The improvement of water management and increasing the access to safe drinking water can develop the quality of life for millions of people world-wide and reduce child mortality due to water-borne diseases [1]. Sweden was recently affected by the lack of appropriate water management which resulted in microbial contamination and tens of thousands of people falling ill [2]. Pollution with chemical compounds is also a waterworks concern. The appearance of pharmaceuticals such as antibiotics in raw water affects the cleaning processes at waterworks [3]. Substances which are not, or are only partly, eliminated in the sewage treatment plant will reach the surface water where they may affect organisms of different trophic levels and cause, for example, the of antibiotics resistance [4]. The inhibition of bacteria of waste water plants by antibiotics may seriously affect organic matter degradation. The efficiency of nitrification as an important step in waste water purification, can be decreased by antibiotics inhibition [5]. Boron-doped diamond (BDD) is an advanced electrode material that possesses the combination of good electrical conductivity achieved via film doping and the extreme chemical inertness of diamond, which gives rise to a number of highly desirable properties of BDD as electrode material: a wide potential window in aqueous media allows electrochemical measurements at both extreme anodic and cathodic potentials, very low capacitive currents leads to a sensitivity increase and extreme chemical and structural inertness prevents electrode fouling [6]. Usage of a microelectrode array as the working electrode offers a variety of benefits for electroanalysis: an improvement of the analytical performance in comparison with macroelectrodes under planar diffusion, higher signal-to-noise ratios due to low capacitive currents at the small surface area, shorter response times and less sensitivity to variations in the water flow rate. The BDD arrays of this work contain 2900 microelectrodes (10 mm diameter each) and have been used for the detection of antibiotics (ofloxacine and canamycin A) in water with high amplitude pulse voltammetry processed by multivariate data analysis. The detection limits observed in monitoring mode were comparable with the characteristics of standard protocols of antibiotics detection, which opens the possibility for continuous monitoring of water.
[1] The United Nations, World Water Development Report 4, 2012; [2] Lindberg, A. et al.,
FOI-R--3376--SE, 2011; Dryselius, R.; National Food Agency, Sweden, 2012; [3] Kummerer
K. Chemosphere, 2009, 75, 417; [4] Kummerer K. Chemosphere, 2009, 75, 435; [5]
Dokianakis, S.N. et al., Water Sci. Technol. 50, 341; [6] Goeting, C. et al.,
NewDiam.Front.C.Tech. 1999, 9, 207; Compton, R. et al., Electroanal. 2003, 15, 1349.