liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12345 1 - 50 av 215
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wang, Jie
    et al.
    Guangzhou Univ, Peoples R China.
    Xie, Sijia
    Guangzhou Univ, Peoples R China.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Zhou, Huali
    Shenzhen Univ, Peoples R China.
    Wang, Xiaoya
    Guangzhou Women & Childrens Med Ctr, Peoples R China.
    Sang, Jinqiu
    East China Normal Univ, Peoples R China; East China Normal Univ, Peoples R China.
    Spatial Release From Masking With Bilateral Bone Conduction Stimulation at Mastoid for Normal Hearing Subjects2024Ingår i: TRENDS IN HEARING, ISSN 2331-2165, Vol. 28, artikel-id 23312165241234202Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study investigates the effect of spatial release from masking (SRM) in bilateral bone conduction (BC) stimulation at the mastoid. Nine adults with normal hearing were tested to determine SRM based on speech recognition thresholds (SRTs) in simulated spatial configurations ranging from 0 to 180 degrees. These configurations were based on nonindividualized head-related transfer functions. The participants were subjected to sound stimulation through either air conduction (AC) via headphones or BC. The results indicated that both the angular separation between the target and the masker, and the modality of sound stimulation, significantly influenced speech recognition performance. As the angular separation between the target and the masker increased up to 150 degrees, both BC and AC SRTs decreased, indicating improved performance. However, performance slightly deteriorated when the angular separation exceeded 150 degrees. For spatial separations less than 75 degrees, BC stimulation provided greater spatial benefits than AC, although this difference was not statistically significant. For separations greater than 75 degrees, AC stimulation offered significantly more spatial benefits than BC. When speech and noise originated from the same side of the head, the "better ear effect" did not significantly contribute to SRM. However, when speech and noise were located on opposite sides of the head, this effect became dominant in SRM.

  • 2.
    Ekberg, Mattias
    et al.
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Avdelningen för funktionsnedsättning och samhälle. Linköpings universitet, Filosofiska fakulteten.
    Stavrinos, Georgios
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten.
    Andin, Josefine
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Avdelningen för funktionsnedsättning och samhälle. Linköpings universitet, Filosofiska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Dahlström, Örjan
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten.
    Acoustic Features Distinguishing Emotions in Swedish Speech.2023Ingår i: Journal of Voice, ISSN 0892-1997, E-ISSN 1873-4588, artikel-id S0892-1997(23)00103-0Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Few studies have examined which acoustic features of speech can be used to distinguish between different emotions, and how combinations of acoustic parameters contribute to identification of emotions. The aim of the present study was to investigate which acoustic parameters in Swedish speech are most important for differentiation between, and identification of, the emotions anger, fear, happiness, sadness, and surprise in Swedish sentences. One-way ANOVAs were used to compare acoustic parameters between the emotions and both simple and multiple logistic regression models were used to examine the contribution of different acoustic parameters to differentiation between emotions. Results showed differences between emotions for several acoustic parameters in Swedish speech: surprise was the most distinct emotion, with significant differences compared to the other emotions across a range of acoustic parameters, while anger and happiness did not differ from each other on any parameter. The logistic regression models showed that fear was the best-predicted emotion while happiness was most difficult to predict. Frequency- and spectral-balance-related parameters were best at predicting fear. Amplitude- and temporal-related parameters were most important for surprise, while a combination of frequency-, amplitude- and spectral balance-related parameters are important for sadness. Assuming that there are similarities between acoustic models and how listeners infer emotions in speech, results suggest that individuals with hearing loss, who lack abilities of frequency detection, may compared to normal hearing individuals have difficulties in identifying fear in Swedish speech. Since happiness and fear relied primarily on amplitude- and spectral-balance-related parameters, detection of them are probably facilitated more by hearing aid use.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Wang, Jie
    et al.
    Guangzhou Univ, Peoples R China.
    Chen, Yunda
    Guangzhou Univ, Peoples R China.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Sang, Jinqiu
    East China Normal Univ, Peoples R China; Chinese Acad Sci, Peoples R China.
    Li, Xiaodong
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Zheng, Chengshi
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Analysis of cross-talk cancellation of bilateral bone conduction stimulation2023Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 434, artikel-id 108781Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    When presenting a stereo sound through bilateral stimulation by two bone conduction transducers (BTs), part of the sound at the left side leaks to the right side, and vice versa. The sound transmitted to the contralateral cochlea becomes cross-talk, which can affect space perception. The negative effects of the cross-talk can be mitigated by a cross-talk cancellation system (CCS). Here, a CCS is designed from in-dividual bone conduction (BC) transfer functions using a fast deconvolution algorithm. The BC response functions (BCRFs) from the stimulation positions to the cochleae were obtained by measurements of BC evoked otoacoustic emissions (OAEs) of 10 participants. The BCRFs of the 10 participants showed that the interaural isolation was low. In 5 of the participants, a cross-talk cancellation experiment was car-ried out based on the individualized BCRFs. Simulations showed that the CCS gave a channel separation (CS) of more than 50 dB in the 1-3 kHz range with appropriately chosen parameter values. Moreover, a localization test showed that the BC localization accuracy improved using the CCS where a 2-4.5 kHz narrowband noise gave better localization performance than a broadband 0.4-10 kHz noise. The results indicate that using a CCS with bilateral BC stimulation can improve interaural separation and thereby improve spatial hearing by bilateral BC. (c) 2023 Elsevier B.V. All rights reserved.

  • 4.
    Surendran, Sudeep
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Prodanovic, Srdan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Hearing Through Bone Conduction Headsets2023Ingår i: TRENDS IN HEARING, ISSN 2331-2165, Vol. 27, artikel-id 23312165231168741Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bone conduction (BC) stimulation has mainly been used for clinical hearing assessment and hearing aids where stimulation is applied at the mastoid behind the ear. Recently, BC has become popular for communication headsets where the stimulation position often is close to the anterior part of the ear canal opening. The BC sound transmission for this stimulation position is here investigated in 21 participants by ear canal sound pressure measurements and hearing threshold assessment as well as simulations in the LiUHead. The results indicated that a stimulation position close to the ear canal opening improves the sensitivity for BC sound by around 20 dB but by up to 40 dB at some frequencies. The transcranial transmission ranges typically between -40 and -25 dB. This decreased transcranial transmission facilitates saliency of binaural cues and implies that BC headsets are suitable for virtual and augmented reality applications. The findings suggest that with BC stimulation close to the ear canal opening, the sound pressure in the ear canal dominates the perception of BC sound. With this stimulation, the ear canal pathway was estimated to be around 25 dB greater than other contributors, like skull bone vibrations, for hearing BC sound in a healthy ear. This increased contribution from the ear canal sound pressure to BC hearing means that a position close to the ear canal is not appropriate for clinical use since, in such case, a conductive hearing loss affects BC and air conduction thresholds by a similar amount.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Surendran, Sudeep
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Inter-aural separation during hearing by bilateral bone conduction stimulation2023Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 437, artikel-id 108852Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cross-head transmission inherent in bone conduction (BC) hearing is one of the most important factors that limit the performance of BC binaural hearing compared to air conduction (AC) binaural hearing. In AC, cross-head transmission is imperceptible leading to a clear understanding of the nature and position of the sound source (s). In this study, the prominence of cross-head transmission in BC hearing is addressed using the fact that ipsilateral cochlear excitation can be canceled by controlled bilateral BC stimulation.A cancellation experiment was conducted on twenty participants with normal hearing at thirteen third-octave frequencies between 250 and 4000 Hz. Both stationary and transient BC stimulation at the mastoid was used. The technique employed multiple stages of masking enabling adjustments of the stimulation level and phase until the tones got canceled in the ipsilateral ear. In addition, the ear canal sound pressure was obtained for ipsilateral and contralateral BC stimulation in isolation, and with bilateral BC stimulation at perceptual cancellation.The inter-aural level differences of both the types of stimulations were found to be the same. Crosstalk was found to be the lowest around 2 kHz and the highest around 1 kHz. The unwrapped inter-aural phase difference from stationary signal cancellation showed an overall increase with frequency starting at around no difference (35 degrees) at 250 Hz to reach 607 degrees at 4 kHz. Cycle-adjusted inter-aural time difference was very low (61 & mu;s) at 250 Hz and increased to 1.1 ms at 800 Hz before falling to 0.6 ms at 4 kHz. It was also found that the ear canal sound pressure was not cancelled at the same phase as the sound in the cochlea.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Maier, Hannes
    et al.
    Med Sch Hannover, Germany.
    Lenarz, Thomas
    Med Sch Hannover, Germany.
    Agha-Mir-Salim, Parwis
    Vivantes Klinikum Friedrichshain, Germany.
    Agterberg, Martijn J. H.
    Radboud Univ Nijmegen, Netherlands.
    Anagiotos, Andreas
    Nicosia Gen Hosp, Cyprus.
    Arndt, Susan
    Univ Freiburg, Germany; Univ Freiburg, Germany.
    Ball, Geoffrey
    MED EL Med Elect, Austria.
    Bance, Manohar
    Univ Cambridge, England.
    Barbara, Maurizio
    Univ Hosp St Andrea, Italy.
    Baumann, Uwe
    Univ Klinikum Frankfurt, Germany.
    Baumgartner, Wolfgang
    Med Univ Vienna, Austria.
    Bernardeschi, Daniele
    Hop La Pitie Salpetriere, France.
    Beutner, Dirk
    Univ Med Ctr Gottingen, Germany.
    Bosman, Arjan
    Radboud Univ Nijmegen Med Ctr, Netherlands.
    Briggs, Robert
    Univ Melbourne, Australia.
    Busch, Susan
    Med Sch Hannover, Germany.
    Caversaccio, Marco
    Bern Univ Hosp, Switzerland.
    Dahm, Markus
    St Vincents Private Hosp, Australia.
    Dalhoff, Ernst
    Univ Tubingen, Germany.
    Deveze, Arnaud
    Clairval Hosp, France.
    Ebrahimi-Madiseh, Azadeh
    Univ Western Australia, Australia.
    Fraysse, Bernard
    Clin Rive Gauche, France.
    Frenzel, Henning
    ENT Ctr Luebeck, Germany.
    Gavilan, Javier
    La Paz Univ Hosp, Spain.
    Ghoncheh, Mohammad
    Med Sch Hannover, Germany.
    Hakansson, Bo E. V
    Chalmers Univ Technol, Sweden.
    Hodgetts, William
    Univ Alberta, Canada; Univ Alberta, Canada.
    Hol, Myrthe
    Univ Med Ctr Groningen UMCG, Netherlands.
    Hol-land, Julian
    Gilgit Rd Specialist Ctr, New Zealand.
    Holmberg, Marcus
    Oticon Med AB, Sweden.
    Huber, Alexander M.
    Univ Zurich, Switzerland.
    Jenkins, Herman
    Univ Colorado, CO USA.
    Katiri, Roulla
    Mater Misericordiae Univ Hosp, Ireland.
    Kheirkhah, Kiana
    Radboud Univ Nijmegen, Netherlands.
    Koitschev, Assen
    Klinikum Stuttgart, Germany.
    Kompis, Martin
    Univ Klin Hals Nasen & Ohrenkrankheiten, Switzerland.
    Lanting, Cris
    Radboud Univ Nijmegen Med Ctr, Netherlands.
    Lassaletta, Luis
    La Paz Univ Hosp IdiPAZ, Spain; Ctr Invest Biomed Red Enfermedades Raras CIBERER, Spain.
    Lerut, Bob
    AZ Sint Jan Brugge Oostende, Belgium.
    Leuwer, Rudolf
    HELIOS Kliniken GmbH, Germany.
    Linder, Thomas
    Luzerner Kantonsspital, Switzerland.
    Loewenheim, Hubert
    Univ Tubingen Med Ctr, Germany.
    Lustig, Lawrence
    Columbia Univ, NY USA; New York Presbyterian Hosp, NY USA.
    Mandavia, Rishi
    Royal Natl Throat Nose & Ear Hosp, England.
    Manrique, Manuel
    Univ Clin Navarre, Spain.
    Martins, Jorge Humberto
    Ctr Hosp Univ Coimbra, Portugal.
    Mertens, Griet
    Univ Antwerp, Belgium; Univ Antwerp, Belgium.
    Mlynski, Robert
    Rostock Univ Med Ctr, Germany.
    Mojallal, Hamidreza
    MED EL Med Elect, Austria.
    Monini, Simonetta
    Sapienza Univ, Italy.
    Monksfield, Peter
    Univ Hosp Birmingham, England.
    Mueller, Alexander
    Friedrichshain Clin, Germany.
    Mylanus, Emmanuel
    Radboud Univ Nijmegen Med Ctr, Netherlands.
    Nakajima, Hideko
    Harvard Med Sch, MA 02115 USA; Massachusetts Eye & Ear, MA USA.
    Neudert, Marcus
    Tech Univ Dresden, Germany.
    Offeciers, Erwin
    St Augustinus Antwerpen European Inst ORL HNS, Belgium.
    Pfiffner, Flurin
    Univ Hosp Zurich, Switzerland.
    Pietsch, Markus
    Helios Klinikum Hildesheim, Germany.
    Plontke, Stefan K.
    Martin Luther Univ Halle Wittenberg, Germany.
    Prenzler, Nils
    Med Sch Hannover, Germany.
    Profant, Milan
    Univ Nemocnica Bratislava, Slovakia.
    Rahne, Torsten
    Univ Med Halle, Germany.
    Rajan, Gunesh
    Luzerner Kantonsspital, Switzerland.
    Ratuszniak, Anna
    World Hearing Ctr, Poland.
    Raufer, Stefan
    Med Sch Hannover, Germany.
    Ray, Jaydip
    Univ Sheffield, England.
    Reinfeldt, Sabine
    Chalmers Univ Technol, Sweden.
    Roosli, Christof
    Univ Hosp Zurich, Switzerland.
    Rosenbom, Tove
    Oticon Med, Denmark.
    Salcher, Rolf
    Med Sch Hannover, Germany.
    Schoenermark, Matthias
    SKC Beratungsgesell mbH, Germany.
    Schwab, Burkard
    Helios Klinikum Hildesheim, Germany.
    Skarzynski, Henryk
    Inst Physiol & Pathol Hearing, Poland.
    Skarkynski, Piotr H.
    Inst Physiol & Pathol Hearing, Poland; Inst Physiol & Pathol Hearing, Poland.
    Snapp, Hillary
    Univ Miami, FL USA.
    Sprinzl, Georg
    Univ Klinikum St Polten Lilienfeld, Austria.
    Spearman, Michael
    Ototronix LLC, MN USA.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stieger, Christof
    Univ Basel Hosp, Switzerland.
    Tringali, Stephane
    Univ Lyon 1, France.
    Truy, Eric
    Ctr Hosp Univ Lyon, France.
    Tysome, James
    Cambridge Univ Hosp, England.
    Van de Heyning, Paul
    Univ Antwerp, Belgium.
    Verhaert, Nicolas
    UZ KU Leuven, Belgium; UZ KU Leuven, Belgium.
    Wesarg, Thomas
    Univ Klinikum Freiburg, Germany.
    Westerkull, Patrik
    Otorix AB, Sweden.
    Wollenberg, Barbara
    Tech Univ Munich, Germany.
    Zahnert, Thomas
    UNI Klinikum Carl Gustav Carus, Germany.
    Zarowski, Andrzej
    St Augustinus Antwerpen, Belgium.
    Snik, Ad
    Radboud Univ Nijmegen, Netherlands.
    Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss2022Ingår i: Otology and Neurotology, ISSN 1531-7129, E-ISSN 1537-4505, Vol. 43, nr 5, s. 513-529Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nowadays, several options are available to treat patients with conductive or mixed hearing loss. Whenever surgical intervention is not possible or contra-indicated, and amplification by a conventional hearing device (e.g., behind-the-ear device) is not feasible, then implantable hearing devices are an indispensable next option. Implantable bone-conduction devices and middle-ear implants have advantages but also limitations concerning complexity/invasiveness of the surgery, medical complications, and effectiveness. To counsel the patient, the clinician should have a good overview of the options with regard to safety and reliability as well as unequivocal technical performance data. The present consensus document is the outcome of an extensive iterative process including ENT specialists, audiologists, health-policy scientists, and representatives/technicians of the main companies in this field. This document should provide a first framework for procedures and technical characterization to enhance effective communication between these stakeholders, improving health care.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Lim, Jongwoo
    et al.
    Incheon Natl Univ, South Korea.
    Dobrev, Ivo
    Univ Hosp Zurich, Switzerland; Univ Zurich, Switzerland.
    Roosli, Christof
    Univ Hosp Zurich, Switzerland.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Kim, Namkeun
    Incheon Natl Univ, South Korea; Incheon Natl Univ, South Korea.
    Development of a finite element model of a human head including auditory periphery for understanding of bone-conducted hearing2022Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 421, artikel-id 108337Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A three-dimensional finite-element (FE) model of a human head including the auditory periphery was developed to obtain a better understanding of bone-conducted (BC) hearing. The model was validated by comparison of cochlear and head responses in both air-conducted (AC) and BC hearing with experimental data. Specifically, the FE model provided the cochlear responses such as basilar membrane velocity and intracochlear pressure corresponding to BC stimulations applied to the mastoid or the conventional bone-anchored-hearing-aid (BAHA) positions. This is a strength of the model because it is difficult to obtain the cochlear responses from experiments corresponding to the BC stimulation applied at a specific position on the head surface. In addition, there have been few studies based on an FE model that can calculate the head and cochlear responses simultaneously from a BC stimulation. Moreover, in this study, the intracochlear sound pressure at multi-positions along the BM length was calculated and used to clarify the effect of stimulating force direction on the cochlear and promontory velocities in BC hearing. Also, the relationship between BC and AC stimulation and the basilar membrane velocity in the FE model was used to calculate the stimulation level at hearing thresholds which has been investigated only by psychoacoustical methods.

  • 8.
    Roeoesli, Christof
    et al.
    Univ Hosp Zürich, Switzerland.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Editorial: Special issue on acoustic implant technology2022Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 421, artikel-id 108538Artikel i tidskrift (Övrigt vetenskapligt)
  • 9.
    Ekberg, Mattias
    et al.
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Avdelningen för funktionsnedsättning och samhälle. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Andin, Josefine
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Avdelningen för funktionsnedsättning och samhälle. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Dahlström, Örjan
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Effects of mild-to-moderate sensorineuralhearing loss and signal amplification on vocalemotion recognition in middle-aged–olderindividuals2022Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 17, nr 1, artikel-id e0261354Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Previous research has shown deficits in vocal emotion recognition in sub-populations of individuals with hearing loss, making this a high priority research topic. However, previousresearch has only examined vocal emotion recognition using verbal material, in which emotions are expressed through emotional prosody. There is evidence that older individualswith hearing loss suffer from deficits in general prosody recognition, not specific to emotionalprosody. No study has examined the recognition of non-verbal vocalization, which constitutes another important source for the vocal communication of emotions. It might be thecase that individuals with hearing loss have specific difficulties in recognizing emotionsexpressed through prosody in speech, but not non-verbal vocalizations. We aim to examinewhether vocal emotion recognition difficulties in middle- aged-to older individuals with sensorineural mild-moderate hearing loss are better explained by deficits in vocal emotion recognition specifically, or deficits in prosody recognition generally by including both sentencesand non-verbal expressions. Furthermore a, some of the studies which have concluded thatindividuals with mild-moderate hearing loss have deficits in vocal emotion recognition abilityhave also found that the use of hearing aids does not improve recognition accuracy in thisgroup. We aim to examine the effects of linear amplification and audibility on the recognitionof different emotions expressed both verbally and non-verbally. Besides examining accuracy for different emotions we will also look at patterns of confusion (which specific emotionsare mistaken for other specific emotion and at which rates) during both amplified and nonamplified listening, and we will analyze all material acoustically and relate the acoustic content to performance. Together these analyses will provide clues to effects of amplification onthe perception of different emotions. For these purposes, a total of 70 middle-aged-olderindividuals, half with mild-moderate hearing loss and half with normal hearing will perform acomputerized forced-choice vocal emotion recognition task with and without amplification

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Ghoncheh, Mohammad
    et al.
    Hannover Med Sch, Germany; Hannover Med Sch, Germany; Stadtfelddamm 34, Germany.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Maas, Patrick
    Oticon Med, Denmark.
    Salcher, Rolf
    Hannover Med Sch, Germany; Hannover Med Sch, Germany; Cluster Excellence Hearing4all, Germany.
    Prenzler, Nils
    Hannover Med Sch, Germany; Hannover Med Sch, Germany; Cluster Excellence Hearing4all, Germany.
    Raufer, Stefan
    Hannover Med Sch, Germany; Hannover Med Sch, Germany; Cluster Excellence Hearing4all, Germany.
    Maier, Hannes
    Hannover Med Sch, Germany; Hannover Med Sch, Germany; Cluster Excellence Hearing4all, Germany.
    Output performance of the novel active transcutaneous bone conduction implant Sentio at different stimulation sites2022Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 421, artikel-id 108369Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objectives: The output performance of a novel semi-implantable transcutaneous bone conduction device was compared to an established percutaneous bone-anchored hearing system device using cadaver heads. The influence of actuator position, tissue growth below the actuator and mounting it on the surface or in a flattened bone bed on the performance of the implanted actuator was investigated.Materials and Methods: The percutaneous and the new transcutaneous device were sequentially implanted at two sites in five human cadaver heads: 55 mm superior-posterior to the ear canal opening (position A) and, closer to the cochlea, about 20 mm inferior-posterior to the ear canal opening behind the pinna on the mastoid (position B). The ipsi-and contralateral cochlear promontory (CP) velocity magnitude responses to percutaneous and transcutaneous stimulation were measured using laser Doppler vibrometry. In addition, the CP vibration of the transcutaneous device placed directly on the skull bone surface was compared with the placement in a flattened bone bed at a depth of about 3 mm. Finally, the influence of placing a thin silicone interposition layer under the implanted transducer was also explored.Results: The percutaneous device provided about an 11 dB higher average CP vibration level than the transcutaneous device at frequencies between 0.5 and 10 kHz. The ipsilateral CP vibration responses with stimulations at position B were on average 13 dB higher compared to stimulation at position A. The placement of the transcutaneous transducer at position B provided similar or higher average vibration magnitudes than the percutaneous transducer at position A. The 3 mm deep flattened bone bed had no significant effects on the output performance. Placing a thin silicone layer under the transcutaneous transducer had no significant influence on the output of the transcutaneous device.Conclusions: Our results using the CP vibration responses show that at frequencies above 500 Hz the new transcutaneous device at position B provides similar output levels as the percutaneous device at position A. The results also indicated that neither a bone bed for the placement of the transcutaneous transducer nor a simulated tissue growth between the actuator and the bone affect the output performance of the device.

  • 11.
    Stenfelt, Stefan
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Prodanovic, Srdan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Simulation of soft tissue stimulation - Indication of a skull bone vibration mechanism in bone conduction hearing2022Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 418, artikel-id 108471Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soft tissue conduction has been proposed as an alternative to bone conduction (BC) for hearing vibrations applied at soft tissue positions at the human head. Arguments for soft tissue conduction originate primarily from experimental studies with stimulation applied to different positions such as the neck, the eye, and directly to the dura. To investigate the mechanism for hearing when stimulations are at soft tissue positions, experimental studies were replicated using the finite element model for BC research, the LiUHead. The vibrations at the cochlear promontory and the sound pressure in the cerebrospinal fluid (CSF) close to the inner ear were extracted from simulations in the LiUHead. The LiUHead simulations were able to replicate data in the literature of cochlear promontory vibration levels and CSF sound pressures with stimulation applied at the soft tissue positions and at the skin covered mastoid. It was shown that the mechanical point impedance of the soft tissue positions affected the output of the BC transducer at frequencies below 1 kHz. The LiUHead simulated cochlear promontory velocities predicted the soft tissue positions hearing thresholds reported in the literature within the inter-study range. This indicates that the hearing mechanism for stimulation at soft tissue positions equals the hearing mechanism for conventional BC hearing, and that soft tissue conduction is not an alternative hearing mechanism. Moreover, the simulations indicated that the CSF sound pressure is not an important pathway for BC hearing and that the CSF pressure is generated by the local skull bone vibrations. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Wang, Jie
    et al.
    Guangzhou Univ, Peoples R China.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Wu, Shengjian
    Guangzhou Univ, Peoples R China.
    Yan, Zhihao
    Guangzhou Univ, Peoples R China.
    Sang, Jinqiu
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Zheng, Chengshi
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Li, Xiaodong
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    The Effect of Stimulation Position and Ear Canal Occlusion on Perception of Bone Conducted Sound2022Ingår i: Trends in Hearing, ISSN 2331-2165, Vol. 26, artikel-id 23312165221130185Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The position of a bone conduction (BC) transducer influences the perception of BC sound, but the relation between the stimulation position and BC sound perception is not entirely clear. In the current study, eleven participants with normal hearing were evaluated for their hearing thresholds and speech intelligibility for three stimulation positions (temple, mastoid, and condyle) and four types of ear canal occlusion produced by headphones. In addition, the sound quality for three types of music was rated with stimulation at the three positions. Stimulation at the condyle gave the best performance while the temple showed the worst performance for hearing thresholds, speech intelligibility, and sound quality. The in-ear headphones gave the highest occlusion effect while fully open headphones gave the least occlusion effect. BC stimulated speech intelligibility improved with greater occlusion, especially for the temple stimulation position. The results suggest that BC stimulation at the condyle is generally superior to the other positions tested in terms of sensitivity, clarity, and intelligibility, and that occlusion with ordinary headphones improves the BC signal.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Saremi, Amin
    et al.
    Umea Univ, Sweden.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    The effects of noise-induced hair cell lesions on cochlear electromechanical responses: A computational approach using a biophysical model2022Ingår i: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947, Vol. 38, nr 5, artikel-id e3582Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A biophysically inspired signal processing model of the human cochlea is deployed to simulate the effects of specific noise-induced inner hair cell (IHC) and outer hair cell (OHC) lesions on hearing thresholds, cochlear compression, and the spectral and temporal features of the auditory nerve (AN) coding. The model predictions were evaluated by comparison with corresponding data from animal studies as well as human clinical observations. The hearing thresholds were simulated for specific OHC and IHC damages and the cochlear nonlinearity was assessed at 0.5 and 4 kHz. The tuning curves were estimated at 1 kHz and the contributions of the OHC and IHC pathologies to the tuning curve were distinguished by the model. Furthermore, the phase locking of AN spikes were simulated in quiet and in presence of noise. The model predicts that the phase locking drastically deteriorates in noise indicating the disturbing effect of background noise on the temporal coding in case of hearing impairment. Moreover, the paper presents an example wherein the model is inversely configured for diagnostic purposes using a machine learning optimization technique (Nelder-Mead method). Accordingly, the model finds a specific pattern of OHC lesions that gives the audiometric hearing loss measured in a group of noise-induced hearing impaired humans.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Surendran, Sudeep
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    The outer ear pathway during hearing by bone conduction2022Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 421, artikel-id 108388Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There have been conflicting reports in the literature about the importance of the induced ear canal sound pressure for the perception of bone-conducted (BC) sound. Here we investigated this by comparing the ear canal sound pressure at threshold for air-conducted (AC) and BC stimulation. Twenty-one adults with subjectively normal hearing function participated. They were tested for their hearing thresholds in the frequency range 250 Hz to 12.5 kHz with AC and BC stimulation and the ear canal sound pressure within 5 mm of the eardrum was obtained with probe tube microphones. Contralateral masking used with BC stimulation shifted the hearing threshold by 5 to 10 dB due to central masking effects. When the ear canal sound pressures at threshold were investigated, the results indicate that the ear canal component for hearing BC sound is around 10 dB below other contributors at frequencies below 2 kHz and similar to other important contributors at frequencies between 2 and 4 kHz. At frequencies above 4 kHz, the contribution from the ear canal sound pressure on BC hearing declines and was around 40 dB below other contributors at 12.5 kHz. The contribution of the ear canal sound pressure in the mid-frequency region is facilitated by the ear canal resonance occurring in this frequency area. The results were similar irrespective of stimulation position. The study also revealed problems estimating the force out of BC transducers caused by a shift in resonance frequency when the artificial mastoid impedance deviates from the impedance of human mastoids. The current study indicates that model predictions have underestimated the contribution from the ear canal sound pressure on BC hearing by around 10 dB.

  • 15.
    Prodanovic, Srdan
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Review of Whole Head Experimental Cochlear Promontory Vibration with Bone Conduction Stimulation and Investigation of Experimental Setup Effects2021Ingår i: Trends in Hearing, ISSN 2331-2165, Vol. 25, artikel-id 23312165211052764Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Bone conduction sound transmission in humans has been extensively studied using cochlear promontory vibrations. These studies use vibration data collected from measurements in live humans, whole cadavers, and severed cadaver heads, with stimulation applied either at an implant in the skull bone or directly on the skin. Experimental protocols, methods, and preparation of cadavers or cadaver heads vary among the studies, and it is currently unknown to what extent the aforementioned variables affect the outcome of those studies. The current study has two aims. The first aim is to review and compare available experimental data and assess the effects of the experimental protocol and methods. The second aim is to investigate similarities and differences found between the experimental studies based on simulations in a finite element model, the LiUHead. With implant stimulation, the average cochlear promontory vibration levels were within 10 dB, independent of the experimental setup and preparations of the cadavers or cadaver heads. With on-skin stimulation, the results were consistent between cadaver heads and living humans. Partial or complete replacement of the brain with air does not affect the cochlear promontory vibration, whereas replacing the brain with liquid reduces the vibration level by up to 5 dB. An intact head-neck connection affects the vibration of the head at frequencies below 300-400 Hz with a significant vibration reduction at frequencies below 200 Hz. Removing all soft tissue, brain tissue, and intracranial fluid from the head increases the overall cochlear promontory vibration level by around 5 dB.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Hjertman, Heléne
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken. Dept Otorhinolaryngol Ostergotland, Sweden.
    Hallgren, Mathias
    Dept Otorhinolaryngol Ostergotland, Sweden.
    Mäki-Torkko, Elina
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten. Orebro Univ, Sweden.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    The Swedish hearing in noise test for children, HINT-C2021Ingår i: International Journal of Pediatric Otorhinolaryngology, ISSN 0165-5876, E-ISSN 1872-8464, Vol. 141, artikel-id 110509Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: The aim of this study was to develop and evaluate a Swedish version of the Hearing In Noise Test for Children (HINT-C). Design: In the first part, the Swedish HINT lists for adults was evaluated by children at three signal to noise ratios (SNRs), -4, -1 and +2 dB. Lists including sentences not reaching 50% recognition at +2 dB SNR were excluded and the rest constituted the HINT-C. In the second part, HINT-C was evaluated in children and adults using an adaptive procedure to determine the SNR for 50% correctly repeated sentences. Study Sample In the first part, 112 children aged 6-11 years participated while another 28 children and 9 adults participated in the second part. Results: Eight out of 24 tested adult HINT lists did not reach the inclusion criteria. The remaining 16 lists formed the Swedish HINT-C which was evaluated in children 6-11 years old. A regression analysis showed that the predicted SNR threshold (dB) was 0.495-0.365*age (years + months/12) and the children reached the mean adult score at an age of 10.5 years. Conclusions: A Swedish version of HINT-C was developed and evaluated in children six years and older.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Zhao, Mingduo
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Fridberger, Anders
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs2021Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 11, nr 1, artikel-id 2855Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sound and vibrations that cause the skull bone to vibrate can be heard as ordinary sounds and this is termed hearing by bone conduction (BC). Not all mechanisms that causes a skull vibration to result in BC hearing are known, and one such unknown is how the direction of the vibration influences BC hearing. This direction sensitivity was investigated by providing BC stimulation in five different directions at the vertex of the guinea pig skull. The hearing thresholds for BC stimulation was obtained in the frequency range of 2 to 20 kHz by measurements of compound action potential. During the stimulation by BC, the vibration of the cochlear promontory was measured with a three-dimensional laser Doppler vibrometer resulting in a set of unique three-dimensional velocity magnitude combinations for each threshold estimation. The sets of three-dimensional velocity magnitude at threshold were used to investigate nine different predictors of BC hearing based on cochlear promontory velocity magnitudes, six single direction (x, y and z directions in isolation, the normal to the stapes footplate, the oval to round window direction, and the cochlear base to apex direction), one linear combination of the three dimension velocity magnitudes, one square-rooted sum of the squared velocity magnitudes, and one sum of the weighted three dimensional velocity magnitudes based on a restricted minimum square error (MSE) estimation. The MSE gave the best predictions of the hearing threshold based on the cochlear promontory velocity magnitudes while using only a single direction gave the worst predictions of the hearing thresholds overall. According to the MSE estimation, at frequencies up to 8 kHz the vibration direction between the right and left side gave the greatest contribution to BC hearing in the guinea pig while at the highest frequencies measured, 16 and 20 kHz, the anteroposterior direction of the guinea pig head gave the greatest contribution.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Prodanovic, Srdan
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Consequences of Mastoidectomy on Bone Conducted Sound Based on Simulations in a Whole Human Head2020Ingår i: Otology and Neurotology, ISSN 1531-7129, E-ISSN 1537-4505, Vol. 41, nr 9, s. E1158-E1166Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hypothesis: The aim of this study is to investigate how a mastoidectomy surgery affects bone conduction (BC) sound transmission using a whole head finite element model. Background: Air conduction (AC) and BC hearing thresholds are normally used to evaluate the effect of an ear surgery. It is then assumed that the BC hearing thresholds are unaffected by the surgery. Moreover, BC hearing aids are used in cases of unilateral or conductive hearing loss in heads that have undergone a mastoidectomy surgery. Given the invasiveness of the surgery, the BC hearing sensitivity may be altered by the surgery itself. Methods: Two types of mastoid surgery, canal wall up and canal wall down, with and without obliteration, were simulated in a whole head finite element model for BC stimulation, the LiUHead. The evaluations were conducted for two different methods of applying the BC sound, at the skin surface (B71 transducer) and directly at the bone (BC hearing aid). Results: The results showed that a mastoidectomy surgery increased the cochlear vibration responses with BC stimulation. The increase was less than 5 dB, except for a canal wall down surgery which gave an increase of up to 8 dB at frequencies close to 10 kHz. The increase was greater at the ipsilateral cochlea compared with the contralateral cochlea. Conclusion: A mastoidectomy surgery increases the vibration at both cochleae for BC stimulation and the increase generally improved with frequency. Obliteration of the surgical cavity does not influence BC sound transmission.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Investigation of Mechanisms in Bone Conduction Hyperacusis With Third Window Pathologies Based on Model Predictions2020Ingår i: Frontiers in Neurology, E-ISSN 1664-2295, Vol. 11, artikel-id 966Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A lumped element impedance model of the inner ear with sources based on wave propagation in the skull bone was used to investigate the mechanisms of hearing sensitivity changes with semi-circular canal dehiscence (SSCD) and alterations of the size of the vestibular aqueduct. The model was able to replicate clinical and experimental findings reported in the literature. For air conduction, the reduction in cochlear impedance due to a SSCD reduces the intra-cochlear pressure at low frequencies resulting in a reduced hearing sensation. For bone conduction, the reduced impedance in the vestibular side due to the SSCD facilitates volume velocity caused by inner ear fluid inertia, and this effect dominates BC hearing with a third window opening on the vestibular side. The SSCD effect is generally greater for BC than for AC. Moreover, the effect increases with increased area of the dehiscence, but areas more than the cross section area of the semi-circular canal itself leads to small alterations. The model-predicted air-bone gap for a SSCD of 1 mm(2)is 30 dB at 100 Hz that decreases with frequency and become non-existent at frequencies above 1 kHz. According to the model, this air-bone gap is similar to the air-bone gap of an early stage otosclerosis. The normal variation of the size of the vestibular aqueduct do not affect air conduction hearing, but can vary bone conduction sensitivity by up to 15 dB at low frequencies. Reinforcement of the OW to mitigate hyperacusis with SSCD is inefficient while a RW reinforcement can reset the bone conduction sensitivity to near normal.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Hengen, Johanna
    et al.
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Lundeborg Hammarström, Inger
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Perception of Ones Own Voice After Hearing-Aid Fitting for Naive Hearing-Aid Users and Hearing-Aid Refitting for Experienced Hearing-Aid Users2020Ingår i: TRENDS IN HEARING, ISSN 2331-2165, Vol. 24, artikel-id 2331216520932467Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dissatisfaction with the sound of ones own voice is common among hearing-aid users. Little is known regarding how hearing impairment and hearing aids separately affect own-voice perception. This study examined own-voice perception and associated issues before and after a hearing-aid fitting for new hearing-aid users and refitting for experienced users to investigate whether it was possible to differentiate between the effect of (unaided) hearing impairment and hearing aids. Further aims were to investigate whether First-Time and Experienced users as well as users with dome and mold inserts differed in the severity of own-voice problems. The study had a cohort design with three groups: First-Time hearing-aid users going from unaided to aided hearing (n = 70), Experienced hearing-aid users replacing their old hearing aids (n = 70), and an unaided control group (n = 70). The control group was surveyed once and the hearing-aid users twice; once before hearing-aid fitting/refitting and once after. The results demonstrated that own-voice problems are common among both First-Time and Experienced hearing-aid users with either dome- or mold-type fittings, while people with near-normal hearing and not using hearing aids report few problems. Hearing aids increased ratings of own-voice problems among First-Time users, particularly those with mold inserts. The results suggest that altered auditory feedback through unaided hearing impairment or through hearing aids is likely both to change own-voice perception and complicate regulation of vocal intensity, but hearing aids are the primary reason for poor perceived sound quality of ones own voice.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Zhao, Mingduo
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Fridberger, Anders
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Bone conduction hearing in the Guinea pig and the effect of artificially induced middle ear lesions2019Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 379, s. 21-30Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although human bone conduction (BC) hearing is well investigated, there is a lack of information about BC hearing in most other species. In humans, the amount of conductive loss is estimated as the difference between the air conduction (AC) and BC thresholds. Similar estimations for animals are difficult since in most species, the normal BC hearing thresholds have not been established. In the current study, the normal BC thresholds in the frequency range between 2 kHz and 20 kHz are investigated for the Guinea pig. Also, the effect of a middle ear lesion, here modelled by severing the ossicles (ossicular discontinuity) and gluing the ossicles to the bone (otosclerosis), is investigated for both AC and BC. The hearing thresholds in the Guinea pigs were estimated by a regression of the amplitude of the compound action potential (CAP) with stimulation level and was found robust and gave a high resolution of the threshold level. The reference for the BC thresholds was the cochlear promontory bone velocity. This reference enables comparison of BC hearing in animals, both intra and inter species, which is independent on the vibrator and stimulation position. The vibration was measured in three orthogonal directions where the dominating vibration directions was in line with the stimulation direction, here the ventral direction. The BC thresholds lay between -10 and 3 dB re 1 mu m/s. The slopes of CAP growth function were similar for AC and BC at low and high frequencies, but slightly lower for BC than AC at frequencies between 8 and 16 kHz. This was attributed to differences in the stimulus levels used for the slope estimation and not a real difference in CAP slopes between the stimulation modalities. Two kinds of middle ear lesions, ossicular discontinuity and stapes glued to the surrounding bone, gave threshold shifts of between 23 and 53 dB for AC while it was below 16 dB when the stimulation was by BC. Statistically different threshold shifts between the two types of lesions were found where the AC threshold shifts for a glued stapes at 2 and 4 kHz were 9-18 dB greater than for a severed ossicular chain, and the BC threshold shifts for a glued stapes at 4 and 12 kHz were 8-9 dB greater than fora severed ossicular chain. (C) 2019 Elsevier B.V. All rights reserved.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Chang, You
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Characteristics of Bone-Conduction Devices Simulated in a Finite-Element Model of a Whole Human Head2019Ingår i: TRENDS IN HEARING, ISSN 2331-2165, Vol. 23, artikel-id 2331216519836053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nowadays, many different kinds of bone-conduction devices (BCDs) are available for hearing rehabilitation. Most studies of these devices fail to compare the different types of BCDs under the same conditions. Moreover, most results are between two BCDs in the same subject, or two BCDs in different subjects failing to provide an overview of the results between several of the BCDs. Another issue is that some BCDs require surgical procedures that prevent comparison of the BCDs in the same persons. In this study, four types of skin-drive BCDs, three direct-drive BCDs, and one oral device were evaluated in a finite-element model of the human head that was able to simulate all BCDs under the same conditions. The evaluation was conducted using both a dynamic force as input and an electric voltage to a model of a BCD vibrator unit. The results showed that the direct-drive BCDs and the oral device gave vibration responses within 10 dB at the cochlea. The skin-drive BCDs had similar or even better cochlear vibration responses than the direct-drive BCDs at low frequencies, but the direct-drive BCDs gave up to 30 dB higher cochlear vibration responses at high frequencies. The study also investigated the mechanical point impedance at the interface between the BCD and the head, providing information that explains some of the differences seen in the results. For example, when the skin-drive BCD attachment area becomes too small, the transducer cannot provide an output force similar to the devices with larger attachment surfaces.

    Ladda ner fulltext (pdf)
    Characteristics of Bone-Conduction Devices Simulated in a Finite-Element Model of a Whole Human Head
  • 23.
    Nuttall, Alfred L.
    et al.
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Ricci, Anthony J.
    Stanford Univ, CA 94025 USA; Stanford Univ, CA 94025 USA.
    Burwood, George
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Harte, James M.
    Tech Univ Denmark, Denmark.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Caye-Thomasen, Per
    Copenhagen Univ Hosp, Denmark.
    Ren, Tianying
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Ramamoorthy, Sripriya
    Indian Inst Technol, India.
    Zhang, Yuan
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Wilson, Teresa
    Oregon Hlth and Sci Univ, OR 97239 USA.
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Oticon AS, Denmark.
    Moore, Brian C. J.
    Univ Cambridge, England.
    Fridberger, Anders
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten. Oregon Hlth and Sci Univ, OR 97239 USA.
    A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ2018Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 9, artikel-id 4175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To understand speech, the slowly varying outline, or envelope, of the acoustic stimulus is used to distinguish words. A small amount of information about the envelope is sufficient for speech recognition, but the mechanism used by the auditory system to extract the envelope is not known. Several different theories have been proposed, including envelope detection by auditory nerve dendrites as well as various mechanisms involving the sensory hair cells. We used recordings from human and animal inner ears to show that the dominant mechanism for envelope detection is distortion introduced by mechanoelectrical transduction channels. This electrical distortion, which is not apparent in the sound-evoked vibrations of the basilar membrane, tracks the envelope, excites the auditory nerve, and transmits information about the shape of the envelope to the brain.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Keceli, Sumru
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Measurements of bone conduction auditory brainstem response with the new audiometric bone conduction transducer Radioear B812018Ingår i: International Journal of Audiology, ISSN 1499-2027, E-ISSN 1708-8186, Vol. 57, nr 8, s. 577-583Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: To compare recordings of bone conduction (BC) stimulated auditory brainstem response (ABR) obtained using the newer BC transducer Radioear B81 and the conventional BC transducer Radioear B71. Balanced electromagnetic separation transducer (BEST) design found in the B81 may influence the ABR magnitudes and latencies, as well as electrical artefacts. Design: ABRs to tone burst stimuli of 500 Hz, 2000 Hz, 4000 Hz, click stimulation, and broad-band chirp stimulation at 20 and 50dB nHL were recorded. For each device, stimulus and intensity level, the ABR Jewett wave V amplitude and latency were obtained. The device-related electrical stimulus artefacts on the ABR recordings were also analysed by calculating the Hilbert envelope of the peri-stimulus recording segments. Study sample: Twenty-three healthy adults with normal hearing were included in the study. Results: The ABRs obtained by the B81 were similar to that of the B71 in terms of ABR wave V amplitude and latency. However, the B81 produced smaller electrical artefacts than B71 and this difference was statistically significant. Conclusions: The BC transducer Radioear B81 provides ABRs comparable to Radioear B71 while causing smaller artefacts.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Hengen, Johanna
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lundeborg Hammarström, Inger
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Perceived Voice Quality and Voice-Related Problems Among Older Adults With Hearing Impairments2018Ingår i: Journal of Speech, Language and Hearing Research, ISSN 1092-4388, E-ISSN 1558-9102, Vol. 61, nr 9, s. 2168-2178Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The auditory system helps regulate phonation. A speakers perception of their own voice is likely to be of both emotional and functional significance. Although many investigations have observed deviating voice qualities in individuals who are prelingually deaf or profoundly hearing impaired, less is known regarding how older adults with acquired hearing impairments perceive their own voice and potential voice problems. Purpose: The purpose of this study was to investigate problems relating to phonation and self-perceived voice sound quality in older adults based on hearing ability and the use of hearing aids. Method: This was a cross-sectional study, with 290 participants divided into 3 groups (matched by age and gender): (a) individuals with hearing impairments who did not use hearing aids (n = 110), (b) individuals with hearing impairments who did use hearing aids (n = 110), and (c) individuals with no hearing impairments (n = 70). All participants underwent a pure-tone audiometry exam; completed standardized questionnaires regarding their hearing, voice, and general health; and were recorded speaking in a soundproof room. Results: The hearing aid users surpassed the benchmarks for having a voice disorder on the Voice Handicap Index (VHI; Jacobson et al., 1997) at almost double the rate predicted by the Swedish normative values for their age range, although there was no significant difference in acoustical measures between any of the groups. Both groups with hearing impairments scored significantly higher on the VHI than the control group, indicating more impairment. It remains inconclusive how much hearing loss versus hearing aids separately contribute to the difference in voice problems. The total scores on the Hearing Handicap Inventory for the Elderly (Ventry amp; Weinstein, 1982), in combination with the variables gender and age, explained 21.9% of the variance on the VHI. Perceiving ones own voice as being distorted, dull, or hollow had a strong negative association with a general satisfaction about the sound quality of ones own voice. In addition, groupwise differences in own-voice descriptions suggest that a negative perception of ones voice could be influenced by alterations caused by hearing aid processing. Conclusions: The results indicate that hearing impairments and hearing aids affect several aspects of vocal satisfaction in older adults. A greater understanding of how hearing impairments and hearing aids relate to voice problems may contribute to better voice and hearing care.

  • 26.
    Chang, You
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Kim, Namkeun
    Incheon Natl Univ, South Korea.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Simulation of the power transmission of bone-conducted sound in a finite-element model of the human head2018Ingår i: Biomechanics and Modeling in Mechanobiology, ISSN 1617-7959, E-ISSN 1617-7940, Vol. 17, nr 6, s. 1741-1755Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bone conduction (BC) sound is the perception of sound transmitted in the skull bones and surrounding tissues. To better understand BC sound perception and the interaction with surrounding tissues, the power transmission of BC sound is investigated in a three-dimensional finite-element model of a whole human head. BC sound transmission was simulated in the FE model and the power dissipation as well as the power flow following a mechanical vibration at the mastoid process behind the ear was analyzed. The results of the simulations show that the skull bone (comprises the cortical bone and diploe) has the highest BC power flow and thereby provide most power transmission for BC sound. The soft tissues was the second most important media for BC sound power transmission, while the least BC power transmission is through the brain and the surrounding cerebrospinal fluid (CSF) inside the cranial vault. The vibrations transmitted in the skull are mainly concentrated at the skull base when the stimulation is at the mastoid. Other vibration transmission pathways of importance are located at the occipital bone at the posterior side of the head while the transmission of sound power through the face, forehead and vertex is minor. The power flow between the skull bone and skull interior indicate that some BC power is transmitted to and from the skull interior but the transmission of sound power through the brain seem to be minimal and only local to the brain-bone interface.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Kim, Jun Woo
    et al.
    Korea Univ, South Korea.
    Bae, Kiho
    Korea Univ, South Korea; KIST, South Korea.
    Kim, Hyun Joong
    Korea Univ, South Korea.
    Son, Ji-won
    KIST, South Korea; Korea Univ Sci and Technol UST, South Korea.
    Kim, Nam Keun
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Incheon Natl Univ, South Korea.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Prinz, Fritz B.
    Stanford Univ, CA 94305 USA; Stanford Univ, CA 94305 USA.
    Shim, Joon Hyung
    Korea Univ, South Korea; Stanford Univ, CA 94305 USA.
    Three-dimensional thermal stress analysis of the re-oxidized Ni-YSZ anode functional layer in solid oxide fuel cells2018Ingår i: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 752, s. 148-154Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nickel-yttria-stabilized zirconia (Ni-YSZ) cermet is widely used as an anode material in solid oxide fuel cells (SOFCs); however, Ni re-oxidation causes critical problems due to volume expansion, which causes high thermal stress. We fabricated a Ni-YSZ anode functional layer (AFL), which is an essential component in high-performance SOFCs, and re-oxidized it to investigate the related three-dimensional (3D) microstructural and thermo-mechanical effects. A 3D model of the re-oxidized AFL was generated using focused ion beam-scanning electron microscope (FIB-SEM) tomography. Re-oxidation of the Ni phase caused significant volumetric expansion, which was confirmed via image analysis and calculation of the volume fraction, connectivity, and two-phase boundary density. Finite element analysis (FEA) with simulated heating to 500-900 degrees C confirmed that the thermal stress in re-oxidized Ni-YSZ is concentrated at the boundaries between YSZ and re-oxidized NiO (nickel oxide). NiO is subjected to more stress than YSZ. Stress exceeding the fracture stress of 8 mol% YSZ appears primarily at 800 degrees C or higher. The stress is also more severe near the electrolyte-anode boundary than in the Ni-YSZ cermet and the YSZ regions. This may be responsible for the electrolyte membrane delamination and fracture that are observed during high-temperature operation. (C) 2018 Elsevier B.V. All rights reserved.

  • 28.
    Kim, Jun Woo
    et al.
    Korea Univ, South Korea.
    Kim, Nam Keun
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Incheon Natl Univ, South Korea.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för sinnesorgan och kommunikation. Linköpings universitet, Medicinska fakulteten.
    Shim, Joon Hyung
    Korea Univ, South Korea.
    3D EVALUATION OF THERMAL STRESSES ON CERAMIC-METAL COMPOSITES USED AT HIGH TEMPERATURE OPERATION2017Ingår i: 5TH IIR INTERNATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES AND TRANSFER PROCESSES OF REFRIGERANTS (TPTPR), INT INST REFRIGERATION , 2017, s. 771-775Konferensbidrag (Refereegranskat)
    Abstract [en]

    Ceramic-metal composites (CMC) have been used for various high temperature applications including combustion engines, steam and gas turbines, industrial heaters and ceramic fuel cells. Reliable incorporation of the CMC at elevated temperatures, however, is very difficult in practice for the following reasons. First, meting and sublimation points of those solids are different causing undesired diffusion and mixing of elements across the material boundaries degrading functions of the materials. Secondly, maintaining temperature and pressure regimes for desired phases of the component materials is challenging during operation in many of practical cases. Lastly, thermal expansion rates of those two materials are significantly different frequently causing mechanical stresses and fractures. There have been numerous efforts to evaluate and design the CMC materials to minimize the thermo-mechanical stresses. Among various techniques, the focused ion beam-scanning electron microscope (FIB-SEM) tomography has been proved as a state-of-art technique to obtain 3D compositional and structural information of the CMC materials. In this study, we have evaluated thermal stresses applied on nickel-zirconia CMCs by using the FIB-SEM 3D tomography and finite element analysis.

  • 29.
    Skagerstrand, Åsa
    et al.
    Örebro University Hospital, Sweden; Örebro University, Sweden; Swedish Institute Disabil Research, Sweden.
    Kobler, Susanne
    Örebro University Hospital, Sweden; Örebro University, Sweden; Swedish Institute Disabil Research, Sweden.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten. Swedish Institute Disabil Research, Sweden.
    Loudness and annoyance of disturbing sounds - perception by normal hearing subjects2017Ingår i: International Journal of Audiology, ISSN 1499-2027, E-ISSN 1708-8186, Vol. 56, nr 10, s. 775-783Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: Sounds in the daily environment may cause loudness and annoyance. The present study investigated the perception of loudness and annoyance for eight different sounds present in a daily sound environment and at nine different levels varying by +/- 20 dB around the recorded level. The outcomes were related to tests of participants auditory and cognitive abilities. Design: The participants undertook auditory and working memory (WM) tests prior to ratings of everyday sounds previously shown to be disturbing for persons with hearing impairment (hearing aid users). Study sample: Twenty-one participants aged between 24 and 71 years, with normal hearing threshold levels. Results: Both perceived loudness and annoyance were primarily driven by the sound level. Sounds emitted from paper were rated as having greater loudness and being more annoying than the other sound sources at the same sound level. Auditory and cognitive abilities did not influence the perception of loudness and annoyance. Conclusions: Loudness and annoyance ratings were mainly driven by sound level. Expectations of a sound seemed to influence the assessment of loudness and annoyance while auditory performance and WM capacity showed no influence on the ratings.

  • 30.
    Dobrev, Ivo
    et al.
    University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
    Hoon Sim, Jae
    University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Logopedi, Audiologi och Otorhinolaryngologi. Linköpings universitet, Medicinska fakulteten.
    Ihrle, Sebastian
    University of Stuttgart, Germany.
    Gerig, Rahel
    University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
    Pfiffner, Flurin
    University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
    Eiber, Albrecht
    University of Stuttgart, Germany.
    Huber, Alexander M.
    University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
    Roosli, Christof
    University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
    Sound wave propagation on the human skull surface with bone conduction stimulation2017Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 355Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Bone conduction (BC) is an alternative to air conduction to stimulate the inner ear. In general, the stimulation for BC occurs on a specific location directly on the skull bone or through the skin covering the skull bone. The stimulation propagates to the ipsilateral and contralateral cochlea, mainly via the skull bone and possibly via other skull contents. This study aims to investigate the wave propagation on the surface of the skull bone during BC stimulation at the forehead and at ipsilateral mastoid. Methods: Measurements were performed in five human cadaveric whole heads. The electro-magnetic transducer from a BCHA (bone conducting hearing aid), a Baha (R) Cordelle II transducer in particular, was attached to a percutaneously implanted screw or positioned with a 5-Newton steel headband at the mastoid and forehead. The Baha transducer was driven directly with single tone signals in the frequency range of 0.25-8 kHz, while skull bone vibrations were measured at multiple points on the skull using a scanning laser Doppler vibrometer (SLDV) system and a 3D LDV system. The 3D velocity components, defined by the 3D LDV measurement coordinate system, have been transformed into tangent (in-plane) and normal (out-of-plane) components in a local intrinsic coordinate system at each measurement point, which is based on the cadaver heads shape, estimated by the spatial locations of all measurement points. Results: Rigid-body-like motion was dominant at low frequencies below 1 kHz, and clear transverse traveling waves were observed at high frequencies above 2 kHz for both measurement systems. The surface waves propagation speeds were approximately 450 m/s at 8 kHz, corresponding trans-cranial time interval of 0.4 ms. The 3D velocity measurements confirmed the complex space and frequency dependent response of the cadaver heads indicated by the ID data from the SLDV system. Comparison between the tangent and normal motion components, extracted by transforming the 3D velocity components into a local coordinate system, indicates that the normal component, with spatially varying phase, is dominant above 2 kHz, consistent with local bending vibration modes and traveling surface waves. Conclusion: Both SLDV and 3D LDV data indicate that sound transmission in the skull bone causes rigid body-like motion at low frequencies whereas transverse deformations and travelling waves were observed above 2 kHz, with propagation speeds of approximately of 450 m/s at 8 kHz. (C) 2017 Elsevier B.V. All rights reserved.

  • 31.
    Stenfelt, Stefan
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Eriksholm Research Centre, Oticon A/S, Helsingor, Denmark.
    Ng, Elaine
    Linköpings universitet, Institutionen för beteendevetenskap och lärande. Linköpings universitet, Filosofiska fakulteten.
    Lidestam, Björn
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten.
    Zekveld, Adriana
    Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. VU University Medical Center, Amsterdam, Netherlands.
    Sörqvist, Patrik
    Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. University of Gävle, Gävle, Sweden.
    Lyxell, Björn
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Träff, Ulf
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten.
    Yumba, Wycliffe
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten.
    Classon, Elisabet
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Hällgren, Mathias
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Larsby, Birgitta
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Signoret, Carine
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Pichora-Fuller, Kathleen
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). University of Toronto, Toronto, Canada.
    Rudner, Mary
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Danielsson, Henrik
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Rönnberg, Jerker
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Auditory, signal processing, and cognitive factors  influencing  speech  perception  in  persons with hearing loss fitted with hearing aids – the N200 study2016Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Objective: The aim of the current study was to assess aided speech-in-noise outcomes and relate those measures to auditory sensitivity and processing, different types of cognitive processing abilities, and signal processing in hearing aids.

    Material and method: Participants were 200 hearing-aid wearers, with a mean age of 60.8 years, 43% females, with average hearing thresholds in the better ear of 37.4 dB HL. Tests of auditory functions were hearing thresholds, DPOAEs, tests of fine structure processing, IHC dead regions, spectro-temporal modulation, and speech recognition in quiet (PB words). Tests of cognitive processing function were tests of phonological skills, working memory, executive functions and inference making abilities, and general cognitive tests (e.g., tests of cognitive decline and IQ). The outcome test variables were the Hagerman sentences with 50 and 80% speech recognition levels, using two different noises (stationary speech weighted noise and 4-talker babble), and three types of signal processing (linear gain, fast acting compression, and linear gain plus a non-ideal binary mask). Another sentence test included typical and atypical sentences with contextual cues that were tested both audio-visually and in an auditory mode only. Moreover, HINT and SSQ were administrated.

    Analysis: Factor analyses were performed separate for the auditory, cognitive, and outcome tests.

    Results: The auditory tests resulted in two factors labeled SENSITIVITY and TEMPORAL FINE STRUCTURE, the cognitive tests in one factor (COGNITION), and the outcome tests in the two factors termed NO CONTEXT and CONTEXT that relates to the level of context in the different outcome tests. When age was partialled out, COGNITION was moderately correlated with the TEMPORAL FINE STRUCTURE and NO CONTEXT factors but only weakly correlated with the CONTEXT factor. SENSITIVITY correlated weakly with TEMPORAL FINE STRUCTURE and CONTEXT, and moderately with NO CONTEXT, while TEMPORAL FINE STRUCTURE showed weak correlation with CONTEXT and moderate correlation with NO CONTEXT. CONTEXT and NO CONTEXT had a  moderate correlation. Moreover, the overall results of the Hagerman sentences showed 0.9 dB worse SNR with fast acting compression compared with linear gain and 5.5 dB better SNR with linear  gain and noise reduction compared with only linear gain.

    Conclusions: For hearing aid wearers, the ability to recognize speech in noise is associated with both sensory and cognitive processing abilities when the speech materials have low internal context. These associations are less prominent when the speech material has contextual cues.

  • 32.
    Zeitooni, Mehrnaz
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Mäki-Torkko, Elina
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Binaural Hearing Ability With Bilateral Bone Conduction Stimulation in Subjects With Normal Hearing: Implications for Bone Conduction Hearing Aids.2016Ingår i: Ear and Hearing, ISSN 0196-0202, E-ISSN 1538-4667, Vol. 37, nr 6, s. 690-702Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    OBJECTIVES: The purpose of this study is to evaluate binaural hearing ability in adults with normal hearing when bone conduction (BC) stimulation is bilaterally applied at the bone conduction hearing aid (BCHA) implant position as well as at the audiometric position on the mastoid. The results with BC stimulation are compared with bilateral air conduction (AC) stimulation through earphones.

    DESIGN: Binaural hearing ability is investigated with tests of spatial release from masking and binaural intelligibility level difference using sentence material, binaural masking level difference with tonal chirp stimulation, and precedence effect using noise stimulus.

    RESULTS: In all tests, results with bilateral BC stimulation at the BCHA position illustrate an ability to extract binaural cues similar to BC stimulation at the mastoid position. The binaural benefit is overall greater with AC stimulation than BC stimulation at both positions. The binaural benefit for BC stimulation at the mastoid and BCHA position is approximately half in terms of decibels compared with AC stimulation in the speech based tests (spatial release from masking and binaural intelligibility level difference). For binaural masking level difference, the binaural benefit for the two BC positions with chirp signal phase inversion is approximately twice the benefit with inverted phase of the noise. The precedence effect results with BC stimulation at the mastoid and BCHA position are similar for low frequency noise stimulation but differ with high-frequency noise stimulation.

    CONCLUSIONS: The results confirm that binaural hearing processing with bilateral BC stimulation at the mastoid position is also present at the BCHA implant position. This indicates the ability for binaural hearing in patients with good cochlear function when using bilateral BCHAs.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Strömberg, Anna-Karin
    et al.
    Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken US. Karolinska Hospital, Sweden.
    Olofsson, Åke
    Karolinska Institute, Sweden.
    Westin, Magnus
    Karolinska Hospital, Sweden.
    Duan, Maoli
    Karolinska Hospital, Sweden; Karolinska Institute Stockholm, Sweden.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Changes in cochlear function related to acoustic stimulation of cervical vestibular evoked myogenic potential stimulation2016Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 340, s. 43-49Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Evaluation of cervical evoked myogenic potentials (c-VEMP) is commonly applied in clinical investigations of patients with suspected neurotological symptoms. Short intense acoustic stimulation of peak levels close to 130 dB SPL is required to elicit the responses. A recent publication on bilateral significant sensorineural hearing loss related to extensive VEMP stimulation motivates evaluations of immediate effects on hearing acuity related to the intense acoustic stimulation required to elicit c-VEMP responses. The aim of the current study was to investigate changes in DPOAE-levels and hearing thresholds in relation to c-VEMP testing in humans. More specifically, the current focus is on immediate changes in hearing thresholds and changes in DPOAE-levels at frequencies 0.5 octaves above the acoustic stimulation when applying shorter tone bursts than previously used. Hearing acuity before and immediately after exposure to c-VEMP stimulation was examined in 24 patients with normal hearing referred for neurotologic testing. The stimulation consisted of 192 tonebursts of 6 ms and was presented at 500 Hz and 130 dB peSPL. Bekesy thresholds at 0.125-8 kHz and DPOAE I/O growth functions with stimulation at 0.75 and 3 kHz were used to assess c-VEMP related changes in hearing status. No significant deterioration in Bekesy thresholds was detected. Significant reduction in DPOAE levels at 0.75 (0.5-1.35 dB) and 3 kHz (1.6-2.1 dB) was observed after c-VEMP stimulation without concomitant changes in cochlear compression. The results indicated that there was no immediate audiometric loss related to c-VEMP stimulation in the current group of patients. The significant reduction of DPOAE levels at a wider frequency range than previously described after the c-VEMP test could be related to the stimulation with shorter tone bursts. The results show that c-VEMP stimulation causes reduction in DPOAE-levels at several frequencies that corresponds to half the reductions in DPOAE levels reported after exposure to the maximally allowed occupational noise for an 8 h working day. Consequently, extended stimuli intensity or stimulation repetition with c-VEMP testing should be avoided to reduce the risk for noise-induced cochlear injury.

  • 34.
    Rönnberg, Jerker
    et al.
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Oticon AS, Denmark.
    Ng, Elaine Hoi Ning
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lidestam, Björn
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten.
    Zekveld, Adriana
    Linköpings universitet, Institutionen för beteendevetenskap och lärande. Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Filosofiska fakulteten. Vrije University of Amsterdam, Netherlands; Vrije University of Amsterdam, Netherlands.
    Sörqvist, Patrik
    Linköpings universitet, Institutionen för beteendevetenskap, Avdelningen för kognition, utveckling och handikapp, CDD. Linköpings universitet, Filosofiska fakulteten. University of Gavle, Sweden.
    Lyxell, Björn
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Träff, Ulf
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Psykologi. Linköpings universitet, Filosofiska fakulteten.
    Yumba, Wycliffe
    Linköpings universitet, Institutionen för beteendevetenskap och lärande. Linköpings universitet, Filosofiska fakulteten.
    Classon, Elisabet
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Region Östergötland, Närsjukvården i centrala Östergötland, Medicinska och geriatriska akutkliniken.
    Hällgren, Mathias
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken US.
    Larsby, Birgitta
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Signoret, Carine
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Pichora-Fuller, Kathleen
    Linköpings universitet, Institutionen för beteendevetenskap och lärande. Linköpings universitet, Institutet för handikappvetenskap (IHV). Linköpings universitet, Filosofiska fakulteten. University of Toronto, Canada; University of Health Network, Canada; Baycrest Hospital, Canada.
    Rudner, Mary
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Danielsson, Henrik
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study2016Ingår i: International Journal of Audiology, ISSN 1499-2027, E-ISSN 1708-8186, Vol. 55, nr 11, s. 623-642Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Study sample: Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4dB HL. Design: LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. Results: The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R-2 = 0.40). Conclusions: All LEVEL 2 factors are important theoretically as well as for clinical assessment.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Dobrev, Ivo
    et al.
    University of Zurich Hospital, Switzerland.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Roosli, Christof
    University of Zurich Hospital, Switzerland.
    Bolt, Lucy
    University of Zurich Hospital, Switzerland.
    Pfiffner, Flurin
    University of Zurich Hospital, Switzerland.
    Gerig, Rahel
    University of Zurich Hospital, Switzerland.
    Huber, Alexander
    University of Zurich Hospital, Switzerland.
    Hoon Sim, Jae
    University of Zurich Hospital, Switzerland.
    Influence of stimulation position on the sensitivity for bone conduction hearing aids without skin penetration2016Ingår i: International Journal of Audiology, ISSN 1499-2027, E-ISSN 1708-8186, Vol. 55, nr 8, s. 439-446Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: This study explores the influence of stimulation position on bone conduction (BC) hearing sensitivity with a BC transducer attached using a headband. Design:(1) The cochlear promontory motion was measured in cadaver heads using laser Doppler vibrometry while seven different positions around the pinna were stimulated using a bone anchored hearing aid transducer attached using a headband. (2) The BC hearing thresholds were measured in human subjects, with the bone vibrator Radioear B71 attached to the same seven stimulation positions. Study sample: Three cadaver heads and twenty participants. Results: Stimulation on a position superior-anterior to the pinna generated the largest promontory motion and the lowest BC thresholds. Stimulations on the positions superior to the pinna, the mastoid, and posterior-inferior to the pinna showed similar magnitudes of promontory motion and similar levels of BC thresholds. Conclusion: Stimulations on the regions superior to the pinna, the mastoid, and posterior-inferior to the pinna provide stable BC transmission, and are insensitive to small changes of the stimulation position. Therefore it is reliable to use the mastoid to determine BC thresholds in clinical audiometry. However, stimulation on a position superior-anterior to the pinna provides more efficient BC transmission than stimulation on the mastoid.

  • 36.
    Sim, J. H.
    et al.
    University of Zurich Hospital, Switzerland; University of Zurich, Switzerland.
    Dobrev, I.
    University of Zurich Hospital, Switzerland; University of Zurich, Switzerland.
    Gerig, R.
    University of Zurich Hospital, Switzerland; University of Zurich, Switzerland.
    Pfiffner, F.
    University of Zurich Hospital, Switzerland; University of Zurich, Switzerland.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Huber, A. M.
    University of Zurich Hospital, Switzerland; University of Zurich, Switzerland.
    Roosli, C.
    University of Zurich Hospital, Switzerland; University of Zurich, Switzerland.
    Interaction between osseous and non-osseous vibratory stimulation of the human cadaveric head2016Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 340, s. 153-160Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bone conduction (BC) stimulation can be applied by vibration to the bony or skin covered skull (osseous BC), or on soft tissue such as the neck (non-osseous BC). The interaction between osseous and non osseous bone conduction pathways is assessed in this study. The relation between bone vibrations measured at the cochlear promontory and the intracranial sound pressure for stimulation directly on the dura and for stimulation at the mastoid between 0.2 and 10 kHz was compared. First, for stimulation on the dura, varying the static coupling force of the BC transducer on the dura had only a small effect on promontory vibration. Second, the presence or absence of intracranial fluid did not affect promontory vibration for stimulation on the dura. Third, stimulation on the mastoid elicited both promontory vibration and intracranial sound pressure. Stimulation on the dura caused intracranial sound pressure to a similar extent above 0.5 kHz compared to stimulation on the mastoid, while promontory vibration was less by 20-40 dB. From these findings, we conclude that intracranial sound pressure (non-osseous BC) only marginally affects bone vibrations measured on the promontory (osseous BC), whereas skull vibrations affect intracranial sound pressure. (C) 2016 Elsevier B.V. All rights reserved.

  • 37.
    Roosli, Christof
    et al.
    University of Zurich, Switzerland.
    Dobrev, Ivo
    University of Zurich, Switzerland.
    Hoon Sim, Jae
    University of Zurich, Switzerland.
    Gerig, Rahel
    University of Zurich, Switzerland.
    Pfiffner, Flurin
    University of Zurich, Switzerland.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Huber, Alexander M.
    University of Zurich, Switzerland.
    Intracranial Pressure and Promontory Vibration With Soft Tissue Stimulation in Cadaveric Human Whole Heads2016Ingår i: Otology and Neurotology, ISSN 1531-7129, E-ISSN 1537-4505, Vol. 37, nr 9, s. E384-E390Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hypothesis:Intracranial pressure and skull vibrations are correlated and depend on the stimulation position and frequency.Background:A hearing sensation can be elicited by vibratory stimulation on the skin covered skull, or by stimulation on soft tissue such as the neck. It is not fully understood whether different stimulation sites induce the skull vibrations responsible for the perception or whether other transmission pathways are dominant. The aim of this study was to assess the correlation between intracranial pressure and skull vibration measured on the promontory for stimulation to different sites on the head.Methods:Measurements were performed on four human cadaver heads. A bone conduction hearing aid was held in place with a 5-Newton steel headband at four locations (mastoid, forehead, eye, and neck). While stimulating in the frequency range of 0.3 to 10kHz, acceleration of the cochlear promontory was measured with a Laser Doppler Vibrometer, and intracranial pressure at the center of the head with a hydrophone.Results:Promontory acceleration and intracranial pressure was measurable for all stimulation sites. The ratios were comparable between all stimulation sites for frequencies below 2kHz.Conclusion:These findings indicate that both promontory acceleration and intracranial pressure are involved for stimulation on the sites investigated. The transmission pathway of sound energy is comparable for the four stimulation sites.

  • 38.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Model predictions for bone conduction perception in the human2016Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, nr 15, s. 30076-30079Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Five different pathways are often suggested as important for bone conducted (BC) sound: (1) sound pressure in the ear canal, (2) inertia of the middle ear ossicles, (3) inertia of the inner ear fluid, (4) compression of the inner ear space, and (5) pressure transmission from the skull interior. The relative importance of these pathways was investigated with an acoustic-impedance model of the inner ear. The model incorporated data of BC generated ear canal sound pressure, middle ear ossicle motion, cochlear promontory vibration, and intracranial sound pressure. With BC stimulation at the mastoid, the inner ear inertia dominated the excitation of the cochlea but inner ear compression and middle ear inertia were within 10 dB for almost the entire frequency range of 0.1-10 kHz. Ear canal sound pressure gave little contribution at the low and high frequencies, but was around 15 dB below the total contribution at the mid frequencies. Intracranial sound pressure gave responses similar to the others at low frequencies, but decreased with frequency to a level of 55 dB below the total contribution at 10 kHz. When the BC inner ear model was evaluated against AC stimulation at threshold levels, the results were close up to approximately 4 kHz but deviated significantly at higher frequencies.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Rudner, Mary
    et al.
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Mishra, Sushmit
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutionen för beteendevetenskap, Institutet för handikappvetenskap, IHV.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Snekkersten, Oticon A/S, Eriksholm Research Centre.
    Rönnberg, Jerker
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Linnaeus Centre HEAD.
    Seeing the talker’s face improves free recall of speech for young adults with normal hearing but not older adults with hearing loss2016Ingår i: Journal of Speech, Language and Hearing Research, ISSN 1092-4388, E-ISSN 1558-9102, Vol. 59, s. 590-599Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose Seeing the talker's face improves speech understanding in noise, possibly releasing resources for cognitive processing. We investigated whether it improves free recall of spoken two-digit numbers.

    Method Twenty younger adults with normal hearing and 24 older adults with hearing loss listened to and subsequently recalled lists of 13 two-digit numbers, with alternating male and female talkers. Lists were presented in quiet as well as in stationary and speech-like noise at a signal-to-noise ratio giving approximately 90% intelligibility. Amplification compensated for loss of audibility.

    Results Seeing the talker's face improved free recall performance for the younger but not the older group. Poorer performance in background noise was contingent on individual differences in working memory capacity. The effect of seeing the talker's face did not differ in quiet and noise.

    Conclusions We have argued that the absence of an effect of seeing the talker's face for older adults with hearing loss may be due to modulation of audiovisual integration mechanisms caused by an interaction between task demands and participant characteristics. In particular, we suggest that executive task demands and interindividual executive skills may play a key role in determining the benefit of seeing the talker's face during a speech-based cognitive task

  • 40.
    Bernstein, Joshua G. W.
    et al.
    Walter Reed National Mil Medical Centre, MD 20889 USA.
    Danielsson, Henrik
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Hällgren, Mathias
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken US.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Rönnberg, Jerker
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Oticon AS, Denmark.
    Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids2016Ingår i: TRENDS IN HEARING, ISSN 2331-2165, Vol. 20, artikel-id 2331216516670387Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The audiogram predicts amp;lt;30% of the variance in speech-reception thresholds (SRTs) for hearing-impaired (HI) listeners fitted with individualized frequency-dependent gain. The remaining variance could reflect suprathreshold distortion in the auditory pathways or nonauditory factors such as cognitive processing. The relationship between a measure of suprathreshold auditory function-spectrotemporal modulation (STM) sensitivity-and SRTs in noise was examined for 154 HI listeners fitted with individualized frequency-specific gain. SRTs were measured for 65-dB SPL sentences presented in speech-weighted noise or four-talker babble to an individually programmed master hearing aid, with the output of an ear-simulating coupler played through insert earphones. Modulation-depth detection thresholds were measured over headphones for STM (2cycles/octave density, 4-Hz rate) applied to an 85-dB SPL, 2-kHz lowpass-filtered pink-noise carrier. SRTs were correlated with both the high-frequency (2-6 kHz) pure-tone average (HFA; R-2 = .31) and STM sensitivity (R-2 = .28). Combined with the HFA, STM sensitivity significantly improved the SRT prediction (Delta R-2 = .13; total R-2 = .44). The remaining unaccounted variance might be attributable to variability in cognitive function and other dimensions of suprathreshold distortion. STM sensitivity was most critical in predicting SRTs for listenersamp;lt;65 years old or with HFA amp;lt;53 dB HL. Results are discussed in the context of previous work suggesting that STM sensitivity for low rates and low-frequency carriers is impaired by a reduced ability to use temporal fine-structure information to detect dynamic spectra. STM detection is a fast test of suprathreshold auditory function for frequencies amp;lt;2 kHz that complements the HFA to predict variability in hearing-aid outcomes for speech perception in noise.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Chang, You
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Kim, Namkeun
    Incheon National University, South Korea.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound2016Ingår i: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, Vol. 140, nr 3, s. 1635-1651Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A whole head finite element model for simulation of bone conducted (BC) sound transmission was developed. The geometry and structures were identified from cryosectional images of a female human head and eight different components were included in the model: cerebrospinal fluid, brain, three layers of bone, soft tissue, eye, and cartilage. The skull bone was modeled as a sandwich structure with an inner and outer layer of cortical bone and soft spongy bone (diploe) in between. The behavior of the finite element model was validated against experimental data of mechanical point impedance, vibration of the cochlear promontories, and transcranial BC sound transmission. The experimental data were obtained in both cadaver heads and live humans. The simulations showed multiple low-frequency resonances where the first was caused by rotation of the head and the second was close in frequency to average resonances obtained in cadaver heads. At higher frequencies, the simulation results of the impedance were within one standard deviation of the average experimental data. The acceleration response at the cochlear promontory was overall lower for the simulations compared with experiments but the overall tendencies were similar. Even if the current model cannot predict results in a specific individual, it can be used for understanding the characteristic of BC sound transmission in general. (C) 2016 Acoustical Society of America.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Asp, Filip
    et al.
    Karolinska Institute, Sweden; Karolinska University Hospital, Sweden.
    Mäki-Torkko, Elina
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken US.
    Karltorp, Eva
    Karolinska Institute, Sweden; Karolinska University Hospital, Sweden.
    Harder, Henrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken US.
    Hergils, Leif
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Öron- näsa- och halskliniken US.
    Eskilsson, Gunnar
    Karolinska University Hospital, Sweden.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    A longitudinal study of the bilateral benefit in children with bilateral cochlear implants2015Ingår i: International Journal of Audiology, ISSN 1499-2027, E-ISSN 1708-8186, Vol. 54, nr 2, s. 77-88Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: To study the development of the bilateral benefit in children using bilateral cochlear implants by measurements of speech recognition and sound localization. Design: Bilateral and unilateral speech recognition in quiet, in multi-source noise, and horizontal sound localization was measured at three occasions during a two-year period, without controlling for age or implant experience. Longitudinal and cross-sectional analyses were performed. Results were compared to cross-sectional data from children with normal hearing. Study sample: Seventy-eight children aged 5.1-11.9 years, with a mean bilateral cochlear implant experience of 3.3 years and a mean age of 7.8 years, at inclusion in the study. Thirty children with normal hearing aged 4.8-9.0 years provided normative data. Results: For children with cochlear implants, bilateral and unilateral speech recognition in quiet was comparable whereas a bilateral benefit for speech recognition in noise and sound localization was found at all three test occasions. Absolute performance was lower than in children with normal hearing. Early bilateral implantation facilitated sound localization. Conclusions: A bilateral benefit for speech recognition in noise and sound localization continues to exist over time for children with bilateral cochlear implants, but no relative improvement is found after three years of bilateral cochlear implant experience.

  • 43.
    Kim, Nam Keun
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    A Possible Third Window for Bone Conducted Hearing: Cochlear Aqueduct vs. Vestibular Aqueduct2015Ingår i: Mechanics of hearing: Protein to perception, American Institute of Physics (AIP), 2015, Vol. 1703, nr 060016, s. 060016-1-060016-4Konferensbidrag (Refereegranskat)
    Abstract [en]

    A third window, which is another cochlear fluid pathway different from the oval window and round window, is considered to be a significant factor in bone-conducted hearing. A three-dimensional finite element model of the human ear consisting of the middle ear and cochlea was used to investigate the effect of the third windows on bone-conducted heraing. This study is aimed to find the third window which causes the consistent cochlear responses with previous studies in air-conducted hearing, and causes the asymmetry of the volume velocity ratio between the oval window and round window in bone-conducted hearing. The preliminary result shows that the cochlear aqueduct and the vestibular aqueduct with high impedance do not affect the basilar membrane velocity in air-conducted hearing. On the contrary, in bone-conducted hearing, the direction of the shaking structure for the bone-conducted stimulation as well as the third window can be a significant factor causing the asymmetry of the volume velocity ratio found by Stenfelt et al.

  • 44.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Cochlear Boundary Motion During Bone Conduction Stimulation: Implications for Inertial and Compressional Excitation of the Cochlea2015Ingår i: MECHANICS OF HEARING: PROTEIN TO PERCEPTION, AMER INST PHYSICS , 2015, Vol. 1703, nr 060005Konferensbidrag (Refereegranskat)
    Abstract [en]

    It is well accepted that the perception of bone conducted (BC) sound in the human relies on multiple pathways. Of these pathways, the inertial forces in the cochlear fluid and compression and expansion of the cochlear space have been suggested to be the most important. However, the frequency ranges where these two pathways dominate have not been clarified. This was investigated here using a box-model of the inner ear to estimate wall motion for a one-dimensional BC longitudinal skull vibration. Based on the dimensions of the inner ear and a BC wave speed of 400 m/s, the magnitude of the inertial motion of the cochlea was almost identical to the magnitude of the BC excitation except at the highest frequencies investigated (10 kHz). The compression (differential motion) was almost 100 times smaller than the inertial motion at 100 Hz but increased with frequency and at 5.9 kHz and above, the compression motion was greater than the inertial motion of the cochlea. This data was further analyzed in an impedance model of the cochlea and vestibule where the cochlear fluid, basilar membrane, oval window, round window, and cochlear and vestibular aqueducts were represented by acoustical impedances. That analysis showed that for a normal cochlea, the inertial excitation dominates the basilar membrane excitation for the whole frequency range investigated (0.1 to 10 kHz). However, when the oval window was immobilized simulating otosclerosis, the inertial effect diminished and the compressional excitation mode improved resulting in a dominant excitation from the compression of the cochlea at frequencies of 1.2 kHz and above. Also, the simulated BC hearing losses with otosclerosis according to this model were almost identical to the proposed Carharts notch seen clinically.

  • 45.
    Petersen, Eline B
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutet för handikappvetenskap (IHV). Eriksholm Research Centre, Snekkersten, Denmark, .
    Wöstmann, Malte
    International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany, Max Planck Research Group “Auditory Cognition”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
    Obleser, Jonas
    Max Planck Research Group “Auditory Cognition”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
    Stenfelt, Stefan
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Eriksholm Research Centre, Snekkersten, Denmark.
    Hearing loss impacts neural alpha oscillations under adverse listening conditions2015Ingår i: Frontiers in Psychology, E-ISSN 1664-1078, Vol. 6, nr 177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory (WM). One neural signature of WM load is enhanced power of alpha oscillations (6–12 Hz). However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of WM when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and background noise level, while the electroencephalogram was recorded. In each trial, participants were presented with 2, 4, or 6 spoken digits embedded in one of three different levels of background noise. After a stimulus-free delay interval, participants indicated whether a probe digit had appeared in the sequence of digits. Participants were healthy older adults (62–86 years), with normal to moderately impaired hearing. Importantly, the background noise levels were individually adjusted and participants were wearing hearing aids to equalize audibility across participants. Irrespective of hearing loss (HL), behavioral performance improved with lower memory load and also with lower levels of background noise. Interestingly, the alpha power in the stimulus-free delay interval was dependent on the interplay between task demands (memory load and noise level) and HL; while alpha power increased with HL during low and intermediate levels of memory load and background noise, it dropped for participants with the relatively most severe HL under the highest memory load and background noise level. These findings suggest that adaptive neural mechanisms for coping with adverse listening conditions break down for higher degrees of HL, even when adequate hearing aid amplification is in place.

  • 46.
    Saremi, Amin
    et al.
    Carl von Ossietzky University of Oldenburg, Germany.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Verhulst, Sarah
    Carl von Ossietzky University of Oldenburg, Germany; Carl von Ossietzky University of Oldenburg, Germany.
    How Do the Medial Olivocochlear Efferents Influence the Biomechanics of the Outer Hair Cells and Thereby the Cochlear Amplifier? Simulation Results2015Ingår i: MECHANICS OF HEARING: PROTEIN TO PERCEPTION, AMER INST PHYSICS , 2015, Vol. 1703, nr 090030Konferensbidrag (Refereegranskat)
    Abstract [en]

    The bottom-up signal pathway, which starts from the outer ear and leads to the brain cortices, gives the classic image of the human sound perception. However, there have been growing evidences in the last six decades for existence of a functional descending network whereby the central auditory system can modulate the early auditory processing, in a top-down manner. The medial olivocochlear efferent fibers project from the superior olivary complex at the brainstem into the inner ear. They are linked to the basal poles of the hair cells by forming synaptic cisterns. This descending network can activate nicotinic cholinergic receptors (nAChR) that increase the membrane conductance of the outer hair cells and thereby modify the magnitude of the active force generated inside the cochlea. The aim of the presented work is to quantitatively investigate how the changes in the biomechanics of the outer hair cells, caused by the efferent activation, manipulate the cochlear responses. This is done by means of a frequency-domain biophysical model of the cochlea [ 12] where the parameters of the model convey physiological interpretations of the human cochlear structures. The simulations manifest that a doubling of the outer hair cell conductance, due to efferent activation, leads to a frequency-dependent gain reduction along the cochlear duct with its highest effect at frequencies between 1 kHz and 3.5 kHz and a maximum of approximately 10 dB gain reduction at 2 kHz. This amount of the gain inhibition and its frequency dependence reasonably agrees with the experimental data recorded from guinea pig, cat and human cochleae where the medial olivococlear efferents had been elicited by broad-band stimuli. The simulations also indicate that the efferent-induced increase of the outer hair cell conductance increases the best frequency of the cochlear responses, in the basal region. The presented simulations quantitatively confirm that activation of the medial olivocochlear efferents can biomechanically manipulate the cochlear responses, in a top-down manner, by inhibiting the gain of the cochlear amplifier as well as altering the frequency-position map (tuning pattern) of the cochlea.

  • 47.
    Petersen, Eline Borch
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Snekkersten, Eriksholm Research Centre, Denmark.
    Wöstmann, Malte
    University of Lübeck, Auditory Cognition.
    Obleser, Jonas
    University of Lübeck, Auditory Cognition.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Snekkersten, Oticon A/S, Eriksholm Research Centre.
    Influence of hearing impairment on alpha power during retention of auditory stimuli2015Konferensbidrag (Övrigt vetenskapligt)
  • 48.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Inner ear contribution to bone conduction hearing in the human2015Ingår i: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 329, s. 41-51Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia. (C) 2014 Elsevier B.V. All rights reserved.

    Ladda ner fulltext (pdf)
    fulltext
  • 49.
    Chang, You
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Kim, Nam Keun
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Simulation of Bone-Conducted Sound Transmission in a Three-Dimensional Finite-Element Model of a Human Skull2015Ingår i: MECHANICS OF HEARING: PROTEIN TO PERCEPTION, AMER INST PHYSICS , 2015, Vol. 1703, nr 060014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.

  • 50.
    Petersen, Eline Borch
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Snekkersten, Eriksholm Research Centre.
    Wöstmann, Malte
    University of Lübeck, Auditory Cognition.
    Obleser, Jonas
    University of Lübeck, Auditory Cognition.
    Stenfelt, Stefan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Institutet för handikappvetenskap (IHV).
    Lunner, Thomas
    Linköpings universitet, Institutionen för beteendevetenskap och lärande, Handikappvetenskap. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Institutet för handikappvetenskap (IHV). Snekkersten, Oticon A/S, Eriksholm Research Centre.
    Tuning in on the target: The influence of hearing impairment on the neural encoding of speech2015Konferensbidrag (Övrigt vetenskapligt)
12345 1 - 50 av 215
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf