. 7, nr 1, artikel-id 11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) are being researched for various applications, ranging from sensors to logic gates and neuromorphic hardware. To meet the requirements of these diverse applications, the device fabrication process must be compatible with flexible and scalable digital techniques. Here, we report a direct-write additive process to fabricate fully 3D-printed OECTs, using 3D printable conducting, semiconducting, insulating, and electrolyte inks. These 3D-printed OECTs, which operate in the depletion mode, can be fabricated on flexible substrates, resulting in high mechanical and environmental stability. The 3D-printed OECTs have good dopamine biosensing capabilities (limit of detection down to 6 mu M without metal gate electrodes) and show long-term (similar to 1 h) synapse response, indicating their potential for various applications such as sensors and neuromorphic hardware. This manufacturing strategy is suitable for applications that require rapid design changes and digitally enabled direct-write techniques.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Petsagkourakis, Ioannis
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Riera-Galindo, S.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Strakosas, Xenofon
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, E.
    Fdn Res & Technol, Greece.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kim, Nara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lienemann, Samuel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hadziioannou, G.
    Univ Bordeaux, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Improved Performance of Organic Thermoelectric Generators Through Interfacial Energetics2023Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 10, nr 20, artikel-id 2206954Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interfacial energetics are known to play a crucial role in organic diodes, transistors, and sensors. Designing the metal-organic interface has been a tool to optimize the performance of organic (opto)electronic devices, but this is not reported for organic thermoelectrics. In this work, it is demonstrated that the electrical power of organic thermoelectric generators (OTEGs) is also strongly dependent on the metal-organic interfacial energetics. Without changing the thermoelectric figure of merit (ZT) of polythiophene-based conducting polymers, the generated power of an OTEG can vary by three orders of magnitude simply by tuning the work function of the metal contact to reach above 1000 mu W cm(-2). The effective Seebeck coefficient (S-eff) of a metal/polymer/metal single leg OTEG includes an interfacial contribution (V-inter/Delta T) in addition to the intrinsic bulk Seebeck coefficient of the polythiophenes, such that S-eff = S + V-inter/Delta T varies from 22.7 mu V K-1 [9.4 mu V K-1] with Al to 50.5 mu V K-1 [26.3 mu V K-1] with Pt for poly(3,4-ethylenedioxythiophene):p-toluenesulfonate [poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)]. Spectroscopic techniques are used to reveal a redox interfacial reaction affecting locally the doping level of the polymer at the vicinity of the metal-organic interface and conclude that the energetics at the metal-polymer interface provides a new strategy to enhance the performance of OTEGs.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Padinhare, Harikesh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Hanyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Silan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Donahue, Mary
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Caravaca, April S.
    Karolinska Inst, Sweden.
    Huang, Jun-Da
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olofsson, Peder S.
    Karolinska Inst, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons2023Ingår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 22, s. 242-248Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Ail, Ujwala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Backe, Jakob
    Ligna Energy AB, Kallvindsgatan 5, S-60240 Norrkoping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lignin Functionalized with Catechol for Large-Scale Organic Electrodes in Bio-Based Batteries2023Ingår i: ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, ISSN 2699-9412Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin, obtained as a waste product in huge quantities from the large-scale cellulose processing industries, holds a great potential to be used as sustainable electrode material for large-scale electroactive energy storage systems. The fixed number of redox-active phenolic groups present within the lignin structure limits the electrochemical performance and the total energy storage capacity of the lignin-based electrodes. Herein, the way to enhance the charge storage capacity of lignin by incorporating additional small catechol molecules into the lignin structure is demonstrated. The catechol derivatives are covalently attached to the lignin via aromatic electrophilic substitution reaction. The increased phenolic groups in all functionalized lignin derivatives notably increase the values of capacitance compared to pristine lignin. Further, solvent fractionation of lignin followed by functionalization using catechol boosts three times the charge capacity of lignin electrode. Herein, a scalable, cost-effective method to enhance the electrochemical performance of lignin electrodes via incorporation of small redox active moieties into the lignin structure is demonstrated. Solvent fractionation of lignin followed by functionalization using catechol increases the charge storage capacity of the lignin-carbon composite electrode by a factor of 3 reaching record high charge capacity above 100 mAh g-1.

  • 14.
    Strakosas, Xenofon
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Lund Univ, Sweden.
    Biesmans, Hanne
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hellman, Karin
    Lund Univ, Sweden.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten.
    Donahue, Mary
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ekstrom, Peter
    Lund Univ, Sweden.
    Ek, Fredrik
    Lund Univ, Sweden.
    Savvakis, Marios
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hjort, Martin
    Lund Univ, Sweden.
    Bliman, David
    Univ Gothenburg, Sweden; IRLAB Therapeut AB, Sweden.
    Linares, Mathieu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lindholm, Caroline
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gerasimov, Jennifer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olsson, Roger
    Lund Univ, Sweden; Univ Gothenburg, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics2023Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 379, nr 6634, s. 795-802Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Brooke, Robert
    et al.
    RISE Res Inst Sweden, Sweden.
    Lay, Makara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. INM Leibniz Inst New Mat, Germany.
    Jain, Karishma
    KTH Royal Inst Technol, Sweden.
    Francon, Hugo
    KTH Royal Inst Technol, Sweden.
    Say, Mehmet Girayhan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Belaineh, Dagmawi
    RISE Res Inst Sweden, Sweden.
    Wang, Xin
    RISE Res Inst Sweden, Sweden.
    Hakansson, Karl M. O.
    RISE Res Inst Sweden, Sweden.
    Wagberg, Lars
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    RISE Res Inst Sweden, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nanocellulose and PEDOT:PSS composites and their applications2023Ingår i: POLYMER REVIEWS, ISSN 1558-3724, Vol. 63, nr 2, s. 437-477Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics.

  • 16.
    Ail, Ujwala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, Jakob
    Ligna Energy AB, Sweden.
    Jansson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wu, Zhixing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Optimization of Non-Pyrolyzed Lignin Electrodes for Sustainable Batteries2023Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin, a byproduct from the pulp industry, is one of the redox active biopolymers being investigated as a component in the electrodes for sustainable energy storage applications. Due to its insulating nature, it needs to be combined with a conductor such as carbon or conducting polymer for efficient charge storage. Here, the lignin/carbon composite electrodes manufactured via mechanical milling (ball milling) are reported. The composite formation, correlation between performance and morphology is studied by comparison with manual mixing and jet milling. Superior charge storage capacity with approximate to 70% of the total contribution from the Faradaic process involving the redox functionality of lignin is observed in a mechanically milled composite. In comparison, manual mix shows only approximate to 30% from the lignin storage participation while the rest is due to the electric double layer at the carbon-electrolyte interface. The significant participation of lignin in the ball milled composite is attributed to the homogeneous, intimate mixing of the carbon and the lignin leading the electronic carrier transported in the carbon phase to reach most of the redox group of lignin. A maximum capacity of 49 mAh g(-1) is obtained at charge/discharge rate of 0.25 A g(-1) for the sample milled for 60 min.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Armada Moreira, Adam
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Int Sch Adv Studies, Italy.
    Manan Dar, Abdul Manan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Zifang
    Columbia Univ, NY 10027 USA.
    Cea, Claudia
    Columbia Univ, NY 10027 USA.
    Gelinas, Jennifer
    Columbia Univ, NY 10032 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Costa, Alex
    Univ Milan, Italy; Natl Res Council Italy CNR, Italy.
    Khodagholy, Dion
    Columbia Univ, NY 10027 USA.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Swedish Univ Agr Sci, Sweden.
    Plant electrophysiology with conformable organic electronics: Deciphering the propagation of Venus flytrap action potentials2023Ingår i: Science Advances, E-ISSN 2375-2548, Vol. 9, nr 30, artikel-id eadh4443Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrical signals in plants are mediators of long-distance signaling and correlate with plant movements and responses to stress. These signals are studied with single surface electrodes that cannot resolve signal propagation and integration, thus impeding their decoding and link to function. Here, we developed a conformable multielectrode array based on organic electronics for large-scale and high-resolution plant electrophysiology. We performed precise spatiotemporal mapping of the action potential (AP) in Venus flytrap and found that the AP actively propagates through the tissue with constant speed and without strong directionality. We also found that spontaneously generated APs can originate from unstimulated hairs and that they correlate with trap movement. Last, we demonstrate that the Venus flytrap circuitry can be activated by cells other than the sensory hairs. Our work reveals key properties of the AP and establishes the capacity of organic bioelectronics for resolving electrical signaling in plants contributing to the mechanistic understanding of long-distance responses in plants.

  • 18.
    Vural, Mert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mohammadi, Mohsen
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Seufert, Laura
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fridberger, Anders
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Soft Electromagnetic Vibrotactile Actuators with Integrated Vibration Amplitude Sensing2023Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 15, nr 25, s. 30653-30662Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soft vibrotactile devices have the potential to expandthe functionalityof emerging electronic skin technologies. However, those devices oftenlack the necessary overall performance, sensing-actuation feedbackand control, and mechanical compliance for seamless integration onthe skin. Here, we present soft haptic electromagnetic actuators thatconsist of intrinsically stretchable conductors, pressure-sensitiveconductive foams, and soft magnetic composites. To minimize jouleheating, high-performance stretchable composite conductors are developedbased on in situ-grown silver nanoparticles formed within the silverflake framework. The conductors are laser-patterned to form soft anddensely packed coils to further minimize heating. Soft pressure-sensitiveconducting polymer-cellulose foams are developed and integrated totune the resonance frequency and to provide internal resonator amplitudesensing in the resonators. The above components together with a softmagnet are assembled into soft vibrotactile devices providing high-performanceactuation combined with amplitude sensing. We believe that soft hapticdevices will be an essential component in future developments of multifunctionalelectronic skin for future human-computer and human-roboticinterfaces.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Sultana, Ayesha
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Alam, Md Mehebub
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, Eleni
    Fdn Res & Technol Hellas, Greece.
    Solano, Eduardo
    ALBA Synchrotron Light Source, Spain.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Toward High-Performance Green Piezoelectric Generators Based on Electrochemically Poled Nanocellulose2023Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 35, nr 4, s. 1568-1578Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Internet-of-Everything (IoE) is defined as networked connections of things, people, data, and processes. IoE nodes, preferably shaped as printed flexible systems, serve as the frontier outpost of the Internet and comprise devices to record and regulate states and functions. To power distributed IoE nodes in an ecofriendly manner, a technology to scavenge energy from ambience and self-powered devices is developed. For this, piezoelectricity is regarded as a key property; however, the current technology typically based on polyvinylidene difluoride (PVDF) copolymers is expensive and produced via toxic protocols. We report piezoelectric characteristics of electrochemically poled cellulose nanofiber (CNF) thin films processed from water dispersions. Poling these films under humid conditions causes breaking and reorientation of CNF segments, which results in enhanced crystal alignment rendering the resulting material piezoelectric. Generators based on poled CNF show similar piezoelectric voltage and coefficient, here measured as d(33) = 46 pm V-1, to devices including PVDF copolymer layers of similar thickness. Our findings promise low-cost and printable ecofriendly piezoelectric-powered IoE nodes.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Alvi, Naveed Ul Hassan
    et al.
    RISE Res Inst Sweden, Norrkoping, Sweden.
    Sepat, Neha
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sardar, Samim
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Ist Italiano Tecnol IIT, Italy.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Toward Photoactive Wallpapers Based on ZnO-Cellulose Nanocomposites2023Ingår i: Global Challenges, E-ISSN 2056-6646, artikel-id 2300034Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The quest for eco-friendly materials with anticipated positive impact for sustainability is crucial to achieve the UN sustainable development goals. Classical strategies of composite materials can be applied on novel nanomaterials and green materials. Besides the actual technology and applications also processing and manufacturing methods should be further advanced to make entire technology concepts sustainable. Here, they show an efficient way to combine two low-cost materials, cellulose and zinc oxide (ZnO), to achieve novel functional and "green" materials via paper-making processes. While cellulose is the most abundant and cost-effective organic material extractable from nature. ZnO is cheap and known of its photocatalytic, antibacterial, and UV absorption properties. ZnO nanowires are grown directly onto cellulose fibers in water solutions and then dewatered in a process mimicking existing steps of large-scale papermaking technology. The ZnO NW paper exhibits excellent photo-conducting properties under simulated sunlight with good ON/OFF switching and long-term stability (90 minutes). It also acts as an efficient photocatalyst for hydrogen peroxide (H2O2) generation (5.7 x 10(-9) m s(-1)) with an envision the possibility of using it in buildings to enable large surfaces to spontaneously produce H2O2 at its outer surface. Such technology promise for fast degradation of microorganisms to suppress the spreading of diseases.

  • 21.
    Say, Mehmet Girayhan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Donahue, Mary
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ultrathin polymer electrochemical microcapacitors for on-chip and flexible electronics2023Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 115, artikel-id 106751Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Advances in organic electronics necessitates, ultrathin and miniaturized implantable energy storage modules. Here, an approach for the fabrication of on-chip, ultraflexible electrochemical capacitors is demonstrated. Two different electroactive conjugated polymers are utilized in a fabrication route that allows the patterning of finger electrodes for an ultraflexible energy storage technology. A strategy is demonstrated to realize supercapacitors with a total device thickness of 4 mu m, including substrate, polymer electrode, and electrolyte. Interdigitated 20 -finger electrodes from either Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) or poly-thiophene functionalized with tetraethylene glycol side chains P(g42T-T), with 50 mu m or 90 mu m electrode spacings, are fabricated using a parylene peel off method, followed by electrolyte deposition. The miniaturized devices show 0.77 mF/cm2 areal capacitance for PEDOT:PSS and 0.06 mF/cm2 for P(g42T-T). Furthermore, the devices exhibit excellent mechanical durability, showing robust operational performance at a bending radius of 6.5 mm.

  • 22.
    Mohammadi, Mohsen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Versatile Ultrasoft Electromagnetic Actuators with Integrated Strain-Sensing Cellulose Nanofibril Foams2023Ingår i: ADVANCED INTELLIGENT SYSTEMS, ISSN 2640-4567, Vol. 5, nr 7, artikel-id 2200449Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As robots more frequently fraternize with humans in everyday life, aspects such as safety, flexibility of tasks, and appearance become increasingly important. Soft robotics is attractive for new human-close applications, but soft actuators constitute a major challenge both in terms of actuation force and speed, and in terms of control and accuracy of the deformable soft actuator body. Herein, several of these challenges are addressed by developing versatile ultrasoft electromagnetic actuators that operate in absence of external magnetic fields, while simultaneously monitoring their states by internal strain sensors. The versatile actuators can compress to less than 50% of their initial length with strain-independent contraction force and operate in both contraction and expansion modes up to 200 Hz frequency while conforming to curved surfaces. The soft multilayer conductive cellulose-based foams are lightweight (3 mg cm(-3)) and provide internal strain-sensing capability and structural support, thereby improving the monitoring and controllability of the actuators while maintaining an axial softness of 0.6 kPa. It is believed that the concept of soft versatile electromagnetic actuators with integrated lightweight strain-sensing foams is promising for a wide range of applications within soft robotics.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Kumar, Divyaratan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Zhixing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zinc salt in "Water-in-Polymer Salt Electrolyte" for Zinc-Lignin Batteries: Electroactivity of the Lignin Cathode2023Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Zn-ion batteries are one of the hot candidates for low-cost and sustainable secondary batteries. The hydrogen evolution and dendritic growth upon zinc deposition are todays challenges for that technology. One of the new strategies to cope with these issues is to use "water-in-salt" electrolyte (WISE), that is, super concentrated aqueous electrolytes, to broaden its electrochemical stability window (ESW), suppressing hydrogen evolution reaction (HER), and perturbing the dendritic growth. Herein, this work proposes to use "water-in-polymer salt" electrolyte (WIPSE) concept to mitigate the challenges with Zn ion batteries and bring this technology toward one of the cheapest, greenest, and most sustainable electrodes: Lignin-carbon (L-C) electrode. Potassium polyacrylate (PAAK) as WISE bears out as better electrolyte for L-C electrodes in terms of self-discharge, cyclic stability, and specific capacity compared to conventional electrolyte based on chemically cousin molecule potassium acetate. Zinc bis(trifluoromethanesulfonyl) imide (Zn(TFSI)(2)) added into WIPSE shows deposition and dissolution of Zn in Zn//Zn symmetric cell suggesting that Zn2+ are moving into the polyanionic network. Furthermore, the added bis (trifluor omethanesul fonyl) imide (TFSI-) metal salts trigger a approximate to 40% enhancement of the capacity of L-C electrode. These results show a new promising direction toward the development of cost-effective and sustainable Zn-lignin batteries.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Ghorbani Shiraz, Hamid
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pere, Daniel
    IMRA Europe SAS, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Coppel, Yannick
    Univ Toulouse, France.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chmielowski, Radoslaw
    IMRA Europe SAS, France.
    Kahn, Myrtil L.
    Univ Toulouse, France.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    3R-TaS2 as an Intercalation-Dependent Electrified Interface for Hydrogen Reduction and Oxidation Reactions2022Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 126, nr 40, s. 17056-17065Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hydrogen technology, as a future breakthrough for the energy industry, has been defined as an environmentally friendly, renewable, and high-power energy carrier. The green production of hydrogen, which mainly relies on electrocatalysts, is limited by the high cost and/ or the performance of the catalytic system. Recently, studies have been conducted in search of bifunctional electrocatalysts accelerating both the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR). Herein, we report the investigation of the high efficiency bifunctional electrocatalyst TaS2 for both the HER and the HOR along with the asymmetric effect of inhibition by organic intercalation. The linear organic agent, to boost the electron donor property and to ease the process of intercalation, provides a higher interlayer gap in the tandem structure of utilized nanosheets. XRD and XPS data reveal an increase in the interlayer distance of 22%. The HER and the HOR were characterized in a Pt group metal-free electrochemical system. The pristine sample shows a low overpotential of -0.016 Vat the onset. The intercalated sample demonstrates a large shift in its performance for the HER. It is revealed that the intercalation is a potential key strategy for tuning the performance of this family of catalysts. The inhibition of the HER by intercalation is considered as the increase in the operational window of a water-based electrolyte on a negative electrode, which is relevant to technologies of electrochemical energy storage.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Gladisch, Johannes
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Oikonomou, Vasileios
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Moser, Maximilian
    Univ Oxford, England.
    Griggs, Sophie
    Univ Oxford, England.
    McCulloch, Iain
    Univ Oxford, England; King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    An Electroactive Filter with Tunable Porosity Based on Glycolated Polythiophene2022Ingår i: Small Science, ISSN 2688-4046, Vol. 2, nr 4, artikel-id 2100113Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The porosity of filters is typically fixed; thus, complex purification processes require application of multiple specialized filters. In contrast, smart filters with controllable and tunable properties enable dynamic separation in a single setup. Herein, an electroactive filter with controllable pore size is demonstrated. The electroactive filter is based on a metal mesh coated with a polythiophene polymer with ethylene glycol sidechains (p(g3T2)) that exhibit unprecedented voltage-driven volume changes. By optimizing the polymer coating on the mesh, controllable porosity during electrochemical addressing is achieved. The pores reversibly open and close, with a dynamic range of more than 95%, corresponding to over 30 mu m change of pores widths. Furthermore, the pores widths could be defined by applied potential with a 10 mu m resolution. From among hundreds of pores from different samples, about 90% of the pores could be closed completely, while only less than 1% are inactive. Finally, the electroactive filter is used to control the flow of a dye, highlighting the potential for flow control and smart filtration applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Armada Moreira, Adam
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Diacci, Chiara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Manan Dar, Abdul Manan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Swedish Univ Agr Sci, Sweden.
    Benchmarking organic electrochemical transistors for plant electrophysiology2022Ingår i: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 13, artikel-id 916120Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plants are able to sense and respond to a myriad of external stimuli, using different signal transduction pathways, including electrical signaling. The ability to monitor plant responses is essential not only for fundamental plant science, but also to gain knowledge on how to interface plants with technology. Still, the field of plant electrophysiology remains rather unexplored when compared to its animal counterpart. Indeed, most studies continue to rely on invasive techniques or on bulky inorganic electrodes that oftentimes are not ideal for stable integration with plant tissues. On the other hand, few studies have proposed novel approaches to monitor plant signals, based on non-invasive conformable electrodes or even organic transistors. Organic electrochemical transistors (OECTs) are particularly promising for electrophysiology as they are inherently amplification devices, they operate at low voltages, can be miniaturized, and be fabricated in flexible and conformable substrates. Thus, in this study, we characterize OECTs as viable tools to measure plant electrical signals, comparing them to the performance of the current standard, Ag/AgCl electrodes. For that, we focused on two widely studied plant signals: the Venus flytrap (VFT) action potentials elicited by mechanical stimulation of its sensitive trigger hairs, and the wound response of Arabidopsis thaliana. We found that OECTs are able to record these signals without distortion and with the same resolution as Ag/AgCl electrodes and that they offer a major advantage in terms of signal noise, which allow them to be used in field conditions. This work establishes these organic bioelectronic devices as non-invasive tools to monitor plant signaling that can provide insight into plant processes in their natural environment.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Strakosas, Xenofon
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Donahue, Mary
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hama, Adel
    King Abdullah Univ Sci & Technol, Saudi Arabia.
    Braendlein, Marcel
    Panaxium, France.
    Huerta, Miriam
    Cornell Univ, NY 14853 USA.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Malliaras, George G.
    Univ Cambridge, England.
    Owens, Roisin M.
    Univ Cambridge, England.
    Biostack: Nontoxic Metabolite Detection from Live Tissue2022Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 9, nr 2, artikel-id 2101711Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is increasing demand for direct in situ metabolite monitoring from cell cultures and in vivo using implantable devices. Electrochemical biosensors are commonly preferred due to their low-cost, high sensitivity, and low complexity. Metabolite detection, however, in cultured cells or sensitive tissue is rarely shown. Commonly, glucose sensing occurs indirectly by measuring the concentration of hydrogen peroxide, which is a by-product of the conversion of glucose by glucose oxidase. However, continuous production of hydrogen peroxide in cell media with high glucose is toxic to adjacent cells or tissue. This challenge is overcome through a novel, stacked enzyme configuration. A primary enzyme is used to provide analyte sensitivity, along with a secondary enzyme which converts H2O2 back to O-2. The secondary enzyme is functionalized as the outermost layer of the device. Thus, production of H2O2 remains local to the sensor and its concentration in the extracellular environment does not increase. This "biostack" is integrated with organic electrochemical transistors to demonstrate sensors that monitor glucose concentration in cell cultures in situ. The "biostack" renders the sensors nontoxic for cells and provides highly sensitive and stable detection of metabolites.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Silverå Ejneby, Malin
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jakesova, Marie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Brno Univ Technol, Czech Republic.
    Ferrero, Jose J.
    Columbia Univ, NY 10027 USA.
    Migliaccio, Ludovico
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Brno Univ Technol, Czech Republic.
    Sahalianov, Ihor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Zifang
    Columbia Univ, NY 10027 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khodagholy, Dion
    Columbia Univ, NY 10027 USA.
    Derek, Vedran
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Univ Zagreb, Croatia.
    Gelinas, Jennifer N.
    Columbia Univ, NY 10027 USA; Columbia Univ, NY 10027 USA.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Brno Univ Technol, Czech Republic.
    Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor2022Ingår i: Nature Biomedical Engineering, E-ISSN 2157-846X, Vol. 6, nr 6, s. 741-753Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Implantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.1-mm(3) thin-film cuff. In freely moving rats, fixation of the cuff around the sciatic nerve, 10 mm below the surface of the skin, allowed stimulation (via 50-1,000-mu s pulses of deep-red light at wavelengths of 638 nm or 660 nm) of the nerve for over 100 days. The robustness, biocompatibility, low volume and high-performance characteristics of organic electrolytic photocapacitors may facilitate the wireless chronic stimulation of peripheral nerves. An organic electrolytic photocapacitor transducing deep-red light into electrical signals and implanted within a thin cuff around the sciatic nerve of rats allows for wireless electrical stimulation of the nerve for over 100 days.

  • 29.
    Parker, Daniela
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Daguerre, Yohann
    Swedish Univ Agr Sci, Sweden.
    Dufil, Gwennael
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mantione, Daniele
    Univ Bordeaux, France.
    Solano, Eduardo
    ALBA Synchrotron Light Source, Spain.
    Cloutet, Eric
    Univ Bordeaux, France.
    Hadziioannou, Georges
    Univ Bordeaux, France.
    Näsholm, Torgny
    Swedish Univ Agr Sci, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, Eleni
    Fdn Res & Technol Hellas, Greece.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Swedish Univ Agr Sci, Sweden.
    Correction: Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers (vol 8, pg 3295, 2021)2022Ingår i: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 9, s. 2317-1317Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Keene, Scott T.
    et al.
    Univ Cambridge, England.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Malliaras, George G.
    Univ Cambridge, England.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Exploiting mixed conducting polymers in organic and bioelectronic devices2022Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, nr 32, s. 19144-19163Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Seitanidou, Maria S
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sygletou, Maria
    Fdn Res & Technol Hellas Forth, Greece.
    Savva, Kyriaki
    Fdn Res & Technol Hellas Forth, Greece.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stratakis, Emmanuel
    Fdn Res & Technol Hellas Forth, Greece; Univ Crete, Greece.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Graphene-Enabled Electrophoretic Ion Pump Delivery Devices2022Ingår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 9, nr 12, artikel-id 2102507Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) have been investigated as a promising solution for precise local delivery of biological signaling compounds. OEIP miniaturization provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted devices. One miniaturization route is to develop OEIPs based on polyelectrolyte-filled capillary fibers. These devices can be easily brought into proximity of targeted cells and tissues and could be considered as a starting point for other "iontronic" implants. To date, OEIPs and other such iontronics exhibit a limited electrode capacity as they generally rely on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) electrodes. While this material is well studied and viable in mixed ion-electron systems, its bulk capacitance is limited by eventual redox reactions. Graphene is an excellent alternative for high-performance electrodes and low-cost solution-processed graphene derivatives are particularly promising, exhibiting high charge mobility and ideal structural properties (lightness, flexibility). Here, the application of solution-processed reduced graphene oxide (RGO) as high-performance driving electrodes for OEIPS is presented. RGO electrodes are characterized and compared with standard PEDOT:PSS (and Ag/AgCl) electrodes. The RGO exhibits greater charge storage capacity and thus increased operational lifetime. The graphene-enabled OEIPs exhibit improved neurotransmitter transport, without imposing limitations to the applied current level.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Zabihipour, Marzieh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Informationskodning.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Strandberg, Jan
    Rise Res Inst Sweden, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ersman, Peter Andersson
    Rise Res Inst Sweden, Sweden.
    High-Gain Logic Inverters based on Multiple Screen-Printed Organic Electrochemical Transistors2022Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 7, nr 10, artikel-id 2101642Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronic circuits based on organic electrochemical transistors (OECTs) are attracting great attention due to their printability, flexibility, and low voltage operation. Inverters are the building blocks of digital logic circuits (e.g., NAND gates) and analog circuits (e.g., amplifiers). However, utilizing OECTs in electronic logic circuits is challenging due to the resulting low voltage gain and low output voltage levels. Hence, inverters capable of operating at relatively low supply voltages, yet offering high voltage gain and larger output voltage windows than the respective input voltage window are desired. Herein, inverters realized from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-based OECTs are designed and explored, resulting in logic inverters exhibiting high voltage gains, enlarged output voltage windows, and tunable switching points. The inverter designs are based on multiple screen-printed OECTs and a resistor ladder, where one OECT is the driving transistor while one or two additional OECTs are used as variable resistors in the resistor ladder. The inverters performances are investigated in terms of voltage gain, output voltage levels, and switching point. Inverters, operating at +/-2.5 V supply voltage and an input voltage window of 1 V, that can achieve an output voltage window with similar to 110% increment and a voltage gain up to 42 are demonstrated.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Berggren, Magnus
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Brno Univ Technol, Czech Republic.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    In Vivo Organic Bioelectronics for Neuromodulation2022Ingår i: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 122, nr 4, s. 4826-4846Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and similar to 1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator" , focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.

    Ladda ner fulltext (pdf)
    fulltext
  • 34.
    Wu, Hanyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Qifan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Strakosas, Xenofon
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stoeckel, Marc-Antoine
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Ziang
    Korea Univ, South Korea.
    Jin, Wenlong
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Savvakis, Marios
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Woo, Han Young
    Korea Univ, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Tekn Ringen 7, SE-58330 Linkoping, Sweden.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Tekn Ringen 7, SE-58330 Linkoping, Sweden.
    Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers2022Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, nr 4, artikel-id 2106235Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (g(m,norm) approximate to 11 S cm(-1)) and electron mobility x volumetric capacitance (mu C* approximate to 26 F cm(-1) V-1 s(-1)), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Yang, Chiyuan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gerasimov, Jennifer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Hanyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stoeckel, Marc-Antoine
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    Low-Power/High-Gain Flexible Complementary Circuits Based on Printed Organic Electrochemical Transistors2022Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 8, nr 3, artikel-id 2100907Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ability to accurately extract low-amplitude voltage signals is crucial in several fields, ranging from single-use diagnostics and medical technology to robotics and the Internet of Things (IoT). The organic electrochemical transistor (OECT), which features large transconductance values at low operating voltages, is ideal for monitoring small signals. Here, low-power and high-gain flexible circuits based on printed complementary OECTs are reported. This work leverages the low threshold voltage of both p-type and n-type enhancement-mode OECTs to develop complementary voltage amplifiers that can sense voltages as low as 100 mu V, with gains of 30.4 dB and at a power consumption of 0.1-2.7 mu W (single-stage amplifier). At the optimal operating conditions, the voltage gain normalized to power consumption reaches 169 dB mu W-1, which is >50 times larger than state-of-the-art OECT-based amplifiers. In a monolithically integrated two-stage configuration, these complementary voltage amplifiers reach voltage gains of 193 V/V, which are among the highest for emerging complementary metal-oxide-semiconductor-like technologies operating at supply voltages below 1 V. These flexible complementary circuits based on printed OECTs define a new power-efficient platform for sensing and amplifying low-amplitude voltage signals in several emerging beyond-silicon applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Ahmed, Fareed
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ding, Penghui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Warczak, Magdalena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Grimoldi, Andrea
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Håkansson, Karl M. O.
    RISE Bioeconomy, Stockholm, Sweden.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Manufacturing Poly(3,4-Ethylenedioxythiophene) Electrocatalytic Sheets for Large-Scale H2O2 Production2022Ingår i: Advanced Sustainable Systems, E-ISSN 2366-7486, Vol. 6, nr 1, artikel-id 2100316Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Producing thick films of conducting polymers by a low-cost manufacturing technique would enable new applications. However, removing huge solvent volume from diluted suspension or dispersion (1-3 wt%) in which conducting polymers are typically obtained is a true manufacturing challenge. In this work, a procedure is proposed to quickly remove water from the conducting polymer poly(3,4-ethylenedioxythiophene:poly(4-styrene sulfonate) (PEDOT:PSS) suspension. The PEDOT:PSS suspension is first flocculated with 1 m H2SO4 transforming PEDOT nanoparticles (approximate to 50-500 nm) into soft microparticles. A filtration process inspired by pulp dewatering in a paper machine on a wire mesh with apertures dimension between 60 mu m and 0.5 mm leads to thick free-standing films (approximate to 0.5 mm). Wire mesh clogging that hinders dewatering (known as dead-end filtration) is overcome by adding to the flocculated PEDOT: PSS dispersion carbon fibers that aggregate and form efficient water channels. Moreover, this enables fast formation of thick layers under simple atmospheric pressure filtration, thus making the process truly scalable. Thick freestanding PEDOT films thus obtained are used as electrocatalysts for efficient reduction of oxygen to hydrogen peroxide, a promising green chemical and fuel. The inhomogeneity of the films does not affect their electrochemical function.

    Ladda ner fulltext (pdf)
    fulltext
  • 37.
    Mousa, Abdelrazek H.
    et al.
    Univ Gothenburg, Sweden; Lund Univ, Sweden.
    Bliman, David
    Univ Gothenburg, Sweden; Lund Univ, Sweden.
    Betancourt, Lazaro Hiram
    Lund Univ, Sweden; Lund Univ, Sweden.
    Hellman, Karin
    Lund Univ, Sweden.
    Ekström, Peter
    Lund Univ, Sweden.
    Savvakis, Marios
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Strakosas, Xenofon
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Marko-Varga, György
    Lund Univ, Sweden; Lund Univ, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hjort, Martin
    Lund Univ, Sweden.
    Ek, Fredrik
    Lund Univ, Sweden.
    Olsson, Roger
    Univ Gothenburg, Sweden; Lund Univ, Sweden.
    Method Matters: Exploring Alkoxysulfonate-Functionalized Poly(3,4-ethylenedioxythiophene) and Its Unintentional Self-Aggregating Copolymer toward Injectable Bioelectronics2022Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 34, nr 6, s. 2752-2763Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Injectable bioelectronics could become an alternative or a complement to traditional drug treatments. To this end, a new self-doped p- type conducting PEDOT-S copolymer (A5) was synthesized. This copolymer formed highly water-dispersed nanoparticles and aggregated into a mixed ion-electron conducting hydrogel when injected into a tissue model. First, we synthetically repeated most of the published methods for PEDOT-S at the lab scale. Surprisingly, analysis using high-resolution matrix-assisted laser desorption ionization-mass spectroscopy showed that almost all the methods generated PEDOT-S derivatives with the same polymer lengths (i.e., oligomers, seven to eight monomers in average); thus, the polymer length cannot account for the differences in the conductivities reported earlier. The main difference, however, was that some methods generated an unintentional copolymer P(EDOT-S/EDOT-OH) that is more prone to aggregate and display higher conductivities in general than the PEDOT-S homopolymer. Based on this, we synthesized the PEDOT-S derivative A5, that displayed the highest film conductivity (33 S cm(-1)) among all PEDOT-S derivatives synthesized. Injecting A5 nanoparticles into the agarose gel cast with a physiological buffer generated a stable and highly conductive hydrogel (1-5 S cm(-1)), where no conductive structures were seen in agarose with the other PEDOT-S derivatives. Furthermore, the ion-treated A5 hydrogel remained stable and maintained initial conductivities for 7 months (the longest period tested) in pure water, and A5 mixed with Fe3O4 nanoparticles generated a magnetoconductive relay device in water. Thus, we have successfully synthesized a water-processable, syringe-injectable, and self-doped PEDOT-S polymer capable of forming a conductive hydrogel in tissue mimics, thereby paving a way for future applications within in vivo electronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Xu, Kai
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Yanshan Univ, Peoples R China.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Tampere Univ, Finland.
    Shokrani, Morteza
    Heidelberg Univ, Germany.
    Scheunemann, Dorothea
    Heidelberg Univ, Germany.
    Abdalla, Hassan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Donghua Univ, Peoples R China.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Mendoza Figueroa, Silvestre
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Oshaug Pedersen, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biofysik och bioteknik. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Fazzi, Daniele
    Univ Bologna, Italy; Univ Cologne, Germany.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Heidelberg Univ, Germany.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    On the Origin of Seebeck Coefficient Inversion in Highly Doped Conducting Polymers2022Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, nr 20, artikel-id 2112276Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A common way of determining the majority charge carriers of pristine and doped semiconducting polymers is to measure the sign of the Seebeck coefficient. However, a polarity change of the Seebeck coefficient has recently been observed to occur in highly doped polymers. Here, it is shown that the Seebeck coefficient inversion is the result of the density of states filling and opening of a hard Coulomb gap around the Fermi energy at high doping levels. Electrochemical n-doping is used to induce high carrier density (>1 charge/monomer) in the model system poly(benzimidazobenzophenanthroline) (BBL). By combining conductivity and Seebeck coefficient measurements with in situ electron paramagnetic resonance, UV-vis-NIR, Raman spectroelectrochemistry, density functional theory calculations, and kinetic Monte Carlo simulations, the formation of multiply charged species and the opening of a hard Coulomb gap in the density of states, which is responsible for the Seebeck coefficient inversion and drop in electrical conductivity, are uncovered. The findings provide a simple picture that clarifies the roles of energetic disorder and Coulomb interactions in highly doped polymers and have implications for the molecular design of next-generation conjugated polymers.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Padinhare, Harikesh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gerasimov, Jennifer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Manan Dar, Abdul Manan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Armada Moreira, Adam
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Univ Gothenburg, Sweden.
    Olsson, Roger
    Univ Gothenburg, Sweden; Lund Univ, Sweden.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Tekn Ringen 7, SE-58330 Linkoping, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, Tekn Ringen 7, SE-58330 Linkoping, Sweden.
    Organic electrochemical neurons and synapses with ion mediated spiking2022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 901Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Future brain-machine interfaces, prosthetics, and intelligent soft robotics will require integrating artificial neuromorphic devices with biological systems. Due to their poor biocompatibility, circuit complexity, low energy efficiency, and operating principles fundamentally different from the ion signal modulation of biology, traditional Silicon-based neuromorphic implementations have limited bio-integration potential. Here, we report the first organic electrochemical neurons (OECNs) with ion-modulated spiking, based on all-printed complementary organic electrochemical transistors. We demonstrate facile bio-integration of OECNs with Venus Flytrap (Dionaea muscipula) to induce lobe closure upon input stimuli. The OECNs can also be integrated with all-printed organic electrochemical synapses (OECSs), exhibiting short-term plasticity with paired-pulse facilitation and long-term plasticity with retention >1000 s, facilitating Hebbian learning. These soft and flexible OECNs operate below 0.6 V and respond to multiple stimuli, defining a new vista for localized artificial neuronal systems possible to integrate with bio-signaling systems of plants, invertebrates, and vertebrates. The integration of artificial neuromorphic devices with biological systems plays a fundamental role for future brain-machine interfaces, prosthetics, and intelligent soft robotics. Harikesh et al. demonstrate all-printed organic electrochemical neurons on Venus flytrap that is controlled to open and close.

    Ladda ner fulltext (pdf)
    fulltext
  • 40.
    Zabihipour, Marzieh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Janson, Per
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ersman, Peter Andersson
    RISE Res Inst Sweden Digital Syst Smart Hardware, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Organic electrochemical transistors manufactured by laser ablation and screen printing2022Ingår i: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 7, nr 3, artikel-id 035018Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The dimensions of the material serving as the channel in organic electrochemical transistors (OECTs) are important for the overall switching performance. Here, a laser ablation step is included in the OECT manufacturing process, in an attempt to shorten the channel length of the OECT. The source and drain electrodes are formed by laser ablation of a previously screen printed carbon-based rectangle, which in this study resulted in an average channel length equal to 25 mu m. All other processing steps rely on screen printing, allowing for large-area manufacturing of OECTs and OECT-based circuits on flexible substrates. This approach results in a manufacturing yield of 89%; 178 out of a total of 200 OECTs exhibited an ON/OFF ratio exceeding 1000 with a statistical mean value of 28 000 and reproducible switching performance. OECT-based circuits, here demonstrated by a logic inverter, provide a reasonably high voltage gain of 12. The results thus demonstrate another reliable OECT manufacturing process, based on the combination of laser ablation and screen printing.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Belaineh, Dagmawi
    et al.
    RISE Res Inst Sweden, Sweden; RISE Res Inst Sweden, Sweden.
    Brooke, Robert
    RISE Res Inst Sweden, Sweden; RISE Res Inst Sweden, Sweden.
    Sani, Negar
    RISE Res Inst Sweden, Sweden; RISE Res Inst Sweden, Sweden.
    Say, Mehmet Girayhan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Håkansson, Karl M. O.
    RISE Res Inst Sweden, Sweden; RISE Res Inst Sweden, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    RISE Res Inst Sweden, Sweden; RISE Res Inst Sweden, Sweden.
    Printable carbon-based supercapacitors reinforced with cellulose and conductive polymers2022Ingår i: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 50, artikel-id 104224Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sustainable electrical energy storage is one of the most important scientific endeavors of this century. Battery and supercapacitor technologies are here crucial, but typically the current state of the art suffers from either lack of large-scale production possibilities, sustainability or insufficient performance and hence cannot match growing demands in society. Paper and cellulosic materials are mature scalable templates for industrial roll-to-roll production. Organic materials, such as conducting polymers, and carbon derivatives are materials that can be synthesized or derived from abundant sources. Here, we report the combination of cellulose, PEDOT:PSS and carbon derivatives for bulk supercapacitor electrodes adapted for printed electronics. Cellulose provides a mesoscopic mesh for the organization of the active ingredients. Furthermore, the PEDOT:PSS in combination with carbon provides superior device characteristics when comparing to the previously standard combination of activated carbon and carbon black. PEDOT:PSS acts as a mixed ion-electron conducting glue, which physically binds activated carbon particles together, while at the same time facilitating swift transport of both electrons and ions. A surprisingly small amount (10%) of PEDOT:PSS is needed to achieve an optimal performance. This work shows that cellulose added to PEDOT:PSS-carbon enables high-performing, mechanically stable, printed super capacitor electrodes using a combination of printing methods.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Isacsson, Patrik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Ahlstrom Munksjo Res Ctr, France.
    Jain, Karishma
    KTH Royal Inst Technol, Sweden.
    Fall, Andreas
    RISE Res Inst Sweden, Sweden.
    Chauve, Valerie
    Ahlstrom Munksjo Res Ctr, France.
    Hajian, Alireza
    KTH Royal Inst Technol, Sweden.
    Granberg, Hjalmar
    RISE Res Inst Sweden, Sweden.
    Boiron, Lucie
    Ahlstrom Munksjo Res Ctr, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Håkansson, Karl
    RISE Res Inst Sweden, Sweden.
    Edberg, Jesper
    RISE Res Inst Sweden, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wågberg, Lars
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Production of energy-storage paper electrodes using a pilot-scale paper machine2022Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, nr 40, s. 21579-21589Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The global efforts in electrifying our society drive the demand for low-cost and sustainable energy storage solutions. In the present work, a novel material concept was investigated to enable fabrication of several 10 meter-long rolls of supercapacitor paper electrodes on a pilot-scale paper machine. The material concept was based on cationized, cellulose-rich wood-derived fibres, conducting polymer PEDOT:PSS, and activated carbon filler particles. Cationic fibres saturated with anionic PEDOT:PSS provide a conducting scaffold hosting the activated carbon, which functions as the active charge-storage material. The response from further additives was systematically investigated for several critical paper properties. Cellulose nanofibrils were found to improve mechanical properties, while carbon black enhanced both the conductivity and the storage capacity of the activated carbon, reaching a specific capacitance of 67 F g(-1). This pilot trial shows that "classical" papermaking methods are fit for the purpose and provides valuable insights on how to further advance bio-based energy storage solutions for large-scale applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Gerasimov, Jennifer Yevgenia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Halder, Arnab
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mousa, Abdelrazek H.
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden..
    Ghosh, Sarbani
    Birla Inst Technol & Sci BITS, Dept Chem Engn, Pilani 333031, Rajasthan, India..
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden..
    Strandberg, Jan
    Res Inst Sweden, RISE, Printed Elect, SE-60221 Norrkoping, Sweden..
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olsson, Roger
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden.;Lund Univ, Chem Biol & Therapeut, Dept Expt Med Sci, SE-22184 Lund, Sweden..
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rational Materials Design for In Operando Electropolymerization of Evolvable Organic Electrochemical Transistors2022Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, nr 32, artikel-id 2202292Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors formed by in operando electropolymerization of the semiconducting channel are increasingly becoming recognized as a simple and effective implementation of synapses in neuromorphic hardware. However, very few studies have reported the requirements that must be met to ensure that the polymer spreads along the substrate to form a functional conducting channel. The nature of the interface between the substrate and various monomer precursors of conducting polymers through molecular dynamics simulations is investigated, showing that monomer adsorption to the substrate produces an increase in the effective monomer concentration at the surface. By evaluating combinatorial couples of monomers baring various sidechains with differently functionalized substrates, it is shown that the interactions between the substrate and the monomer precursor control the lateral growth of a polymer film along an inert substrate. This effect has implications for fabricating synaptic systems on inexpensive, flexible substrates.

    Ladda ner fulltext (pdf)
    fulltext
  • 44.
    Say, Mehmet Girayhan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Brett, Calvin J.
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden; Deutsch Elektronen Synchrotron DESY, Germany.
    Edberg, Jesper
    RISE Res Inst Sweden, Sweden.
    Roth, Stephan V
    Deutsch Elektronen Synchrotron DESY, Germany; KTH Royal Inst Technol, Sweden.
    Soderberg, L. Daniel
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Scalable Paper Supercapacitors for Printed Wearable Electronics2022Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 14, nr 50, s. 55850-55863Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm(2), which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Omega, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm(2)) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Tommasini, Giuseppina
    et al.
    Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, Pozzuoli, Italy.
    Dufil, Gwennael
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fardella, Federica
    Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, Pozzuoli, Italy.
    Strakosas, Xenofon
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fergola, Eugenio
    Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, Pozzuoli, Italy.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
    Olsson, Roger
    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tino, Angela
    Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, Pozzuoli, Italy.
    Stavrinidou, Eleni
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Tortiglione, Claudia
    Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, Pozzuoli, Italy.
    Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers2022Ingår i: Bioactive Materials, ISSN 2452-199X, Vol. 10, s. 107-116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Kumar, Divyaratan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Self-Discharge in Batteries Based on Lignin and Water-in-Polymer Salt Electrolyte2022Ingår i: Advanced Energy and Sustainability Research, ISSN 2699-9412, Vol. 3, nr 10, artikel-id 2200073Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin, the most abundant biopolymer on earth, has been explored as an electroactive material in battery applications. One essential feature for such lignin-based batteries to reach successful usage and implementation, e.g., large-scale stationary grid applications, is to have slow self-discharge characteristics on top of the essential safety and life-cycle properties. Water-in-polymer salt electrolytes (WIPSEs) have been demonstrated as an attractive route to solve this issue; however, little has been done to understand the fundamentals of actual self-discharge mechanisms. Herein, the impact of some critical chemical and physical parameters (pH, dissolved oxygen, viscosity, and cutoff potential) on self-discharge of batteries based on WIPSE and lignin has been investigated. The pH range is crucial as there is an interplay between long-term stability and high energy density. Indeed, lignin derivatives typically store relatively more charge in acidic media but later promote corrosion affecting device stability. A robust and high-performing organic battery, incorporating potassium polyacrylate as WIPSE, is demonstrated, which expresses good self-discharge behavior for a broad range of pH and with little impact on the atmosphere used for manufacturing. It is believed that the investigation will provide critical insights to the research community to promote the advancement of printed large-scale energy storage devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 47.
    Lander, Sanna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. BillerudKorsnas Gruvon, Sweden.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Erlandsson, Johan
    KTH Royal Inst Technol, Sweden.
    Boissard, Yselaure
    BillerudKorsnas Frovi, Sweden.
    Korhonen, Leena
    BillerudKorsnas Frovi, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Wagberg, Lars
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Sulfonated Cellulose Membranes Improve the Stability of Aqueous Organic Redox Flow Batteries2022Ingår i: Advanced Energy and Sustainability Research, ISSN 2699-9412, Vol. 3, nr 9, artikel-id 2200016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The drawbacks of current state-of-the-art selective membranes, such as poor barrier properties, high cost, and poor recyclability, limit the large-scale deployment of electrochemical energy devices such as redox flow batteries (RFBs) and fuel cells. In recent years, cellulosic nanomaterials have been proposed as a low-cost and green raw material for such membranes, but their performance in RFBs and fuel cells is typically poorer than that of the sulfonated fluoropolymer ionomer membranes such as Nafion. Herein, sulfonated cellulose nanofibrils densely cross-linked to form a compact sulfonated cellulose membrane with limited swelling and good stability in water are used. The membranes possess low porosity and excellent ionic transport properties. A model aqueous organic redox flow battery (AORFB) with alizarin red S as negolyte and tiron as posolyte is assembled with the sulfonated cellulose membrane. The performance of the nanocellulose-based battery is superior in terms of cyclability in comparison to that displayed by the battery assembled with commercially available Nafion 115 due to the mitigation of crossover of the redox-active components. This finding paves the way to new green organic materials for fully sustainable AORFB solutions.

    Ladda ner fulltext (pdf)
    fulltext
  • 48.
    Lander, Sanna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. BillerudKorsnas Gruvon, Sweden.
    Erlandsson, Johan
    KTH Royal Inst Technol, Sweden.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Korhonen, Leena
    BillerudKorsnas Frovi, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Wågberg, Lars
    KTH Royal Inst Technol, Sweden; KTH Royal Inst Technol, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Sulfonated Cellulose Membranes: Physicochemical Properties and Ionic Transport versus Degree of Sulfonation2022Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 6, nr 11, artikel-id 2200275Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The next generation of green ion selective membranes is foreseen to be based on cellulosic nanomaterials with controllable properties. The introduction of ionic groups into the cellulose structure via chemical modification is one strategy to obtain desired functionalities. In this work, bleached softwood fibers are oxidatively sulfonated and thereafter homogenized to liberate the cellulose nanofibrils (CNFs) from the fiber walls. The liberated CNFs are subsequently used to prepare and characterize novel cellulose membranes. It is found that the degree of sulfonation collectively affects several important properties of the membranes via the density of fixed charged groups on the surfaces of the CNFs, in particular the membrane morphology, water uptake and swelling, and correspondingly the ionic transport. Both ionic conductivity and cation transport increase with the increased level of sulfonation of the starting material. Thus, it is shown that the chemical modification of the CNFs can be used as a tool for precise and rational design of green ion selective membranes that can replace expensive conventional fluorinated ionomer membranes.

    Ladda ner fulltext (pdf)
    fulltext
  • 49.
    Zhang, Silan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.