liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Silverå Ejneby, Malin
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Gromova, Arina
    KTH Royal Inst Technol, Sweden.
    Ottosson, Nina
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Borg, Stina
    KTH Royal Inst Technol, Sweden.
    Estrada Mondragón, Argel
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Yazdi, Samira
    KTH Royal Inst Technol, Sweden.
    Apostolakis, Panagiotis
    KTH Royal Inst Technol, Sweden.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Delemotte, Lucie
    KTH Royal Inst Technol, Sweden.
    Resin-acid derivatives bind to multiple sites on the voltage-sensor domain of the Shaker potassium channel2021Ingår i: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 153, nr 4, artikel-id e202012676Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Voltage-gated potassium (K-V) channels can be opened by negatively charged resin acids and their derivatives. These resin acids have been proposed to attract the positively charged voltage-sensor helix (S4) toward the extracellular side of the membrane by binding to a pocket located between the lipid-facing extracellular ends of the transmembrane segments S3 and S4. By contrast to this proposed mechanism, neutralization of the top gating charge of the Shaker KV channel increased resin-acid-induced opening, suggesting other mechanisms and sites of action. Here, we explore the binding of two resin-acid derivatives, Wu50 and Wu161, to the activated/open state of the Shaker KV channel by a combination of in silico docking, molecular dynamics simulations, and electrophysiology of mutated channels. We identified three potential resin-acid-binding sites around S4: (1) the S3/S4 site previously suggested, in which positively charged residues introduced at the top of S4 are critical to keep the compound bound, (2) a site in the cleft between S4 and the pore domain (S4/pore site), in which a tryptophan at the top of S6 and the top gating charge of S4 keeps the compound bound, and (3) a site located on the extracellular side of the voltage-sensor domain, in a cleft formed by S1-S4 (the top-VSD site). The multiple binding sites around S4 and the anticipated helical-screw motion of the helix during activation make the effect of resin-acid derivatives on channel function intricate. The propensity of a specific resin acid to activate and open a voltage-gated channel likely depends on its exact binding dynamics and the types of interactions it can form with the protein in a state-specific manner.

  • 2.
    Ottosson, Nina
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Xiongyu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Estrada Mondragón, Argel
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Nilsson, Michelle
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Karlsson, Urban
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Schupp, Melanie
    Soph Biosci AS, Denmark.
    Rognant, Salome
    Univ Copenhagen, Denmark.
    Jepps, Thomas Andrew
    Univ Copenhagen, Denmark.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Synthetic resin acid derivatives selectively open the hK(V)7.2/7.3 channel and prevent epileptic seizures2021Ingår i: Epilepsia, ISSN 0013-9580, E-ISSN 1528-1167, Vol. 62, nr 7, s. 1744-1758Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hK(V)) channel hK(V)7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hK(V)7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hK(V)7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. Methods Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. Results Fourteen resin acid derivatives were tested on hK(V)7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hK(V)7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hK(V)7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hK(V)11.1, hNa(V)1.5, or hCa(V)1.2, or on the amplitude of hK(V)11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. Significance The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.

  • 3.
    Wu, Xiongyu
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Ottosson, Nina
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    A Suzuki-Miyaura Coupling of ortho-Hydroxyaryl Bromide with Isopropenylboronic Pinacol Ester: Synthesis of the Potassium-Channel Opener (+)-Callitrisic Acid2018Ingår i: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, nr 14, s. 1730-1734Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A Suzuki-Miyaura coupling reaction of ortho-hydroxy-aromatic bromide 8 with isopropenylboronic acid pinacol ester has been investigated. It was found that the catalyst of Pd-2(dba)(3)/PCy3 in dioxan-water gave good yield by suppressing the formation of isomeric side product 14. (+)-Callitrisic acid was synthesized from (+)-podocarpic acid using this condition with an overall yield of 54 % in about five steps. (+)-Callitrisic acid was found to be almost three times more potent than dehydroabietic acid to open a voltage-gated potassium channel.

  • 4.
    Silverå Ejneby, Malin
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Wu, Xiongyu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Ottosson, Nina
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Münger, E Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Lundström, Ingemar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Atom-by-atom tuning of the electrostatic potassium-channel modulator dehydroabietic acid2018Ingår i: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 150, nr 5, s. 731-750Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dehydroabietic acid (DHAA) is a naturally occurring component of pine resin that was recently shown to open voltage-gated potassium (KV) channels. The hydrophobic part of DHAA anchors the compound near the channel’s positively charged voltage sensor in a pocket between the channel and the lipid membrane. The negatively charged carboxyl group exerts an electrostatic effect on the channel’s voltage sensor, leading to the channel opening. In this study, we show that the channel-opening effect increases as the length of the carboxyl-group stalk is extended until a critical length of three atoms is reached. Longer stalks render the compounds noneffective. This critical distance is consistent with a simple electrostatic model in which the charge location depends on the stalk length. By combining an effective anchor with the optimal stalk length, we create a compound that opens the human KV7.2/7.3 (M type) potassium channel at a concentration of 1 µM. These results suggest that a stalk between the anchor and the effector group is a powerful way of increasing the potency of a channel-opening drug.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Ottosson, Nina
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Wu, Xiongyu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Yazdi, Samira
    Stockholm University, Sweden.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Lindahl, Erik
    Stockholm University, Sweden; KTH Royal Institute Technology, Sweden.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    A drug pocket at the lipid bilayer-potassium channel interface2017Ingår i: Science Advances, E-ISSN 2375-2548, Vol. 3, nr 10, artikel-id e1701099Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many pharmaceutical drugs against neurological and cardiovascular disorders exert their therapeutic effects by binding to specific sites on voltage-gated ion channels of neurons or cardiomyocytes. To date, all molecules targeting known ion channel sites bind to protein pockets that are mainly surrounded by water. We describe a lipid-protein drug-binding pocket of a potassium channel. We synthesized and electrophysiologically tested 125 derivatives, analogs, and related compounds to dehydroabietic acid. Functional data in combination with docking and molecular dynamics simulations mapped a binding site for small-molecule compounds at the interface between the lipid bilayer and the transmembrane segments S3 and S4 of the voltage-sensor domain. This fundamentally new binding site for small-molecule compounds paves the way for the design of new types of drugs against diseases caused by altered excitability.

    Ladda ner fulltext (pdf)
    fulltext
  • 6. Beställ onlineKöp publikationen >>
    Ottosson, Nina
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Molecular Mechanisms of Resin Acids and Their Derivatives on the Opening of a Potassium Channel2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Voltage-gated ion channels play fundamental roles in excitable cells, such as neurons, where they enable electric signaling. Normally, this signaling is well controlled, but brain damage, alterations in the ionic composition of the extracellular solution, or dysfunctional ion channels can increase the electrical excitability thereby causing epilepsy. Voltage-gated ion channels are obvious targets for antiepileptic drugs, and, as a rule of thumb, excitability is dampened either by closing voltagegated sodium channels (Nav channels) or by opening voltage-gated potassium channels (Kv channels). For example, several classical antiepileptic drugs block the ion-conducting pore of Nav channels. Despite the large number of existing antiepileptic drugs, one third of the patients with epilepsy suffer from intractable or pharmacoresistant seizures.

    Our research group has earlier described how different polyunsaturated fatty acids (PUFAs) open a Kv channel by binding close to the voltage sensor and, from this position, electrostatically facilitate the movement of the voltage-sensor, thereby opening the channel. However, PUFAs affect a wide range of ion channels, making it difficult to use them as pharmaceutical drugs; it would be desirable to find smallmolecule compounds with an electrostatic, PUFA-like mechanism of action. The aim of the research leading to this thesis was to find, characterize, and refine drug candidates capable of electrostatically opening a Kv channel.

    The majority of the experiments were performed on the cloned Shaker Kv channel, expressed in oocytes from the frog Xenopus laevis, and the channel activity was explored with the two-electrode voltage-clamp technique. By systematically mutating the extracellular end of the channel’s voltage sensor, we constructed a highly PUFAsensitive channel, called the 3R channel. Such a channel is a useful tool in the search for electrostatic Kv-channel openers. We found that resin acids, naturally occurring in tree resins, act as electrostatic Shaker Kv channel openers. To explore the structure-activity relationship in detail, we synthesized 120 derivatives, whereof several were potent Shaker Kv channel openers. We mapped a common resin acidbinding site to a pocket formed by the voltage sensor, the channel’s third transmembrane segment, and the lipid membrane, a principally new binding site for small-molecule compounds. Further experiments showed that there are specific interactions between the compounds and the channel, suggesting promises for further drug development. Several of the most potent Shaker Kv channel openers also dampened the excitability in dorsal-root-ganglion neurons from mice, elucidating the pharmacological potency of these compounds. In conclusion, we have found that resin-acid derivatives are robust Kv-channel openers and potential drug candidates against diseases caused by hyperexcitability, such as epilepsy.

    Delarbeten
    1. Drug-induced ion channel opening tuned by the voltage sensor charge profile
    Öppna denna publikation i ny flik eller fönster >>Drug-induced ion channel opening tuned by the voltage sensor charge profile
    2014 (Engelska)Ingår i: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 143, nr 2, s. 173-182Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Polyunsaturated fatty acids modulate the voltage dependence of several voltage-gated ion channels, thereby being potent modifiers of cellular excitability. Detailed knowledge of this molecular mechanism can be used in designing a new class of small-molecule compounds against hyperexcitability diseases. Here, we show that arginines on one side of the helical K-channel voltage sensor S4 increased the sensitivity to docosahexaenoic acid (DHA), whereas arginines on the opposing side decreased this sensitivity. Glutamates had opposite effects. In addition, a positively charged DHA-like molecule, arachidonyl amine, had opposite effects to the negatively charged DHA. This suggests that S4 rotates to open the channel and that DHA electrostatically affects this rotation. A channel with arginines in positions 356, 359, and 362 was extremely sensitive to DHA: 70 mu M DHA at pH 9.0 increased the current greater than500 times at negative voltages compared with wild type (WT). The small-molecule compound pimaric acid, a novel Shaker channel opener, opened the WT channel. The 356R/359R/362R channel drastically increased this effect, suggesting it to be instrumental in future drug screening.

    Ort, förlag, år, upplaga, sidor
    Rockefeller University Press, 2014
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-105035 (URN)10.1085/jgp.201311087 (DOI)000330628500006 ()
    Tillgänglig från: 2014-03-06 Skapad: 2014-03-06 Senast uppdaterad: 2018-01-25
    2. Resin-acid derivatives as potent electrostatic openers of voltage-gated K channels and suppressors of neuronal excitability
    Öppna denna publikation i ny flik eller fönster >>Resin-acid derivatives as potent electrostatic openers of voltage-gated K channels and suppressors of neuronal excitability
    Visa övriga...
    2015 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 5, nr 13278Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.

    Ort, förlag, år, upplaga, sidor
    Nature Publishing Group: Open Access Journals - Option C / Nature Publishing Group, 2015
    Nationell ämneskategori
    Klinisk medicin Kemi
    Identifikatorer
    urn:nbn:se:liu:diva-121307 (URN)10.1038/srep13278 (DOI)000359905300001 ()26299574 (PubMedID)
    Anmärkning

    Funding Agencies|Swedish Research Council; Swedish Brain Foundation; Swedish Heart-Lung Foundation; ALF; County Council of Ostergotland

    Tillgänglig från: 2015-09-16 Skapad: 2015-09-14 Senast uppdaterad: 2022-09-15Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    Molecular Mechanisms of Resin Acids and Their Derivatives on the Opening of a Potassium Channel
    Ladda ner (pdf)
    omslag
    Ladda ner (jpg)
    presentationsbild
  • 7.
    Ottosson, Nina
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Wu, Xiongyu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Nolting, Andreas
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Karlsson, Urban
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Lund, Per-Eric
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Ruda, Katinka
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Svensson, Stefan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Resin-acid derivatives as potent electrostatic openers of voltage-gated K channels and suppressors of neuronal excitability2015Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 5, nr 13278Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Ottosson, Nina
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Hälsouniversitetet.
    Liin, Sara I.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Hälsouniversitetet.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Hälsouniversitetet.
    Drug-induced ion channel opening tuned by the voltage sensor charge profile2014Ingår i: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 143, nr 2, s. 173-182Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polyunsaturated fatty acids modulate the voltage dependence of several voltage-gated ion channels, thereby being potent modifiers of cellular excitability. Detailed knowledge of this molecular mechanism can be used in designing a new class of small-molecule compounds against hyperexcitability diseases. Here, we show that arginines on one side of the helical K-channel voltage sensor S4 increased the sensitivity to docosahexaenoic acid (DHA), whereas arginines on the opposing side decreased this sensitivity. Glutamates had opposite effects. In addition, a positively charged DHA-like molecule, arachidonyl amine, had opposite effects to the negatively charged DHA. This suggests that S4 rotates to open the channel and that DHA electrostatically affects this rotation. A channel with arginines in positions 356, 359, and 362 was extremely sensitive to DHA: 70 mu M DHA at pH 9.0 increased the current greater than500 times at negative voltages compared with wild type (WT). The small-molecule compound pimaric acid, a novel Shaker channel opener, opened the WT channel. The 356R/359R/362R channel drastically increased this effect, suggesting it to be instrumental in future drug screening.

    Ladda ner fulltext (pdf)
    fulltext
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf