liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
123456 1 - 50 av 254
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wang, Qingqing
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Jinpeng
    Yangzhou Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Anisotropic valence band dispersion of 2D molecular crystals of C6-DPA and its charge transport dependence2023Ingår i: Materials Advances, E-ISSN 2633-5409, Vol. 4, nr 9, s. 2201-2206Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The unique properties and potential optoelectronic applications of two-dimensional molecular crystals (2DMCs) of organic semiconductors make them fascinating research subjects. With advancements in crystal engineering, it is becoming reality to produce 2DMCs with molecular-level thickness and large areas up to the centimeter scale, enabling us to directly explore the electronic structure of 2DMCs and to correlate them with their electrical properties. Here, we investigated the electronic structure of 2DMCs of C6-DPA using photoemission spectroscopy and electrical properties based on organic field-effect transistors. Our findings indicate that anisotropic band dispersion is present in the ab plane of the 2DMCs of C6-DPA which is in good agreement with the in-plane anisotropic mobility, i.e., the direction of the strongest molecular overlap coincides with the direction of the highest mobility.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Ghorbani Shiraz, Hamid
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pere, Daniel
    IMRA Europe SAS, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Coppel, Yannick
    Univ Toulouse, France.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chmielowski, Radoslaw
    IMRA Europe SAS, France.
    Kahn, Myrtil L.
    Univ Toulouse, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Effect of Oxygen Poisoning on the Bidirectional Hydrogen Electrocatalysis in TaS2 Nanosheets2023Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 127, nr 12, s. 5825-5832Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sustainable production of hydrogen gas, a green energy carrier of high density, is possible only by electrolysis of water based on the hydrogen evolution reaction (HER). Here, we report the effect of oxygen poisoning on the efficiency of hydrogen production and the consumption by the HER and the hydrogen oxidation reaction (HOR), respectively, on the interface of platinum group metal-free electrocatalyst TaS2 in pristine form and intercalated by the organic Lewis base hexylamine. The state of the surface probed by photoelectron spectroscopy was significantly altered by both Lewis base doping and oxygen poisoning. This alteration dramatically affects the hydrogen production efficiency in the HER, while the back process by the HOR was less sensitive to the changes in the surface states of the electrocatalysts. The oxygenated and intercalated electrocatalyst shows more than 2 x 105 times lower exchange current density of the HER compared to pristine oxygenated materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Graf, Lukas
    et al.
    IFW Dresden, Germany.
    Knupfer, Martin
    IFW Dresden, Germany.
    Wang, Qingqing
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Exciton dispersion in two-dimensional organic perylene crystal indicates substantial charge-transfer exciton coupling2023Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 107, nr 11, artikel-id 115201Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-dimensional, high-quality perylene single crystals were grown with a space-confined strategy method. The grown films crystallize in the alpha form, as is confirmed by a combination of techniques. Polarization -dependent optical absorption measurements show a strong anisotropy in very good agreement with the literature data, and the anisotropic mobility data in field-effect transistors document the very high crystalline order. Momentum-dependent studies using electron energy-loss spectroscopy reveal a negative dispersion of the first exciton along the crystal b direction with an exciton bandwidth of 72 meV. We argue that this behavior is a result of charge-transfer exciton coupling between the perylene dimers in the unit cell.

  • 4.
    Massetti, Matteo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Silan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Burtscher, Bernhard
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Diacci, Chiara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fully 3D-printed organic electrochemical transistors2023Ingår i: NPJ FLEXIBLE ELECTRONICS, ISSN 2397-4621, Vol. 7, nr 1, artikel-id 11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) are being researched for various applications, ranging from sensors to logic gates and neuromorphic hardware. To meet the requirements of these diverse applications, the device fabrication process must be compatible with flexible and scalable digital techniques. Here, we report a direct-write additive process to fabricate fully 3D-printed OECTs, using 3D printable conducting, semiconducting, insulating, and electrolyte inks. These 3D-printed OECTs, which operate in the depletion mode, can be fabricated on flexible substrates, resulting in high mechanical and environmental stability. The 3D-printed OECTs have good dopamine biosensing capabilities (limit of detection down to 6 mu M without metal gate electrodes) and show long-term (similar to 1 h) synapse response, indicating their potential for various applications such as sensors and neuromorphic hardware. This manufacturing strategy is suitable for applications that require rapid design changes and digitally enabled direct-write techniques.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Petsagkourakis, Ioannis
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Riera-Galindo, S.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Strakosas, Xenofon
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, E.
    Fdn Res & Technol, Greece.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kim, Nara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lienemann, Samuel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hadziioannou, G.
    Univ Bordeaux, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Improved Performance of Organic Thermoelectric Generators Through Interfacial Energetics2023Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 10, nr 20, artikel-id 2206954Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interfacial energetics are known to play a crucial role in organic diodes, transistors, and sensors. Designing the metal-organic interface has been a tool to optimize the performance of organic (opto)electronic devices, but this is not reported for organic thermoelectrics. In this work, it is demonstrated that the electrical power of organic thermoelectric generators (OTEGs) is also strongly dependent on the metal-organic interfacial energetics. Without changing the thermoelectric figure of merit (ZT) of polythiophene-based conducting polymers, the generated power of an OTEG can vary by three orders of magnitude simply by tuning the work function of the metal contact to reach above 1000 mu W cm(-2). The effective Seebeck coefficient (S-eff) of a metal/polymer/metal single leg OTEG includes an interfacial contribution (V-inter/Delta T) in addition to the intrinsic bulk Seebeck coefficient of the polythiophenes, such that S-eff = S + V-inter/Delta T varies from 22.7 mu V K-1 [9.4 mu V K-1] with Al to 50.5 mu V K-1 [26.3 mu V K-1] with Pt for poly(3,4-ethylenedioxythiophene):p-toluenesulfonate [poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)]. Spectroscopic techniques are used to reveal a redox interfacial reaction affecting locally the doping level of the polymer at the vicinity of the metal-organic interface and conclude that the energetics at the metal-polymer interface provides a new strategy to enhance the performance of OTEGs.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Zhang, Qilun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Yongzhen
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    In situ near-ambient pressure X-ray photoelectron spectroscopy reveals the effects of water, oxygen and light on the stability of PM6:Y6 photoactive layers2023Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 11, nr 8, s. 3112-3118Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The power conversion efficiency of organic solar cells (OSCs) has taken a further leap in the past three years owing to the emergence of Y6; however, their inferior stability hinders commercialization. Understanding the ambient degradation mechanism of photovoltaic materials is a key component to address this challenge. In this study, we first used in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to investigate the effects of water, oxygen and absorbed photons on the stability of PM6 and Y6. The studied materials PM6 and Y6 show instability to oxygen and water, respectively, possibly due to the weak interaction between PM6 backbone sulphur and oxygen, and Y6 end cyano groups show instability to water. In addition, the stability of Y6 in blended PM6:Y6 films is enhanced, which is confirmed by the performance of OSCs with blended or quasi-bilayer PM6:Y6 photoactive layers. Our findings reveal PM6 and Y6 degradation on ambient exposure and predict a possible way to prevent the degradation of Y6 in OSCs.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Wang, Chuanfei
    et al.
    Ocean Univ China, Peoples R China.
    Li, Weidong
    Ocean Univ China, Peoples R China.
    Zeng, Qi
    Shanghai Univ Engn Sci, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    East China Normal Univ, Peoples R China; Fudan Univ, Peoples R China.
    Organic Semiconductor Interfaces and Their Effects in Organic Solar Cells2023Ingår i: Chinese journal of chemistry, ISSN 1001-604X, E-ISSN 1614-7065Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Energy levels and energy level alignment at interfaces play a decisive role in designing efficient and stable organic solar cells (OSCs). In this review two usually used technologies in organic photovoltaic communities for measuring energy levels of organic semiconductors, photoelectron spectroscopy and electrochemical methods, are introduced, and the relationships between the values obtained from the corresponding techniques are compared. The energy level and energy level alignment across the interfaces involved in solution processed organic photovoltaics are described, and the corresponding integer charge transfer model for predicting and explaining energy level alignment is presented. The effects of the interface properties in designing efficient binary and ternary OSCs were discussed. The effects of environmental factors mainly including water vapor, oxygen gas and thermal annealing on energy levels and energy level alignment involved in photoactive layers, and the subsequent effects on the corresponding OSC properties are given.

  • 8.
    Beket, Gulzada
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Epishine AB, Linkoping, Sweden.
    Zubayer, Anton
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Qilun
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stahn, Jochen
    Paul Scherer Inst PSI, Switzerland.
    Eriksson, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Osterberg, Thomas
    Epishine AB, Linkoping, Sweden.
    Bergqvist, Jonas
    Epishine AB, Linkoping, Sweden.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Overcoming the voltage losses caused by the acceptor-based interlayer in laminated indoor OPVs2023Ingår i: SMARTMAT, ISSN 2766-8525Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid- and solid-state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene-based acceptor interlayer on the performance of conjugated polymer-fullerene-based laminated OPVs for indoor applications. We observe open-circuit voltage (V-OC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the V-OC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the V-OC increase upon the incorporation of these insulating organic components. The self-organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS-incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution-processed cathodic fullerene layer and bulk heterojunction AL.

  • 9.
    Li, Xiane
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Qilun
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pinning energies of organic semiconductors in high-efficiency organic solar cells2023Ingår i: JOURNAL OF SEMICONDUCTORS, ISSN 1674-4926, Vol. 44, nr 3, artikel-id 032201Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    With the emergence of new materials for high-efficiency organic solar cells (OSCs), understanding and finetuning the interface energetics become increasingly important. Precise determination of the so-called pinning energies, one of the critical characteristics of the material to predict the energy level alignment (ELA) at either electrode/organic or organic/organic interfaces, are urgently needed for the new materials. Here, pinning energies of a wide variety of newly developed donors and non-fullerene acceptors (NFAs) are measured through ultraviolet photoelectron spectroscopy. The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3-4.6 eV, which follows the design rules developed for fullerene-based OSCs. The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied. For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer, the pinning energies often underestimate the experimentally obtained interface vacuum level shift, which has consequences for OSC device performance.

  • 10.
    Ji, Fuxiang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Klarbring, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Bin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Linqin
    School of Science Westlake University Hangzhou, P.R. China.
    Miao, Xiaohe
    Westlake University Hangzhou, P.R. China.
    Ning, Weihua
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Soochow University Suzhou, P. R. China.
    Zhang, Muyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Cai, Xinyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Bakhit, Babak
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Magnuson, Martin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ren, Xiaoming
    State Key Laboratory of Materials‐Oriented Chemical Engineering and College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing, P.R. China.
    Sun, Licheng
    Center of Artificial Photosynthesis for Solar Fuels, School of Science Westlake University Hangzhou,P.R. China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina A
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material.
    Chen, Weimin
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material.
    Simak, Sergei I
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Uppsala University Uppsala SE‐75120 Sweden.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl62023Ingår i: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, artikel-id 2301102Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron–phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK−1 based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III–V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Xiong, Shaobing
    et al.
    Fudan Univ, Peoples R China; East China Normal Univ, Peoples R China.
    Jiang, Sheng
    East China Normal Univ, Peoples R China.
    Zhang, Yefan
    Soochow Univ, Peoples R China.
    Lv, Zhiwei
    East China Normal Univ, Peoples R China.
    Bai, Ruirong
    East China Normal Univ, Peoples R China.
    Yan, Yuting
    East China Normal Univ, Peoples R China.
    Zeng, Qi
    Shanghai Univ Engn Sci, Peoples R China.
    Xu, Xionghu
    East China Normal Univ, Peoples R China.
    Ding, Liming
    Ctr Excellence Nanosci CAS, Peoples R China.
    Wu, Yuning
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Fudan Univ, Peoples R China; East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Revealing buried heterointerface energetics towards highly efficient perovskite solar cells2023Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 109, artikel-id 108281Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The heterointerfaces of charge-selective contacts are crucial in determining efficiency and stability of perovskite optoelectronic devices, where the fundamental knowledge of the buried heterointerface between perovskite and bottom charge transport layer is less well understood compared to the top interface. Herein, we systematically investigate the energetics at the perovskite/SnO2 buried heterointerface for an n-i-p perovskite solar cell (PSC) and the perovskite/PEDOT:PSS buried heterointerface for a p-i-n one, respectively. In contrast to previous cognitions, we discover a perovskite transition phase at the buried interface region that originates from the chemical bonding interaction with the bottom charge transport layer. The transition phase causes an energy level barrier and induces defects, impeding charge transport across the heterointerface. These detrimental effects trigger significant nonradiative recombination and limit the attainable device photovoltage. We then develop the energetic models that describe such buried heterointerfaces. Moreover, we further test the proposed model -derived mechanisms via inserting a thin polyvinyl alcohol layer into the buried heterointerfaces of the de-vices. We demonstrate that chemical interactions and formation of the perovskite transition phase at the buried heterointerface thereby are fully restrained, leading to a diminished electron extraction barrier and improved charge transport. As a result, significant increases in open-circuit voltage and fill factor of the devices are ach-ieved. These results will help guide future efforts on developing suitable buried heterointerfaces for superior performance of perovskite optoelectronics.

  • 12.
    Wu, Hanyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Huang, Jun-Da
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Jeong, Sang Young
    Korea Univ, South Korea.
    Liu, Tiefeng
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Ziang
    Korea Univ, South Korea.
    van der Pol, Tom
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Qingqing
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stoeckel, Marc-Antoine
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Li, Qifan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Woo, Han Young
    Korea Univ, South Korea.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Stable organic electrochemical neurons based on p-type and n-type ladder polymers2023Ingår i: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in & mu;C* (mobility x volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

  • 13.
    Ghorbani Shiraz, Hamid
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pere, Daniel
    IMRA Europe SAS, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Coppel, Yannick
    Univ Toulouse, France.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chmielowski, Radoslaw
    IMRA Europe SAS, France.
    Kahn, Myrtil L.
    Univ Toulouse, France.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    3R-TaS2 as an Intercalation-Dependent Electrified Interface for Hydrogen Reduction and Oxidation Reactions2022Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 126, nr 40, s. 17056-17065Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hydrogen technology, as a future breakthrough for the energy industry, has been defined as an environmentally friendly, renewable, and high-power energy carrier. The green production of hydrogen, which mainly relies on electrocatalysts, is limited by the high cost and/ or the performance of the catalytic system. Recently, studies have been conducted in search of bifunctional electrocatalysts accelerating both the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR). Herein, we report the investigation of the high efficiency bifunctional electrocatalyst TaS2 for both the HER and the HOR along with the asymmetric effect of inhibition by organic intercalation. The linear organic agent, to boost the electron donor property and to ease the process of intercalation, provides a higher interlayer gap in the tandem structure of utilized nanosheets. XRD and XPS data reveal an increase in the interlayer distance of 22%. The HER and the HOR were characterized in a Pt group metal-free electrochemical system. The pristine sample shows a low overpotential of -0.016 Vat the onset. The intercalated sample demonstrates a large shift in its performance for the HER. It is revealed that the intercalation is a potential key strategy for tuning the performance of this family of catalysts. The inhibition of the HER by intercalation is considered as the increase in the operational window of a water-based electrolyte on a negative electrode, which is relevant to technologies of electrochemical energy storage.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Wang, Qingqing
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Jinpeng
    Yangzhou Univ, Peoples R China.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    An organic memory phototransistor based on oxygen-assisted persistent photoconductivity2022Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 100, artikel-id 106375Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Persistent photoconductivity (PPC) behavior in organic phototransistors has fascinating potentials in applications of photoelectronic devices. A key issue is how the presence of air affects the PPC behavior. Here, combining with the theoretical and experimental results, the PPC behavior is associated with photogenerated electrons trapped in oxygen atom-induced the reduced Lowest Unoccupied Molecular Orbitals or oxygen molecule-induced new trap state within energy bandgap of organic semiconductor. Inspired by the potential applications arising from the PPC behavior, organic memory phototransistors (OMPTs) are achieved by light programming and electrical erasing. The OMPTs show bistable current states as well as long retention times. Our results suggested that oxygen in air plays a key role in PPC behavior and provides a guidance for controlling the PPC behavior toward integrated multifunctional optoelectronic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Jiang, Sheng
    et al.
    East China Normal Univ, Peoples R China.
    Xiong, Shaobing
    East China Normal Univ, Peoples R China.
    Dong, Wei
    East China Normal Univ, Peoples R China.
    Li, Danqin
    East China Normal Univ, Peoples R China.
    Yan, Yuting
    East China Normal Univ, Peoples R China.
    Jia, Menghui
    East China Normal Univ, Peoples R China.
    Dai, Yannan
    East China Normal Univ, Peoples R China.
    Zhao, Qingbiao
    East China Normal Univ, Peoples R China.
    Jiang, Kai
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ding, Liming
    Natl Ctr Nanosci & Technol, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Zhenrong
    East China Normal Univ, Peoples R China.
    Bao, Qinye
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Constructing Chromium Multioxide Hole-Selective Heterojunction for High-Performance Perovskite Solar Cells2022Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 9, nr 30, artikel-id 2203681Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite solar cells (PSCs) suffer from significant nonradiative recombination at perovskite/charge transport layer heterojunction, seriously limiting their power conversion efficiencies. Herein, solution-processed chromium multioxide (CrOx) is judiciously selected to construct a MAPbI(3)/CrOx/Spiro-OMeTAD hole-selective heterojunction. It is demonstrated that the inserted CrOx not only effectively reduces defect sites via redox shuttle at perovskite contact, but also decreases valence band maximum (VBM)-HOMO offset between perovskite and Spiro-OMeTAD. This will diminish thermionic losses for collecting holes and thus promote charge transport across the heterojunction, suppressing both defect-assisted recombination and interface carrier recombination. As a result, a remarkable improvement of 21.21% efficiency with excellent device stability is achieved compared to 18.46% of the control device, which is among the highest efficiencies for polycrystalline MAPbI(3) based n-i-p planar PSCs reported to date. These findings of this work provide new insights into novel charge-selective heterojunctions for further enhancing efficiency and stability of PSCs.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Karki, Akchheta
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Cincotti, Giancarlo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Lund Univ, Sweden.
    Wang, Chuanfei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas2022Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, nr 13, artikel-id 2107172Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system. In addition to repeated on/off switching of the polymeric nanoantennas, the concept enables gradual electrical tuning of the nano-optical response, which was found to be related to the modulation of both density and mobility of the mobile polaronic charge carriers in the polymer. The resonance position of the PEDOT:Sulf nanoantennas can be conveniently controlled by disk size, here reported down to a wavelength of around 1270 nm. The presented concept may be used for electrically tunable metasurfaces, with tunable farfield as well as nearfield. The work thereby opens for applications ranging from tunable flat meta-optics to adaptable smart windows.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Phelipot, Jonathan
    et al.
    Aix Marseille Univ, France.
    Ledos, Nicolas
    Univ Rennes, France.
    Dombray, Thomas
    Univ Rennes, France.
    Duffy, Matthew P.
    Univ Rennes, France.
    Denis, Mathieu
    Univ Rennes, France.
    Wang, Ting
    Aix Marseille Univ, France.
    Didane, Yahia
    Aix Marseille Univ, France.
    Gaceur, Meriem
    Aix Marseille Univ, France.
    Bao, Qinye
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Delugas, Pietro
    Ist Off Mat CNR IOM Cagliari, Italy.
    Mattoni, Alessandro
    Ist Off Mat CNR IOM Cagliari, Italy.
    Tondelier, Denis
    IP Paris, France.
    Geffroy, Bernard
    IP Paris, France; Univ Paris Saclay, France.
    Bouit, Pierre-Antoine
    Univ Rennes, France.
    Margeat, Olivier
    Aix Marseille Univ, France.
    Ackermann, Joerg
    Aix Marseille Univ, France.
    Hissler, Muriel
    Univ Rennes, France.
    Highly Emissive Layers based on Organic/Inorganic Nanohybrids Using Aggregation Induced Emission Effect2022Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 7, nr 1, artikel-id 2100876Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fluorescent nanohybrids, based on pi-extended hydroxyoxophosphole ligands grafted onto ZnO nanoparticles, are designed and studied. The restriction of the intramolecular motions of the organic fluorophore, through either aggregates formation in solution or processing into thin films, forms highly emissive materials due to a strong aggregation induced emission effect. Theoretical calculations and XPS analyses were performed to analyze the interactions between the organic and inorganic counterparts. Preliminary results on the use of these nanohybrids as solution-processed emissive layers in organic light emitting diodes (OLEDs) illustrate their potential for lighting applications.

  • 18.
    Chen, Yongzhen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Hanyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    In Situ Spectroscopic and Electrical Investigations of Ladder-type Conjugated Polymers Doped with Alkali Metals2022Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 55, nr 16, s. 7294-7302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ladder-type conjugated polymers exhibit a remarkable performance in (opto)electronic devices. Their double-stranded planar structure promotes an extended pi-conjugation compared to inter-ring-twisted analogues, providing an excellent basis for exploring the effects of charge localization on polaron formation. Here, we investigated alkali-metal n -doping of the ladder-type conjugated polymer (polybenzimidazobenzophe-nanthroline) (BBL) through detailed in situ spectroscopic and electrical characterizations. Photoelectron spectroscopy and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy indicate polaron formation upon potassium (K) doping, which agrees well with theoretical predictions. The semiladder BBB displays a similar evolution in the valence band with the appearance of two new features below the Fermi level upon K-doping. Compared to BBL, distinct differences appear in the UV-vis-NIR spectra due to more localized polaronic states in BBB. The high conductivity (2 S cm(-1)) and low activation energy (44 meV) measured for K-doped BBL suggest disorder-free polaron transport. An even higher conductivity (37 S cm(-1)) is obtained by changing the dopant from K to lithium (Li). We attribute the enhanced conductivity to a decreased perturbation of the polymer nanostructure induced by the smaller Li ions. These results highlight the importance of polymer chain planarity and dopant size for the polaronic state in conjugated polymers.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Zhang, Tiankai
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Kim, Hak-Beom
    Korea Inst Energy Res KIER, South Korea.
    Choi, In-Woo
    Korea Inst Energy Res KIER, South Korea.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Cho, Eunkyung
    Univ Arizona, AZ 85721 USA.
    Konefal, Rafal
    Czech Acad Sci, Czech Republic.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Terado, Kosuke
    Chiba Univ, Japan.
    Kobera, Libor
    Czech Acad Sci, Czech Republic.
    Chen, Mengyun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yang, Mei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yang, Bowen
    Ecole Polytech Fed Lausanne, Switzerland; Uppsala Univ, Sweden.
    Suo, Jiajia
    Ecole Polytech Fed Lausanne, Switzerland; Uppsala Univ, Sweden.
    Yang, Shih-Chi
    Empa Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fu, Fan
    Empa Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Yoshida, Hiroyuki
    Chiba Univ, Japan; Chiba Univ, Japan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Brus, Jiri
    Czech Acad Sci, Czech Republic.
    Coropceanu, Veaceslav
    Univ Arizona, AZ 85721 USA.
    Hagfeldt, Anders
    Ecole Polytech Fed Lausanne, Switzerland; Uppsala Univ, Sweden.
    Bredas, Jean-Luc
    Univ Arizona, AZ 85721 USA.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kim, Dong Suk
    Korea Inst Energy Res KIER, South Korea.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells2022Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 377, nr 6605, s. 495-501, artikel-id eabo2757Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Record power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have been obtained with the organic hole transporter 2,2,7,7-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9-spirobifluorene (spiro-OMeTAD). Conventional doping of spiro-OMeTAD with hygroscopic lithium salts and volatile 4-tert-butylpyridine is a time-consuming process and also leads to poor device stability. We developed a new doping strategy for spiro-OMeTAD that avoids post-oxidation by using stable organic radicals as the dopant and ionic salts as the doping modulator (referred to as ion-modulated radical doping). We achieved PCEs of >25% and much-improved device stability under harsh conditions. The radicals provide hole polarons that instantly increase the conductivity and work function (WF), and ionic salts further modulate the WF by affecting the energetics of the hole polarons. This organic semiconductor doping strategy, which decouples conductivity and WF tunability, could inspire further optimization in other optoelectronic devices.

  • 20.
    Li, Xiane
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Qilun
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yu, Jianwei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xu, Ye
    Chinese Acad Sci, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Jianhui
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells2022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 2046Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Energy level alignment (ELA) at donor-acceptor heterojunctions is of vital importance yet largely undetermined in organic solar cells. Here, authors determine the heterojunction ELA with (mono) layer-by-layer precision to understand the co-existence of efficient charge. Energy level alignment (ELA) at donor (D) -acceptor (A) heterojunctions is essential for understanding the charge generation and recombination process in organic photovoltaic devices. However, the ELA at the D-A interfaces is largely underdetermined, resulting in debates on the fundamental operating mechanisms of high-efficiency non-fullerene organic solar cells. Here, we systematically investigate ELA and its depth-dependent variation of a range of donor/non-fullerene-acceptor interfaces by fabricating and characterizing D-A quasi bilayers and planar bilayers. In contrast to previous assumptions, we observe significant vacuum level (VL) shifts existing at the D-A interfaces, which are demonstrated to be abrupt, extending over only 1-2 layers at the heterojunctions, and are attributed to interface dipoles induced by D-A electrostatic potential differences. The VL shifts result in reduced interfacial energetic offsets and increased charge transfer (CT) state energies which reconcile the conflicting observations of large energy level offsets inferred from neat films and large CT energies of donor - non-fullerene-acceptor systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Zhang, Qilun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wu, Ziang
    Korea Univ, South Korea.
    Wang, Chuanfei
    Ocean Univ China, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Woo, Han Young
    Korea Univ, South Korea.
    Ek, Monica
    KTH Royal Inst Technol, Sweden.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Natural Product Betulin-Based Insulating Polymer Filler in Organic Solar Cells2022Ingår i: Solar RRL, E-ISSN 2367-198X, Vol. 6, nr 9, artikel-id 2200381Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introduction of filler materials into organic solar cells (OSCs) are a promising strategy to improve device performance and thermal/mechanical stability. However, the complex interactions between the state-of-the-art OSC materials and filler require careful selection of filler materials and OSC fabrication to achieve lower cost and improved performance. In this work, the introduction of a natural product betulin-based insulating polymer as filler in various OSCs is investigated. Donor-acceptor-insulator ternary OSCs are developed with improved open-circuit voltage due to decreased trap-assisted recombination. Furthermore, filler-induced vertical phase separation due to mismatched surface energy can strongly affect charge collection at the bottom interface and limit the filler ratio. A quasi-bilayer strategy is used in all-polymer systems to circumvent this problem. Herein, the variety of filler materials in OSCs to biomass is broadened, and the filler strategy is made a feasible and promising strategy toward highly efficient, eco, and low-cost OSCs.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Li, Danqin
    et al.
    East China Normal Univ, Peoples R China.
    Geng, Fushan
    East China Normal Univ, Peoples R China.
    Hao, Tianyu
    Shanghai Jiao Tong Univ, Peoples R China.
    Chen, Zeng
    Zhejiang Univ, Peoples R China.
    Wu, Hongbo
    Donghua Univ, Peoples R China.
    Ma, Zaifei
    Donghua Univ, Peoples R China.
    Xue, Qifan
    South China Univ Technol, Peoples R China.
    Lin, Lina
    East China Normal Univ, Peoples R China.
    Huang, Rong
    East China Normal Univ, Peoples R China.
    Leng, Shifeng
    Shanghai Jiao Tong Univ, Peoples R China.
    Hu, Bingwen
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Jie
    Chinese Acad Fishery Sci, Peoples R China.
    Zhu, Haiming
    Zhejiang Univ, Peoples R China.
    Lv, Menglan
    Guizhou Univ, Peoples R China.
    Ding, Liming
    Natl Ctr Nanosci & Technol, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    East China Normal Univ, Peoples R China; South China Univ Technol, Peoples R China; Shanxi Univ, Peoples R China.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China.
    n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency2022Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 96, artikel-id 107133Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronic doping of conjugated semiconductor plays a critical role in the fabrication of high efficiency organic optoelectronic devices. Here, we report an organic solar cell (OSC) by doping n-type DMBI-BDZC into one host binary bulk heterojunction (BHJ) photoactive layer comprised of a polymer donor PM6 and a nonfullerene acceptor Y6. The resulting champion device yields a significantly improved power conversion efficiency from 17.17% to 18.33% with an impressive fill factor of 80.20%. It is found that the electrically doped photoactive layer exhibits enhanced and balanced charge carrier mobilities, more effective exciton dissociation, longer carrier lifetime, and suppressed charge recombination with smaller energy loss. The dopant molecule DMBIBDZC also act as a surface morphology modifier of the photoactive layer with enhanced charge transport. This work demonstrates that manipulation of charge transport via adding a low concentration dopant into photoactive layer is a promising approach for further improvement of BHJ OSC performance.

  • 23.
    Liu, Tong
    et al.
    Ocean Univ China, Peoples R China.
    Zheng, Yang
    Ocean Univ China, Peoples R China.
    Xu, Yunxiang
    Ocean Univ China, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuanfei
    Ocean Univ China, Peoples R China.
    Yu, Liangmin
    Ocean Univ China, Peoples R China; Pilot Natl Lab Marine Sci & Technol, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Xiaoyi
    Ocean Univ China, Peoples R China.
    Murto, Petri
    Univ Cambridge, England.
    Chen, Junwu
    South China Univ Technol, Peoples R China.
    Xu, Xiaofeng
    Ocean Univ China, Peoples R China.
    Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications2022Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 103, artikel-id 107776Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Development of photovoltaic (PV)-derived hybrid power systems can overcome the weather-dependent elec-tricity production and increase the amount of dispatchable renewable energy generation. Herein, monolithic hybrid devices are developed via rational integration of high-performance semitransparent polymer solar cells (ST-PSCs) and liquid-solid triboelectric nanogenerators (TENGs). High-performance PSCs with efficiencies of 17.4% for rigid and 15.7% for flexible devices are achieved. Further electrode modifications and integration of transparent TENGs synergistically balance the above-bandgap photon harvesting and transparency in a broad wavelength range (380 -1000 nm), yet significantly reduce the transmittance in the near-infrared wavelength range (1000 -2500 nm) of hybrid devices. The hybrid devices simultaneously provide high visible light transparency, good color fidelity, efficient heat resistance and possibility to integrate on rigid and flexible substrates. The hybrid devices attain a high solar conversion efficiency of 10.1% under 1 sun, indicating efficient light-to-electricity conversion (a maximum electrical power output: 101 W m-2) on sunny days. The hybrid devices can also generate a maximum electrical power output of 2.62 W m- 2 through waterdrop energy con-version, implying complementary green electricity production on rainy days. The controlled ambient tempera-ture and specific transmittance windows provided by the hybrid devices sustain plant growth and highlight their great potential in agricultural applications. Gratifyingly, this work demonstrates the first example of ST-PSC/ TENG hybrid systems for scaling up renewable power generation in different weather conditions, considering architectural and agricultural applications.

  • 24.
    Zhang, Silan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Ziang
    Korea Univ, South Korea.
    Lee, Yoonjoo
    Korea Univ, South Korea.
    Kroon, Renee
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Woo, Han Young
    Korea Univ, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Muller, Christian
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Synergistic Effect of Multi-Walled Carbon Nanotubes and Ladder-Type Conjugated Polymers on the Performance of N-Type Organic Electrochemical Transistors2022Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, nr 1, artikel-id 2106447Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have the potential to revolutionize the field of organic bioelectronics. To date, most of the reported OECTs include p-type (semi-)conducting polymers as the channel material, while n-type OECTs are yet at an early stage of development, with the best performing electron-transporting materials still suffering from low transconductance, low electron mobility, and slow response time. Here, the high electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and the large volumetric capacitance of the ladder-type pi-conjugated redox polymer poly(benzimidazobenzophenanthroline) (BBL) are leveraged to develop n-type OECTs with record-high performance. It is demonstrated that the use of MWCNTs enhances the electron mobility by more than one order of magnitude, yielding fast transistor transient response (down to 15 ms) and high mu C* (electron mobility x volumetric capacitance) of about 1 F cm(-1) V-1 s(-1). This enables the development of complementary inverters with a voltage gain of >16 and a large worst-case noise margin at a supply voltage of <0.6 V, while consuming less than 1 mu W of power.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Yang, Chiyuan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stoeckel, Marc-Antoine
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Hanyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Wu, Ziang
    Korea Univ, South Korea.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Musumeci, Chiara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Kai
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Woo, Han Young
    Korea Univ, South Korea.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, S-58330 Linkoping, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. N Ink AB, S-58330 Linkoping, Sweden.
    A high-conductivity n-type polymeric ink for printed electronics2021Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 12, nr 1, artikel-id 2354Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8Scm(-1), along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance. The development of n-type conductive polymer inks is critical for the development of next-generation opto-electronic devices that rely on efficient hole and electron transport. Here, the authors report an alcohol-based, high performance and stable n-type conductive ink for printed electronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Yang, Jinpeng
    et al.
    Yangzhou Univ, Peoples R China; Inst Mol Sci, Japan.
    Sato, Haruki
    Chiba Univ, Japan.
    Orio, Hibiki
    Chiba Univ, Japan.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ueno, Nobuo
    Chiba Univ, Japan.
    Yoshida, Hiroyuki
    Chiba Univ, Japan; Chiba Univ, Japan.
    Yamada, Takashi
    Osaka Univ, Japan.
    Kera, Satoshi
    Inst Mol Sci, Japan.
    Accessing the Conduction Band Dispersion in CH3NH3PbI3 Single Crystals2021Ingår i: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 12, nr 15, s. 3773-3778Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conduction band dispersion in methylammonium lead iodide (CH3NH3PbI3) was studied by both angle-resolved two-photon photoelectron spectroscopy (AR-2PPE) with low photon intensity (similar to 0.0125 nJ/pulse) and angle-resolved low-energy inverse photoelectron spectroscopy (AR-LEIPS). Clear energy dispersion of the conduction band along the Gamma-M direction was first observed by these independent methods under different temperatures, and the dispersion was found to be consistent with band calculation under the cubic phase. The effective mass of the electrons at the Gamma point was estimated to be (0.20 +/- 0.05)m(0) at the temperature of 90 K. The observed conduction band energy was different between the AR-LEIPS and AR-2PPE, which was ascribed to the electronic-correlation-dependent difference of initial and final states probing processes. The present results also indicate that the surface structure in CH3NH3PbI3 provides the cubic-dominated electronic property even at lower temperatures.

  • 27.
    Xiong, Shaobing
    et al.
    East China Normal Univ, Peoples R China.
    Hao, Tianyu
    Shanghai Jiao Tong Univ, Peoples R China.
    Sun, Yuyun
    East China Normal Univ, Peoples R China.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Ma, Ruru
    East China Normal Univ, Peoples R China.
    Wang, Jiulong
    East China Normal Univ, Peoples R China.
    Gong, Shijing
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ding, Liming
    Natl Ctr Nanosci & Technol, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells2021Ingår i: Journal of Energy Challenges and Mechanics, E-ISSN 2056-9386, Vol. 55, s. 265-271Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Defect passivation is one of the most important strategies to boost both the efficiency and stability of perovskite solar cells (PSCs). Here, nontoxic and sustainable forest-based biomaterial, betulin, is first introduced into perovskites. The experiments and calculations reveal that betulin can effectively passivate the uncoordinated lead ions in perovskites via sharing the lone pair electrons of hydroxyl group, promoting charge transport. As a result, the power conversion efficiencies of the p-i-n planar PSCs remarkably increase from 19.14% to 21.15%, with the improvement of other parameters. The hydrogen bonds of betulin lock methylamine and halogen ions along the grain boundaries and on the film surface and thus suppress ion migration, further stabilizing perovskite crystal structures. These positive effects enable the PSCs to maintain 90% of the initial efficiency after 30 days in ambient air with 60%+/- 5% relative humidity, 75% after 300 h aging at 85 degrees C, and 55% after 250 h light soaking, respectively. This work opens a new pathway for using nontoxic and low-cost biomaterials from forest to make highly efficient and stable PSCs. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

  • 28.
    Xiong, Shaobing
    et al.
    East China Normal Univ, Peoples R China.
    Hou, Zhangyu
    East China Normal Univ, Peoples R China.
    Zou, Shijie
    Soochow Univ, Peoples R China.
    Lu, Xiaoshuang
    East China Normal Univ, Peoples R China.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Hao, Tianyu
    Shanghai Jiao Tong Univ, Peoples R China.
    Zhou, Zihao
    East China Normal Univ, Peoples R China.
    Xu, Jianhua
    East China Normal Univ, Peoples R China.
    Zeng, Yihan
    East China Normal Univ, Peoples R China.
    Xiao, Wei
    East China Normal Univ, Peoples R China.
    Dong, Wei
    East China Normal Univ, Peoples R China.
    Li, Danqin
    East China Normal Univ, Peoples R China.
    Wang, Xiang
    East China Normal Univ, Peoples R China.
    Hu, Zhigao
    East China Normal Univ, Peoples R China.
    Sun, Lin
    East China Normal Univ, Peoples R China.
    Wu, Yuning
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ding, Liming
    Natl Ctr Nanosci & Technol, Peoples R China.
    Sun, Zhenrong
    East China Normal Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    East China Normal Univ, Peoples R China; East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency2021Ingår i: Joule, E-ISSN 2542-4351, Vol. 5, nr 2, s. 467-480Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite solar cells (PSCs) suffer from significant nonradiative recombination, limiting their power conversion efficiencies. Here, for the first time, we directly observe a complete transformation of perovskite MAPbI(3) surface region energetics from p- to n-type during defect passivation caused by natural additive capsaicin, attributed to the spontaneous formation of a p-n homojunction in perovskite active layer. We demonstrate that the p-n homojunction locates at similar to 100 nm below perovskite surface. The energetics transformation and defect passivation promote charge transport in bulk perovskite layer and at perovskite/PCBM interface, suppressing both defect-assisted recombination and interface carrier recombination. As a result, an efficiency of 21.88% and a fill factor of 83.81% with excellent device stability are achieved, both values are the highest records for polycrystalline MAPbI(3) based p-i-n PSCs reported to date. The proposed new concept of synergetic defect passivation and energetic modification via additive provides a huge potential for further improvement of PSC performance.

  • 29.
    Wang, Heyong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Zhan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Hu, Jingcong
    Beijing Univ Technol, Peoples R China.
    Yu, Hongling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Kuang, Chaoyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Qin, Jiajun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lu, Yue
    Beijing Univ Technol, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Lintao
    Jinan Univ, Peoples R China.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Dynamic Redistribution of Mobile Ions in Perovskite Light-Emitting Diodes2021Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 31, nr 8, artikel-id 2007596Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite quick development of perovskite light-emitting diodes (PeLEDs) during the past few years, the fundamental mechanisms on how ion migration affects device efficiency and stability remain unclear. Here, it is demonstrated that the dynamic redistribution of mobile ions in the emissive layer plays a key role in the performance of PeLEDs and can explain a range of abnormal behaviours commonly observed during the device measurement. The dynamic redistribution of mobile ions changes charge-carrier injection and leads to increased recombination current; at the same time, the ion redistribution also changes charge transport and results in decreased shunt resistance current. As a result, the PeLEDs show hysteresis in external quantum efficiencies (EQEs) and radiance, that is, higher EQEs and radiance during the reverse voltage scan than during the forward scan. In addition, the changes on charge injection and transport induced by the ion redistribution also well explain the rise of the EQE/radiance values under constant driving voltages. The argument is further rationalized by adding extra formamidinium iodide (FAI) into optimized PeLEDs based on FAPbI(3), resulting in more significant hysteresis and shorter operational stability of the PeLEDs.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Chen, Yongzhen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Experimental and Theoretical Investigation into the Polaron Structure of K-Doped Polyfluorene Films2021Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 125, nr 1, s. 937-945Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The evolution of the electronic structure and optical transition upon n-doping of poly(9,9-dioctylfluorene) (PFO) films is elucidated with photoelectron spectroscopy, optical absorption, density functional theory (DFT), and time-dependent DFT (TD-DFT) calculations. Optical absorption measurements extending into near infrared show two low-energy absorption features at low doping ratios and an additional peak at a higher energy of similar to 2.2 eV that disappears with increasing doping ratios. A gap state (i.e., polaronic state) close to the Fermi level and a significantly destabilized highest valence band appear in the experimentally measured ultraviolet photoelectron spectra. These experimental results are interpreted by the TD-DFT calculations, which show that the lower energy peaks originate from the excitation from polaronic states to the conduction band, while the higher energy peak mainly originates from the destabilized valence band to conduction band transitions and only appears at low doping ratios (c(red) <= 50%, 0.5 potassium atom per fluorene monomer). The DFT calculations further indicate that polaron pairs rather than bipolarons are preferentially formed at high doping ratios. Comparing the results of doped glassy and beta-phase films, we find that the ordered segments in the beta-phase film disappear due to the dopant (potassium) insertion, resulting in a similar polaronic structure.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Liu, Yongfeng
    et al.
    Umea Univ, Sweden.
    Tang, Shi
    Umea Univ, Sweden; LunaLEC AB, Sweden.
    Fan, Junpeng
    Umea Univ, Sweden.
    Gracia-Espino, Eduardo
    Umea Univ, Sweden.
    Yang, Jinpeng
    Inst Mol Sci, Japan; Yangzhou Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kera, Satoshi
    Inst Mol Sci, Japan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Larsen, Christian
    Umea Univ, Sweden; LunaLEC AB, Sweden.
    Wagberg, Thomas
    Umea Univ, Sweden.
    Edman, Ludvig
    Umea Univ, Sweden; LunaLEC AB, Sweden.
    Wang, Jia
    Umea Univ, Sweden.
    Highly Soluble CsPbBr3 Perovskite Quantum Dots for Solution-Processed Light-Emission Devices2021Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, nr 2, s. 1162-1174Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on the synthesis of CsPbBr3 perovskite quantum dots (PeQDs) with a high solubility of 75 g/L in toluene and a good film-forming property, as enabled by a dense layer of didodecyldimethylammonium bromide and octanoic acid surface ligands. The crystalline and monodisperse PeQDs feature a cubic-like shape, with an edge length of 10.1 nm, and a high photoluminescence quantum yield of greater than 90% in toluene solution and 36% as a thin film. We find that the PeQDs are n-type doped following the synthesis but also that they can be p-type and additionally n-type doped by in situ electrochemistry. These combined properties render the PeQDs interesting for the emitter in solution-processed light-emitting electrochemical cells (LECs), and we report a PeQD-LEC with air-stabile electrodes that emits with a narrow emission spectrum (lambda(peak) = 514 nm, full width at half-maximum = 24 nm) and a luminance of 250 cd/m(2) at 4 V and a luminance of 1090 cd/m(2) at 6.8 V. To reach this performance, it was critical to include a thin solution-processed layer comprising p-type poly(vinyl carbazole) and a tetrahexylammonium tetrafluoroborate ionic liquid between the PeQD emission layer and the anode in order to compensate for the as-synthesized n-type doping of the PeQDs.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Ivashchuk, Anatoliy V
    et al.
    Natl Tech Univ Ukraine, Ukraine.
    Dusheiko, Mykhailo G.
    Natl Tech Univ Ukraine, Ukraine.
    Roshchina, Nina M.
    NAS Ukraine, Ukraine.
    Smertenko, Petro S.
    NAS Ukraine, Ukraine.
    Dimitriev, Oleg
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. NAS Ukraine, Ukraine.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Impact of molecular layer on emergent photovoltaic response in silicon unraveled by photoelectron spectroscopy2021Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 544, artikel-id 148807Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The large photovoltaic response from homogeneous silicon wafer obtained upon deposition of a molecular layer on its surface remained an unexplained phenomenon so far. Here, we show by X-ray and ultraviolet photo-electron spectroscopy that deposition of species containing acidic groups on the surface of n-type silicon with native silicon oxide overlayer always results in increased work function of the hybrid interface. This effect is shown to originate due to the surface band bending of the silicon crystal upward, which is accompanied by a negative surface dipole formed. This effect is assigned to protonation of the silicon oxide film by molecular acidic groups, which in turn facilitates accumulation of a mirror negative charge at the Si-SiO2 interface, thus increasing the depth of the depletion region and height of the Schottky barrier in the silicon semiconductor, respectively. Comparison of the work functions of the samples in the dark and under illumination confirms formation of a depletion region at the silicon surface upon molecular adsorption.

  • 33.
    Li, Danqin
    et al.
    East China Normal Univ, Peoples R China.
    Zeng, Yihan
    East China Normal Univ, Peoples R China.
    Chen, Zeng
    Zhejiang Univ, Peoples R China.
    Leng, Shifeng
    Shanghai Jiao Tong Univ, Peoples R China.
    Xiao, Zuo
    Chinese Acad Sci, Peoples R China.
    Xue, Qifan
    South China Univ Technol, Peoples R China.
    Hao, Tianyu
    Shanghai Jiao Tong Univ, Peoples R China.
    Lv, Meng
    East China Normal Univ, Peoples R China.
    Wu, Hongbo
    Donghua Univ, Peoples R China.
    Lin, Lina
    East China Normal Univ, Peoples R China.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Ma, Zaifei
    Donghua Univ, Peoples R China.
    Chen, Jinquan
    East China Normal Univ, Peoples R China.
    Huang, Rong
    East China Normal Univ, Peoples R China.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Zhu, Haiming
    Zhejiang Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ding, Liming
    Chinese Acad Sci, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China; South China Univ Technol, Peoples R China.
    Investigating the reason for high FF from ternary organic solar cells2021Ingår i: JOURNAL OF SEMICONDUCTORS, ISSN 1674-4926, Vol. 42, nr 9, artikel-id 090501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    n/a

  • 34.
    Bian, Bian
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Musumeci, Chiara
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Skallberg, Andreas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Chen, Yongzhen
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Münger, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Nanocontacts give efficient hole injection in organic electronics2021Ingår i: Science Bulletin, ISSN 2095-9273, Vol. 66, nr 9, s. 875-879Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Alkarsifi, Riva
    et al.
    Aix Marseille Univ, France.
    Avalos-Quiroz, Yatzil Alejandra
    Aix Marseille Univ, France.
    Perkhun, Pavlo
    Aix Marseille Univ, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bharwal, Anil Kumar
    Aix Marseille Univ, France.
    Ruiz, Carmen M.
    Aix Marseille Univ, France.
    Duche, David
    Aix Marseille Univ, France.
    Simon, Jean-Jacques
    Aix Marseille Univ, France.
    Videlot-Ackermann, Christine
    Aix Marseille Univ, France.
    Margeat, Olivier
    Aix Marseille Univ, France.
    Ackermann, Joerg
    Aix Marseille Univ, France.
    Organic-inorganic doped nickel oxide nanocrystals for hole transport layers in inverted polymer solar cells with color tuning2021Ingår i: Materials Chemistry Frontiers, E-ISSN 2052-1537, Vol. 5, nr 1, s. 418-429Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polymer solar cells using non-fullerene acceptors are nowadays amongst the most promising approaches for next generation photovoltaic applications. However, there are still remaining challenges related to large-scale fully solution-processing of high efficiency solar cells as high efficiencies are obtained only for very small areas using hole transport layers based on evaporated molybdenum oxide. Solution-processable hole transport materials compatible with non-fullerene acceptor materials are still scarce and thus considered as one of the major challenges nowadays. In this work, we present copper-doped nickel oxide nanocrystals that form highly stable inks in alcohol-based solutions. This allows processing of efficient hole transport layers in both regular and inverted device structures of polymer solar cells. As the initial work function of these ionic doped materials is too low for efficient hole extraction, doping the nanocrystals with an organic electron acceptor, namely 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquino dimethane (F4-TCNQ), was additionally applied to make the work function more suitable for hole extraction. The resulting hybrid hole transport layers were first studied in polymer solar cells based on fullerene acceptors using regular device structures yielding 7.4% efficiency identical to that of reference cells based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). For inverted device structures, the hybrid hole transport layers were processed on top of blends based on the non-fullerene acceptor IT-4F and PBDB-T-2F donor. The corresponding solar cells showed promising efficiencies up to 7.9% while the reference devices using PEDOT:PSS showed inferior performances. We further show that the hybrid hole transport layer can be used to tune the color of the polymer solar cells using optical spacer effects.

  • 36.
    Xiong, Shaobing
    et al.
    East China Normal Univ, Peoples R China.
    Dai, Ying
    East China Normal Univ, Peoples R China.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Xiao, Wei
    East China Normal Univ, Peoples R China.
    Li, Danqin
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ding, Liming
    Natl Ctr Nanosci & Technol, Peoples R China.
    Gao, Pingping
    Hunan Inst Engn, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Surface charge-transfer doping for highly efficient perovskite solar cells2021Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 79, artikel-id 105505Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nonradiative recombination losses are the predominant reason that limits the full thermodynamic potential of perovskite solar cells (PSCs), mainly originating from surface defects and interfacial energetics. However, their synergies between the two key factors are poorly understood. Herein, we systemically explore the energetic role of ionic liquid defect-passivator Tetrabutylammonium hexafluorophosphate (TBAPF(6)) on n-i-p planar PSCs. The perovskite film surface has been transformed from p-type to n-type after TBAPF(6) modification, evidenced by a shift of Fermi level closer to the conduction band. The n-type energetics result in a higher density of electron carrier and a smaller electron extraction barrier at perovskite/PCBM interface, promoting charge transport. It is also shown that the perovskite film can undergo a clear transformation from n-type to p-type character as increasing work function of substrates. Further studies clearly illustrate that TBAPF(6) not only reduces the surface defect-assisted recombination, but also restrains the interface carrier recombination. These combined effects lead to the effective suppression of nonradiative recombination, attributing to a significant improvement in the device power conversion efficiency.

  • 37.
    Chen, Yongzhen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Understanding Interface Dipoles at an Electron Transport Material/Electrode Modifier for Organic Electronics2021Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, nr 39, s. 47218-47225Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Interface dipoles formed at an electrolyte/electrode interface have been widely studied and interpreted using the "double dipole step" model, where the dipole vector is determined by the size and/or range of motion of the charged ions. Some electron transport materials (ETMs) with lone pairs of electrons on heteroatoms exhibit a similar interfacial behavior. However, the origin of the dipoles in such materials has not yet been explored in great depth. Herein, we systematically investigate the influence of the lone pair of electrons on the interface dipole through three pyridine derivatives B2-B4PyMPM. Experiments show that different positions of nitrogen atoms in the three materials give rise to different hydrogen bonds and molecular orientations, thereby affecting the areal density and direction of the lone pair of electrons. The interface dipoles of the three materials predicted by the "double dipole step" model are in good agreement with the ultraviolet photoelectron spectroscopy results both in spin-coated and vacuum-deposited films. These findings help to better understand the ETMs/electrode interfacial behaviors and provide new guidelines for the molecular design of the interlayer.

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Zhang, Qilun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Understanding the Work Function Modification by a Self-assembled Polyvinylpyrrolidone Layer in Inverted Organic Solar Cells2021Ingår i: Solar RRL, E-ISSN 2367-198X, Vol. 5, nr 1, artikel-id 2000575Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polyvinylpyrrolidone (PVP) has been successfully used as the cathode interfacial layer (CIL) in organic solar cells (OSCs) for work function (W-F) modification. However, detailed insight into the effect of a PVP interlayer on the physicochemical properties of the indium tin oxide (ITO) electrode in inverted OSCs (I-OSCs) is still largely absent. Herein, the ITO/PVP interface is investigated by photoelectron spectroscopy and the mechanisms for the energy level alignment of PVP on different substrates in general are unraveled. The results indicate that the dipole formation that reduces the W-F is driven by not only the directional intrinsic molecular dipole moments associated with the gamma-lactam of PVP, but also an additional dipole step with the same direction created by the image charges in the contacting (semi-)conductor layer. In addition, high-performance inverted OSCs (I-OSCs) are achieved by introducing a self-assembled ultrathin PVP layer using a simple immersion method. This work provides enhanced understanding of the PVP-based CIL and demonstrates its great potential in I-OSC fabrication, which can pave the way to simplified manufacturing of low-cost and large-area devices in organic electronic technologies.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Delavari, Najmeh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gladisch, Johannes
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Modarresi, Mohsen
    Ferdowsi Univ Mashhad, Iran.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation2021Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 54, nr 13, s. 6552-6562Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conductive polymer PEDOT:Tos (3,4-ethylenedioxythiophene doped with molecular tosylate) gained considerable attention in various devices for bioelectronic applications, such as organic transistors and sensors. Many of these devices function upon oxidation/reduction processes in contact with aqueous electrolytes. So far, theoretical insight into morphological changes, ion injection, and water intake during these processes was rather limited. In the present work, we combined experiments and molecular dynamics simulations to study the water intake, swelling, and exchange of ions in the PEDOT:Tos film during cyclic voltammetry. We showed that the film underwent significant changes in morphology and mass during the redox processes. We observed both experimentally and in simulations that the film lost its mass during reduction, as tosylate and Na were expelled and gained mass during oxidation mainly due to the uptake of anions, i.e., tosylate and Cl. The results were in line with the UV-VIS-NIR absorption measurements and X-ray photoelectron spectroscopy (XPS) measurements, which revealed that during the redox process a portion of Tos was replaced by Cl- as the counterion for PEDOT. Also, the relative mass change between the most oxidized and reduced states was similar to 10 to 14% according to both experiments and simulations. We detected an overall material loss of the film during voltammetry cycles indicating that a portion of the material leaving the film during reduction did not return to the film during the consecutive oxidation. Our combined experimental/simulation study unraveled the underlying molecular processes in the PEDOT:Tos film upon the redox process, providing the essential understanding needed to improve and assess the performance of bioelectronic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 40.
    Li, Miao
    et al.
    Tampere Univ, Finland.
    Honkanen, Mari
    Tampere Univ, Finland.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rokaya, Chakra
    Tampere Univ, Finland.
    Schramm, Andreas
    Tampere Univ, Finland.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berger, Paul R.
    Tampere Univ, Finland; Ohio State Univ, OH 43210 USA.
    Lupo, Donald
    Tampere Univ, Finland.
    0.7-GHz Solution-Processed Indium Oxide Rectifying Diodes2020Ingår i: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 67, nr 1, s. 360-364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solution-based deposition, with its simplicity and possibility for upscaling through printing, is a promising process for low-cost electronics. Metal oxide semiconductor devices, especially indium oxide with its excellent electrical properties, offer high performance compared to amorphous Si-based rivals, and with a form factor conducive to flexible and wearable electronics. Here, rectifying diodes based on an amorphous spin-coated indium oxide are fabricated for high-speed applications. We report a solution-processed diode approaching the UHF range, based on indium oxide, with aluminum and gold as the electrodes. The device was spin-coated from a precursor material and configured into a half-wave rectifier. The J-V and frequency behavior of the diodes were studied, and the material composition of the diode was investigated by X-ray photoemission spectroscopy (XPS). The 3-dB point was found to be over 700 MHz. The results are promising for the development of autonomously powered wireless Internet-of-Things systems based on scalable, low-cost processes.

  • 41.
    Qin, Leiqiang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Jiang, Jianxia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Tao, Quanzheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Persson, Ingemar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hou, Lintao
    Jinan Univ, Peoples R China.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes2020Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 8, nr 11, s. 5467-5475Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solar energy, although it has the highest power density available in terms of renewable energy, has the drawback of being erratic. Integrating an energy harvesting and storage device into photovoltaic energy storage modules is a viable route for obtaining self-powered energy systems. Herein, an MXene-based all-solution processed semitransparent flexible photovoltaic supercapacitor (PSC) was fabricated by integrating a flexible organic photovoltaic (OPV) with Ti3C2Tx MXene as the electrode and transparent MXene supercapacitors with an organic ionogel as the electrolyte in the vertical direction, using Ti3C2Tx thin film as a common electrode. In the quest for a semitransparent flexible PSC, Ti3C2Tx MXene was first used as a transparent electrode for OPV with a high power conversion efficiency of 13.6%. The ionogel electrolyte-based transparent MXene supercapacitor shows a high volumetric capacitance of 502 F cm(-3) and excellent stability. Finally, a flexible PSC with a high average transmittance of over 33.5% was successfully constructed by all-solution processing and a remarkable storage efficiency of 88% was achieved. This strategy enables a simple route for fabricating MXene based high-performance all-solution-processed flexible PSCs, which is important for realizing flexible and printable electronics for future technologies.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Chen, Shangzhi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kang, Evan S. H.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shiran Chaharsoughi, Mina
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuanfei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Conductive polymer nanoantennas for dynamic organic plasmonics2020Ingår i: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Xiong, Shaobing
    et al.
    East China Normal Univ, Peoples R China.
    Song, Jingnan
    Shanghai Jiao Tong Univ, Peoples R China.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Xu, Jinqiu
    Shanghai Jiao Tong Univ, Peoples R China.
    Zhang, Ming
    Shanghai Jiao Tong Univ, Peoples R China.
    Ma, Ruru
    East China Normal Univ, Peoples R China.
    Li, Danqin
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Defect-Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells2020Ingår i: Solar RRL, E-ISSN 2367-198X, Vol. 4, nr 5, artikel-id 1900529Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite solar cells are a highly competitive candidate for next-generation photovoltaic technology. Defects in the perovskite grain boundaries and on the film surfaces however have significant impacts on both the device efficiency and environmental stability. Herein, a strategy using organic dyes as additives to passivate the defect states and produce more n-type perovskite films, thereby improving charge transport and decreasing charge recombination, is reported. Based on this strategy, the power conversion efficiency of the perovskite solar cell is significantly increased from 18.13% to 20.18% with a negligible hysteresis. Furthermore, the rich hydrogen bonds and carbonyl structures in the organic dye can significantly enhance device stability both in terms of humidity and thermal stress. The results present a promising pathway using abundant and colorful organic dyes as additives to achieve high-performance perovskite solar cells.

  • 44.
    Wang, Chuan Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Xiao, Yiqun
    Chinese Univ Hong Kong, Peoples R China.
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Lu, Xinhui
    Chinese Univ Hong Kong, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Diluted Organic Semiconductors in Photovoltaics2020Ingår i: Solar RRL, E-ISSN 2367-198X, Vol. 4, nr 9, artikel-id 2000261Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Incorporation of insulating polymers or molecules into organic semiconductor films, creating so-called diluted organic semiconductors, has been successfully used both in organic field-effect transistors and organic light-emitting diodes to reduce sensitivity to charge traps. However, application of this strategy in organic photovoltaics is challenging due to the complex requirements on the light-absorbing blend layer. Herein, diluted donor-acceptor-insulator ternary organic solar cells are developed to improve mobility and decrease radiative and nonradiative recombination in the active layer. In addition, both thermal and environmental stability of the diluted ternary solar cells are enhanced. Finally, the diluted semiconductor approach enables large-area solar cells to be fabricated where the loss in power density upon cell area upscaling is five times lower than for the equivalent binary cells.

  • 45.
    Yu, Yong
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Heyong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Kuang, Chaoyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Ji, Fuxiang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yi, Chang
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Dimensional Tailoring of Ultrahigh Vacuum Annealing-Assisted Quantum Wells for the Efficiency Enhancement of Perovskite Light-Emitting Diodes2020Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 12, nr 22, s. 24965-24970Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Quasi-two-dimensional (Q-2D) perovskites featured with multidimensional quantum wells (QWs) have been the main candidates for optoelectronic applications. However, excessive low-dimensional perovskites are unfavorable to the device efficiency due to the phonon-exciton interaction and the inclusion of insulating large organic cations. Herein, the formation of low-dimensional QWs is suppressed by removing the organic cation 1-naphthylmethylamine iodide (NMAI) through ultrahigh vacuum (UHV) annealing. Perovskite light-emitting diode (PLED) devices based on films annealed with optimized UHV conditions show a higher external quantum efficiency (EQE) of 13.0% and wall-plug efficiency of 11.1% compared to otherwise identical devices with films annealed in a glovebox.

  • 46.
    Ajjan, Fátima
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Riera-Galindo, Sergi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lienemann, Samuel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly(3,4‐Ethylenedioxythiophene)2020Ingår i: Advanced Energy and Sustainability Research, E-ISSN 2699-9412, Vol. 1, nr 2, artikel-id 2000027Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mass implementation of renewable energies is limited by the absence of efficient and affordable technology to store electrical energy. Thus, the development of new materials is needed to improve the performance of actual devices such as batteries or supercapacitors. Herein, the facile consecutive chemically oxidative polymerization of poly(1-amino-5-chloroanthraquinone) (PACA) and poly(3,4-ethylenedioxythiophene (PEDOT) resulting in a water dispersible material PACA-PEDOT is shown. The water-based slurry made of PACA-PEDOT nanoparticles can be processed as film coated in ambient atmosphere, a critical feature for scaling up the electrode manufacturing. The novel redox polymer electrode is a nanocomposite that withstands rapid charging (16 A g−1) and delivers high power (5000 W kg−1). At lower current density its storage capacity is high (198 mAh g−1) and displays improved cycling stability (60% after 5000 cycles). Its great electrochemical performance results from the combination of the redox reversibility of the quinone groups in PACA that allows a high amount of charge storage via Faradaic reactions and the high electronic conductivity of PEDOT to access to the redox-active sites. These promising results demonstrate the potential of PACA-PEDOT to make easily organic electrodes from a water-coating process, without toxic metals, and operating in non-flammable aqueous electrolyte for large scale pseudocapacitors. 

    Ladda ner fulltext (pdf)
    fulltext
  • 47.
    Yang, Jianming
    et al.
    East China Normal Univ, Peoples R China.
    Xiong, Shaobing
    East China Normal Univ, Peoples R China.
    Song, Jingnan
    Shanghai Jiao Tong Univ, Peoples R China.
    Wu, Hongbo
    Donghua Univ, Peoples R China.
    Zeng, Yihan
    East China Normal Univ, Peoples R China.
    Lu, Linyang
    Soochow Univ, Peoples R China.
    Shen, Kongchao
    Soochow Univ, Peoples R China.
    Hao, Tianyu
    Shanghai Jiao Tong Univ, Peoples R China.
    Ma, Zaifei
    Donghua Univ, Peoples R China.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Energetics and Energy Loss in 2D Ruddlesden-Popper Perovskite Solar Cells2020Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 10, nr 23, artikel-id 2000687Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    2D Ruddlesden-Popper perovskites (RPPs) are emerging as potential challengers to their 3D counterpart due to superior stability and competitive efficiency. However, the fundamental questions on energetics of the 2D RPPs are not well understood. Here, the energetics at (PEA)(2)(MA)(n)-1PbnI3n+1/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) interfaces with varying n values of 1, 3, 5, 40, and infinity are systematically investigated. It is found that n-n junctions form at the 2D RPP interfaces (n = 3, 5, and 40), instead of p-n junctions in the pure 2D and 3D scenarios (n = 1 and infinity). The potential gradient across phenethylammonium iodide ligands that significantly decreases surface work function, promotes separation of the photogenerated charge carriers with electron transferring from perovskite crystal to ligand at the interface, reducing charge recombination, which contributes to the smallest energy loss and the highest open-circuit voltage (V-oc) in the perovskite solar cells (PSCs) based on the 2D RPP (n = 5)/PCBM. The mechanism is further verified by inserting a thin 2D RPP capping layer between pure 3D perovskite and PCBM in PSCs, causing the V-oc to evidently increase by 94 mV. Capacitance-voltage measurements with Mott-Schottky analysis demonstrate that such V-oc improvement is attributed to the enhanced potential at the interface.

  • 48.
    Li, Danqin
    et al.
    East China Normal Univ, Peoples R China.
    Zhu, Lei
    Shanghai Jiao Tong Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Xiao, Wei
    East China Normal Univ, Peoples R China.
    Yang, Jianming
    East China Normal Univ, Peoples R China.
    Ma, Ruru
    East China Normal Univ, Peoples R China.
    Ding, Liming
    Natl Ctr Nanosci & Technol, Peoples R China.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency2020Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 32, nr 34, artikel-id 2002344Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.

  • 49.
    Qin, Leiqiang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tao, Quanzheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Liu, Lianlian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Jiang, Jianxia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Physics Department, Jinan University, Guangzhou, PR China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lintao, Hou
    Physics Department, Jinan University, Guangzhou, PR China.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Physics Department, Jinan University, Guangzhou, PR China.
    Flexible Solid-State Asymmetric Supercapacitors with Enhanced Performance Enabled by Free-Standing MXene-Biopolymer Nanocomposites and Hierarchical Graphene-RuOx Paper Electrodes2020Ingår i: Batteries & Supercaps, E-ISSN 2566-6223, Vol. 3, nr 7, s. 604-610Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-dimensional (2D) transition metal carbides and carbonitrides, called MXenes, with metallic conductivity and hydrophilic surfaces, show great promise as electrode materials for supercapacitors. A major drawback of 2D nanomaterials is the re-stacking of the nanosheets, which prevents full utilization of surface area and blocks the access of the electrolyte. In this study, a free-standing nanocomposite paper electrode is realized by combining Mo1.33C MXene and positively charged biopolymer lignin (the second most abundant biopolymer in nature, L-DEA). The self-assembled layered architecture with alternating polymer and MXene flakes increases the interlayer space to promote ion transport, and with combining charge storage capability of the lignin derivative and MXene in an interpenetrating MXene/L-DEA nanocomposite, which offers an impressive capacitance of 503.7 F g(-1). Moreover, we demonstrate flexible solid-state asymmetric supercapacitors (ASCs) using Mo1.33C@L-DEA as the negative electrode and electrochemically exfoliated graphene with ruthenium oxide (EG@RuOx) as the positive electrode. This asymmetric device operates at a voltage window of 1.35 V, which is about two times wider than that of a symmetric Mo1.33C@L-DEA based supercapacitor. Finally, the ASCs can deliver an energy density of 51.9 Wh kg(-1) at a power density of 338.5 W kg(-1), with 86 % capacitance retention after 10000 charge-discharge cycles.

  • 50.
    Xu, Kai
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Gang
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kroon, Renee
    Chalmers Univ Technol, Sweden.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fazzi, Daniele
    Univ Cologne, Germany.
    Shibata, Koki
    Chiba Univ, Japan.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Ning
    Yunnan Univ, Peoples R China.
    Persson, Gustav
    Chalmers Univ Technol, Sweden.
    Yankovich, Andrew B.
    Chalmers Univ Technol, Sweden.
    Olsson, Eva
    Chalmers Univ Technol, Sweden.
    Yoshida, Hiroyuki
    Chiba Univ, Japan; Chiba Univ, Japan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutio