liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Tzu-Ping
    Univ Taipei, Taiwan.
    Contrastive multiple correspondence analysis (cMCA): Using contrastive learning to identify latent subgroups in political parties2023Ingår i: PLOS ONE, E-ISSN 1932-6203, Vol. 18, nr 7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Scaling methods have long been utilized to simplify and cluster high-dimensional data. However, the general latent spaces across all predefined groups derived from these methods sometimes do not fall into researchers interest regarding specific patterns within groups. To tackle this issue, we adopt an emerging analysis approach called contrastive learning. We contribute to this growing field by extending its ideas to multiple correspondence analysis (MCA) in order to enable an analysis of data often encountered by social scientists-containing binary, ordinal, and nominal variables. We demonstrate the utility of contrastive MCA (cMCA) by analyzing two different surveys of voters in the U.S. and U.K. Our results suggest that, first, cMCA can identify substantively important dimensions and divisions among subgroups that are overlooked by traditional methods; second, for other cases, cMCA can derive latent traits that emphasize subgroups seen moderately in those derived by traditional methods.

  • 2.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Kuo, Yun-Hsin
    Univ Calif Davis, CA USA.
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Kwan-Liu
    Univ Calif Davis, CA USA.
    Feature Learning for Nonlinear Dimensionality Reduction toward Maximal Extraction of Hidden Patterns2023Ingår i: 2023 IEEE 16TH PACIFIC VISUALIZATION SYMPOSIUM, PACIFICVIS, IEEE COMPUTER SOC , 2023, s. 122-131Konferensbidrag (Refereegranskat)
    Abstract [en]

    Dimensionality reduction (DR) plays a vital role in the visual analysis of high-dimensional data. One main aim of DR is to reveal hidden patterns that lie on intrinsic low-dimensional manifolds. However, DR often overlooks important patterns when the manifolds are distorted or masked by certain influential data attributes. This paper presents a feature learning framework, FEALM, designed to generate a set of optimized data projections for nonlinear DR in order to capture important patterns in the hidden manifolds. These projections produce maximally different nearest-neighbor graphs so that resultant DR outcomes are significantly different. To achieve such a capability, we design an optimization algorithm as well as introduce a new graph dissimilarity measure, named neighbor-shape dissimilarity. Additionally, we develop interactive visualizations to assist comparison of obtained DR results and interpretation of each DR result. We demonstrate FEALMs effectiveness through experiments and case studies using synthetic and real-world datasets.

  • 3.
    Fujita, Keijiro
    et al.
    Kobe University.
    Sakamoto, Naohisa
    Kobe University.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Tsukamoto, Toshiyuki
    RIKEN R-CCS.
    Nonaka, Jorji
    RIKEN R-CCS.
    A Visual Analytics Method for Time-Series Log Data Using Multiple Dimensionality Reduction2022Ingår i: Journal of Advanced Simulation in Science and Engineering, E-ISSN 2188-5303, Vol. 9, nr 2, s. 206-219Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The size and complexity of supercomputer systems and their power and cooling facilities have continuously increased, thus posing additional challenge for long-term and stable operation. Supercomputers are shared computational resources and usually operate with different computational workloads at different locations (space) and timings (time). Better understanding of the supercomputer systems heat generation and cooling behavior is highly desired from the facility operational side for decision making and optimization planning. In this work, we present a dimensionality reduction-based visual analytics method for time-series log data, from supercomputer system and its facility, to capture characteristic spatio-temporal features and behaviors during the operation.

  • 4.
    Fujiwara, Takanori
    et al.
    University of California, Davis, United States.
    Zhao, Jian
    University of Waterloo, Canada.
    Chen, Francine
    Toyota Research Institute.
    Yu, Yaoliang
    University of Waterloo, Canada.
    Ma, Kwan-Liu
    University of California, Davis, United States.
    Network Comparison with Interpretable Contrastive Network Representation Learning2022Ingår i: Journal of Data Science, Statistics, and Visualisation, ISSN 2773-0689, Vol. 2, nr 5Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Identifying unique characteristics in a network through comparison with another network is an essential network analysis task. For example, with networks of protein interactions obtained from normal and cancer tissues, we can discover unique types of interactions in cancer tissues. This analysis task could be greatly assisted by contrastive learning, which is an emerging analysis approach to discover salient patterns in one dataset relative to another. However, existing contrastive learning methods cannot be directly applied to networks as they are designed only for high-dimensional data analysis. To address this problem, we introduce a new analysis approach called contrastive network representation learning (cNRL). By integrating two machine learning schemes, network representation learning and contrastive learning, cNRL enables embedding of network nodes into a low-dimensional representation that reveals the uniqueness of one network compared to another. Within this approach, we also design a method, named i-cNRL, which offers interpretability in the learned results, allowing for understanding which specific patterns are only found in one network. We demonstrate the effectiveness of i-cNRL for network comparison with multiple network models and real-world datasets. Furthermore, we compare i-cNRL and other potential cNRL algorithm designs through quantitative and qualitative evaluations.

  • 5.
    Fujita, Keijiro
    et al.
    Kobe University, Japan.
    Sakamoto, Naohisa
    Kobe University, Japan.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Nonaka, Jorji
    RIKEN R-CCS, Japan.
    Tsukamoto, Toshiyuki
    RIKEN R-CCS, Japan.
    次元削減技術を用いた視覚的テンソルデータ解析2022Rapport (Övrigt vetenskapligt)
    Abstract [ja]

    多次元時系列データから,そこに内在する特徴構造を抽出し解釈するためのデータ解析手法に対する要求が高まっている.本研究では、解析対象とするデータを時間・空間・変数を軸(モード)とするテンソルデータとして表現し,多段階次元削減技術を応用することで,特徴構造を効果的に視覚化し,対話的にデータ探索を行うことができる視覚的解析手法を開発する.開発した手法を,実世界上で計測された時系列データ(スパコンログデータなど)に適用し,その有効性を検証する.

  • 6.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Kuo, Yun-Hsin
    University of California, Davis.
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Kwan-Liu
    University of California, Davis.
    Feature Learning for Dimensionality Reduction toward Maximal Extraction of Hidden PatternsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Dimensionality reduction (DR) plays a vital role in the visual analysis of high-dimensional data. One main aim of DR is to reveal hidden patterns that lie on intrinsic low-dimensional manifolds. However, DR often overlooks important patterns when the manifolds are strongly distorted or hidden by certain influential data attributes. This paper presents a feature learning framework, FEALM, designed to generate an optimized set of data projections for nonlinear DR in order to capture important patterns in the hidden manifolds. These projections produce maximally different nearest-neighbor graphs so that resultant DR outcomes are significantly different. To achieve such a capability, we design an optimization algorithm as well as introduce a new graph dissimilarity measure, called neighbor-shape dissimilarity. Additionally, we develop interactive visualizations to assist comparison of obtained DR results and interpretation of each DR result. We demonstrate FEALM's effectiveness through experiments using synthetic datasets and multiple case studies on real-world datasets.

1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf