liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 37 av 37
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany; Univ Edinburgh, Scotland.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Yin, Yuqing
    Univ Bayreuth, Germany; Shandong Univ, Peoples R China.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany.
    Aprilis, Georgios
    European Synchrotron Radiat Facil, France.
    Abrikosov, Alexei I.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Masood, Talha Bin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Giacobbe, Carlotta
    European Synchrotron Radiat Facil, France.
    Bright, Eleanor Lawrence
    European Synchrotron Radiat Facil, France.
    Glazyrin, Konstantin
    Photon Sci, Germany.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Wright, Jonathan
    European Synchrotron Radiat Facil, France.
    Hotz, Ingrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinsky, Leonid
    Shandong Univ, Peoples R China.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N562023Ingår i: Nature Chemistry, ISSN 1755-4330, E-ISSN 1755-4349Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N-5](-) anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N-6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N-6](4-). Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56-composed of 520 atoms per unit cell-was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N-6](4-) is planar and proposed to be aromatic.

  • 2.
    Aslandukova, Alena
    et al.
    Univ Bayreuth, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Edinburgh, Scotland.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Steinle-Neumann, Gerd
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsch Elektronen Synchrotron DESY, Germany.
    Ovsyannikov, Sergey V.
    Univ Bayreuth, Germany.
    Yin, Yuqing
    Univ Bayreuth, Germany; Shandong Univ, Peoples R China.
    Akbar, Fariia Iasmin
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    Deutsch Elektronen Synchrotron DESY, Germany.
    Hanfland, Michael
    European Synchrotron Radiat Facil ESRF, France.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    High-pressure hP3 yttrium allotrope with CaHg2-type structure as a prototype of the hP3 rare-earth hydride series2023Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 107, nr 1, artikel-id 014103Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A high-pressure (HP) yttrium allotrope, hP3-Y (space group P6/mmm), was synthesized in a multi-anvil press at 20 GPa and 2000 K which is recoverable to ambient conditions. Its relative stability and electronic properties were investigated using density functional theory calculations. A hP3-Y derivative hydride, hP3-YHx, with a variable hydrogen content (x = 2.8, 3, 2.4), was synthesized in diamond anvil cells by the direct reaction of yttrium with paraffin oil, hydrogen gas, and ammonia borane upon laser heating to similar to 3000 K at 51, 45 and 38 GPa, respectively. Room-temperature decompression leads to gradual reduction and eventually the complete loss of hydrogen at ambient conditions. Isostructural hP3-NdHx and hP3-GdHx hydrides were synthesized from Nd and Gd metals and paraffin oil, suggesting that the hP3-Y structure type may be common for rare-earth elements. Our results expand the list of allotropes of trivalent lanthanides and their hydrides and suggest that they should be considered in the context of studies of HP behavior and properties of this broad class of materials.

  • 3.
    Akbar, Fariia Iasmin
    et al.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Yin, Yuqing
    Univ Bayreuth, Germany; Shandong Univ, Peoples R China.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsch Elektronen Synchrotron DESY, Germany.
    Laniel, Dominique
    Univ Edinburgh, Scotland; Univ Edinburgh, Scotland.
    Bykov, Maxim
    Univ Cologne, Germany.
    Bykova, Elena
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    High-pressure synthesis of dysprosium carbides2023Ingår i: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 11, artikel-id 1210081Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chemical reactions between dysprosium and carbon were studied in laser-heated diamond anvil cells at pressures of 19, 55, and 58 GPa and temperatures of similar to 2500 K. In situ single-crystal synchrotron X-ray diffraction analysis of the reaction products revealed the formation of novel dysprosium carbides, Dy4C3 and Dy3C2, and dysprosium sesquicarbide Dy2C3 previously known only at ambient conditions. The structure of Dy4C3 was found to be closely related to that of dysprosium sesquicarbide Dy2C3 with the Pu2C3-type structure. Ab initio calculations reproduce well crystal structures of all synthesized phases and predict their compressional behavior in agreement with our experimental data. Our work gives evidence that high-pressure synthesis conditions enrich the chemistry of rare earth metal carbides.

  • 4.
    Aslandukov, Andrey
    et al.
    Univ Bayreuth, Germany.
    Jurzick, Pascal L.
    Univ Cologne, Germany.
    Bykov, Maxim
    Univ Cologne, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Chanyshev, Artem
    Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Edinburgh, Scotland; Univ Edinburgh, Scotland.
    Yin, Yuqing
    Univ Bayreuth, Germany.
    Akbar, Fariia I.
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsch Elektronen Synchrotron DESY, Germany.
    Glazyrin, Konstantin
    Deutsch Elektronen Synchrotron DESY, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Wilhelm, Fabrice
    European Synchrotron Radiat Facil, France.
    Rogalev, Andrei
    European Synchrotron Radiat Facil, France.
    Comboni, Davide
    European Synchrotron Radiat Facil, France.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Stabilization Of The CN35− Anion In Recoverable High-pressure Ln3O2(CN3) (Ln=La, Eu, Gd, Tb, Ho, Yb) Oxoguanidinates2023Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of isostructural Ln(3)O(2)(CN3) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln(3)O(2)(CN3) solids are composed of the hitherto unknown CN35- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln(3)O(2)(CN3) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln(3)O(2)(CN3) compounds are recoverable to ambient conditions. The stabilization of the CN35- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.

  • 5.
    Laniel, Dominique
    et al.
    Univ Edinburgh, Scotland.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Aslandukov, Andrey
    Univ Bayreuth, Germany.
    Spender, James
    Univ Edinburgh, Scotland.
    Ranieri, Umbertoluca
    Univ Edinburgh, Scotland.
    Fedotenko, Timofey
    Glazyrin, Konstantin
    DESY, Germany.
    Bright, Eleanor Lawrence
    European Synchrotron Radiat Facil, France.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Prakapenka, Vitali B.
    Univ Chicago, IL 60637 USA.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Structure determination of ζ-N2 from single-crystal X-ray diffraction and theoretical suggestion for the formation of amorphous nitrogen2023Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikel-id 6207Artikel i tidskrift (Refereegranskat)
  • 6.
    Yin, Yuqing
    et al.
    Shandong Univ, Peoples R China; Univ Bayreuth, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Jena, Nityasagar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Winkler, Bjoern
    Frankfurt Univ, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsch Elektronen Synchrotron DESY, Germany.
    Bykova, Elena
    Univ Bayreuth, Germany; Carnegie Inst Sci, DC 20015 USA.
    Laniel, Dominique
    Univ Edinburgh, Scotland; Univ Edinburgh, Scotland.
    Bykov, Maxim
    Univ Cologne, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Akbar, Fariia I.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    Deutsch Elektronen Synchrotron DESY, Germany.
    Garbarino, Gaston
    European Synchrotron Radiat Facil, France.
    Giacobbe, Carlotta
    European Synchrotron Radiat Facil, France.
    Bright, Eleanor L.
    European Synchrotron Radiat Facil, France.
    Jia, Zhitai
    Shandong Univ, Peoples R China.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Unraveling the Bonding Complexity of Polyhalogen Anions: High-Pressure Synthesis of Unpredicted Sodium Chlorides Na2Cl3 and Na4Cl5 and Bromide Na4Br52023Ingår i: JACS Au, E-ISSN 2691-3704Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The field of polyhalogen chemistry, specifically polyhalogenanions(polyhalides), is rapidly evolving. Here, we present the synthesisof three sodium halides with unpredicted chemical compositions andstructures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX(3) halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassiumchloride (hP24-KCl3). The high-pressuresyntheses were realized at 41-80 GPa in diamond anvil cellslaser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction(XRD) provided the first accurate structural data for the symmetrictrichloride Cl-3 (-) anion in hP24-KCl3 and revealed the existence of two different typesof infinite linear polyhalogen chains, [Cl]( infinity ) ( n-) and [Br]( infinity ) ( n-), in the structures of cP8-AX(3) compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contactsbetween sodium cations. Ab initio calculations support the analysisof structures, bonding, and properties of the studied halogenides.

  • 7.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Winkler, Bjoern
    Goethe Univ Frankfurt, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany.
    Aprilis, Georgios
    European Synchrotron Radiat Facil, France.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Milman, Victor
    Dassault Syst BIOVIA, England.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    A reentrant phase transition and a novel polymorph revealed in high-pressure investigations of CF4 up to 46.5 GPa2022Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 156, nr 4, artikel-id 044503Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The high-pressure behavior of simple molecular systems, devoid of strong intermolecular interactions, provides a unique avenue toward a fundamental understanding of matter. Tetrahalides of the carbon group elements (group 14), lacking all intermolecular interactions but van der Waals, are among the most elementary of molecular compounds. Here, we report the investigation of CF4 up to 46.5 GPa-the highest pressure up to which any tetrahalides of group 14 elements have been studied so far-by a combination of single-crystal x-ray diffraction (SC-XRDp), Raman spectroscopy, and ab initio calculations. These measurements reveal a pressure-induced reentrant phase transition (phase II phase III phase IIR) Room temperature and the formation of a previously unknown CF4 cubic polymorph, named phase IV, after the laser heating of CF4 at 46.5 GPa. In this work, the structures of phases II(R), III, and IV were solved and the atomic coordinates were refined on the basis of SC-XRDp. A comparison of tetrahalides of group 14 elements underlines that reducing the intermolecular halogen-halogen distances leads to a structural rearrangement from close packing of the tetrahedral molecules to close packing of the halogen atoms.

  • 8.
    Aslandukov, Andrey
    et al.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Aslandukov, Matvii
    Kharkiv Natl Univ Radio Elect, Ukraine.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Domain Auto Finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samples2022Ingår i: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767, Vol. 55, s. 1383-1391Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the Domain Auto Finder (DAFi) program and its application to the analysis of single-crystal X-ray diffraction (SC-XRD) data from multiphase mixtures of microcrystalline solids and powders. Superposition of numerous reflections originating from a large number of single-crystal domains of the same and/or different (especially unknown) phases usually precludes the sorting of reflections coming from individual domains, making their automatic indexing impossible. The DAFi algorithm is designed to quickly find subsets of reflections from individual domains in a whole set of SC-XRD data. Further indexing of all found subsets can be easily performed using widely accessible crystallographic packages. As the algorithm neither requires a priori crystallographic information nor is limited by the number of phases or individual domains, DAFi is powerful software to be used for studies of multiphase polycrystalline and microcrystalline (powder) materials. The algorithm is validated by testing on X-ray diffraction data sets obtained from real samples: a multi-mineral basalt rock at ambient conditions and products of the chemical reaction of yttrium and nitrogen in a laser-heated diamond anvil cell at 50 GPa. The high performance of the DAFi algorithm means it can be used for processing SC-XRD data online during experiments at synchrotron facilities.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Gorelova, Liudmila
    et al.
    St Petersburg State Univ, Russia.
    Pakhomova, Anna
    DESY, Germany; European Synchrotron Radiat Facil, France.
    Aprilis, Georgios
    Univ Bayreuth, Germany.
    Yin, Yuqing
    Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Bayreuth, Germany.
    Winkler, Bjoern
    Frankfurt Univ, Germany.
    Krivovichev, Sergey
    St Petersburg State Univ, Russia; Russian Acad Sci, Russia.
    Pekov, Igor
    Moscow MV Lomonosov State Univ, Russia.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Edge-sharing BO4 tetrahedra and penta-coordinated silicon in the high-pressure modification of NaBSi3O82022Ingår i: Inorganic Chemistry Frontiers, ISSN 2052-1545, E-ISSN 2052-1553, Vol. 9, nr 8, s. 1735-1742Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The high-pressure behavior of the borosilicate reedmergnerite NaBSi3O8 has been studied using in situ single-crystal X-ray diffraction and Raman spectroscopy up to 35 GPa. The crystal structure of NaBSi3O8 contracts homogeneously upon compression up to 12 GPa, while at higher pressures it undergoes two phase transitions. Above 16 GPa the unit-cell volume is doubled, whereas the coordination numbers of all cations and the structural topology are preserved. Above 25 GPa the crystal structure of NaBSi3O8 contains extremely rare dimers of edge-sharing BO4 tetrahedra and earlier unknown Si2O5 groups consisting of edge-sharing SiO5 square pyramids. The structural model was corroborated by DFT calculations. This HP modification results in the first example of a borosilicate compound with edge-sharing BO4 tetrahedra.

  • 10.
    Dong, Weiwei
    et al.
    DESY, Germany; Chinese Acad Sci, Peoples R China.
    Glazyrin, Konstantin
    DESY, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Bednarcik, Jozef
    Safarik Univ, Slovakia.
    Greenberg, Eran
    Soreq NRC, Israel.
    Dubrovinsky, Leonid
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinskaia, Natalia
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Univ Bayreuth, Germany.
    Liermann, Hanns-Peter
    DESY, Germany.
    Fe0.79Si0.07B0.14 metallic glass gaskets for high-pressure research beyond 1 Mbar2022Ingår i: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 29, s. 1167-1179Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A gasket is an important constituent of a diamond anvil cell (DAC) assembly, responsible for the sample chamber stability at extreme conditions for X-ray diffraction studies. In this work, we studied the performance of gaskets made of metallic glass Fe0.79Si0.07B0.14 in a number of high-pressure X-ray diffraction (XRD) experiments in DACs equipped with conventional and toroidal-shape diamond anvils. The experiments were conducted in either axial or radial geometry with X-ray beams of micrometre to sub-micrometre size. We report that Fe0.79Si0.07B0.14 metallic glass gaskets offer a stable sample environment under compression exceeding 1 Mbar in all XRD experiments described here, even in those involving small-molecule gases (e.g. Ne, H-2) used as pressure-transmitting media or in those with laser heating in a DAC. Our results emphasize the materials importance for a great number of delicate experiments conducted under extreme conditions. They indicate that the application of Fe0.79Si0.07B0.14 metallic glass gaskets in XRD experiments for both axial and radial geometries substantially improves various aspects of megabar experiments and, in particular, the signal-to-noise ratio in comparison to that with conventional gaskets made of Re, W, steel or other crystalline metals.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Laniel, Dominique
    et al.
    Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany; Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, UK.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Néri, Adrien
    Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
    Yin, Yuqing
    Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany; State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P. R. China.
    Aslandukov, Andrey
    Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany; Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany.
    Khandarkhaeva, Saiana
    Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Chariton, Stella
    Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 USA.
    Giacobbe, Carlotta
    European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex, France.
    Bright, Eleanor Lawrence
    European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex, France.
    Hanfland, Michael
    European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex, France.
    Prakapenka, Vitali
    Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 USA.
    Schnick, Wolfgang
    Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinsky, Leonid
    Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany.
    Front Cover: Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′-P3N5, δ-P3N5 and PN2 (Chem. Eur. J. 62/2022)2022Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 28, nr 62, artikel-id e202203122Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    For the last 30 years, the lack of a binary phosphorus nitride containing PN6 octahedra formed a scientific chasm between carbon-group and oxygen-group nitrides, both featuring a variety of solids with XN6 units (X being a non-metal element). Now, the discovery of the δ-P3N5 and PN2 phosphorus nitrides—formed under high pressure and both composed of the elusive PN6 octahedron—builds a long-sought-after bridge between these two groups of nitrides. More information can be found in the Research Article by D. Laniel, F. Trybel, and co-workers (DOI: 10.1002/chem.202201998).

  • 12.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Winkler, Bjoern
    Goethe Univ Frankfurt, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany.
    Vogel, Sebastian
    Univ Munich LMU, Germany.
    Meier, Thomas
    Univ Bayreuth, Germany.
    Bykov, Maxim
    Howard Univ, DC 20059 USA; Carnegie Inst Sci, DC 20015 USA.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Glazyrin, Konstantin
    DESY, Germany.
    Milman, Victor
    Dassault Syst BIOVIA, England.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Schnick, Wolfgang
    Univ Munich LMU, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    High-pressure Na-3(N-2)(4), Ca-3(N-2)(4), Sr-3(N-2)(4), and Ba(N-2)(3) featuring nitrogen dimers with noninteger charges and anion-driven metallicity2022Ingår i: Physical Review Materials, E-ISSN 2475-9953, Vol. 6, nr 2, artikel-id 023402Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Charged molecular species, such as [N-2](x-), [O-2](x-), [C-2](x-), and [S-2](x-), follow the paradigm of carrying integer values of electrons. Here, the Na-3(N-2)(4), Ca-3(N-2)(4), Sr-3(N-2)(4), and Ba(N-2)(3) compounds were produced and characterized <70 GPa and evidenced to be composed of paradigm-breaking [N-2](x-) dimers with noninteger charges of -0.75, -1.5, -1.5, and -0.67, respectively. The anion-driven metallicity of the compounds is proposed as the physical mechanism enabling the noninteger electron count of the [N-2](x-) dimers. The properties of these dimers and the compounds bearing them are demonstrated to depend on their noninteger charge, paving the way to materials with electron-tunable features.

  • 13.
    Dubrovinsky, Leonid
    et al.
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsch Elektronen Synchrotron DESY, Germany.
    Laniel, Dominique
    Univ Bayreuth, Germany.
    Bykov, Maxim
    Univ Cologne, Germany.
    Giacobbe, Carlotta
    European Synchrotron Radiat Facil, France.
    Lawrence Bright, Eleanor
    European Synchrotron Radiat Facil, France.
    Sedmak, Pavel
    European Synchrotron Radiat Facil, France.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Ponomareva, Alena V.
    Natl Univ Sci & Technol MISIS, Russia.
    Smirnova, Ekaterina A.
    Natl Univ Sci & Technol MISIS, Russia.
    Belov, Maxim P.
    Natl Univ Sci & Technol MISIS, Russia.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Shulumba, Nina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinskaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Materials synthesis at terapascal static pressures2022Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 605, nr 7909, s. 274-278Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions(1,2). Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell(3), producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Bykova, Elena
    et al.
    Carnegie Inst Sci, DC 20015 USA; Univ Bayreuth, Germany.
    Johansson, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Bykov, Maxim
    Carnegie Inst Sci, DC 20015 USA; Univ Cologne, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Fei, Hongzhan
    Univ Bayreuth, Germany.
    Ovsyannikov, Sergey V.
    Univ Bayreuth, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Gabel, Stefan
    Friedrich Alexander Univ Erlangen Nurnberg, Germany.
    Holz, Hendrik
    Friedrich Alexander Univ Erlangen Nurnberg, Germany; Univ Kassel, Germany.
    Merle, Benoit
    Friedrich Alexander Univ Erlangen Nurnberg, Germany; Univ Kassel, Germany.
    Alling, Björn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Smith, Jesse S.
    Argonne Natl Lab, IL 60439 USA.
    Prakapenka, Vitali B.
    Univ Chicago, IL 60637 USA.
    Katsura, Tomoo
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Goncharov, Alexander F.
    Carnegie Inst Sci, DC 20015 USA.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Novel Class of Rhenium Borides Based on Hexagonal Boron Networks Interconnected by Short B-2 Dumbbells2022Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 34, nr 18, s. 8138-8152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (similar to 1.7 angstrom) axially oriented B-2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H-V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReBx compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany; Univ Edinburgh, Scotland; Univ Edinburgh, Scotland.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Néri, Adrien
    Univ Bayreuth, Germany.
    Yin, Yuqing
    Univ Bayreuth, Germany; Shandong Univ, Peoples R China.
    Aslandukov, Andrey
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Deutsch Elekt Synchrotron, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Giacobbe, Carlotta
    European Synchrotron Radiat Facil, France.
    Bright, Eleanor Lawrence
    European Synchrotron Radiat Facil, France.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Schnick, Wolfgang
    Univ Munich LMU, Germany.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′‐P3N5, δ‐P3N5 and PN22022Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 28, nr 62, artikel-id e202201998Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. delta-P3N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K-0=322 GPa for delta-P3N5 and 339 GPa for PN2. Upon decompression below 7 GPa, delta-P3N5 undergoes a transformation into a novel alpha -P3N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of alpha -P3N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.

  • 16.
    Khandarkhaeva, Saiana
    et al.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Bykova, Elena
    Carnegie Inst Sci, DC 20015 USA.
    Ovsyannikov, Sergey V
    Univ Bayreuth, Germany; Russian Acad Sci, Russia.
    Glazyrin, Konstantin
    DESY, Germany.
    Liermann, Hanns-Peter
    DESY, Germany.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Structural Diversity of Magnetite and Products of Its Decomposition at Extreme Conditions2022Ingår i: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 61, nr 2, s. 1091-1101Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Magnetite, Fe3O4, is the oldest known magnetic mineral and archetypal mixed-valence oxide. Despite its recognized role in deep Earth processes, the behavior of magnetite at extreme high-pressure high-temperature (HPHT) conditions remains insufficiently studied. Here, we report on single-crystal synchrotron X-ray diffraction experiments up to similar to 80 GPa and 5000 K in diamond anvil cells, which reveal two previously unknown Fe3O4 polymorphs, gamma-Fe3O4 with the orthorhombic Yb3S4-type structure and delta-Fe3O4 with the modified Th3P4-type structure. The latter has never been predicted for iron compounds. The decomposition of Fe3O4 at HPHT conditions was found to result in the formation of exotic phases, Fe5O7 and Fe25O32, with complex structures. Crystal-chemical analysis of iron complex Crystal-chemical analysis oxides suggests the high-spin to low-spin crossover in octahedrally coordinated Fe3+ in the pressure interval between 43 and 51 GPa. Our experiments demonstrate that HPHT conditions promote the formation of ferric-rich Fe-O compounds, thus arguing for the possible involvement of magnetite in the deep oxygen cycle.

  • 17.
    Meier, Thomas
    et al.
    Center for High Pressure Science and Technology Advance Research, Beijing, China.
    Trybel, Florian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Khandarkhaeva, Saiana
    Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany.
    Laniel, Dominique
    Center for Science at Extreme Conditions, Edinburgh Univeristy, Edinburgh, UK.
    Ishii, Takayuki
    Center for High Pressure Science and Technology Advance Research, Beijing, China.
    Aslandukova, Alena
    Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany.
    Dubrovinskaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany.
    Dubrovinsky, Leonid
    Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany.
    Structural independence of hydrogen-bond symmetrisation dynamics at extreme pressure conditions2022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 3042Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The experimental study of hydrogen-bonds and their symmetrization under extreme conditions is predominantly driven by diffraction methods, despite challenges of localising or probing the hydrogen subsystems directly. Until recently, H-bond symmetrization has been addressed in terms of either nuclear quantum effects, spin crossovers or direct structural transitions; often leading to contradictory interpretations when combined. Here, we present high-resolution in-situ 1H-NMR experiments in diamond anvil cells investigating a range of systems containing linear O-H ⋯  O units at pressure ranges of up to 90 GPa covering their respective H-bond symmetrization. We found pronounced minima in the pressure dependence of the NMR resonance line-widths associated with a maximum in hydrogen mobility, precursor to a localisation of hydrogen atoms. These minima, independent of the chemical environment of the O-H ⋯  O unit, can be found in a narrow range of oxygen oxygen distances between 2.44 and 2.45 Å, leading to an average critical oxygen-oxygen distance of Å.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Glazyrin, K.
    et al.
    DESY, Germany.
    Khandarkhaeva, S.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Fedotenko, T.
    DESY, Germany; Univ Bayreuth, Germany.
    Dong, W.
    DESY, Germany.
    Laniel, D.
    Univ Bayreuth, Germany.
    Seiboth, F.
    DESY, Germany.
    Schropp, A.
    DESY, Germany; DESY, Germany.
    Garrevoet, J.
    DESY, Germany.
    Bruckner, D.
    DESY, Germany; Univ Hamburg, Germany; Ruhr Univ Bochum, Germany.
    Falkenberg, G.
    DESY, Germany.
    Kubec, A.
    Paul Scherrer Inst, Switzerland.
    David, C.
    Paul Scherrer Inst, Switzerland.
    Wendt, M.
    DESY, Germany.
    Wenz, S.
    DESY, Germany.
    Dubrovinsky, L.
    Univ Bayreuth, Germany.
    Dubrovinskaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Liermann, H. P.
    DESY, Germany.
    Sub-micrometer focusing setup for high-pressure crystallography at the Extreme Conditions beamline at PETRA III2022Ingår i: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 29, s. 654-663Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Scientific tasks aimed at decoding and characterizing complex systems and processes at high pressures set new challenges for modern X-ray diffraction instrumentation in terms of X-ray flux, focal spot size and sample positioning. Presented here are new developments at the Extreme Conditions beamline (P02.2, PETRA III, DESY, Germany) that enable considerable improvements in data collection at very high pressures and small scattering volumes. In particular, the focusing of the X-ray beam to the sub-micrometer level is described, and control of the aberrations of the focusing compound refractive lenses is made possible with the implementation of a correcting phase plate. This device provides a significant enhancement of the signal-to-noise ratio by conditioning the beam shape profile at the focal spot. A new sample alignment system with a small sphere of confusion enables single-crystal data collection from grains of micrometer to sub-micrometer dimensions subjected to pressures as high as 200 GPa. The combination of the technical development of the optical path and the sample alignment system contributes to research and gives benefits on various levels, including rapid and accurate diffraction mapping of samples with sub-micrometer resolution at multimegabar pressures.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Bykova, Elena
    et al.
    Univ Bayreuth, Germany; Carnegie Inst Sci, DC 20015 USA.
    Ovsyannikov, Sergey V
    Univ Bayreuth, Germany.
    Bykov, Maxim
    Univ Cologne, Germany.
    Yin, Yuqing
    Univ Bayreuth, Germany; Shandong Univ, Peoples R China.
    Fedotenko, Timofey
    DESY, Germany.
    Holz, Hendrik
    Univ Kassel, Germany; Friedrich Alexander Univ Erlangen Nurnberg, Germany.
    Gabel, Stefan
    Friedrich Alexander Univ Erlangen Nurnberg, Germany.
    Merle, Benoit
    Univ Kassel, Germany; Friedrich Alexander Univ Erlangen Nurnberg, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Prakapenka, Vitali B.
    Univ Chicago, IL 60637 USA.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Goncharov, Alexander F.
    Carnegie Inst Sci, DC 20015 USA.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Synthesis, crystal structure, and properties of stoichiometric hard tungsten tetraboride, WB42022Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, nr 37, s. 20111-20120Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tungsten tetraboride has been known so far as a non-stoichiometric compound with a variable composition (e.g. WB4-x, WB4+x). Its mechanical properties could exceed those of hard tungsten carbide, which is widely used nowadays in science and technology. The existence of stoichiometric WB4 has not been proven yet, and its structure and crystal chemistry remain debatable to date. Here we report the synthesis of single crystals of the stoichiometric WB4 phase under high-pressure high-temperature conditions. The crystal structure of WB4 was determined using synchrotron single-crystal X-ray diffraction. In situ high-pressure compressibility measurements show that the bulk modulus of WB4 is 238.6(2) GPa for B = 5.6(0). Measurements of mechanical properties of bulk polycrystalline sub-millimeter size samples under ambient conditions reveal a hardness of similar to 36 GPa, confirming that the material falls in the category of superhard materials.

  • 20.
    Yin, Yuqing
    et al.
    Univ Bayreuth, Germany; Shandong Univ, Peoples R China.
    Akbar, Fariia I.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Bykova, Elena
    Univ Bayreuth, Germany; Carnegie Inst Sci, DC 20015 USA.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Edinburgh, Scotland; Univ Edinburgh, Scotland.
    Aslandukov, Andrey
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Bykov, Maxim
    Univ Cologne, Germany.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Garbarino, Gaston
    European Synchrotron Radiat Facil, France.
    Jia, Zhitai
    Shandong Univ, Peoples R China.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Synthesis of rare-earth metal compounds through enhanced reactivity of alkali halides at high pressures2022Ingår i: Communications Chemistry, E-ISSN 2399-3669, Vol. 5, nr 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chemical stability of the alkali halides NaCI and KCI has allowed for their use as inert media in high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil cell, thus providing a synthetic route for halogen-containing binary and ternary compounds. So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were synthesized at -40 GPa and 2000 K and their structures were solved and refined using in situ single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure, previously reported at 108 GPa, was synthesized at similar to 160 GPa and 2100 K. The results of our ab initio calculations fully support experimental findings and reveal the electronic structure and chemical bonding in these compounds.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Khandarkhaeva, Saiana
    et al.
    Univ Bayreuth, Germany; Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Krupp, Alena
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    DESY, Germany.
    Dong, Weiwei
    DESY, Germany.
    Liermann, Hanns-Peter
    DESY, Germany.
    Bykov, Maxim
    Univ Bayreuth, Germany.
    Kurnosov, Alexander
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Testing the performance of secondary anvils shaped with focused ion beam from the single-crystal diamond for use in double-stage diamond anvil cells2022Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 93, nr 3, artikel-id 033904Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The success of high-pressure research relies on the inventive design of pressure-generating instruments and materials used for their construction. In this study, the anvils of conical frustum or disk shapes with flat or modified culet profiles (toroidal or beveled) were prepared by milling an Ia-type diamond plate made of a (100)-oriented single crystal using the focused ion beam. Raman spectroscopy and synchrotron x-ray diffraction were applied to evaluate the efficiency of the anvils for pressure multiplication in different modes of operation: as single indenters forced against the primary anvil in diamond anvil cells (DACs) or as pairs of anvils forced together in double-stage DACs (dsDACs). All types of secondary anvils performed well up to about 250 GPa. The pressure multiplication factor of single indenters appeared to be insignificantly dependent on the shape of the anvils and their culets profiles. The enhanced pressure multiplication factor found for pairs of toroidally shaped secondary anvils makes this design very promising for ultrahigh-pressure experiments in dsDACs.

  • 22.
    Bykov, Maxim
    et al.
    Carnegie Inst Sci, DC 20015 USA; Howard Univ, DC 20059 USA.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Laniel, Dominique
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    Deutsch Electronen Synchrotron DESY, Germany.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Smith, Jesse S.
    Argonne Natl Lab, IL 60439 USA.
    Prakapenka, Vitali B.
    Univ Chicago, IL 60637 USA.
    Mahmood, Mohammad F.
    Howard Univ, DC 20059 USA.
    Goncharov, Alexander F.
    Carnegie Inst Sci, DC 20015 USA.
    Ponomareva, Alena V
    Natl Univ Sci & Technol MISIS, Russia.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikossov, Alexei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Masood, Talha Bin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Hotz, Ingrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Rudenko, Alexander N.
    Wuhan Univ, Peoples R China; Wuhan Univ, Peoples R China; Radboud Univ Nijmegen, Netherlands; Ural Fed Univ, Russia.
    Katsnelson, Mikhail I
    Radboud Univ Nijmegen, Netherlands; Ural Fed Univ, Russia.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN4 Polymorph2021Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 126, nr 17, artikel-id 175501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN4. A triclinic phase of beryllium tetranitride tr-BeN4 was synthesized from elements at similar to 85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN4 layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated pi systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN4 layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN4 layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.

  • 23.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Aslandukova, Alena A.
    Univ Bayreuth, Germany.
    Aslandukov, Andrey N.
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Glazyrin, Konstantin
    DESY, Germany.
    Prakapenka, Vitali B.
    Univ Chicago, IL 60637 USA.
    Dubrovinsky, Leonid S.
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    High-Pressure Synthesis of the beta-Zn3N2 Nitride and the alpha-ZnN4 and beta-ZnN4 Polynitrogen Compounds2021Ingår i: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 60, nr 19, s. 14594-14601Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-pressure nitrogen chemistry has expanded at a formidable rate over the past decade, unveiling the chemical richness of nitrogen. Here, the Zn-N system is investigated in laser-heated diamond anvil cells by synchrotron powder and single-crystal X-ray diffraction, revealing three hitherto unobserved nitrogen compounds: beta-Zn3N2, alpha-ZnN4, and beta-ZnN4, formed at 35.0, 63.5, and 81.7 GPa, respectively. Whereas beta-Zn3N2 contains the N3- nitride, both ZnN4 solids are found to be composed of polyacetylene-like [N-4](infinity)(2-) chains. Upon the decompression of beta-ZnN4 below 72.7 GPa, a first-order displacive phase transition is observed from beta-ZnN4 to alpha-ZnN4. The alpha-ZnN4 phase is detected down to 11.0 GPa, at lower pressures decomposing into the known alpha-Zn3N2 (space group Ia (3) over bar) and N-2. The equations of states of beta-ZnN4 and alpha-ZnN4 are also determined, and their bulk moduli are found to be K-0 = 126(9) GPa and K-0 = 76(12) GPa, respectively. Density functional theory calculations were also performed and provide further insight into the Zn-N system. Moreover, comparing the Mg-N and Zn-N systems underlines the importance of minute chemical differences between metal cations in the resulting synthesized phases.

  • 24.
    Aslandukov, Andrey
    et al.
    Univ Bayreuth, Germany.
    Aslandukova, Alena
    Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Bayreuth, Germany.
    Koemets, Iuliia
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Yuan, Liang
    Univ Bayreuth, Germany.
    Steinle-Neumann, Gerd
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    Deutsch Elekt Synchrotron, Germany.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    High-Pressure Yttrium Nitride, Y5N14, Featuring Three Distinct Types of Nitrogen Dimers2021Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 125, nr 32, s. 18077-18084Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Yttrium nitride, Y5N14, was synthesized by direct reaction between yttrium and nitrogen at similar to 50 GPa and similar to 2000 K in a laser-heated diamond anvil cell. High-pressure single-crystal X-ray diffraction revealed that the crystal structure of Y5N14 (space group P4/mbm) contains three distinct types of nitrogen dimers. Crystal chemical analysis and ab initio calculations demonstrated that the dimers [N-2](x-) are crystallographically and chemically nonequivalent and possess distinct noninteger formal charges (x) that make Y5N14 unique among known compounds. Theoretical computations showed that Y5N14 has an anion-driven metallicity, with the filled part of its conduction band formed by nitrogen p-states. The compressibility of Y5N14, determined on decompression down to similar to 10 GPa, was found to be uncommonly high for dinitrides containing +3 cations (the bulk modulus K-0 = 137(6) GPa).

  • 25.
    Fedotenko, T.
    et al.
    Univ Bayreuth, Germany.
    Souza, D. S.
    Univ Bayreuth, Germany.
    Khandarkhaeva, S.
    Univ Bayreuth, Germany.
    Dubrovinsky, L.
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Isothermal equation of state of crystalline and glassy materials from optical measurements in diamond anvil cells2021Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 92, nr 6, artikel-id 063907Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here, we present a method to study the equation of state of opaque amorphous and crystalline materials in diamond anvil cells. The approach is based on measurements of sample dimensions using high-resolution optical microscopy. Data on the volumetric strain as a function of pressure allow deriving the isothermal equation of state of the studied material. The analysis of optical images is fully automatized and allows measuring the sample dimensions with the precision of about 60 nm. The methodology was validated by studying isothermal compression of omega-Ti up to 30 GPa in a Ne pressure transmitting medium. Within the accuracy of the measurements, the bulk modulus of omega-Ti determined using optical microscopy was similar to that obtained from x-ray diffraction. For glassy carbon compressed to similar to 30 GPa, the previously unknown bulk modulus was found to be equal to K-0 = 28 (2) GPa [K = 5.5(5)]. Published under an exclusive license by AIP Publishing.

  • 26.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Winkler, Bjoern
    Goethe Univ Frankfurt, Germany.
    Koemets, Egor
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Milman, Victor
    Dassault Syst BIOVIA, England.
    Glazyrin, Konstantin
    DESY, Germany.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Nitrosonium nitrate (NO+NO3-) structure solution using in situ single-crystal X-ray diffraction in a diamond anvil cell2021Ingår i: IUCrJ, E-ISSN 2052-2525, Vol. 8, s. 208-214Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    At high pressures, autoionization - along with polymerization and metallization - is one of the responses of simple molecular systems to a rise in electron density. Nitrosonium nitrate (NO+NO3-), known for this property, has attracted a large interest in recent decades and was reported to be synthesized at high pressure and high temperature from a variety of nitrogen-oxygen precursors, such as N2O4, N2O and N-2-O-2 mixtures. However, its structure has not been determined unambiguously. Here, we present the first structure solution and refinement for nitrosonium nitrate on the basis of single-crystal X-ray diffraction at 7.0 and 37.0 GPa. The structure model (P2(1)/m space group) contains the triple-bonded NO+ cation and the NO3- sp(2)-trigonal planar anion. Remarkably, crystal-chemical considerations and accompanying density-functional-theory calculations show that the oxygen atom of the NO+ unit is positively charged - a rare occurrence when in the presence of a less-electronegative element.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Aslandukova, Alena
    et al.
    Univ Bayreuth, Germany.
    Aslandukov, Andrey
    Univ Bayreuth, Germany.
    Yuan, Liang
    Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Steinle-Neumann, Gerd
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    DESY, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Novel High-Pressure Yttrium Carbide gamma-Y4C5 Containing [C-2] and Nonlinear [C-3] Units with Unusually Large Formal Charges2021Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 127, nr 13, artikel-id 135501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Changes in the bonding of carbon under high pressure leads to unusual crystal chemistry and can dramatically alter the properties of transition metal carbides. In this work, the new orthorhombic polymorph of yttrium carbide, gamma-Y4C5, was synthesized from yttrium and paraffin oil in a laser-heated diamond anvil cell at similar to 50 GPa. The structure of gamma-Y4C5 was solved and refined using in situ synchrotron single-crystal x-ray diffraction. It includes two carbon groups: [C-2] dimers and nonlinear [C-3] trimers. Crystal chemical analysis and density functional theory calculations revealed unusually high noninteger charges ([C-2](5.2-) and [C-3](6.8-)) and unique bond orders (<1.5). Our results extend the list of possible carbon states at extreme conditions.

  • 28.
    Pakhomova, Anna
    et al.
    Deutsch Elektronen Synchrotron DESY, Germany.
    Fuchs, Birgit
    Univ Innsbruck, Austria.
    Dubrovinsky, Leonid S.
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Huppertz, Hubert
    Univ Innsbruck, Austria.
    Polymorphs of the Gadolinite-Type Borates ZrB2O5 and HfB2O5 Under Extreme Pressure2021Ingår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 27, nr 19, s. 6007-6014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Based on the results from previous high-pressure experiments on the gadolinite-type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates beta-HfB2O5 and beta-ZrB2O5 have been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction experiments. On compression to 120 GPa, both borate layer-structures are preserved. Additionally, at approximate to 114 GPa, the formation of a second phase can be observed in both compounds. The new high-pressure modification gamma-ZrB2O5 features a rearrangement of the corner-sharing BO4 tetrahedra, while still maintaining the four- and eight-membered rings. The new phase gamma-HfB2O5 contains ten-membered rings including the rare structural motif of edge-sharing BO4 tetrahedra with exceptionally short B-O and B...B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low-energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Koemets, E.
    et al.
    Univ Bayreuth, Germany; Univ Montpellier, France.
    Leonov, I
    Inst Met Phys, Russia; NUST MISIS, Russia; Ural Fed Univ, Russia.
    Bykov, M.
    Univ Bayreuth, Germany.
    Bykova, E.
    Univ Bayreuth, Germany; Carnegie Inst Sci, DC 20015 USA.
    Chariton, S.
    Univ Bayreuth, Germany.
    Aprilis, G.
    Univ Bayreuth, Germany; European Synchrotron Radiat Facil, France.
    Fedotenko, T.
    Univ Bayreuth, Germany.
    Clement, S.
    Univ Montpellier, France.
    Rouquette, J.
    Univ Montpellier, France.
    Haines, J.
    Univ Montpellier, France.
    Cerantola, V
    European Synchrotron Radiat Facil, France.
    Glazyrin, K.
    DESY, Germany.
    McCammon, C.
    Univ Bayreuth, Germany.
    Prakapenka, V. B.
    Univ Chicago, IL 60437 USA.
    Hanfland, M.
    European Synchrotron Radiat Facil, France.
    Liermann, H-P
    DESY, Germany.
    Svitlyk, V
    European Synchrotron Radiat Facil, France.
    Torchio, R.
    European Synchrotron Radiat Facil, France.
    Rosa, A. D.
    European Synchrotron Radiat Facil, France.
    Irifune, T.
    Ehime Univ, Japan.
    Ponomareva, A. V
    NUST MISIS, Russia.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, L.
    Univ Bayreuth, Germany.
    Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO22021Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 126, nr 10, artikel-id 106001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe(2)O(3) and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mossbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory + dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.

  • 30.
    Fedotenko, Timofey
    et al.
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    DESY, Germany.
    Sedmak, Pavel
    European Synchrotron Radiat Facil, France.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Synthesis and Compressibility of Novel Nickel Carbide at Pressures of Earths Outer Core2021Ingår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 11, nr 5, artikel-id 516Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report the high-pressure synthesis and the equation of state (EOS) of a novel nickel carbide (Ni3C). It was synthesized in a diamond anvil cell at 184(5) GPa through a direct reaction of a nickel powder with carbon from the diamond anvils upon heating at 3500 (200) K. Ni3C has the cementite-type structure (Pnma space group, a = 4.519(2) angstrom, b = 5.801(2) angstrom, c = 4.009(3) angstrom), which was solved and refined based on in-situ synchrotron single-crystal X-ray diffraction. The pressure-volume data of Ni3C was obtained on decompression at room temperature and fitted to the 3rd order Burch-Murnaghan equation of state with the following parameters: V-0 = 147.7(8) angstrom(3), K-0 = 157(10) GPa, and K-0 = 7.8(6). Our results contribute to the understanding of the phase composition and properties of Earths outer core.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Binck, Jannes
    Goethe Univ, Germany.
    Winkler, Bjoern
    Goethe Univ, Germany.
    Vogel, Sebastian
    Univ Munich LMU, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Milman, Victor
    BIOVIA Dassault Syst, England.
    Schnick, Wolfgang
    Univ Munich LMU, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Synthesis, crystal structure and structure-property relations of strontium orthocarbonate, Sr2CO42021Ingår i: Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials, ISSN 2052-5192, E-ISSN 2052-5206, Vol. 77, s. 131-137Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Carbonates containing CO4 groups as building blocks have recently been discovered. A new orthocarbonate, Sr2CO4 is synthesized at 92 GPa and at a temperature of 2500 K. Its crystal structure was determined by in situ synchrotron single-crystal X-ray diffraction, selecting a grain from a polycrystalline sample. Strontium orthocarbonate crystallizes in the orthorhombic crystal system (space group Pnma) with CO4, SrO9 and SrO11 polyhedra as the main building blocks. It is isostructural to Ca2CO4. DFT calculations reproduce the experimental findings very well and have, therefore, been used to predict the equation of state, Raman and IR spectra, and to assist in the discussion of bonding in this compound.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Winlder, Bioern
    Goethe Univ Frankfurt, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Pakhomova, Anna
    DESY, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Milman, Victor
    Dassault Syst BIOVIA, England.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    High-Pressure Polymeric Nitrogen Allotrope with the Black Phosphorus Structure2020Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 124, nr 21, artikel-id 216001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies of polynitrogen phases are of great interest for fundamental science and for the design of novel high energy density materials. Laser heating of pure nitrogen at 140 GPa in a diamond anvil cell led to the synthesis of a polymeric nitrogen allotrope with the black phosphorus structure, bp-N. The structure was identified in situ using synchrotron single-crystal x-ray diffraction and further studied by Raman spectroscopy and density functional theory calculations. The discovery of bp-N brings nitrogen in line with heavier pnictogen elements, resolves incongruities regarding polymeric nitrogen phases and provides insights into polynitrogen arrangements at extreme densities.

  • 33.
    Bykov, Maxim
    et al.
    Howard Univ, DC 20059 USA; Univ Bayreuth, Germany; Carnegie Inst Sci, DC 20015 USA.
    Chariton, Stella
    Univ Chicago, IL 60437 USA.
    Bykova, Elena
    Carnegie Inst Sci, DC 20015 USA.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Ponomareva, Alena V
    Natl Univ Sci and Technol MISIS, Russia.
    Tidholm, Johan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Sedmak, Pavel
    European Synchrotron Radiat Facil, France.
    Prakapenka, Vitali
    Univ Chicago, IL 60437 USA.
    Hanfland, Michael
    European Synchrotron Radiat Facil, France.
    Liermann, Hanns-Peter
    DESY, Germany.
    Mahmood, Mohammad
    Howard Univ, DC 20059 USA.
    Goncharov, Alexander F.
    Carnegie Inst Sci, DC 20015 USA.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    High-Pressure Synthesis of Metal-Inorganic Frameworks Hf4N20 center dot N-2, WN8 center dot N-2, and Os5N28 center dot 3 N-2 with Polymeric Nitrogen Linkers2020Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 59, nr 26, s. 10321-10326Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal-inorganic frameworks Hf4N20 center dot N2, WN 8 center dot N2, and Os5N28 center dot 3N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4N20, WN 8, and Os5N28) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2N11 that features double-helix catenapoly[tetraz-1-ene-1,4-diyl] nitrogen chains [-N-N-N=N-](infinity.)

    Ladda ner fulltext (pdf)
    fulltext
  • 34.
    Khandarkhaeva, Saiana
    et al.
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Bykov, Maxim
    Carnegie Inst Sci, DC 20015 USA.
    Bykova, Elena
    Carnegie Inst Sci, DC 20015 USA.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Sedmak, Pavel
    European Synchrotron Radiat Facil, France.
    Glazyrin, Konstantin
    DESY, Germany.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Novel Rhenium Carbides at 200 GPa2020Ingår i: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, Vol. 2020, nr 22, s. 2186-2190Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Laser heating of rhenium in a diamond anvil cell to 3000 +/- 300 K at about 200 GPa results in formation of two previously unknown rhenium carbides, hexagonal WC-type structured ReC and orthorhombic TiSi2-type structured ReC2. The shortest C-C distances [1.758(3) angstrom at 219(5) GPa and 1.850(4) angstrom at 180(7) GPa] found in honeycomb-like carbon nets in the structure of ReC2 are quite unusual. The Re-C solid solution formed at multimegabar pressure has the carbon content of approximate to 20 at%.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Laniel, Dominique
    et al.
    Univ Bayreuth, Germany.
    Winkler, Bjoern
    Goethe Univ Frankfurt, Germany.
    Bykova, Elena
    DESY, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Chariton, Stella
    Univ Chicago, IL 60637 USA.
    Milman, Victor
    Dassault Syst BIOVIA, England.
    Bykov, Maxim
    Univ Bayreuth, Germany.
    Prakapenka, Vitali
    Univ Chicago, IL 60637 USA.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Novel sulfur hydrides synthesized at extreme conditions2020Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 102, nr 13, artikel-id 134109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The sulfur-hydrogen system is the first one in which superconductivity at temperatures over 200 K has been reported, albeit at high pressure. The particular phases causing the measured T-c and their structures are not yet firmly identified. Here, synchrotron single-crystal x-ray diffraction studies of S-H samples were performed up to 150 GPa and revealed two previously unobserved and unpredicted sulfur-hydrogen phases-H6 +/- xS5 with x similar to 0.4, and H2.85 +/- yS2 with y similar to 0.35. The crystallographic data obtained in this work, both for the new phases and for the previously identified H3S polymorphs, provide an unambiguous experimental proof of the chemical richness of the S-H system and the structural diversity of compounds forming at high pressures and high temperatures. Our results have profound implications for the interpretation of the resistance, superconductivity, and other physical properties measurements on the complex S-H system.

  • 36.
    Meier, Thomas
    et al.
    Univ Bayreuth, Germany.
    Trybel, Florian
    Univ Bayreuth, Germany.
    Criniti, Giacomo
    Univ Bayreuth, Germany.
    Laniel, Dominique
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Koemets, Egor
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Glazyrin, Konstantin
    DESY, Germany.
    Hanfland, Michael
    European Synchrotron Radiat Facil ESRF, France.
    Bykov, Maxim
    Howard Univ, DC 20059 USA.
    Steinle-Neumann, Gerd
    Univ Bayreuth, Germany.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance2020Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 102, nr 16, artikel-id 165109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The atomic and electronic structures of Cu2H and CuH have been investigated by high-pressure nuclear magnetic resonance spectroscopy up to 96 GPa, X-ray diffraction up to 160 GPa, and density functional theory-based calculations. Metallic Cu2H was synthesized at a pressure of 40 GPa, and semimetallic CuH at 90 GPa, found stable up to 160 GPa. For Cu2H, experiments and computations show an anomalous increase in the electronic density of state at the Fermi level for the hydrogen 1s states and the formation of a hydrogen network in the pressure range 43-58 GPa, together with high H-1 mobility of similar to 10(-7) cm(2)/s. A comparison of these observations with results on FeH suggests that they could be common features in metal hydrides.

  • 37.
    Aprilis, Georgios
    et al.
    Univ Bayreuth, Germany.
    Pakhomova, Anna
    Deutsch Elektronen Synchrotron DESY, Germany.
    Chariton, Stella
    Univ Bayreuth, Germany.
    Khandarkhaeva, Saiana
    Univ Bayreuth, Germany.
    Melai, Caterina
    Univ Bayreuth, Germany.
    Bykova, Elena
    Deutsch Elektronen Synchrotron DESY, Germany.
    Bykov, Maxim
    Univ Bayreuth, Germany.
    Fedotenko, Timofey
    Univ Bayreuth, Germany.
    Koemets, Egor
    Univ Bayreuth, Germany.
    McCammon, Catherine
    Univ Bayreuth, Germany.
    Chumakov, Aleksandr I
    ESRF European Synchrotron, France.
    Hanfland, Michael
    ESRF European Synchrotron, France.
    Doubrovinckaia, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Univ Bayreuth, Germany.
    Dubrovinsky, Leonid
    Univ Bayreuth, Germany.
    The Effect of Pulsed Laser Heating on the Stability of Ferropericlase at High Pressures2020Ingår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, MINERALS, Vol. 10, nr 6, artikel-id 542Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It is widely accepted that the lower mantle consists of mainly three major minerals-ferropericlase, bridgmanite and calcium silicate perovskite. Ferropericlase ((Mg,Fe)O) is the second most abundant of the three, comprising approximately 16-20 wt% of the lower mantle. The stability of ferropericlase at conditions of the lowermost mantle has been highly investigated, with controversial results. Amongst other reasons, the experimental conditions during laser heating (such as duration and achieved temperature) have been suggested as a possible explanation for the discrepancy. In this study, we investigate the effect of pulsed laser heating on the stability of ferropericlase, with a geochemically relevant composition of Mg0.76Fe0.24O (Fp24) at pressure conditions corresponding to the upper part of the lower mantle and at a wide temperature range. We report on the decomposition of Fp24 with the formation of a high-pressure (Mg,Fe)(3)O(4)phase with CaTi2O4-type structure, as well as the dissociation of Fp24 into Fe-rich and Mg-rich phases induced by pulsed laser heating. Our results provide further arguments that the chemical composition of the lower mantle is more complex than initially thought, and that the compositional inhomogeneity is not only a characteristic of the lowermost part, but includes depths as shallow as below the transition zone.

    Ladda ner fulltext (pdf)
    fulltext
1 - 37 av 37
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf