liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 38 av 38
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Xiao, Manjun
    et al.
    Xiangtan Univ, Peoples R China; South China Univ Technol, Peoples R China; Changzhou Univ, Peoples R China.
    Liu, Longfei
    Xiangtan Univ, Peoples R China.
    Meng, Yongdie
    Xiangtan Univ, Peoples R China.
    Fan, Baobing
    City Univ Hong Kong, Peoples R China.
    Su, Wenyan
    Xian Univ Sci & Technol, Peoples R China.
    Jin, Conggui
    Xiangtan Univ, Peoples R China.
    Liao, Luocheng
    Xiangtan Univ, Peoples R China.
    Yi, Fan
    Xiangtan Univ, Peoples R China; Xi An Jiao Tong Univ, Peoples R China.
    Xu, Chao
    Xiangtan Univ, Peoples R China; Changzhou Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Jen, Alex K. -Y.
    City Univ Hong Kong, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Fan, Qunping
    Xi An Jiao Tong Univ, Peoples R China; Changzhou Univ, Peoples R China.
    Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive2023Ingår i: Science in China Series B: Chemistry, ISSN 1674-7291, E-ISSN 1869-1870Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Additives play a crucial role in enhancing the photovoltaic performance of polymer solar cells (PSCs). However, the typical additives used to optimize blend morphology of PSCs are still high boiling-point solvents, while their trace residues may reduce device stability. Herein, an effective strategy of "solidification of solvent additive (SSA)" has been developed to convert additive from liquid to solid, by introducing a covalent bond into low-cost solvent diphenyl sulfide (DPS) to synthesize solid dibenzothiophene (DBT) in one-step, which achieves optimized morphology thus promoting efficiency and device stability. Owing to the fine planarity and volatilization of DBT, the DBT-processed films achieve ordered molecular crystallinity and suitable phase separation compared to the additive-free or DPS-treated ones. Importantly, the DBT-processed device also possesses improved light absorption, enhanced charge transport, and thus a champion efficiency of 11.9% is achieved in the PM6:Y6-based PSCs with an excellent additive component tolerance, reproducibility, and stability. Additionally, the DBT-processed PM6:L8-BO-based PSCs are further fabricated to study the universality of SSA strategy, offering an impressive efficiency approaching 19% as one of the highest values in binary PSCs. In conclusion, this article developed a promising strategy named SSA to boost efficiency and improve stability of PSCs.

  • 2.
    Qian, Deping
    et al.
    Fujian Normal Univ, Peoples R China; Straits Lab Flexible Elect SLoFE, Peoples R China; Imperial Coll London, England.
    Pratik, Saied Md
    Univ Arizona, AZ 85721 USA.
    Liu, Qi
    Shandong Univ, Peoples R China.
    Dong, Yifan
    Imperial Coll London, England.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yu, Jianwei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Gasparini, Nicola
    Imperial Coll London, England.
    Wu, Jiaying
    Imperial Coll London, England.
    Zhang, Tiankai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Coropceanu, Veaceslav
    Univ Arizona, AZ 85721 USA.
    Guo, Xia
    Shandong Univ, Peoples R China.
    Zhang, Maojie
    Shandong Univ, Peoples R China.
    Bredas, Jean-Luc
    Univ Arizona, AZ 85721 USA.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Durrant, James R.
    Imperial Coll London, England; Swansea Univ, Wales.
    Correlating the Hybridization of Local-Exciton and Charge-Transfer States with Charge Generation in Organic Solar Cells2023Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In organic solar cells with very small energetic-offset (& UDelta;ELE - CT), the charge-transfer (CT) and local-exciton (LE) states strongly interact via electronic hybridization and thermal population effects, suppressing the non-radiative recombination. Here, we investigated the impact of these effects on charge generation and recombination. In the blends of PTO2:C8IC and PTO2:Y6 with very small, ultra-fast CT state formation was observed, and assigned to direct photoexcitation resulting from strong hybridization of the LE and CT states (i.e., LE-CT intermixed states). These states in turn accelerate the recombination of both CT and charge separated (CS) states. Moreover, they can be significantly weakened by an external-electric field, which enhanced the yield of CT and CS states but attenuated the emission of the device. This study highlights that excessive LE-CT hybridization due to very low , whilst enabling direct and ultrafast charge transfer and increasing the proportion of radiative versus non-radiative recombination rates, comes at the expense of accelerating recombination losses competing with exciton-to-charge conversion process, resulting in a loss of photocurrent generation.

  • 3.
    Fan, Baobing
    et al.
    City Univ Hong Kong, Peoples R China.
    Gao, Wei
    City Univ Hong Kong, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Kaminsky, Werner
    Univ Washington, WA 98195 USA.
    Tang, Lingxiao
    Xi An Jiao Tong Univ, Peoples R China.
    Lin, Francis R.
    City Univ Hong Kong, Peoples R China.
    Wang, Yiwen
    City Univ Hong Kong, Peoples R China.
    Fan, Qunping
    Xi An Jiao Tong Univ, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Jen, Alex K. -Y.
    City Univ Hong Kong, Peoples R China; Univ Washington, WA 98195 USA.
    Correlation of Broad Absorption Band with Small Singlet-Triplet Energy Gap in Organic Photovoltaics2023Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic photovoltaics (OPV) are one of the most effective ways to harvest renewable solar energy, with the power conversion efficiency (PCE) of the devices soaring above 19% when processed with halogenated solvents. The superior photocurrent of OPV over other emerging photovoltaics offers more opportunities to further improve the efficiency. Tailoring the absorption band of photoactive materials is an effective way to further enhance OPV photocurrent. However, the field has mostly been focusing on improving the near-infrared region photo-response, with the absorption shoulders in short-wavelength region (SWR) usually being neglected. Herein, by developing a series of non-fullerene acceptors (NFAs) with varied side-group conjugations, we observe an enhanced SWR absorption band with increased side-group conjugation length. The underpinning factors of how molecular structures and geometries improve SWR absorption are clearly elucidated through theoretical modelling and crystallography. Moreover, a clear relationship between the enhanced SWR absorption and reduced singlet-triplet energy gap is established, both of which are favorable for the OPV performance and can be tailored by rational structure design of NFAs. Finally, the rationally designed NFA, BO-TTBr, affords a decent PCE of 18.5% when processed with a non-halogenated green solvent.

  • 4.
    Fan, Baobing
    et al.
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Gao, Wei
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Kaminsky, Werner
    Univ Washington, WA 98195 USA.
    Lin, Francis R.
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Xia, Xinxin
    Chinese Univ Hong Kong, Peoples R China.
    Fan, Qunping
    Xi An Jiao Tong Univ, Peoples R China.
    Li, Yanxun
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    An, Yidan
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Wu, Yue
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Liu, Ming
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Lu, Xinhui
    Chinese Univ Hong Kong, Peoples R China.
    Li, Wen Jung
    City Univ Hong Kong, Peoples R China.
    Yip, Hin-Lap
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Jen, Alex K. -Y.
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China; Univ Washington, WA 98195 USA.
    Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics2023Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 145, nr 10, s. 5909-5919Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with localisomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.

  • 5.
    Qi, Feng
    et al.
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Li, Yanxun
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Lin, Francis R. R.
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Liu, Kaikai
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China.
    Fan, Qunping
    Xi An Jiao Tong Univ, Peoples R China.
    Jen, Alex K. -Y.
    City Univ Hong Kong, Peoples R China; City Univ Hong Kong, Peoples R China; Univ Washington, WA 98195 USA; City Univ Hong Kong, Peoples R China.
    Dimer Acceptor Adopting a Flexible Linker for Efficient and Durable Organic Solar Cells2023Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, artikel-id e202303066Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic solar cells (OSCs) have advanced rapidly due to the development of new photovoltaic materials. However, the long-term stability of OSCs still poses a severe challenge for their commercial deployment. To address this issue, a dimer acceptor (dT9TBO) with flexible linker is developed for incorporation into small-molecule acceptors to form molecular alloy with enhanced intermolecular packing and suppressed molecular diffusion to stabilize active layer morphology. Consequently, the PM6 : Y6 : dT9TBO-based device displays an improved power conversion efficiency (PCE) of 18.41 % with excellent thermal stability and negligible decay after being aged at 65 degrees C for 1800 h. Moreover, the PM6 : Y6 : dT9TBO-based flexible OSC also exhibits excellent mechanical durability, maintaining 95 % of its initial PCE after being bended repetitively for 1500 cycles. This work provides a simple and effective way to fine-tune the molecular packing with stabilized morphology to overcome the trade-off between OSC efficiency and stability.

  • 6.
    Zhang, Zhiliang
    et al.
    Soochow Univ, Peoples R China.
    Wu, Jingnan
    Soochow Univ, Peoples R China; Aalborg Univ, Denmark.
    Lin, Ji
    Soochow Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Lv, Junfang
    Soochow Univ, Peoples R China.
    Yu, Linfeng
    Soochow Univ, Peoples R China.
    Guo, Xia
    Shandong Univ, Peoples R China.
    Zhang, Maojie
    Soochow Univ, Peoples R China; Shandong Univ, Peoples R China.
    Enhancing intermolecular packing and light harvesting through asymmetric non-fullerene acceptors for achieving 18.7% efficiency ternary organic solar cells2023Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 11, nr 28, s. 15553-15560Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In recent years, the ternary strategy has been proven to be an effective way to improve the performance of organic solar cells (OSCs). Herein, an asymmetric medium-band gap non-fullerene acceptor (AFIC) is synthesized and added as the third component into the PM6:BTP-eC9 binary blend for a highly efficient ternary OSC. AFIC exhibits a well-complementary absorption spectrum with the host binary blend, which benefits light harvesting of the active layer. Furthermore, AFIC shows a large dipole moment and good miscibility with BTP-eC9, which facilitates the formation of a stable well-mixed phase and enhances molecular packing in the blend, leading to improved charge transport and suppressed charge recombination in ternary devices. As a result, the ternary OSC based on PM6:BTP-eC9:AFIC demonstrates a significantly improved power conversion efficiency (PCE) of 18.7% while the binary OSC based on PM6:BTP-eC9 shows a PCE of 17.5%, which is attributed to the synergistic enhancement of the open-circuit voltage (V-oc), short-circuit current density (J(sc)), and fill factor (FF).

  • 7.
    Liu, Yadi
    et al.
    Chinese Acad Sci, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Zhang, Tao
    Chinese Acad Sci, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Guan, Jian
    Chinese Acad Sci, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Pan, Jiaqi
    Chinese Acad Sci, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Yu, Xinhong
    Chinese Acad Sci, Peoples R China.
    Zhang, Qiang
    Chinese Acad Sci, Peoples R China.
    Han, Yanchun
    Chinese Acad Sci, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Enhancing the Molecular Order and Vertical Component Distribution of the P3HT/O-IDTBR System during Layer-by-Layer Processing2023Ingår i: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The molecular order and vertical component distribution are critical to enhance the charge transport in layer-by-layer (LbL) processed active layer. However, the excessive inter-diffusion between donor and acceptor layers during LbL processing irrepressibly reduces their ordered packing. Herein, a novel tactic to optimize the molecular order and vertical morphology of the active layer through suppressing the deep penetration of (5Z,5 & PRIME;Z)-5,5 & PRIME;-((7,7 & PRIME;-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6 -b & PRIME;]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene)) bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR) to poly(3-hexylthiophene) (P3HT) film during LbL processing is proposed. This is enabled by inducing the formation of P3HT nanofibers through ultraviolet (UV) irradiation and solution aging. During the LbL processing, these nanofibers with high crystallinity reduce the damage of O-IDTBR solution to P3HT film and restrict the penetration of O-IDTBR into P3HT matrix. As a result, the P3HT nanofibers are preserved and the degree of vertical phase separation is enlarged in the LbL-processed film. Meanwhile, the molecular order of both components is enhanced. The resulting morphology that featured as intertwined P3HT nanofibers/O-IDTBR network efficiently promotes charge transport and extraction, boosting the power conversion efficiency (PCE) of the devices from 6.70 & PLUSMN; 0.12% to 7.71 & PLUSMN; 0.10%.

  • 8.
    Bai, Yang
    et al.
    Beijing Univ Chem Technol, Peoples R China.
    Zhang, Ze
    Beijing Univ Chem Technol, Peoples R China.
    Zhou, Qiuju
    Xinyang Normal Univ, Peoples R China.
    Geng, Hua
    Capital Normal Univ, Peoples R China.
    Chen, Qi
    Beijing Univ Chem Technol, Peoples R China.
    Kim, Seoyoung
    Ulsan Natl Inst Sci & Technol UNIST, South Korea.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Cen
    Beijing Univ Chem Technol, Peoples R China.
    Chang, Bowen
    Beijing Univ Chem Technol, Peoples R China.
    Li, Shangyu
    Beijing Univ Chem Technol, Peoples R China.
    Fu, Hongyuan
    Beijing Univ Chem Technol, Peoples R China.
    Xue, Lingwei
    Beijing Univ Chem Technol, Peoples R China.
    Wang, Haiqiao
    Beijing Univ Chem Technol, Peoples R China.
    Li, Wenbin
    Zhengzhou Univ, Peoples R China; Zhengzhou Univ, Peoples R China.
    Chen, Weihua
    Zhengzhou Univ, Peoples R China; Zhengzhou Univ, Peoples R China.
    Gao, Mengyuan
    Tianjin Univ, Peoples R China.
    Ye, Long
    Tianjin Univ, Peoples R China.
    Zhou, Yuanyuan
    Hong Kong Baptist Univ, Peoples R China; Hong Kong Baptist Univ, Peoples R China.
    Ouyang, Yanni
    Hong Kong Baptist Univ, Peoples R China; Hong Kong Baptist Univ, Peoples R China.
    Zhang, Chunfeng
    Nanjing Univ, Peoples R China; Nanjing Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yang, Changduk
    Ulsan Natl Inst Sci & Technol UNIST, South Korea.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China.
    Zhang, Zhi-Guo
    Beijing Univ Chem Technol, Peoples R China.
    Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells2023Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikel-id 2926Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-alpha with a 2, 5-substitution and TDY-beta with 3, 4-substitution on the core. It shows that TDY-alpha processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-beta, and amore stablemorphology with the polymer donor. As a result, the TDY-alpha based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.

  • 9.
    Su, Yueling
    et al.
    Shaanxi Normal Univ, Peoples R China.
    Ding, Zicheng
    Shaanxi Normal Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Tang, Weibing
    Shaanxi Normal Univ, Peoples R China.
    Huang, Wenliang
    Shaanxi Normal Univ, Peoples R China.
    Wang, Zhichao
    Shaanxi Normal Univ, Peoples R China.
    Zhao, Kui
    Shaanxi Normal Univ, Peoples R China.
    Wang, Xiaochen
    Shaanxi Normal Univ, Peoples R China.
    Liu, Shengzhong (Frank)
    Shaanxi Normal Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Li, Yongfang
    Shaanxi Normal Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    High-efficiency organic solar cells processed from a halogen-free solvent system2023Ingår i: Science in China Series B: Chemistry, ISSN 1674-7291, E-ISSN 1869-1870Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The use of non-halogenated solvents for the green manufacture of high-efficiency organic solar cells (OSCs) is important for their future application. However, the power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is generally lower than their halogenated counterpart due to the poor film microstructure caused by the solubility issue. Herein, we propose a halogen-free solvent system to optimize film microstructure of the photovoltaic blend based on the polymer donor D18 and small-molecule acceptor (SMA) L8-BO towards high-efficiency OSCs. The solvent system is consisted of a main solvent carbon disulfide and an additive paraxylene, where the former ensures the good solution-processability and promotes the solution aggregation of L8-BO, and the latter can finely control the phase-separation process by selectively dissolving the SMA. This solvent combination robustly produces a high-quality active layer, i.e., the bicontinuous networks of donor and acceptor with nano-sized phase-separation and strong & pi;-& pi; stacking. With the effective charge generation, transport and collection, the resulting device from the non-halogenated solvent system shows a high PCE of 17.50%, which is comparable to that of the device prepared from the halogenated solvent chloroform (ca. 17.11%). This article proposes a new strategy for the green fabrication of high-efficiency OSCs to accelerate their industrialization.

  • 10.
    Qin, Ru
    et al.
    Shaanxi Normal Univ, Peoples R China.
    Wu, Yin
    Shaanxi Normal Univ, Peoples R China.
    Ding, Zicheng
    Shaanxi Normal Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yu, Jifa
    Xi An Jiao Tong Univ, Peoples R China.
    Huang, Wenliang
    Shaanxi Normal Univ, Peoples R China.
    Liu, Dongle
    Shaanxi Normal Univ, Peoples R China.
    Lu, Guanghao
    Xi An Jiao Tong Univ, Peoples R China.
    Liu, Shengzhong (Frank)
    Shaanxi Normal Univ, Peoples R China.
    Zhao, Kui
    Shaanxi Normal Univ, Peoples R China.
    Han, Yanchun
    Chinese Acad Sci, Peoples R China.
    Highly Stretchable Conjugated Polymer/Elastomer Blend Films with Sandwich Structure2023Ingår i: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The physical blending of high-mobility conjugated polymers with ductile elastomers provides a simple way to realize high-performance stretchable films. However, how to control the morphology of the conjugated polymer and elastomer blend film and its response to mechanical fracture processes during stretching are not well understood. Herein, a sandwich structure is constructed in the blend film based on a conjugated polymer poly[(5-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b & DPRIME;]dithiophene-2,6-diyl)(6-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b & DPRIME;]dithiophene-2,6-diyl)] (PCDTFBT) and an elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The sandwich structure is composed of a PCDTFBT:SEBS mixed layer laminated with a PCDTFBT-rich layer at both the top and bottom surfaces. During stretching, the external strain energy can be effectively dissipated by the deformation of the crystalline PCDTFBT domains and amorphous SEBS phases and the recrystallization of the PCDTFBT chains. This endows the blend film with excellent ductility, with a large crack onset strain exceeding 1100%, and minimized the electrical degradation of the blend film at a large strain. This study indicates that the electrical and mechanical performance of conjugated polymer/elastomer blend films can be improved by manipulating their microstructure.

  • 11.
    Huang, Yuting
    et al.
    Soochow Univ, Peoples R China.
    Chen, Haiyang
    Soochow Univ, Peoples R China.
    Fan, Qunping
    Xi An Jiao Tong Univ, Peoples R China.
    Chen, Ziyuan
    Soochow Univ, Peoples R China.
    Ding, Junyuan
    Soochow Univ, Peoples R China.
    Yang, Heyi
    Soochow Univ, Peoples R China.
    Sun, Zhe
    Ulsan Natl Inst Sci & Technol UNIST, South Korea.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Weijie
    Soochow Univ, Peoples R China.
    Yang, Changduk
    Ulsan Natl Inst Sci & Technol UNIST, South Korea.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Yaowen
    Soochow Univ, Peoples R China; Soochow Univ, Peoples R China; Soochow Univ, Peoples R China.
    Host-Guest Strategy Enabling Nonhalogenated Solvent Processing for High-Performance All-Polymer Hosted Solar Cells2023Ingår i: Chinese journal of chemistry, ISSN 1001-604X, E-ISSN 1614-7065Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs), usually processed from low-boiling-point and toxic solvents, have reached high values of 18%. However, poor miscibility and uncontrollable crystallinity in polymer blends lead to a notable drop in the PCEs when using green solvents, limiting the practical development of all-PSCs. Herein, a third component (guest) BTO was employed to optimize the miscibility and enhance the crystallinity of PM6/PY2Se-F host film processed from green solvent toluene (TL), which can effectively suppress the excessive aggregation of PY2Se-F and facilitate a nano-scale interpenetrating network morphology for exciton dissociation and charge transport. As a result, TL-processed all-polymer hosted solar cells (all-PHSCs) exhibited an impressive PCE of 17.01%. Moreover, the strong molecular interaction between the host and guest molecules also enhances the thermal stability of the devices. Our host-guest strategy provides a unique approach to developing high-efficiency and stable all-PHSCs processed from green solvents, paving the way for the industrial development of all-PHSCs.

  • 12.
    Wang, Yuming
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Hasselt Univ, Belgium; IMEC, Belgium.
    Yu, Jianwei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yuan, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Cent South Univ, Peoples R China.
    Hultmark, Sandra
    Chalmers Univ Technol, Sweden.
    Johnson, Catherine E.
    Imperial Coll London, England.
    Gallop, Nathaniel P.
    Imperial Coll London, England.
    Siegmund, Bernhard
    Hasselt Univ, Belgium; IMEC, Belgium.
    Qian, Deping
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Heidelberg Univ, Germany.
    Bakulin, Artem A.
    Imperial Coll London, England.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Vandewal, Koen
    Hasselt Univ, Belgium; IMEC, Belgium.
    Chen, Xian-Kai
    Soochow Univ, Peoples R China; Soochow Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Origins of the open-circuit voltage in ternary organic solar cells and design rules for minimized voltage losses2023Ingår i: Nature Energy, E-ISSN 2058-7546Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The power conversion efficiency of ternary organic solar cells (TOSCs), consisting of one host binary blend and one guest component, remains limited by large voltage losses. The fundamental understanding of the open-circuit voltage (V-OC) in TOSCs is controversial, limiting rational design of the guest component. In this study, we systematically investigate how the guest component affects the radiative and non-radiative related parts of V-OC of a series of TOSCs using the detailed balanced principle. We highlight that the thermal population of charge-transfer and local exciton states provided by the guest binary blend (that is, the guest-component-based binary blend) has a significant influence on the non-radiative voltage losses. Ultimately, we provide two design rules for enhancing the V-OC in TOSCs: high emission yield for the guest binary blend and similar charge-transfer-state energies for host/guest binary blends; high miscibility of the guest component with the low gap component in the host binary blend. The performance of ternary organic solar cells is limited by voltage losses. Using the detailed balance principle, Wang et al. show how the third component of the blend affects the open-circuit voltage and delineate molecular design rules.

  • 13.
    Wan, Li
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Cho, Eunkyung
    Univ Arizona, AZ USA.
    Li, Hongxiang
    Chinese Acad Sci, Peoples R China.
    Coropceanu, Veaceslav
    Univ Arizona, AZ USA.
    Bredas, Jean-Luc
    Univ Arizona, AZ USA.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends2023Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Circularly polarized light (CPL) is widely used for various applications in sensing and imaging(1-3). An ongoing challenge is to realize high-quality CPL detection using chiral organic semiconductors, especially in the near-infrared (NIR) region(4). Chiral molecules tend to rely on twisted stereogenic moieties; however, conventional approaches to reduce the bandgap of organic semiconductors are based on the use of co-planar backbones that commonly lead to molecular symmetries preventing chirality. Here we report a widely applicable strategy to directly induce chiroptical activity in planar non-fullerene acceptors(5-7), which are widely used for high-performance organic photovoltaics and provide a wealth of opportunities to fill the spectral gap of CPL detection in the NIR regime. We demonstrate proof-of-concept circularly polarized organic photodiodes using chiroptically active non-fullerene acceptor blends, which exhibit strong circular dichroism and hence great sensitivity to CPL in the NIR region. Importantly, this strategy is found to be effective in a wide series of state-of-the-art non-fullerene acceptor families including ITIC5, o-IDTBR6 and Y6 analogues(7), which substantially broadens the range of materials applicable to NIR CPL detection.

  • 14.
    Li, Shangyu
    et al.
    Beijing Univ Chem Technol, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Ming
    Beijing Univ Chem Technol, Peoples R China.
    Yao, Jia
    Beijing Univ Chem Technol, Peoples R China.
    Peng, Zhengxing
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    Chen, Qi
    Beijing Univ Chem Technol, Peoples R China.
    Zhang, Cen
    Beijing Univ Chem Technol, Peoples R China.
    Chang, Bowen
    Beijing Univ Chem Technol, Peoples R China.
    Bai, Yang
    Beijing Univ Chem Technol, Peoples R China.
    Fu, Hongyuan
    Beijing Univ Chem Technol, Peoples R China.
    Ouyang, Yanni
    Nanjing Univ, Peoples R China; Nanjing Univ, Peoples R China.
    Zhang, Chunfeng
    Nanjing Univ, Peoples R China; Nanjing Univ, Peoples R China.
    Steele, Julian A.
    Katholieke Univ Leuven, Belgium; Univ Queensland, Australia.
    Alshahrani, Thamraa
    Princess Nourah bint Abdulrahman Univ, Saudi Arabia.
    Roeffaers, Maarten B. J.
    Katholieke Univ Leuven, Belgium.
    Solano, Eduardo
    ALBA Synchrotron Light Source, Spain.
    Meng, Lei
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China.
    Zhang, Zhi-Guo
    Beijing Univ Chem Technol, Peoples R China.
    Tethered Small-Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells2023Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, artikel-id 2206563Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For polymer solar cells (PSCs), the mixture of polymer donors and small-molecule acceptors (SMAs) is fine-tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long-term operational stability of the devices, especially in the record-holding Y-series SMAs. Here, a new class of dimeric Y6-based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high-performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6-base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer-based device possesses substantially reduced burn-in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.

  • 15.
    Liu, Wei
    et al.
    Cent South Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Liang, Songting
    Cent South Univ, Peoples R China.
    Wang, Tong
    Imperial Coll London, England; Imperial Coll London, England.
    He, Siqing
    Cent South Univ, Peoples R China.
    Hu, Yunbin
    Cent South Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Ning, Haoqing
    Imperial Coll London, England; Imperial Coll London, England.
    Ren, Jie
    Zhejiang Univ, Peoples R China.
    Bakulin, Artem
    Imperial Coll London, England.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yuan, Jun
    Cent South Univ, Peoples R China.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    The Synthesis of a Multiple D-A Conjugated Macrocycle and Its Application in Organic Photovoltaic2023Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic pi-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (phi PL) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (phi EL) of 4x10-4. Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology. A multiple D-A ring-like conjugated molecule, RCM was synthesized via a template-directed process. RCM inherits the superior photovoltaic properties characteristic of D-A linear molecules, including a narrow optical gap and effective charge transfer. Importantly, RCM demonstrates reduced non-radiative losses, attributable to its minimized vibration.+image

  • 16.
    Fan, Qunping
    et al.
    Xi An Jiao Tong Univ, Peoples R China.
    Ma, Ruijie
    Hong Kong Polytech Univ, Peoples R China.
    Yang, Jie
    Beijing Inst Technol, Peoples R China.
    Gao, Jingshun
    Xi An Jiao Tong Univ, Peoples R China; Zhongyuan Univ Technol, Peoples R China.
    Bai, Hairui
    Xi An Jiao Tong Univ, Peoples R China.
    Su, Wenyan
    Xian Univ Sci & Technol, Peoples R China.
    Liang, Zezhou
    Xi An Jiao Tong Univ, Peoples R China.
    Wu, Yue
    Soochow Univ, Peoples R China.
    Tang, Lingxiao
    Xi An Jiao Tong Univ, Peoples R China.
    Li, Yuxiang
    Xian Univ Sci & Technol, Peoples R China.
    Wu, Qiang
    Xi An Jiao Tong Univ, Peoples R China.
    Wang, Kun
    Zhongyuan Univ Technol, Peoples R China.
    Yan, Lihe
    Xi An Jiao Tong Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Gang
    Hong Kong Polytech Univ, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23 % Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer2023Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Achieving both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (E-loss) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D(1)AD(2) (D-1=thieno[3,2-b]thiophene and D-2=selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D-1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high V-oc and J(sc), due to the reduced E-loss and efficient charge transfer properties. Inspired by the high V-oc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized E-loss, the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.

  • 17.
    Su, Yueling
    et al.
    Shaanxi Normal Univ, Peoples R China.
    Zhang, Lu
    Shaanxi Normal Univ, Peoples R China.
    Ding, Zicheng
    Shaanxi Normal Univ, Peoples R China.
    Zhang, Yi
    Shaanxi Normal Univ, Peoples R China.
    Wu, Yin
    Shaanxi Normal Univ, Peoples R China.
    Duan, Yuwei
    Shaanxi Normal Univ, Peoples R China.
    Zhang, Qiang
    Chinese Acad Sci, Peoples R China.
    Zhang, Jidong
    Chinese Acad Sci, Peoples R China.
    Han, Yanchun
    Chinese Acad Sci, Peoples R China.
    Xu, Zijian
    Chinese Acad Sci, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhao, Kui
    Shaanxi Normal Univ, Peoples R China.
    Liu, Shengzhong (Frank)
    Shaanxi Normal Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure2022Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 12, nr 19, artikel-id 2103940Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The single bulk-heterojunction active layer based on non-fullerene acceptors (NFAs) has dominated the power conversional efficiencies above 18% in state-of-the-art organic solar cells (OSCs). However, a deep understanding of the relationship between charge carrier process and film microstructure remains unclear for emerging NFA OSCs. Herein, with the superstar PM6:Y6 blend as a model, the charge generation process in active layers is successfully manipulated by designing three different film microstructures, and they are correlated with the final photovoltaic performance in OSC devices. The amount of intermediate intra-moiety excited states from the nanoscale Y6 aggregates can be effectively enhanced by controlling the phase separation domains and film crystallinity in the bicontinuous PM6:Y6 networks. This robustly improves the hole transfer, and thus promotes charge generation. As a result, the optimal films show superior device performance, that is, the high efficiencies of 16.53% and 17.98% for PM6:Y6- and D18:Y6-based single junction OSCs, respectively. The results presented here give a rational guide for optimizing the charge carrier process through controlling morphological microstructures toward high-performance NFA OSCs.

  • 18.
    Yang, Heyi
    et al.
    Soochow Univ, Peoples R China.
    Shen, Yunxiu
    Soochow Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wu, Yeyong
    Soochow Univ, Peoples R China.
    Chen, Weijie
    Soochow Univ, Peoples R China.
    Yang, Fu
    Soochow Univ, Peoples R China.
    Cheng, Qinrong
    Soochow Univ, Peoples R China.
    Chen, Haiyang
    Soochow Univ, Peoples R China.
    Ou, Xuemei
    Soochow Univ, Peoples R China.
    Yang, Haidi
    Soochow Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Yaowen
    Soochow Univ, Peoples R China; Soochow Univ, Peoples R China; Soochow Univ, Peoples R China.
    Li, Yongfang
    Soochow Univ, Peoples R China; Soochow Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Composition-Conditioning Agent for Doped Spiro-OMeTAD to Realize Highly Efficient and Stable Perovskite Solar Cells2022Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 12, nr 44, artikel-id 2202207Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The doped Spiro-OMeTAD hole transport layer (HTL) formed using the lithium bis(trifluoromethane) sulfonimide salt and 4-tert-butylpyridine with phenethylammonium iodide surface treatment on a perovskite film has continuously dominated the record power conversion efficiencies (PCEs) of perovskite solar cells (pero-SCs). However, unstable HTL compositions and iodide salts can cause severe device degradation. In this study, an HTL composition-conditioning agent (CCA), Spiro-BD-2OEG, is designed, which contains a Spiro-OMeTAD-like backbone, functional pyridine units, and oligo (ethylene glycol) chains. This finely designed CCA presents good miscibility with Spiro-OMeTAD and its dopants and acts as a conditioning agent through weak bond interactions. As a result, the CCA-regulated HTL shows a pinhole-free and smooth morphology with enhanced Spiro-OMeTAD ordering and improves dopant stability. In addition, the gradient-distributed CCA in the HTL can narrow the energy level offset with the valence band of the perovskite. The resultant pero-SCs exhibit an excellent PCE of 24.19% without any interface treatment and weak size dependence. A remarkable PCE of 22.63% is obtained even for a 1.004-cm(2) device. Importantly, the strategy shows good universality and significantly promotes the long-term stability of the pero-SCs based on the classical doped Spiro-OMeTAD.

  • 19.
    Yao, Jia
    et al.
    Beijing Univ Chem Technol, Peoples R China; Chinese Acad Sci, Peoples R China.
    Ding, Shiyu
    Beijing Univ Chem Technol, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Bai, Yang
    Beijing Univ Chem Technol, Peoples R China.
    Zhou, Qiuju
    Xinyang Normal Univ, Peoples R China.
    Meng, Lei
    Chinese Acad Sci, Peoples R China.
    Solano, Eduardo
    ALBA Synchrotron Light Source, Spain.
    Steele, Julian A.
    Katholieke Univ Leuven, Belgium; Univ Queensland, Australia.
    Roeffaers, Maarten B. J.
    Katholieke Univ Leuven, Belgium.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Zhi-Guo
    Beijing Univ Chem Technol, Peoples R China.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China.
    Fluorinated Perylene-Diimides: Cathode Interlayers Facilitating Carrier Collection for High-Performance Organic Solar Cells2022Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, nr 32, artikel-id 2203690Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic solar cells (OSCs) have experienced rapid progress with the innovation of near-infrared (NIR)-absorbing small-molecular acceptors (SMAs), while the unique electronic properties of the SMAs raise new challenges in relation to cathode engineering for effective electron collection. To address this issue, two fluorinated perylene-diimides (PDIs), PDINN-F and PDINN-2F, are synthesized by a simple fluorination method, for application as cathode interlayer (CIL) materials. The two bay-fluorinated PDI-based CILs possess a lower lowest unoccupied molecular orbital (LUMO) energy level of approximate to-4.0 eV, which improves the energy level alignment at the NIR-SMAs (such as BTP-eC9)/CIL for a favorable electron extraction efficiency. The monofluorinated PDINN-F shows higher electron mobility and better improved interfacial compatibility. The PDINN-F-based OSCs with PM6:BTP-eC9 as active layer exhibit an enhanced fill factor and larger short-circuit current density, leading to a high power conversion efficiency (PCE) exceeding 18%. The devices with PDINN-F CIL retain more than 80% of their initial PCE after operating at the maximum power point under continuous illumination for 750 h. This work prescribes a facile, cost-effective, and scalable method for the preparation of stable, high-performance fluorinated CILs, and instilling promise for the NIR-SMAs-based OSCs moving forward.

  • 20.
    Yan, Xin
    et al.
    Soochow Univ, Peoples R China.
    Wu, Jingnan
    Soochow Univ, Peoples R China; Aalborg Univ, Denmark.
    Lv, Junfang
    Soochow Univ, Peoples R China.
    Zhang, Liu
    Soochow Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Guo, Xia
    Soochow Univ, Peoples R China.
    Zhang, Maojie
    Soochow Univ, Peoples R China.
    Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability via two compatible non-fullerene acceptors2022Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, nr 29, s. 15605-15613Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A ternary strategy by introducing a third component into a binary host system has been proven to be a simple and promising method to boost the power conversion efficiency (PCE) and stability of organic solar cells (OSCs). Herein, a high efficient ternary OSC is fabricated, wherein, a non-fullerene acceptor, namely MOIT-M, is introduced as a third component into the PM6:BTP-eC9 blend. MOIT-M possesses good complementary absorption spectra and aligned cascade energy levels with the host binary blend, which benefits light harvesting, exciton dissociation, and charge transport. Moreover, MOIT-M exhibits good miscibility with BTP-eC9, forming a well-mixed phase, which improves molecular packing for better charge transport and optimizes ternary blend morphology. Notably, the incorporation of MOIT-M suppresses non-radiative recombination, leading to reduced non-radiative energy losses (Delta E-nr). As a result, the ternary OSC exhibits a significantly increased PCE of 18.5% with a lower Delta E-nr of 0.21 eV in comparison with the control binary PM6:BTP-eC9 device with a PCE of 17.4% and a Delta E-nr of 0.24 eV. In addition, the ternary OSC displays better storage stability compared to the PM6:BTP-eC9 system. This work indicates that a ternary strategy via combining two compatible small molecule acceptors is effective to simultaneously improve the efficiency and stability of OSCs.

  • 21.
    Yang, Ding
    et al.
    Soochow Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Shi, Yu
    Soochow Univ, Peoples R China.
    Guo, Xia
    Soochow Univ, Peoples R China.
    Zhang, Maojie
    Soochow Univ, Peoples R China.
    High-performance semitransparent organic solar cells enabled by pseudo-planar heterojunction structures combined with optical engineering2022Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 10, nr 39, s. 14597-14604Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semitransparent organic solar cells (ST-OSCs) are emerging as a promising renewable energy technology for building integration. However, how to solve the trade-off between power-conversion efficiency (PCE) and average visible transmittance (AVT) is always the key point for the further development of ST-OSCs. Herein, a pseudo-planar heterojunction (PPHJ) active layer, by sequentially depositing a polymer donor layer (PM6) and a small-molecule acceptor layer (BTP-eC9), was employed to improve the device performance and AVT, resulting in PCEs of 18.5% for opaque devices and 13.3% for semitransparent OSCs with an AVT of 18.5%. Furthermore, by introducing an effective anti-reflective covering layer, the AVT of the ST-OSCs was further improved up to 27.8% with little minus effect on the PCE (13.1%), as well as an impressive light-utilization efficiency (LUE) of 3.64% and a color-rendering index (CRI) of 94.6. It is worth noting that the PCE of 13.1% is the highest value at an AVT of over 25%. Our strategy represents a unique approach for improving the AVT and PCE of ST-OSCs simultaneously, facilitating the commercial development of OSCs.

  • 22.
    Liu, Wei
    et al.
    Cent South Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wei, Qingya
    Cent South Univ, Peoples R China.
    Zhu, Can
    Cent South Univ, Peoples R China; Chem Acad Sci, Peoples R China.
    Yuan, Jun
    Cent South Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    Manipulating molecular aggregation and crystalline behavior of A-DAD-A type acceptors by side chain engineering in organic solar cells2022Ingår i: Aggregate, ISSN 2692-4560, Vol. 3, nr 3, artikel-id e183Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Alkyl chains engineering plays an important role in photovoltaic materials for organic solar cells. Herein, three A-DAD-A (acceptor-donor-acceptor-donor-acceptor) type acceptors named Y6, Y6-C4, and Y6-C5 with different branching position on the pyrrole motif are discussed and the relationship between molecular aggregation, crystalline, and device performance are systematically investigated. The distance between the branching position and the main backbone affects their optical absorption and energy levels. Y6-C4 and Y6-C5 with the branching position at the fourth and fifth carbon of the alkyl chain show blue-shifted absorption and increased electrochemical bandgaps, compared with Y6 with the branching position at the second carbon of the alkyl side chain. In addition, this distance influences the molecular aggregation and crystalline behavior of the donor/acceptor blends. Compared with Y6-C4, Y6-C5 possesses a stronger crystalline and aggregate ability in the blends with a lower non-radiative energy loss, which results in a higher open circuit voltage (V-oc) of 0.88 V. Finally, Y6-C5-based binary device achieved a high power conversion efficiency up to 16.73% with afill factor (FF) of 0.78. These results demonstrate that the side chain engineering is an effective strategy for tuning the molecular aggregation and crystalline to improve photovoltaic performance of the A-DAD-A type acceptors.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Li, Xiane
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Qilun
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yu, Jianwei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xu, Ye
    Chinese Acad Sci, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Jianhui
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells2022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 2046Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Energy level alignment (ELA) at donor-acceptor heterojunctions is of vital importance yet largely undetermined in organic solar cells. Here, authors determine the heterojunction ELA with (mono) layer-by-layer precision to understand the co-existence of efficient charge. Energy level alignment (ELA) at donor (D) -acceptor (A) heterojunctions is essential for understanding the charge generation and recombination process in organic photovoltaic devices. However, the ELA at the D-A interfaces is largely underdetermined, resulting in debates on the fundamental operating mechanisms of high-efficiency non-fullerene organic solar cells. Here, we systematically investigate ELA and its depth-dependent variation of a range of donor/non-fullerene-acceptor interfaces by fabricating and characterizing D-A quasi bilayers and planar bilayers. In contrast to previous assumptions, we observe significant vacuum level (VL) shifts existing at the D-A interfaces, which are demonstrated to be abrupt, extending over only 1-2 layers at the heterojunctions, and are attributed to interface dipoles induced by D-A electrostatic potential differences. The VL shifts result in reduced interfacial energetic offsets and increased charge transfer (CT) state energies which reconcile the conflicting observations of large energy level offsets inferred from neat films and large CT energies of donor - non-fullerene-acceptor systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Zhang, Qilun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wu, Ziang
    Korea Univ, South Korea.
    Wang, Chuanfei
    Ocean Univ China, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Woo, Han Young
    Korea Univ, South Korea.
    Ek, Monica
    KTH Royal Inst Technol, Sweden.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Natural Product Betulin-Based Insulating Polymer Filler in Organic Solar Cells2022Ingår i: Solar RRL, E-ISSN 2367-198X, Vol. 6, nr 9, artikel-id 2200381Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introduction of filler materials into organic solar cells (OSCs) are a promising strategy to improve device performance and thermal/mechanical stability. However, the complex interactions between the state-of-the-art OSC materials and filler require careful selection of filler materials and OSC fabrication to achieve lower cost and improved performance. In this work, the introduction of a natural product betulin-based insulating polymer as filler in various OSCs is investigated. Donor-acceptor-insulator ternary OSCs are developed with improved open-circuit voltage due to decreased trap-assisted recombination. Furthermore, filler-induced vertical phase separation due to mismatched surface energy can strongly affect charge collection at the bottom interface and limit the filler ratio. A quasi-bilayer strategy is used in all-polymer systems to circumvent this problem. Herein, the variety of filler materials in OSCs to biomass is broadened, and the filler strategy is made a feasible and promising strategy toward highly efficient, eco, and low-cost OSCs.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Zhao, Ningjiu
    et al.
    Songshan Lake Mat Lab, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zou, Xianshao
    Lund Univ, Sweden.
    Su, Xiaojun
    Guangzhou Maritime Univ, Peoples R China.
    Dang, Fan
    Songshan Lake Mat Lab, Peoples R China.
    Wen, Guanzhao
    Guangzhou Univ, Peoples R China.
    Zhang, Wei
    Guangzhou Univ, Peoples R China.
    Zheng, Kaibo
    Lund Univ, Sweden.
    Chen, Hailong
    Songshan Lake Mat Lab, Peoples R China.
    Wu, Kehui
    Songshan Lake Mat Lab, Peoples R China.
    Photoinduced Polaron Formation in a Polymerized Electron-Acceptor Semiconductor2022Ingår i: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 13, nr 23, s. 5143-5150Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polymerized small molecular acceptor (PSMA) based all-polymer solar cells (all-PSC) have achieved power conversion efficiencies (PCE) over 16%, and the PSMA is considered to hold great promise for further improving the performance of all-PSC. Yet, in comparison with that of the polymer donor, the photophysics of a polymerized acceptor remains poorly understood. Herein, the excited state dynamics in a polymerized acceptor PZT810 was comprehensively investigated under various pump intensities and photon energies. The excess excitation energy was found to play a key role in excitons dissociation into free polarons for neat PSMA films, while free polarons cannot be generated from the polaron pairs in neat acceptor films. This work reveals an in-depth understanding of relaxation dynamics for PSMAs and that the underlying photophysical origin of PSMA can be mediated by excitation energies and intensities. These results would benefit the realization of the working mechanism for all-PSC and the designing of new PSMAs.

  • 26.
    Song, Jiali
    et al.
    Beihang Univ, Peoples R China.
    Li, Yun
    Beihang Univ, Peoples R China.
    Cai, Yunhao
    Beihang Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Shijie
    Xi An Jiao Tong Univ, Peoples R China.
    Xin, Jingming
    Xi An Jiao Tong Univ, Peoples R China.
    Han, Lili
    Zhengzhou Univ, Peoples R China.
    Wei, Donghui
    Zhengzhou Univ, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Sun, Yanming
    Beihang Univ, Peoples R China.
    Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells2022Ingår i: Matter, ISSN 2590-2393, E-ISSN 2590-2385, Vol. 5, nr 11, s. 4047-4059Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Currently, morphology optimization of all-polymer solar cells (all-PSCs) strongly depends on the use of solvent additives, which are usually highly toxic and harmful to the environment and human health. Here, we report a green and volatile solid additive, 2-methoxynaphthalene (2-MN). It was found that the incorporation of 2-MN into a PM6:PY-DT blend can effectively manipulate the aggregations of PM6 and PY-DT during film depositing and thermal annealing processes and results in highly ordered molecular packing and favorable phase-separated morphology. Consequently, a re-cord-high efficiency of 17.32% is achieved for the PM6:PY-DT de-vice. Moreover, 2-MN-processed all-PSCs were fabricated by using non-halogenated solvent. High efficiencies of 17.03% and 16.67% are obtained for all-PSCs fabricated under nitrogen atmosphere and ambient conditions, respectively. Our work shows that the utili-zation of 2-MN as a green and solid additive is a simple and feasible strategy to optimize the morphology and sheds new light on eco-friendly fabrication and application of all-PSCs.

  • 27.
    Chen, Haiyang
    et al.
    Soochow Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Xiaobin
    Soochow Univ, Peoples R China.
    Zeng, Guang
    Soochow Univ, Peoples R China.
    Kobera, Libor
    Czech Acad Sci, Czech Republic.
    Abbrent, Sabina
    Czech Acad Sci, Czech Republic.
    Zhang, Ben
    Soochow Univ, Peoples R China.
    Chen, Weijie
    Soochow Univ, Peoples R China.
    Xu, Guiying
    Soochow Univ, Peoples R China.
    Oh, Jiyeon
    Ulsan Natl Inst Sci & Technol, South Korea.
    Kang, So-Huei
    Ulsan Natl Inst Sci & Technol, South Korea.
    Chen, Shanshan
    Chongqing Univ, Peoples R China.
    Yang, Changduk
    Ulsan Natl Inst Sci & Technol, South Korea.
    Brus, Jiri
    Czech Acad Sci, Czech Republic.
    Hou, Jianhui
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Yaowen
    Soochow Univ, Peoples R China.
    Li, Yongfang
    Soochow Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents2021Ingår i: Nature Energy, E-ISSN 2058-7546, Vol. 6, nr 11, s. 1045-1053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The power conversion efficiencies (PCEs) of laboratory-sized organic solar cells (OSCs), usually processed from low-boiling-point and toxic solvents, have reached high values of over 18%. However, there is usually a notable drop of the PCEs when green solvents are used, limiting practical development of OSCs. Herein, we obtain certificated PCEs over 17% in OSCs processed from a green solvent paraxylene (PX) by a guest-assisted assembly strategy, where a third component (guest) is employed to manipulate the molecular interaction of the binary blend. In addition, the high-boiling-point green solvent PX also enables us to deposit a uniform large-area module (36 cm(2)) with a high efficiency of over 14%. The strong molecular interaction between the host and guest molecules also enhances the operational stability of the devices. Our guest-assisted assembly strategy provides a unique approach to develop large-area and high-efficiency OSCs processed from green solvents, paving the way for industrial development of OSCs. Organic solar cells processed from green solvents are easier to implement in manufacturing yet their efficiency is low. Chen et al. devise a guest molecule to improve the molecular packing, enabling devices with over 17% efficiency.

  • 28.
    Yao, Nannan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Jianqiu
    Beihang Univ, Peoples R China.
    Chen, Zeng
    Zhejiang Univ, Peoples R China.
    Bian, Bian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xia, Yuxin
    Hasselt Univ, Belgium.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Jianqi
    Natl Ctr Nanosci & Technol, Peoples R China.
    Qin, Leiqiang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhu, Haiming
    Zhejiang Univ, Peoples R China.
    Zhang, Yuan
    Beihang Univ, Peoples R China.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Efficient Charge Transport Enables High Efficiency in Dilute Donor Organic Solar Cells2021Ingår i: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 12, nr 20, s. 5039-5044Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The donor/acceptor weight ratio is crucial for photovoltaic performance of organic solar cells (OSCs). Here, we systematically investigate the photovoltaic behaviors of PM6:Y6 solar cells with different stoichiometries. It is found that the photovoltaic performance is tolerant to PM6 contents ranging from 10 to 60 wt %. Especially an impressive efficiency over 10% has been achieved in dilute donor solar cells with 10 wt % PM6 enabled by efficient charge generation, electron/ hole transport, slow charge recombination, and field-insensitive extraction. This raises the question about the origin of efficient hole transport in such dilute donor structure. By investigating hole mobilities of PM6 diluted in Y6 and insulators, we find that effective hole transport pathway is mainly through PM6 phase in PM6:Y6 blends despite with low PM6 content. The results indicate that a low fraction of polymer donors combines with near-infrared nonfullerene acceptors could achieve high photovoltaic performance, which might be a candidate for semitransparent windows.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Xu, Yan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Shenzhen Univ, Peoples R China.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Steele, Julian A.
    Katholieke Univ Leuven, Belgium.
    Wang, Yang
    Nanjing Univ Posts & Telecommun, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zheng, Guanhaojie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Xiangchun
    Nanjing Univ Posts & Telecommun, Peoples R China.
    Wang, Heyong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Xin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Solano, Eduardo
    ALBA Synchrotron Light Source, Spain.
    Roeffaers, Maarten B. J.
    Katholieke Univ Leuven, Belgium.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Qing, Jian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Zhang, Wenjing
    Shenzhen Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Impact of Amine Additives on Perovskite Precursor Aging: A Case Study of Light-Emitting Diodes2021Ingår i: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 12, nr 25, s. 5836-5843Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Amines are widely employed as additives for improving the performance of metal halide perovskite optoelectronic devices. However, amines are well-known for their high chemical reactivity, the impact of which has yet to receive enough attention from the perovskite light-emitting diode community. Here, by investigating an unusual positive aging effect of CH3NH3I/CsI/PbI2 precursor solutions as an example, we reveal that amines gradually undergo N-formylation in perovskite precursors over time. This reaction is initialized by hydrolysis of dimethylformamide in the acidic chemical environment. Further investigations suggest that the reaction products collectively impact perovskite crystallization and eventually lead to significantly enhanced external quantum efficiency values, increasing from similar to 2% for fresh solutions to greater than or similar to 12% for aged ones. While this case study provides a positive aging effect, a negative aging effect is possible in other perovksite systems. Our findings pave the way for more reliable and reproducible device fabrication and call for further attention to underlying chemical reactions within the perovskite inks once amine additives are included.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Liu, Yanfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yangui, Aymen
    Lund Univ, Sweden.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Kiligaridis, Alexander
    Lund Univ, Sweden.
    Moons, Ellen
    Karlstad Univ, Sweden.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Scheblykin, Ivan G.
    Lund Univ, Sweden.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends2021Ingår i: Small Methods, E-ISSN 2366-9608, Vol. 5, nr 10, artikel-id 2100585Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Karlsson, Max
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yi, Ziyue
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Cambridge, England.
    Reichert, Sebastian
    Tech Univ Chemnitz, Germany.
    Luo, Xiyu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Tsinghua Univ Beijing, Peoples R China.
    Lin, Weihua
    Lund Univ, Sweden.
    Zhang, Zeyu
    Beijing Univ Technol, Peoples R China.
    Bao, Chunxiong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Zheng, Guanhaojie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Teng, Pengpeng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Duan, Lian
    Tsinghua Univ Beijing, Peoples R China.
    Lu, Yue
    Beijing Univ Technol, Peoples R China.
    Zheng, Kaibo
    Lund Univ, Sweden; Tech Univ Denmark, Denmark.
    Pullerits, Tonu
    Lund Univ, Sweden.
    Deibel, Carsten
    Tech Univ Chemnitz, Germany.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Friend, Richard
    Univ Cambridge, England.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes2021Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 12, nr 1, artikel-id 361Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration. Achieving bright and efficient blue emission in metal halide perovskite light-emitting diodes has proven to be challenging. Here, the authors demonstrate high EQE and spectrally stable blue light-emitting diodes based on mixed halide perovskites, with emission from 490 to 451nm by using a vapour-assisted crystallization technique.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Song, Jiage
    et al.
    Cent South Univ, Peoples R China.
    Cai, Fangfang
    Cent South Univ, Peoples R China.
    Zhu, Can
    Cent South Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Chen, Honggang
    Cent South Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Wei, Qingya
    Cent South Univ, Peoples R China.
    Li, Dongxu
    Cent South Univ, Peoples R China.
    Zhang, Chujun
    Hong Kong Baptist Univ, Peoples R China; Hong Kong Baptist Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yuan, Jun
    Cent South Univ, Peoples R China.
    Peng, Hongjian
    Cent South Univ, Peoples R China.
    So, Shu Kong
    Hong Kong Baptist Univ, Peoples R China; Hong Kong Baptist Univ, Peoples R China.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    Over 13% Efficient Organic Solar Cells Based on Low-Cost Pentacyclic A-DA D-A-Type Nonfullerene Acceptor2021Ingår i: Solar RRL, E-ISSN 2367-198X, Vol. 5, nr 8, artikel-id 2100281Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent studies have almost focused on finding active layer materials with extended pi-conjugation structures for high-performance organic solar cells (OSCs). However, with the extension of conjugate length, the synthesis difficulty and cost of materials will increase. Achieving high efficiency while reducing material costs is a prerequisite for the commercialization of OSCs. Herein, two low-cost A-DA D-A-type (where A and D represent an electron-withdrawing unit and an electron-donating unit, respectively) nonfullerene acceptors (Y25,Y26) are synthesized with pentacyclic fused backbone as the DA D electron-deficient core and 5,6-difluoro-3-(dicyandiamethyl) indigo as the end groups. Compared with classical Y series acceptors with heptacyclic backbone, although Y25 and Y26 own the reduced conjugated length, they still show moderate performance (11.65% and 13.34%), and the cost of synthesis is significantly reduced. Therefore, we provide a new molecular design idea for commercially efficient nonfullerene OSCs acceptors. We also find that adding alkyl chains to the beta site of thiophenes is beneficial to obtaining the reduced energetic disorder, dominant molecular stacking, and desirable morphology, which can facilitate charge carrier transport and prompt higher short-circuit current density (J(sc)) as well as fill factor.

  • 33.
    Zhang, Rui
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Chinese Acad Sci, Peoples R China.
    Yan, Ye
    Chinese Acad Sci, Peoples R China.
    Zhang, Qiang
    Chinese Acad Sci, Peoples R China.
    Liang, Qiuju
    Chinese Acad Sci, Peoples R China.
    Zhang, Jidong
    Chinese Acad Sci, Peoples R China.
    Yu, Xinhong
    Chinese Acad Sci, Peoples R China.
    Liu, Jiangang
    Chinese Acad Sci, Peoples R China.
    Han, Yanchun
    Chinese Acad Sci, Peoples R China.
    To Reveal the Importance of the Crystallization Sequence on Micro-Morphological Structures of All-Crystalline Polymer Blends by In Situ Investigation2021Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, nr 18, s. 21756-21764Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In crystalline/crystalline polymer blend systems, complex competition and coupling of crystallization and morphology usually happen due to the different crystal nucleation and growth processes of polymers, making the morphology and crystallization behavior difficult to control. Herein, we probe the crystallization sequence during the film formation process (crystallize simultaneously, component A crystallizes prior to B or inverse) to illustrate the micro-morphology evolution process in poly(3-hexylthiophene) (P3HT) and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5, 5-(2,2-bithiophene)] (N2200) blend using in situ UV-vis absorption spectra and in situ two-dimensional grazing incidence X-ray diffraction (2D GIXRD). When P3HT and N2200 crystallize simultaneously, a large-sized morphology structure is formed. When strengthening the solution aggregation of P3HT by increasing the solvent-polymer interaction, P3HT crystallizes prior to N2200. A P3HT-based micro-morphology structure is obtained. As the molecular weight of N2200 increases to a critical value (72.0 kDa), the crystallization of N2200 dominates the film formation process. A N2200-based micro-morphology is formed guided by N2200 domains. The results confirm that the crystallization sequence is one of the most important factors to determine the micromorphology structure in all-crystalline polymer blends.

  • 34.
    Jiang, Huanxiang
    et al.
    College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China.
    Li, Xiaoming
    College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, China.
    Wang, Huan
    College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, China.
    Huang, Gongyue
    Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, China.
    Chen, Weichao
    College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yang, Renqiang
    Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China.
    Appropriate Molecular Interaction Enabling Perfect Balance Between Induced Crystallinity and Phase Separation for Efficient Photovoltaic Blends2020Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 12, nr 23, s. 26286-26292Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fluorination is a promising modification method to adjust the photophysical profiles of organic semiconductors. Notably, the fluorine modification on donor or acceptor materials could impact the molecular interaction, which is strongly related to the morphology of bulk heterojunction (BHJ) blends and the resultant device performance. Therefore, it is essential to investigate how the molecular interaction affects the morphology of BHJ films. In this study, a new fluorinated polymer PBDB-PSF is synthesized to investigate the molecular interaction in both nonfluorinated (ITIC) and fluorinated (IT-4F) systems. The results reveal that the F-F interaction in the PBDB-PSF:IT-4F system could effectively induce the crystallization of IT-4F while retaining the ideal phase separation scale, resulting in outstanding charge transport. On the contrary, poor morphology can be observed in the PBDB-PSF:ITIC system because of the unbalanced molecular interaction. As a consequence, the PBDB-PSF:IT-4F device delivers an excellent power conversion efficiency of 13.63%, which greatly exceeds that of the PBDB-PSF:ITIC device (9.84%). These results highlight manipulating the micromorphology with regard to molecular interaction.

  • 35.
    Cai, Yunhao
    et al.
    Beihang Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Ye, Linglong
    Beihang Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Jinqiu
    Shanghai Jiao Tong Univ, Peoples R China.
    Zhang, Kangning
    Shandong Univ, Peoples R China.
    Bi, Pengqing
    Shandong Univ, Peoples R China.
    Li, Tengfei
    Peking Univ, Peoples R China.
    Weng, Kangkang
    Beihang Univ, Peoples R China.
    Xu, Ke
    Wuhan Univ Technol, Peoples R China.
    Xia, Jianlong
    Wuhan Univ Technol, Peoples R China.
    Bao, Qinye
    East China Normal Univ, Peoples R China.
    Liu, Feng
    Shanghai Jiao Tong Univ, Peoples R China.
    Hao, Xiaotao
    Shandong Univ, Peoples R China.
    Tan, Songting
    Xiangtan Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhan, Xiaowei
    Peking Univ, Peoples R China.
    Sun, Yanming
    Beihang Univ, Peoples R China.
    Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells2020Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 12, nr 39, s. 43984-43991Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The energy offset, considered as the driving force for charge transfer between organic molecules, has significant effects on both charge separation and charge recombination in organic solar cells. Herein, we designed material systems with gradually shifting energy offsets, including both positive and negative values. Time-resolved spectroscopy was used to monitor the charge dynamics within the bulk heterojunction. It is striking to find that there is still charge transfer and charge generation when the energy offset reached -0.10 eV (ultraviolet photoelectron spectroscopy data). This work not only indicates the feasibility of the free carrier generation and the following charge separation under the condition of a negative offset but also elucidates the relationship between the charge transfer and the energy offset in the case of polymer chlorination.

  • 36.
    Yuan, Jun
    et al.
    Cent South Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Yuming
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Jianhui
    Chinese Acad Sci, Peoples R China.
    Leclerc, Mario
    Univ Laval, Canada.
    Zhan, Xiaowei
    Peking Univ, Peoples R China.
    Huang, Fei
    South China Univ Technol, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China.
    Reducing Voltage Losses in the A-DAD-A Acceptor-Based Organic Solar Cells2020Ingår i: Chem, ISSN 2451-9308, E-ISSN 2451-9294, Vol. 6, nr 9, s. 2147-2161Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Power conversion efficiencies (PCEs) of solution-processed organic solar cells (OSCs) have recently reached 17.4% (certified) for single-junction devices. Crucial to this advancement is the development of non-fullerene acceptors (NFAs) since 2015. The recent A-DAD-A NFAs have attracted widespread attention because of their ladder-type electron-deficient-core-based central fused ring with improved transport properties and optimum energy levels. With the synergistic effect of electron-deficient-core and specific molecular geometry, the A-DADA molecules could achieve low voltage losses and high current generation at the same time, reaching new regimes of device physics and photophysics. This perspective will discuss the voltage losses in state-of-the-art A-DAD-A NFA-based OSCs and propose new molecular design strategies to achieve PCEs over 20% in OSCs based on these new acceptors by further decreasing their total voltage losses.

    Ladda ner fulltext (pdf)
    fulltext
  • 37.
    Yuan, Jun
    et al.
    Cent South Univ, Peoples R China.
    Zhang, Chujun
    Hong Kong Baptist Univ, Peoples R China.
    Chen, Honggang
    Cent South Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Zhu, Can
    Cent South Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Cheung, Sin Hang
    Hong Kong Baptist Univ, Peoples R China.
    Qiu, Beibei
    Chinese Acad Sci, Peoples R China.
    Cai, Fangfang
    Cent South Univ, Peoples R China.
    Wei, Qingya
    Cent South Univ, Peoples R China.
    Liu, Wei
    Cent South Univ, Peoples R China.
    Yin, Hang
    Hong Kong Baptist Univ, Peoples R China.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Jidong
    Chinese Acad Sci, Peoples R China.
    Liu, Ye
    Cent South Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Weifang
    Cent South Univ, Peoples R China.
    Peng, Hongjian
    Cent South Univ, Peoples R China.
    Yang, Junliang
    Proc Sch Phys and Elect, Peoples R China.
    Meng, Lei
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    So, Shukong
    Hong Kong Baptist Univ, Peoples R China.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells2020Ingår i: Science in China Series B: Chemistry, ISSN 1674-7291, E-ISSN 1869-1870, Vol. 63, nr 8, s. 1159-1168Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent advances in material design for organic solar cells (OSCs) are primarily focused on developing near-infrared non-fullerene acceptors, typically A-DA D-A type acceptors (where A abbreviates an electron-withdrawing moiety and D, an electron-donor moiety), to achieve high external quantum efficiency while maintaining low voltage loss. However, the charge transport is still constrained by unfavorable molecular conformations, resulting in high energetic disorder and limiting the device performance. Here, a facile design strategy is reported by introducing the "wing" (alkyl chains) at the terminal of the DA D central core of the A-DA D-A type acceptor to achieve a favorable and ordered molecular orientation and therefore facilitate charge carrier transport. Benefitting from the reduced disorder, the electron mobilities could be significantly enhanced for the "wing"-containing molecules. By carefully changing the length of alkyl chains, the mobility of acceptor has been tuned to match with that of donor, leading to a minimized charge imbalance factor and a high fill factor (FF). We further provide useful design strategies for highly efficient OSCs with high FF.

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Zhao, Fuwen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Cent South Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yuan, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Cent South Univ, Peoples R China.
    He, Dan
    Cent South Univ, Peoples R China.
    Zou, Yingping
    Cent South Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Emerging Approaches in Enhancing the Efficiency and Stability in Non-Fullerene Organic Solar CellsIngår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, artikel-id 2002746Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The past three years have witnessed rapid growth in the field of organic solar cells (OSCs) based on non-fullerene acceptors (NFAs), with intensive efforts being devoted to material development, device engineering, and understanding of device physics. The power conversion efficiency of single-junction OSCs has now reached high values of over 18%. The boost in efficiency results from a combination of promising features in NFA OSCs, including efficient charge generation, good charge transport, and small voltage losses. In addition to efficiency, stability, which is another critical parameter for the commercialization of NFA OSCs, has also been investigated. This review summarizes recent advances in the field, highlights approaches for enhancing the efficiency and stability of NFA OSCs, and discusses possible strategies for further advances of NFA OSCs.

    Ladda ner fulltext (pdf)
    fulltext
1 - 38 av 38
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf