Paramagnetic defects and nuclear spins are often the major sources of decoherence and spin relaxation in solid-state qubits realized by optically addressable point defect spins in semiconductors. It is commonly accepted that a high degree of depletion of nuclear spins can enhance the coherence time by reducing magnetic noise. Here we show that the isotope purification beyond a certain optimal level can become contraproductive when both electron and nuclear spins are present in the vicinity of the qubits, particularly for half-spin systems. Using state-of-the-art numerical tools and considering the silicon-vacancy qubit in various spin environments, we demonstrate that the coupling of the spin-3/2 qubit to a spin bath of spin-1/2 point defects in the lattice can be significantly enhanced by isotope purification. The enhanced coupling shortens the spin-relaxation time that in turn may limit the coherence time of spin qubits. Our results can be generalized to triplet point defect qubits, such as the nitrogen-vacancy center in diamond and the divacancy in silicon carbide.
Paramagnetic defects and nuclear spins are the major sources of magnetic-field-dependent spin relaxation in point-defect quantum bits. The detection of related optical signals has led to the development of advanced relaxometry applications with high spatial resolution. The nearly degenerate quartet ground state of the silicon-vacancy qubit in silicon carbide (SiC) is of special interest in this respect, as it gives rise to relaxation-rate extrema at vanishing magnetic field values and emits in the first near-infrared transmission window of biological tissues, providing an opportunity for the development of sensing applications for medicine and biology. However, the relaxation dynamics of the silicon-vacancy center in SiC have not yet been fully explored. In this paper, we present results from a comprehensive theoretical investigation of the dipolar spin relaxation of the quartet spin states in various local spin environments. We discuss the underlying physics and quantify the magnetic field and spin-bath-dependent relaxation time T1. Using these findings, we demonstrate that the silicon-vacancy qubit in SiC can implement microwave-free low-magnetic-field quantum sensors of great potential.
Divacancy spins implement qubits with outstanding characteristics and capabilities in an industrial semiconductor host. On the other hand, there are still numerous open questions about the physics of these important defects, for instance, spin relaxation has not been thoroughly studied yet. Here, we carry out a theoretical study on environmental spin-induced spin relaxation processes of divacancy qubits in the 4H polytype of silicon carbide (4H-SiC). We reveal all the relevant magnetic field values where the longitudinal spin relaxation time T-1 drops resonantly due to the coupling to either nuclear spins or electron spins. We quantitatively analyze the dependence of the T-1 time on the concentration of point defect spins and the applied magnetic field and provide an analytical expression. We demonstrate that dipolar spin relaxation plays a significant role both in as-grown and ion-implanted samples and it often limits the coherence time of divacancy qubits in 4H-SiC.