liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Boström-Rost, Per
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Axehill, Daniel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    PMBM Filter With Partially Grid-Based Birth Model With Applications in Sensor Management2022Ingår i: IEEE Transactions on Aerospace and Electronic Systems, ISSN 0018-9251, E-ISSN 1557-9603, Vol. 58, nr 1, s. 530-540Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This article introduces a Poisson multi-Bernoulli mixture (PMBM) filter in which the intensities of target birth and undetected targets are grid-based. A simplified version of the Rao-Blackwellized point mass filter is used to predict the intensity of undetected targets and to initialize tracks of targets detected for the first time. The grid approximation can efficiently represents intensities with abrupt changes with relatively few grid points compared to the number of Gaussian components needed in conventional PMBM implementations. This is beneficial in scenarios where the sensors field of view is limited. The proposed method is illustrated in a sensor management setting, where trajectories of sensors with limited fields of view are controlled to search for and track the targets in a region of interest.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Boström-Rost, Per
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Axehill, Daniel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Sensor management for search and track using the Poisson multi-Bernoulli mixture filter2021Ingår i: IEEE Transactions on Aerospace and Electronic Systems, ISSN 0018-9251, E-ISSN 1557-9603, Vol. 57, nr 5, s. 2771-2783Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A sensor management method for joint multi-target search and track problems is proposed, where a single user-defined parameter allows for a trade-off between the two objectives. The multi-target density is propagated using the Poisson multi-Bernoulli mixture filter, which eliminates the need for a separate handling of undiscovered targets and provides the theoretical foundation for a unified search and track method. Monte Carlo simulations of two scenarios are used to evaluate the performance of the proposed method.

    Ladda ner fulltext (pdf)
    fulltext
  • 3. Beställ onlineKöp publikationen >>
    Boström-Rost, Per
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Sensor Management for Target Tracking Applications2021Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Many practical applications, such as search and rescue operations and environmental monitoring, involve the use of mobile sensor platforms. The workload of the sensor operators is becoming overwhelming, as both the number of sensors and their complexity are increasing. This thesis addresses the problem of automating sensor systems to support the operators. This is often referred to as sensor management. By planning trajectories for the sensor platforms and exploiting sensor characteristics, the accuracy of the resulting state estimates can be improved. The considered sensor management problems are formulated in the framework of stochastic optimal control, where prior knowledge, sensor models, and environment models can be incorporated. The core challenge lies in making decisions based on the predicted utility of future measurements.

    In the special case of linear Gaussian measurement and motion models, the estimation performance is independent of the actual measurements. This reduces the problem of computing sensing trajectories to a deterministic optimal control problem, for which standard numerical optimization techniques can be applied. A theorem is formulated that makes it possible to reformulate a class of nonconvex optimization problems with matrix-valued variables as convex optimization problems. This theorem is then used to prove that globally optimal sensing trajectories can be computed using off-the-shelf optimization tools. 

    As in many other fields, nonlinearities make sensor management problems more complicated. Two approaches are derived to handle the randomness inherent in the nonlinear problem of tracking a maneuvering target using a mobile range-bearing sensor with limited field of view. The first approach uses deterministic sampling to predict several candidates of future target trajectories that are taken into account when planning the sensing trajectory. This significantly increases the tracking performance compared to a conventional approach that neglects the uncertainty in the future target trajectory. The second approach is a method to find the optimal range between the sensor and the target. Given the size of the sensor's field of view and an assumption of the maximum acceleration of the target, the optimal range is determined as the one that minimizes the tracking error while satisfying a user-defined constraint on the probability of losing track of the target.    

    While optimization for tracking of a single target may be difficult, planning for jointly maintaining track of discovered targets and searching for yet undetected targets is even more challenging. Conventional approaches are typically based on a traditional tracking method with separate handling of undetected targets. Here, it is shown that the Poisson multi-Bernoulli mixture (PMBM) filter provides a theoretical foundation for a unified search and track method, as it not only provides state estimates of discovered targets, but also maintains an explicit representation of where undetected targets may be located. Furthermore, in an effort to decrease the computational complexity, a version of the PMBM filter which uses a grid-based intensity to represent undetected targets is derived.

    Delarbeten
    1. On Global Optimization for Informative Path Planning
    Öppna denna publikation i ny flik eller fönster >>On Global Optimization for Informative Path Planning
    2018 (Engelska)Ingår i: IEEE Control Systems Letters, E-ISSN 2475-1456, Vol. 2, nr 4, s. 833-838Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The problem of path planning for mobilesensors with the task of target monitoring is considered. A receding horizon optimal control approach based on the information filter is presented, where the limited field of view of the sensor can be modeled by introducing binary variables. The resulting nonlinear mixed integer problem to be solved in each sample, with no apparent tractable solution, is shown to be equivalent to a problem that robustly can be solved to global optimality using off-the-shelf optimization tools.

    Nyckelord
    Sensor fusion; Optimal control; Optimization; WASP_publications
    Nationell ämneskategori
    Reglerteknik
    Identifikatorer
    urn:nbn:se:liu:diva-151461 (URN)10.1109/LCSYS.2018.2849559 (DOI)
    Projekt
    Wallenberg AI, Autonomous Systems and Software Program (WASP)
    Forskningsfinansiär
    Wallenbergstiftelserna
    Tillgänglig från: 2018-09-21 Skapad: 2018-09-21 Senast uppdaterad: 2023-08-25
    2. Informative Path Planning in the Presence of Adversarial Observers
    Öppna denna publikation i ny flik eller fönster >>Informative Path Planning in the Presence of Adversarial Observers
    2019 (Engelska)Ingår i: 2019 22th International Conference on Information Fusion (FUSION), Institute of Electrical and Electronics Engineers (IEEE), 2019Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This paper considers the problem of gathering information about features of interest in adversarial environments using mobile robots equipped with sensors. The problem is formulated as an informative path planning problem where the objective is to maximize the gathered information while minimizing the tracking performance of the adversarial observer. The optimization problem, that at first glance seems intractable to solve to global optimality, is shown to be equivalent to a mixed-integer semidefinite program that can be solved to global optimality using off-the-shelf optimization tools.

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2019
    Nyckelord
    Informative path planning, risk minimization, global optimization, WASP_publications
    Nationell ämneskategori
    Reglerteknik
    Identifikatorer
    urn:nbn:se:liu:diva-159622 (URN)10.23919/FUSION43075.2019.9011193 (DOI)000567728800036 ()978-0-9964527-8-6 (ISBN)978-1-7281-1840-6 (ISBN)
    Konferens
    22nd International Conference on Information Fusion (FUSION), Ottawa, Canada, July 2-5, 2019
    Projekt
    WASP
    Forskningsfinansiär
    Wallenberg AI, Autonomous Systems and Software Program (WASP)
    Anmärkning

    Funding agencies: Wallenberg AI, Autonomous Systems and Software Program (WAS I) - Knut and Alice Wallenberg Foundation

    Tillgänglig från: 2019-08-13 Skapad: 2019-08-13 Senast uppdaterad: 2022-09-19
    3. Informative Path Planning for Active Tracking of Agile Targets
    Öppna denna publikation i ny flik eller fönster >>Informative Path Planning for Active Tracking of Agile Targets
    2019 (Engelska)Ingår i: Proceedings of 2019 IEEE Aerospace Conference, Institute of Electrical and Electronics Engineers (IEEE), 2019, s. 1-11, artikel-id 06.0701Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This paper proposes a method to generate informative trajectories for a mobile sensor that tracks agile targets.The goal is to generate a sensor trajectory that maximizes the tracking performance, captured by a measure of the covariance matrix of the target state estimate. The considered problem is acombination of estimation and control, and is often referred to as informative path planning (IPP). When using nonlinear sensors, the tracking performance depends on the actual measurements, which are naturally unavailable in the planning stage.The planning problem hence becomes a stochastic optimization problem, where the expected tracking performance is used inthe objective function. The main contribution of this work is anapproximation of the problem based on deterministic sampling of the predicted target distribution. This is in contrast to prior work, where only the most likely target trajectory is considered.It is shown that the proposed method greatly improves the ability to track agile targets, compared to a baseline approach.   

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2019
    Serie
    IEEE AEROSPACE CONFERENCE, ISSN 1095-323X
    Nyckelord
    Informative Path Planning; Target Tracking; Sensor Management; Stochastic Control; WASP_publications
    Nationell ämneskategori
    Reglerteknik Signalbehandling
    Identifikatorer
    urn:nbn:se:liu:diva-155035 (URN)10.1109/AERO.2019.8741840 (DOI)000481648201091 ()9781538668542 (ISBN)9781538668559 (ISBN)
    Konferens
    IEEE Aerospace Conference 2019, Big Sky, MT, USA, March 3-8, 2019
    Projekt
    WASP
    Forskningsfinansiär
    Wallenberg AI, Autonomous Systems and Software Program (WASP)
    Anmärkning

    Funding agencies:  Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation 

    Tillgänglig från: 2019-03-09 Skapad: 2019-09-23 Senast uppdaterad: 2022-09-02Bibliografiskt granskad
    4. Optimal Range and Beamwidth for Radar Tracking of Maneuvering Targets Using Nearly Constant Velocity Filters
    Öppna denna publikation i ny flik eller fönster >>Optimal Range and Beamwidth for Radar Tracking of Maneuvering Targets Using Nearly Constant Velocity Filters
    2020 (Engelska)Ingår i: Proceedings of 2020 IEEE Aerospace Conference, 2020Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    For a given radar system on an unmanned air vehicle, this work proposes a method to find the optimal tracking rangeand the optimal beamwidth for tracking a maneuvering target.  An inappropriate optimal range or beamwidth is indicative ofthe need for a redesign of the radar system. An extended Kalman filter (EKF) is employed to estimate the state of the target using measurements of the range and bearing from the sensor to the target. The proposed method makes use of an alpha-beta filter to predict the expected tracking performanceof the EKF. Using an assumption of the maximum acceleration of the target, the optimal tracking range (or beamwidth) is determined as the one that minimizes the maximum mean squared error (MMSE) of the position estimates while satisfying a user-defined constraint on the probability of losing track of the target.The applicability of the design method is verified using Monte Carlo simulations.

    Serie
    IEEE Aerospace Conference, ISSN 1095-323X
    Nyckelord
    Target Tracking; Maneuvering Targets; Track Filter Design; Target Tracking; Kalman Filtering; Filter Design; Estimation; WASP_publications
    Nationell ämneskategori
    Reglerteknik Signalbehandling
    Identifikatorer
    urn:nbn:se:liu:diva-166532 (URN)10.1109/AERO47225.2020.9172558 (DOI)000681699102089 ()978-1-7281-2734-7 (ISBN)978-1-7281-2735-4 (ISBN)
    Konferens
    IEEE Aerospace Conference, Big Sky, MT, USA, March 7-14, 2020.
    Projekt
    WASP
    Forskningsfinansiär
    Wallenberg AI, Autonomous Systems and Software Program (WASP)
    Tillgänglig från: 2020-06-16 Skapad: 2020-06-16 Senast uppdaterad: 2022-09-02
    5. Sensor management for search and track using the Poisson multi-Bernoulli mixture filter
    Öppna denna publikation i ny flik eller fönster >>Sensor management for search and track using the Poisson multi-Bernoulli mixture filter
    2021 (Engelska)Ingår i: IEEE Transactions on Aerospace and Electronic Systems, ISSN 0018-9251, E-ISSN 1557-9603, Vol. 57, nr 5, s. 2771-2783Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A sensor management method for joint multi-target search and track problems is proposed, where a single user-defined parameter allows for a trade-off between the two objectives. The multi-target density is propagated using the Poisson multi-Bernoulli mixture filter, which eliminates the need for a separate handling of undiscovered targets and provides the theoretical foundation for a unified search and track method. Monte Carlo simulations of two scenarios are used to evaluate the performance of the proposed method.

    Ort, förlag, år, upplaga, sidor
    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2021
    Nyckelord
    Sensor management, search and track, Poisson multi-Bernoulli mixture filter, multi-target tracking, informative path planning, receding horizon control, Monte Carlo tree search, WASP_publications
    Nationell ämneskategori
    Reglerteknik Signalbehandling
    Identifikatorer
    urn:nbn:se:liu:diva-174679 (URN)10.1109/TAES.2021.3061802 (DOI)000704826600015 ()
    Projekt
    WASP
    Forskningsfinansiär
    Wallenberg AI, Autonomous Systems and Software Program (WASP)
    Anmärkning

    Funding: Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation; Industry Excellence Center LINKSIC - Swedish Governmental Agency for Innovation Systems (VINNOVA)Vinnova; Saab AB

    Tillgänglig från: 2021-03-29 Skapad: 2021-03-29 Senast uppdaterad: 2022-03-21
    6. PMBM Filter With Partially Grid-Based Birth Model With Applications in Sensor Management
    Öppna denna publikation i ny flik eller fönster >>PMBM Filter With Partially Grid-Based Birth Model With Applications in Sensor Management
    2022 (Engelska)Ingår i: IEEE Transactions on Aerospace and Electronic Systems, ISSN 0018-9251, E-ISSN 1557-9603, Vol. 58, nr 1, s. 530-540Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    This article introduces a Poisson multi-Bernoulli mixture (PMBM) filter in which the intensities of target birth and undetected targets are grid-based. A simplified version of the Rao-Blackwellized point mass filter is used to predict the intensity of undetected targets and to initialize tracks of targets detected for the first time. The grid approximation can efficiently represents intensities with abrupt changes with relatively few grid points compared to the number of Gaussian components needed in conventional PMBM implementations. This is beneficial in scenarios where the sensors field of view is limited. The proposed method is illustrated in a sensor management setting, where trajectories of sensors with limited fields of view are controlled to search for and track the targets in a region of interest.

    Ort, förlag, år, upplaga, sidor
    IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022
    Nyckelord
    Radio frequency; Target tracking; Density measurement; Time measurement; Standards; Indexes; Velocity measurement; Multitarget tracking; poisson multi-bernoulli mixture (PMBM) filter; Rao-Blackwellized point mass filter (PMF); sensor management; WASP_publications
    Nationell ämneskategori
    Reglerteknik Signalbehandling
    Identifikatorer
    urn:nbn:se:liu:diva-182957 (URN)10.1109/taes.2021.3103255 (DOI)000753483500042 ()
    Forskningsfinansiär
    Wallenberg AI, Autonomous Systems and Software Program (WASP)Vinnova, LINK-SIC
    Anmärkning

    Funding: Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation; Industry Excellence Center LINKSIC - Swedish Governmental Agency for Innovation Systems (VINNOVA)Vinnova; Saab AB

    Tillgänglig från: 2022-02-14 Skapad: 2022-02-14 Senast uppdaterad: 2022-09-02
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 4.
    Boström-Rost, Per
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Axehill, Daniel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Blair, William Dale
    Georgia Tech Research Institute, USA.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Optimal Range and Beamwidth for Radar Tracking of Maneuvering Targets Using Nearly Constant Velocity Filters2020Ingår i: Proceedings of 2020 IEEE Aerospace Conference, 2020Konferensbidrag (Refereegranskat)
    Abstract [en]

    For a given radar system on an unmanned air vehicle, this work proposes a method to find the optimal tracking rangeand the optimal beamwidth for tracking a maneuvering target.  An inappropriate optimal range or beamwidth is indicative ofthe need for a redesign of the radar system. An extended Kalman filter (EKF) is employed to estimate the state of the target using measurements of the range and bearing from the sensor to the target. The proposed method makes use of an alpha-beta filter to predict the expected tracking performanceof the EKF. Using an assumption of the maximum acceleration of the target, the optimal tracking range (or beamwidth) is determined as the one that minimizes the maximum mean squared error (MMSE) of the position estimates while satisfying a user-defined constraint on the probability of losing track of the target.The applicability of the design method is verified using Monte Carlo simulations.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Boström-Rost, Per
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Reglerteknik.
    Axehill, Daniel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Informative Path Planning for Active Tracking of Agile Targets2019Ingår i: Proceedings of 2019 IEEE Aerospace Conference, Institute of Electrical and Electronics Engineers (IEEE), 2019, s. 1-11, artikel-id 06.0701Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper proposes a method to generate informative trajectories for a mobile sensor that tracks agile targets.The goal is to generate a sensor trajectory that maximizes the tracking performance, captured by a measure of the covariance matrix of the target state estimate. The considered problem is acombination of estimation and control, and is often referred to as informative path planning (IPP). When using nonlinear sensors, the tracking performance depends on the actual measurements, which are naturally unavailable in the planning stage.The planning problem hence becomes a stochastic optimization problem, where the expected tracking performance is used inthe objective function. The main contribution of this work is anapproximation of the problem based on deterministic sampling of the predicted target distribution. This is in contrast to prior work, where only the most likely target trajectory is considered.It is shown that the proposed method greatly improves the ability to track agile targets, compared to a baseline approach.   

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Boström-Rost, Per
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Axehill, Daniel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Informative Path Planning in the Presence of Adversarial Observers2019Ingår i: 2019 22th International Conference on Information Fusion (FUSION), Institute of Electrical and Electronics Engineers (IEEE), 2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper considers the problem of gathering information about features of interest in adversarial environments using mobile robots equipped with sensors. The problem is formulated as an informative path planning problem where the objective is to maximize the gathered information while minimizing the tracking performance of the adversarial observer. The optimization problem, that at first glance seems intractable to solve to global optimality, is shown to be equivalent to a mixed-integer semidefinite program that can be solved to global optimality using off-the-shelf optimization tools.

    Ladda ner fulltext (pdf)
    fulltext
  • 7. Beställ onlineKöp publikationen >>
    Boström-Rost, Per
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    On Informative Path Planning for Tracking and Surveillance2019Licentiatavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    This thesis studies a class of sensor management problems called informative path planning (IPP). Sensor management refers to the problem of optimizing control inputs for sensor systems in dynamic environments in order to achieve operational objectives. The problems are commonly formulated as stochastic optimal control problems, where to objective is to maximize the information gained from future measurements. In IPP, the control inputs affect the movement of the sensor platforms, and the goal is to compute trajectories from where the sensors can obtain measurements that maximize the estimation performance. The core challenge lies in making decisions based on the predicted utility of future measurements.

    In linear Gaussian settings, the estimation performance is independent of the actual measurements. This means that IPP becomes a deterministic optimal control problem, for which standard numerical optimization techniques can be applied. This is exploited in the first part of this thesis. A surveillance application is considered, where a mobile sensor is gathering information about features of interest while avoiding being tracked by an adversarial observer. The problem is formulated as an optimization problem that allows for a trade-off between informativeness and stealth. We formulate a theorem that makes it possible to reformulate a class of nonconvex optimization problems with matrix-valued variables as convex optimization problems. This theorem is then used to prove that the seemingly intractable IPP problem can be solved to global optimality using off-the-shelf optimization tools.

    The second part of this thesis considers tracking of a maneuvering target using a mobile sensor with limited field of view. The problem is formulated as an IPP problem, where the goal is to generate a sensor trajectory that maximizes the expected tracking performance, captured by a measure of the covariance matrix of the target state estimate. When the measurements are nonlinear functions of the target state, the tracking performance depends on the actual measurements, which depend on the target’s trajectory. Since these are unavailable in the planning stage, the problem becomes a stochastic optimal control problem. An approximation of the problem based on deterministic sampling of the distribution of the predicted target trajectory is proposed. It is demonstrated in a simulation study that the proposed method significantly increases the tracking performance compared to a conventional approach that neglects the uncertainty in the future target trajectory.

    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 8.
    Boström-Rost, Per
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Axehill, Daniel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    On Global Optimization for Informative Path Planning2018Ingår i: IEEE Control Systems Letters, E-ISSN 2475-1456, Vol. 2, nr 4, s. 833-838Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The problem of path planning for mobilesensors with the task of target monitoring is considered. A receding horizon optimal control approach based on the information filter is presented, where the limited field of view of the sensor can be modeled by introducing binary variables. The resulting nonlinear mixed integer problem to be solved in each sample, with no apparent tractable solution, is shown to be equivalent to a problem that robustly can be solved to global optimality using off-the-shelf optimization tools.

    Ladda ner fulltext (pdf)
    fulltext
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf