liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 43 av 43
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wirtitsch, D.
    et al.
    Univ Vienna, Austria; Austrian Acad Sci, Austria.
    Wachter, G.
    Univ Vienna, Austria.
    Reisenbauer, S.
    Univ Vienna, Austria; AIT Austrian Inst Technol GmbH, Austria.
    Gulka, M.
    Univ Hasselt, Belgium; Acad Sci Czech Republ, Czech Republic.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Eotvos Lorand Univ, Hungary; Pazmany Peter, Hungary.
    Jelezko, F.
    Ulm Univ, Germany.
    Gali, A.
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Nesladek, M.
    Univ Hasselt, Belgium; IMOMEC, Belgium.
    Trupke, M.
    Univ Vienna, Austria; Austrian Acad Sci, Austria.
    Exploiting ionization dynamics in the nitrogen vacancy center for rapid, high-contrast spin, and charge state initialization2023Ingår i: Physical Review Research, E-ISSN 2643-1564, Vol. 5, nr 1, artikel-id 013014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We propose and experimentally demonstrate a method to strongly increase the sensitivity of spin measure-ments on nitrogen vacancy (NV) centers in diamond, which can be readily implemented in existing quantum sensing experiments. While charge state transitions of this defect are generally considered a parasitic effect to be avoided, we show here that these can be used to significantly increase the NV centers spin contrast, a key quantity for high-sensitivity magnetometry and high-fidelity state readout. The protocol consists of a two-step procedure, in which the charge state of the defect is first purified by a strong laser pulse, followed by weak illumination to obtain high spin polarization. We observe a relative improvement of the readout contrast by 17% and infer a reduction of the initialization error of more than 50%. The contrast enhancement is accompanied by a beneficial increase of the readout signal. For long sequence durations, typically encountered in high-resolution magnetometry, a measurement speedup by a factor of >1.5 is extracted, and we find that the technique is beneficial for sequences of any duration. Additionally, our findings give detailed insight into the charge and spin polarization dynamics of the NV center and provide actionable insights for direct optical, spin-to-charge, and electrical readout of solid-state spin centers.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Bulancea Lindvall, Oscar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Eiles, Matthew T.
    Max Planck Inst Phys Komplexer Syst, Germany.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Phys Komplexer Syst, Germany; Eotv Lorand Univ, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary.
    Isotope-Purification-Induced Reduction of Spin-Relaxation and Spin-Coherence Times in Semiconductors2023Ingår i: Physical Review Applied, E-ISSN 2331-7019, Vol. 19, nr 6, artikel-id 064046Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Paramagnetic defects and nuclear spins are often the major sources of decoherence and spin relaxation in solid-state qubits realized by optically addressable point defect spins in semiconductors. It is commonly accepted that a high degree of depletion of nuclear spins can enhance the coherence time by reducing magnetic noise. Here we show that the isotope purification beyond a certain optimal level can become contraproductive when both electron and nuclear spins are present in the vicinity of the qubits, particularly for half-spin systems. Using state-of-the-art numerical tools and considering the silicon-vacancy qubit in various spin environments, we demonstrate that the coupling of the spin-3/2 qubit to a spin bath of spin-1/2 point defects in the lattice can be significantly enhanced by isotope purification. The enhanced coupling shortens the spin-relaxation time that in turn may limit the coherence time of spin qubits. Our results can be generalized to triplet point defect qubits, such as the nitrogen-vacancy center in diamond and the divacancy in silicon carbide.

  • 3.
    Bulancea Lindvall, Oscar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Eiles, Matthew T.
    Max Planck Inst Phys Komplexer Syst, Germany.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Phys Komplexer Syst, Germany; Eotvos Lorand Univ, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary.
    Low-Field Microwave-Free Magnetometry Using the Dipolar Spin Relaxation of Quartet Spin States in Silicon Carbide2023Ingår i: Physical Review Applied, E-ISSN 2331-7019, Vol. 19, nr 3, artikel-id 034006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Paramagnetic defects and nuclear spins are the major sources of magnetic-field-dependent spin relaxation in point-defect quantum bits. The detection of related optical signals has led to the development of advanced relaxometry applications with high spatial resolution. The nearly degenerate quartet ground state of the silicon-vacancy qubit in silicon carbide (SiC) is of special interest in this respect, as it gives rise to relaxation-rate extrema at vanishing magnetic field values and emits in the first near-infrared transmission window of biological tissues, providing an opportunity for the development of sensing applications for medicine and biology. However, the relaxation dynamics of the silicon-vacancy center in SiC have not yet been fully explored. In this paper, we present results from a comprehensive theoretical investigation of the dipolar spin relaxation of the quartet spin states in various local spin environments. We discuss the underlying physics and quantify the magnetic field and spin-bath-dependent relaxation time T1. Using these findings, we demonstrate that the silicon-vacancy qubit in SiC can implement microwave-free low-magnetic-field quantum sensors of great potential.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Zhigulin, Ivan
    et al.
    Univ Technol Sydney, Australia.
    Yamamura, Karin
    Univ Technol Sydney, Australia.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Eotvos Lorand Univ, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary.
    Gale, Angus
    Univ Technol Sydney, Australia.
    Horder, Jake
    Univ Technol Sydney, Australia.
    Lobo, Charlene J.
    Univ Technol Sydney, Australia.
    Kianinia, Mehran
    Univ Technol Sydney, Australia.
    Toth, Milos
    Univ Technol Sydney, Australia.
    Aharonovich, Igor
    Univ Technol Sydney, Australia.
    Photophysics of blue quantum emitters in hexagonal boron nitride2023Ingår i: MATERIALS FOR QUANTUM TECHNOLOGY, ISSN 2633-4356, Vol. 3, nr 1, artikel-id 015002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Colour centres in hexagonal boron nitride (hBN) have emerged as intriguing contenders for integrated quantum photonics. In this work, we present a detailed photophysical analysis of hBN single emitters emitting at the blue spectral range. The emitters are fabricated by different electron beam irradiation and annealing conditions and exhibit narrow-band luminescence centred at 436 nm. Photon statistics as well as rigorous photodynamics analysis unveils potential level structure of the emitters, which suggests lack of a metastable state, supported by a theoretical analysis. The potential defect can have an electronic structure with fully occupied defect state in the lower half of the hBN band gap and empty defect state in the upper half of the band gap. Overall, our results are important to understand the photophysical properties of the emerging family of blue quantum emitters in hBN as potential sources for scalable quantum photonic applications.

  • 5.
    Zhigulin, Ivan
    et al.
    Univ Technol Sydney, Australia.
    Horder, Jake
    Univ Technol Sydney, Australia.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Phys komplexer Syst, Germany.
    White, Simon J. U.
    Univ Technol Sydney, Australia.
    Gale, Angus
    Univ Technol Sydney, Australia.
    Li, Chi
    Univ Technol Sydney, Australia.
    Lobo, Charlene J.
    Univ Technol Sydney, Australia.
    Toth, Milos
    Univ Technol Sydney, Australia; Univ Technol Sydney, Australia.
    Aharonovich, Igor
    Univ Technol Sydney, Australia; Univ Technol Sydney, Australia.
    Kianinia, Mehran
    Univ Technol Sydney, Australia.
    Stark Effect of Blue Quantum Emitters in Hexagonal Boron Nitride2023Ingår i: Physical Review Applied, E-ISSN 2331-7019, Vol. 19, nr 4, artikel-id 044011Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inhomogeneous broadening is a major limitation for the application of quantum emitters in hexagonal boron nitride to integrated quantum photonics. Here we demonstrate that so-called blue emitters with an emission wavelength of 436 nm are less sensitive to electric fields than other quantum emitters in hexag-onal boron nitride. Our measurements reveal a weak, predominantly quadratic Stark effect that indicates a negligible transition dipole moment of the defect. Using these results, we discuss implications for the symmetry of the defect and use density-functional-theory simulations to identify a likely atomic structure of blue emitters in hexagonal boron nitride.

  • 6.
    Benedek, Zsolt
    et al.
    Wigner Res Ctr Phys, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary; Univ Alabama, AL 35487 USA.
    Babar, Rohit
    Wigner Res Ctr Phys, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary.
    Ganyecz, Adam
    Wigner Res Ctr Phys, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary.
    Szilvasi, Tibor
    Univ Alabama, AL 35487 USA.
    Legeza, Ors
    Wigner Res Ctr Phys, Hungary; Tech Univ Munich, Germany.
    Barcza, Gergely
    Wigner Res Ctr Phys, Hungary; MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary; Univ Alabama, AL 35487 USA.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. MTA ELTE Lendulet Momentum NewQubit Res Grp, Hungary; Eotvos Lorand Univ, Hungary.
    Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride2023Ingår i: npj Computational Materials, E-ISSN 2057-3960, Vol. 9, nr 1, artikel-id 187Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Point defect quantum bits in semiconductors have the potential to revolutionize sensing at atomic scales. Currently, vacancy-related defects are at the forefront of high spatial resolution and low-dimensional sensing. On the other hand, it is expected that impurity-related defect structures may give rise to new features that could further advance quantum sensing in low dimensions. Here, we study the symmetric carbon tetramer clusters in hexagonal boron nitride and propose them as spin qubits for sensing. We utilize periodic-DFT and quantum chemistry approaches to reliably and accurately predict the electronic, optical, and spin properties of the studied defect. We show that the nitrogen-centered symmetric carbon tetramer gives rise to spin state-dependent optical signals with strain-sensitive intersystem crossing rates. Furthermore, the weak hyperfine coupling of the defect to their spin environments results in a reduced electron spin resonance linewidth that can enhance sensitivity.

  • 7.
    Li, Song
    et al.
    Wigner Res Ctr Phys, Hungary.
    Thiering, Gergo
    Wigner Res Ctr Phys, Hungary.
    Udvarhelyi, Peter
    Wigner Res Ctr Phys, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary; Max Planck Inst Phys Komplexer Syst, Germany.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Carbon defect qubit in two-dimensional WS22022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 1210Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Identifying and fabricating defect qubits in two-dimensional semiconductors are of great interest in exploring candidates for quantum information and sensing applications. A milestone has been recently achieved by demonstrating that single defect, a carbon atom substituting sulphur atom in single layer tungsten disulphide, can be engineered on demand at atomic size level precision, which holds a promise for a scalable and addressable unit. It is an immediate quest to reveal its potential as a qubit. To this end, we determine its electronic structure and optical properties from first principles. We identify the fingerprint of the neutral charge state of the defect in the scanning tunnelling spectrum. In the neutral defect, the giant spin-orbit coupling mixes the singlet and triplet excited states with resulting in phosphorescence at the telecom band that can be used to read out the spin state, and coherent driving with microwave excitation is also viable. Our results establish a scalable qubit in a two-dimensional material with spin-photon interface at the telecom wavelength region. Recent work has demonstrated controlled fabrication of single carbon defect spins in the two-dimensional material WS2. Here, the authors use ab initio methods to determine the electronic and optical properties of this defect, establishing it as a viable qubit candidate operating close to the telecom band.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Liu, Wei
    et al.
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Phys komplexer Syst, Germany.
    Li, Zhi-Peng
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Yang, Yuan-Ze
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Yu, Shang
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Meng, Yu
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Wang, Zhao-An
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Guo, Nai-Jie
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Yan, Fei-Fei
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Li, Qiang
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Wang, Jun-Feng
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Xu, Jin-Shi
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Liu, Xiao
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Zhou, Zong-Quan
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Dong, Yang
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Chen, Xiang-Dong
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Sun, Fang-Wen
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Wang, Yi-Tao
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Tang, Jian-Shun
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Li, Chuan-Feng
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Guo, Guang-Can
    Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China; Univ Sci & Technol China, Peoples R China.
    Coherent dynamics of multi-spin V-B(-) center in hexagonal boron nitride2022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 5713Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics ofmicrowave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V-B(-)) spin ensemble in hBN. We report on different dynamics of the V-B(-) spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V-B(-) and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V-B(-) center, which can be modulated by the magnetic field and microwave field.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Haykal, A.
    et al.
    Univ Montpellier, France; CNRS, France.
    Tanos, R.
    Univ Montpellier, France; CNRS, France.
    Minotto, N.
    Univ Montpellier, France; CNRS, France.
    Durand, A.
    Univ Montpellier, France; CNRS, France.
    Fabre, F.
    Univ Montpellier, France; CNRS, France.
    Li, J.
    Kansas State Univ, KS USA.
    Edgar, J. H.
    Kansas State Univ, KS USA.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Phys Komplexer Syst, Germany.
    Gali, A.
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Michel, T.
    Univ Montpellier, France; CNRS, France.
    Dreau, A.
    Univ Montpellier, France; CNRS, France.
    Gil, B.
    Univ Montpellier, France; CNRS, France.
    Cassabois, G.
    Univ Montpellier, France; CNRS, France.
    Jacques, V
    Univ Montpellier, France; CNRS, France.
    Decoherence of V-B(-) spin defects in monoisotopic hexagonal boron nitride2022Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 4347Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms. Here we rely on hBN crystals isotopically enriched with either B-10 or B-11 to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared. By analyzing the hyperfine structure of the spin defect while changing the boron isotope, we first confirm that it corresponds to the negatively charged boron-vacancy center (V-B(-)). We then show that its spin coherence properties are slightly improved in B-10-enriched samples. This is supported by numerical simulations employing cluster correlation expansion methods, which reveal the importance of the hyperfine Fermi contact term for calculating the coherence time of point defects in hBN. Using cross-relaxation spectroscopy, we finally identify dark electron spin impurities as an additional source of decoherence. This work provides new insights into the properties of V-B(-) spin defects, which are valuable for the future development of hBN-based quantum sensing foils.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Davidsson, Joel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Babar, Rohit
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Shafizadeh, Danial
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Max Planck Inst Phys komplexer Syst, Germany.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Exhaustive characterization of modified Si vacancies in 4H-SiC2022Ingår i: Nanophotonics, ISSN 2192-8606, Vol. 11, nr 20, s. 4565-4580Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The negatively charged silicon vacancy (V-Si(-)) in silicon carbide is a well-studied point defect for quantum applications. At the same time, a closer inspection of ensemble photoluminescence and electron paramagnetic resonance measurements reveals an abundance of related but so far unidentified signals. In this study, we search for defects in 4H-SiC that explain the above magneto-optical signals in a defect database generated by automatic defect analysis and qualification (ADAQ) workflows. This search reveals only one class of atomic structures that exhibit silicon-vacancy-like properties in the data: a carbon anti-site (C-Si) within sub-nanometer distances from the silicon vacancy only slightly alters the latter without affecting the charge or spin state. Such a perturbation is energetically bound. We consider the formation of V-Si(-) + C-Si; up to 2 nm distance and report their zero phonon lines and zero field splitting values. In addition, we perform high-resolution photoluminescence experiments in the silicon vacancy region and find an abundance of lines. Comparing our computational and experimental results, several configurations show great agreement. Our work demonstrates the effectiveness of a database with high-throughput results in the search for defects in quantum applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Davidsson, Joel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    ADAQ: Automatic workflows for magneto-optical properties of point defects in semiconductors2021Ingår i: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 269, artikel-id 108091Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Automatic Defect Analysis and Qualification (ADAQ) is a collection of automatic workflows developed for high-throughput simulations of magneto-optical properties of point defects in semiconductors. These workflows handle the vast number of defects by automating the processes to relax the unit cell of the host material, construct supercells, create point defect clusters, and execute calculations in both the electronic ground and excited states. The main outputs are the magneto-optical properties which include zero-phonon lines, zero-field splitting, and hyperfine coupling parameters. In addition, the formation energies are calculated. We demonstrate the capability of ADAQ by performing a complete characterization of the silicon vacancy in silicon carbide in the polytype 4H (4H-SiC).

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Bulancea Lindvall, Oscar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Acad Sci, Hungary; Max Planck Inst Phys Komplexer Syst, Germany.
    Dipolar spin relaxation of divacancy qubits in silicon carbide2021Ingår i: npj Computational Materials, E-ISSN 2057-3960, Vol. 7, nr 1, artikel-id 213Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Divacancy spins implement qubits with outstanding characteristics and capabilities in an industrial semiconductor host. On the other hand, there are still numerous open questions about the physics of these important defects, for instance, spin relaxation has not been thoroughly studied yet. Here, we carry out a theoretical study on environmental spin-induced spin relaxation processes of divacancy qubits in the 4H polytype of silicon carbide (4H-SiC). We reveal all the relevant magnetic field values where the longitudinal spin relaxation time T-1 drops resonantly due to the coupling to either nuclear spins or electron spins. We quantitatively analyze the dependence of the T-1 time on the concentration of point defect spins and the applied magnetic field and provide an analytical expression. We demonstrate that dipolar spin relaxation plays a significant role both in as-grown and ion-implanted samples and it often limits the coherence time of divacancy qubits in 4H-SiC.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Barcza, Gergely
    et al.
    Wigner Res Ctr Phys, Hungary; Czech Acad Sci, Czech Republic.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary.
    Szilvasi, Tibor
    Univ Wisconsin, WI 53706 USA; Univ Alabama, AL 35487 USA.
    Voros, Marton
    Argonne Natl Lab, IL 60439 USA.
    Veis, Libor
    Czech Acad Sci, Czech Republic.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Legeza, Ors
    Wigner Res Ctr Phys, Hungary.
    DMRG on Top of Plane-Wave Kohn-Sham Orbitals: A Case Study of Defected Boron Nitride2021Ingår i: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 17, nr 2, s. 1143-1154Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we analyze the numerical aspects of the inherent multireference density matrix renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional theory using the complete active space approach. The potential of the framework is illustrated by studying hexagonal boron nitride nanoflakes embedding a charged single boron vacancy point defect by revealing a vertical energy spectrum with a prominent multireference character. We investigate the consistency of the DMRG energy spectrum from the perspective of sample size, basis size, and active space selection protocol. Results obtained from standard quantum chemical atom-centered basis calculations and plane-wave based counterparts show excellent agreement. Furthermore, we also discuss the spectrum of the periodic sheet which is in good agreement with extrapolated data of finite clusters. These results pave the way toward applying the DMRG method in extended correlated solid-state systems, such as point defect qubit in wide band gap semiconductors.

  • 14.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary.
    Zheng, Huijie
    Johannes Gutenberg Univ Mainz, Germany; GSI Helmholtzzentrum Schwerionenforsch, Germany.
    Wickenbrock, Arne
    Johannes Gutenberg Univ Mainz, Germany; GSI Helmholtzzentrum Schwerionenforsch, Germany.
    Bougas, Lykourgos
    Johannes Gutenberg Univ Mainz, Germany.
    Chatzidrosos, Georgios
    Johannes Gutenberg Univ Mainz, Germany.
    Nakamura, Kazuo
    Tokyo Gas Co Ltd, Japan.
    Sumiya, Hitoshi
    Sumitomo Elect Ind Ltd, Japan.
    Ohshima, Takeshi
    Natl Inst Quantum & Radiol Sci & Technol, Japan.
    Isoya, Junichi
    Univ Tsukuba, Japan.
    Budker, Dmitry
    Johannes Gutenberg Univ Mainz, Germany; GSI Helmholtzzentrum Schwerionenforsch, Germany; Univ Calif Berkeley, CA 94720 USA.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study2021Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 103, nr 3, artikel-id 035307Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground-state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables for a broad variety of environmental couplings to have an effect on the NV centers luminescence. Previous works have addressed several aspects of the GSLAC photoluminescence, however, a comprehensive analysis of the GSLAC signature of NV ensembles in different spin environments at various external fields is missing. Here we employ a combination of experiments and recently developed numerical methods to investigate in detail the effects of transverse electric and magnetic fields, strain, P1 centers, NV centers, and the C-13 nuclear spins on the GSLAC photoluminescence. Our comprehensive analysis provides a solid ground for advancing various microwave-free applications at the GSLAC, including but not limited to magnetometry, spectroscopy, dynamic nuclear polarization (DNP), and nuclear magnetic resonance (NMR) detection. We demonstrate that not only the most abundant (NV)-N-14 center but the (NV)-N-15 can also be utilized in such applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary.
    Barcza, Gergely
    Wigner Res Ctr Phys, Hungary; Acad Sci Czech Republ, Czech Republic.
    Thiering, Gergo
    Wigner Res Ctr Phys, Hungary.
    Li, Song
    City Univ Hong Kong, Peoples R China.
    Hamdi, Hanen
    Wigner Res Ctr Phys, Hungary.
    Chou, Jyh-Pin
    City Univ Hong Kong, Peoples R China.
    Legeza, Ors
    Wigner Res Ctr Phys, Hungary.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol and Econ, Hungary.
    Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride2020Ingår i: npj Computational Materials, E-ISSN 2057-3960, Vol. 6, nr 1, artikel-id 41Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Highly correlated orbitals coupled with phonons in two-dimension are identified for paramagnetic and optically active boron vacancy in hexagonal boron nitride by first principles methods which are responsible for recently observed optically detected magnetic resonance signal. Here, we report ab initio analysis of the correlated electronic structure of this center by density matrix renormalization group and Kohn-Sham density functional theory methods. By establishing the nature of the bright and dark states as well as the position of the energy levels, we provide a complete description of the magneto-optical properties and corresponding radiative and non-radiative routes which are responsible for the optical spin polarization and spin dependent luminescence of the defect. Our findings pave the way toward advancing the identification and characterization of room temperature quantum bits in two-dimensional solids.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Davidsson, Joel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Acad Sci, Hungary.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ohshima, Takeshi
    Natl Inst Quantum and Radiol Sci and Technol, Japan.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Gali, Adam
    Hungarian Acad Sci, Hungary; Budapest Univ Technol and Econ, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    Correction: Identification of divacancy and silicon vacancy qubits in 6H-SiC (vol 114, 112107, 2019)2020Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 116, nr 5, artikel-id 059901Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary.
    Longitudinal spin relaxation model applied to point-defect qubit systems2020Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 101, nr 15, artikel-id 155203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Controllable, partially isolated few-level systems in semiconductors have recently gained multidisciplinary attention due to their widespread nanoscale sensing and quantum technology applications. Quantitative simulation of the dynamics and related applications of such systems is a challenging theoretical task that requires faithful description not only of the few-level systems but also their local environments. Here, we develop a method that can describe relevant relaxation processes induced by a dilute bath of nuclear and electron spins. The method utilizes an extended Lindblad equation in the framework of cluster approximation of a central spin system. We demonstrate that the proposed method can accurately describe T-1 time of an exemplary solid-state point-defect qubit system, in particular, the nitrogen-vacancy (NV) center in diamond, at various magnetic fields and strain.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Hamdi, Hanen
    et al.
    Wigner Res Ctr Phys, Hungary.
    Thiering, Gergo
    Wigner Res Ctr Phys, Hungary.
    Bodrog, Zoltan
    Wigner Res Ctr Phys, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol & Econ, Hungary.
    Stone-Wales defects in hexagonal boron nitride as ultraviolet emitters2020Ingår i: npj Computational Materials, E-ISSN 2057-3960, Vol. 6, nr 1, artikel-id 178Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many quantum emitters have been measured close or near the grain boundaries of the two-dimensional hexagonal boron nitride where various Stone-Wales defects appear. We show by means of first principles density functional theory calculations that the pentagon-heptagon Stone-Wales defect is an ultraviolet emitter and its optical properties closely follow the characteristics of a 4.08-eV quantum emitter, often observed in polycrystalline hexagonal boron nitride. We also show that the square-octagon Stone-Wales line defects are optically active in the ultraviolet region with varying gaps depending on their density in hexagonal boron nitride. Our results may introduce a paradigm shift in the identification of fluorescent centres in this material.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Miao, Kevin C.
    et al.
    Univ Chicago, IL 60637 USA.
    Bourassa, Alexandre
    Univ Chicago, IL 60637 USA.
    Anderson, Christopher P.
    Univ Chicago, IL 60637 USA.
    Whiteley, Samuel J.
    Univ Chicago, IL 60637 USA.
    Crook, Alexander L.
    Univ Chicago, IL 60637 USA.
    Bayliss, Sam L.
    Univ Chicago, IL 60637 USA.
    Wolfowicz, Gary
    Univ Chicago, IL 60637 USA.
    Thiering, Gergo
    Hungarian Acad Sci, Hungary.
    Udvarhelyi, Peter
    Hungarian Acad Sci, Hungary; Eotvos Lorand Univ, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Acad Sci, Hungary.
    Abe, Hiroshi
    Natl Inst Quantum and Radiol Sci and Technol, Japan.
    Ohshima, Takeshi
    Natl Inst Quantum and Radiol Sci and Technol, Japan.
    Gali, Adam
    Hungarian Acad Sci, Hungary; Budapest Univ Technol and Econ, Hungary.
    Awschalom, David D.
    Univ Chicago, IL 60637 USA; Univ Chicago, IL 60637 USA; Argonne Natl Lab, IL 60439 USA; Argonne Natl Lab, IL 60439 USA.
    Electrically driven optical interferometry with spins in silicon carbide2019Ingår i: Science Advances, E-ISSN 2375-2548, Vol. 5, nr 11, artikel-id eaay0527Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spins weak coupling to its environment not only bestows excellent coherence properties but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancys excited-state orbitals and induce Landau-Zener-Stuckelberg interference fringes in the resonant optical absorption spectrum. In addition, we find remarkably coherent optical and spin subsystems enabled by the basal divacancys symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Davidsson, Joel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Acad Sci, Hungary.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ohshima, Takeshi
    Natl Inst Quantum and Radiol Sci and Technol, Japan.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Gali, Adam
    Hungarian Acad Sci, Hungary; Budapest Univ Technol and Econ, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    Identification of divacancy and silicon vacancy qubits in 6H-SiC2019Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 114, nr 11, artikel-id 112107Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Point defects in semiconductors are relevant for use in quantum technologies as room temperature qubits and single photon emitters. Among suggested defects for these applications are the negatively charged silicon vacancy and the neutral divacancy in SiC. The possible nonequivalent configurations of these defects have been identified in 4H-SiC, but for 6H-SiC, the work is still in progress. In this paper, we identify the different configurations of the silicon vacancy and the divacancy defects to each of the V1-V3 and the QL1-QL6 color centers in 6H-SiC, respectively. We accomplish this by comparing the results from ab initio calculations with experimental measurements for the zero-phonon line, hyperfine tensor, and zero-field splitting. Published under license by AIP Publishing.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Res Ctr Phys, Hungary.
    Davidsson, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Delegan, Nazar
    Argonne Natl Lab, IL USA; Argonne Natl Lab, IL USA.
    Falk, Abram L.
    Univ Chicago, IL USA; IBM TJ Watson Res Ctr, NY USA.
    Klimov, Paul V.
    Univ Chicago, IL USA.
    Whiteley, Samuel J.
    Univ Chicago, IL USA.
    Hruszkewycz, Stephan O.
    Argonne Natl Lab, IL USA.
    Holt, Martin V.
    Argonne Natl Lab, IL USA.
    Heremans, F. Joseph
    Argonne Natl Lab, IL USA; Univ Chicago, IL USA.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Awschalom, David D.
    Argonne Natl Lab, IL USA; Univ Chicago, IL USA.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    Gali, Adam
    Wigner Res Ctr Phys, Hungary; Budapest Univ Technol and Econ, Hungary.
    Stabilization of point-defect spin qubits by quantum wells2019Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 10, artikel-id 5607Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Defect-based quantum systems in wide bandgap semiconductors are strong candidates for scalable quantum-information technologies. However, these systems are often complicated by charge-state instabilities and interference by phonons, which can diminish spin-initialization fidelities and limit room-temperature operation. Here, we identify a pathway around these drawbacks by showing that an engineered quantum well can stabilize the charge state of a qubit. Using density-functional theory and experimental synchrotron X-ray diffraction studies, we construct a model for previously unattributed point defect centers in silicon carbide as a near-stacking fault axial divacancy and show how this model explains these defects robustness against photoionization and room temperature stability. These results provide a materials-based solution to the optical instability of color centers in semiconductors, paving the way for the development of robust single-photon sources and spin qubits.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Acad Sci, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    Gali, Adam
    Hungarian Acad Sci, Hungary; Budapest Univ Technol and Econ, Hungary.
    First principles calculation of spin-related quantities for point defect qubit research2018Ingår i: npj Computational Materials, E-ISSN 2057-3960, Vol. 4, artikel-id 76Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Point defect research in semiconductors has gained remarkable new momentum due to the identification of special point defects that can implement qubits and single photon emitters with unique characteristics. Indeed, these implementations are among the few alternatives for quantum technologies that may operate even at room temperature, and therefore discoveries and characterization of novel point defects may highly facilitate future solid state quantum technologies. First principles calculations play an important role in point defect research, since they provide a direct, extended insight into the formation of the defect states. In the last decades, considerable efforts have been made to calculate spin-dependent properties of point defects from first principles. The developed methods have already demonstrated their essential role in quantitative understanding of the physics and application of point defect qubits. Here, we review and discuss accuracy aspects of these novel ab initio methods and report on their most relevant applications for existing point defect qubits in semiconductors. We pay attention to the advantages and limitations of the methodological solutions and highlight additional developments that are expected in the near future. Moreover, we discuss the opportunity of a systematic search for potential point defect qubits, as well as the possible development of predictive spin dynamic simulations facilitated by ab initio calculations of spin-dependent quantities.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Davidsson, Joel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Acad Sci, Hungary.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Gali, Adam
    Hungarian Acad Sci, Hungary; Budapest Univ Technol and Econ, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Natl Univ Sci and Technol MISIS, Russia.
    First principles predictions of magneto-optical data for semiconductor point defect identification: the case of divacancy defects in 4H-SiC2018Ingår i: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 20, artikel-id 023035Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Study and design of magneto-optically active single point defects in semiconductors are rapidly growing fields due to their potential in quantum bit (qubit) and single photon emitter applications. Detailed understanding of the properties of candidate defects is essential for these applications, and requires the identification of the defects microscopic configuration and electronic structure. In multicomponent semiconductors point defects often exhibit several non-equivalent configurations of similar but different characteristics. The most relevant example of such point defect is the divacancy in silicon carbide, where some of the non-equivalent configurations implement room temperature qubits. Here, we identify four different configurations of the divacancy in 4H-SiC via the comparison of experimental measurements and results of first-principle calculations. In order to accomplish this challenging task, we carry out an exhaustive numerical accuracy investigation of zero-phonon line and hyperfine coupling parameter calculations. Based on these results, we discuss the possibility of systematic quantum bit search.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Green, B. L.
    et al.
    University of Warwick, England.
    Breeze, B. G.
    University of Warwick, England.
    Rees, G. J.
    University of Warwick, England.
    Hanna, J. V.
    University of Warwick, England.
    Chou, J. -P.
    Hungarian Academic Science, Hungary.
    Ivady, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Academic Science, Hungary.
    Gali, A.
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Newton, M. E.
    University of Warwick, England.
    All-optical hyperpolarization of electron and nuclear spins in diamond2017Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, nr 5, artikel-id 054101Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low thermal polarization of nuclear spins is a primary sensitivity limitation for nuclear magnetic resonance. Here we demonstrate optically pumped (microwave-free) nuclear spin polarization of C-13 and N-15 in N-15-doped diamond. (15)Npolarization enhancements up to- 2000 above thermal equilibrium are observed in the paramagnetic system Ns(0). Nuclear spin polarization is shown to diffuse to bulk C-13 with NMR enhancements of -200 at room temperature and -500 at 240 K, enabling a route to microwave-free high-sensitivity NMR study of biological samples in ambient conditions.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Academic Science, Hungary.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. National University of Science and Technology MISIS, Russia.
    Hybrid-DFT + V-w method for band structure calculation of semiconducting transition metal compounds: the case of cerium dioxide2017Ingår i: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 29, nr 45, artikel-id 454002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hybrid functionals non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a known drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT + V-w method (Ivady et al 2014 Phys. Rev. B 90 035146). Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT + V-w functional can be determined from approximate theoretical quasi-particle spectra without any fitting to experiment. The proposed method is illustrated on the charge self-consistent electronic structure calculation for cerium dioxide where itinerant valence states interact with well-localized 4f atomic like states, making this system challenging for conventional methods, either hybrid-DFT or LDA + U, and therefore allowing for a demonstration of the advantages of the proposed scheme.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Academic Science, Hungary.
    Davidsson, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Tien Son
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ohshima, Takeshi
    National Institute Quantum and Radiol Science and Technology, Japan.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. National University of Science and Technology MISIS, Russia.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Identification of Si-vacancy related room-temperature qubits in 4H silicon carbide2017Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, nr 16, artikel-id 161114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The identification of a microscopic configuration of point defects acting as quantum bits is a key step in the advance of quantum information processing and sensing. Among the numerous candidates, silicon-vacancy related centers in silicon carbide (SiC) have shown remarkable properties owing to their particular spin-3/2 ground and excited states. Although, these centers were observed decades ago, two competing models, the isolated negatively charged silicon vacancy and the complex of negatively charged silicon vacancy and neutral carbon vacancy [Phys. Rev. Lett. 115, 247602 (2015)], are still argued as an origin. By means of high-precision first-principles calculations and high-resolution electron spin resonance measurements, we here unambiguously identify the Si-vacancy related qubits in hexagonal SiC as isolated negatively charged silicon vacancies. Moreover, we identify the Si-vacancy qubit configurations that provide room-temperature optical readout.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Christle, David J.
    et al.
    University of Chicago, IL 60637 USA.
    Klimov, Paul V.
    University of Chicago, IL 60637 USA.
    de las Casas, Charles F.
    University of Chicago, IL 60637 USA.
    Szasz, Krisztian
    Hungarian Academic Science, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Academic Science, Hungary.
    Jokubavicius, Valdas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ul-Hassan, Jawad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Koehl, William F.
    University of Chicago, IL 60637 USA.
    Ohshima, Takeshi
    National Institute Quantum and Radiol Science and Technology, Japan.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Awschalom, David D.
    University of Chicago, IL 60637 USA.
    Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface2017Ingår i: Physical Review X, ISSN 2160-3308, E-ISSN 2160-3308, Vol. 7, nr 2, artikel-id 21046Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.

    Ladda ner fulltext (pdf)
    fulltext
  • 28. Beställ onlineKöp publikationen >>
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Development of theoretical approaches for post-silicon information processing2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Despite knowing the fundamental equations in most of the physics research areas, still there is an unceasing need for theoretical method development, thanks to the more and more challenging problems addressed by the research community. The investigation of post-silicon, non-classical information processing is one of the new and rapidly developing areas that requires tremendous amount of theoretical support, new understanding, and accurate theoretical predictions. My thesis focuses on theoretical method development for solid-state quantum information processing, mainly in the field of point defect quantum bits (qubits) in silicon carbide (SiC) and diamond. Due to recent experimental breakthroughs in this field, there are diverse theoretical problems, ranging from functional development for accurate first principles description of point defects, through complete theoretical characterization of qubits, to the modeling and simulation of actual quantum information protocols, that are needed to be addressed. The included articles of this thesis cover the development of (i) hybrid-DFT+Vw approach for the first principles description of mixed correlated and uncorrelated systems, (ii) zero-field-splitting tensor calculation for solid-state quantum bit characterization, (iii) a comprehensive model for dynamic nuclear spin polarization of solid-state qubits in semiconductors, and (iv) group theoretical description of qubits and novel twodimensional materials for topologically protected states.

    Delarbeten
    1. Theoretical unification of hybrid-DFT and DFT plus U methods for the treatment of localized orbitals
    Öppna denna publikation i ny flik eller fönster >>Theoretical unification of hybrid-DFT and DFT plus U methods for the treatment of localized orbitals
    Visa övriga...
    2014 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, nr 3, s. 035146-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Hybrid functionals serve as a powerful practical tool in different fields of computational physics and quantum chemistry. On the other hand, their applicability for the case of correlated d and f orbitals is still questionable and needs more considerations. In this article we formulate the on-site occupation dependent exchange correlation energy and effective potential of hybrid functionals for localized states and connect them to the on-site correction term of the DFT+ U method. The resultant formula indicates that the screening of the onsite electron repulsion is governed by the ratio of the exact exchange in hybrid functionals. Our derivation provides a theoretical justification for adding a DFT+ U-like on-site potential in hybrid-DFT calculations to resolve issues caused by overscreening of localized states. The resulting scheme, hybrid DFT+ V-w, is tested for chromium impurity in wurtzite AlN and vanadium impurity in 4H-SiC, which are paradigm examples of systems with different degrees of localization between host and impurity orbitals.

    Ort, förlag, år, upplaga, sidor
    American Physical Society, 2014
    Nationell ämneskategori
    Fysik Kemi
    Identifikatorer
    urn:nbn:se:liu:diva-109879 (URN)10.1103/PhysRevB.90.035146 (DOI)000339974700005 ()
    Anmärkning

    Funding Agencies|Knut and Alice Wallenberg Foundation "Isotopic Control for Ultimate Materials Properties"; Swedish Research Council (VR) Grants [621-2011-4426, 621-2011-4249]; Swedish Foundation for Strategic Research program SRL Grant [10-0026]; Swedish National Infrastructure for Computing Grants [SNIC 001/12-275, SNIC 2013/1-331]; "Lendulet program" of Hungarian Academy of Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Linnaeus Environment at Linkoping on Nanoscale Functional Materials (LiLi-NFM) - VR

    Tillgänglig från: 2014-08-28 Skapad: 2014-08-28 Senast uppdaterad: 2017-12-05
    2. Role of screening in the density functional applied to transition-metal defects in semiconductors
    Öppna denna publikation i ny flik eller fönster >>Role of screening in the density functional applied to transition-metal defects in semiconductors
    2013 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 87, nr 20Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We study selected transition-metal-related point defects in silicon and silicon carbide semiconductors by a range-separated hybrid density functional (HSE06). We find that HSE06 does not fulfill the generalized Koopmans' theorem for every defect, which is due to the self-interaction error in the functional in such cases. Restoring the so-called generalized Koopmans' condition with a simple correction in the functional can eliminate this error and brings the calculated charge transition levels remarkably close to the experimental data as well as to the calculated quasiparticle levels from many-body perturbation theory.

    Ort, förlag, år, upplaga, sidor
    American Physical Society, 2013
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-93859 (URN)10.1103/PhysRevB.87.205201 (DOI)000318521500002 ()
    Anmärkning

    Funding Agencies|Swedish Foundation for Strategic Research||Swedish Research Council||Swedish Energy Agency||Swedish National Infrastructure for Computing|SNIC 011/04-8SNIC001-10-223|Knut & Alice Wallenberg Foundation||EU||European Science Foundation for Advanced Concepts in ab-initio Simulations of Materials||

    Tillgänglig från: 2013-06-11 Skapad: 2013-06-11 Senast uppdaterad: 2017-12-06
    3. Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study
    Öppna denna publikation i ny flik eller fönster >>Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study
    Visa övriga...
    2014 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, nr 23, s. 235205-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Nitrogen-vacancy centers in diamond (NV) attract great attention because they serve as a tool in many important applications. The NV center has a polarizable spin S = 1 ground state and its spin state can be addressed by optically detected magnetic resonance (ODMR) techniques. The m(S) = 0 and m(S) = +/- 1 spin levels of the ground state are separated by about 2.88 GHz in the absence of an external magnetic field or any other perturbations. This zero-field splitting (ZFS) can be probed by ODMR. As this splitting changes as a function of pressure and temperature, the NV center might be employed as a sensor operating at the nanoscale. Therefore, it is of high importance to understand the intricate details of the pressure and temperature dependence of this splitting. Here we present an ab initio theory of the ZFS of the NV center as a function of external pressure and temperature including detailed analysis on the contributions of macroscopic and microscopic effects. We found that the pressure dependence is governed by the change in the distance between spins as a consequence of the global compression and the additional local structural relaxation. The local structural relaxation contributes to the change of ZFS with the same magnitude as the global compression. In the case of temperature dependence of ZFS, we investigated the effect of macroscopic thermal expansion as well as the consequent change of the microscopic equilibrium positions. We could conclude that theses effects are responsible for about 15% of the observed decrease of ZFS.

    Ort, förlag, år, upplaga, sidor
    American Physical Society, 2014
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-113573 (URN)10.1103/PhysRevB.90.235205 (DOI)000346860700002 ()
    Anmärkning

    Funding Agencies|NIIF Supercomputer center [1090]; EU [270197, 611143]; Hungarian Academy of Sciences; Knut and Alice Wallenberg Foundation; Swedish National Infrastructure for Computing [SNIC 001/12-275, SNIC 2013/1-331]; Conicyt (Chile) Fondecyt [1141185, PIA ACT1108, PIA ACT1112]; Ministry of Education and Science of the Russian Federation [14.Y26.31.0005]; Tomsk State University

    Tillgänglig från: 2015-01-23 Skapad: 2015-01-23 Senast uppdaterad: 2017-12-05
    4. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide
    Öppna denna publikation i ny flik eller fönster >>Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide
    Visa övriga...
    2015 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, nr 11, s. 115206-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

    Ort, förlag, år, upplaga, sidor
    AMER PHYSICAL SOC, 2015
    Nationell ämneskategori
    Fysik Kemi
    Identifikatorer
    urn:nbn:se:liu:diva-121891 (URN)10.1103/PhysRevB.92.115206 (DOI)000361370600003 ()
    Anmärkning

    Funding Agencies|Knut and Alice Wallenberg Foundation "Isotopic Control for Ultimate Materials Properties"; Swedish Research Council (VR) [621-2011-4426, 621-2011-4249]; Swedish Foundation for Strategic Research program SRL [10-0026]; Grant of Ministry of Education and Science of the Russian Federation [14.Y26.31.0005]; Tomsk State University Academic D. I. Mendeleev Fund Program [8.1.18.2015]; Swedish National Infrastructure for Computing Grants [SNIC 2013/1-331]; "Lendulet program" of Hungarian Academy of Sciences

    Tillgänglig från: 2015-10-13 Skapad: 2015-10-12 Senast uppdaterad: 2017-12-01
    5. Optical Polarization of Nuclear Spins in Silicon Carbide
    Öppna denna publikation i ny flik eller fönster >>Optical Polarization of Nuclear Spins in Silicon Carbide
    Visa övriga...
    2015 (Engelska)Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, nr 24, s. 247603-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We demonstrate optically pumped dynamic nuclear polarization of Si-29 nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99% +/- 1% degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 mu K. By combining ab initio theory with the experimental identification of the color centers optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

    Ort, förlag, år, upplaga, sidor
    American Physical Society, 2015
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-120166 (URN)10.1103/PhysRevLett.114.247603 (DOI)000356407600010 ()
    Anmärkning

    Funding Agencies|Air Force Office of Scientific Research (AFOSR); AFOSR Multidisciplinary Research Program of the University Research Initiative; National Science Foundation; Material Research Science and Engineering Center; Knut and Alice Wallenberg Foundation "Isotopic Control for Ultimate Materials Properties"; Lendulet program of the Hungarian Academy of Sciences; National Supercomputer Center in Sweden

    Tillgänglig från: 2015-07-13 Skapad: 2015-07-13 Senast uppdaterad: 2017-12-04
    6. A silicon carbide room-temperature single-photon source
    Öppna denna publikation i ny flik eller fönster >>A silicon carbide room-temperature single-photon source
    Visa övriga...
    2014 (Engelska)Ingår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 13, nr 2, s. 151-156Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules(1), quantum dots(2-4), diamond colour centres5 and others(6). The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics(7) and measurement theory(8). An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing(9). Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2 x 10(6) counts s(-1)) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices(9).

    Ort, förlag, år, upplaga, sidor
    Nature Publishing Group, 2014
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-104643 (URN)10.1038/nmat3806 (DOI)000330182700020 ()
    Tillgänglig från: 2014-02-20 Skapad: 2014-02-20 Senast uppdaterad: 2017-12-06
    7. Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides
    Öppna denna publikation i ny flik eller fönster >>Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides
    Visa övriga...
    2015 (Engelska)Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, nr 15Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We investigated the structural and electrical properties of 2D MXene sheets by means of firstprinciples density functional theory (DFT) calculations. To describe the Kohn-Sham states, plane wave basis set and projector augmented wave method (PAW) were used as implemented in the Vienna ab initio Simulation Package (VASP). We applied PBE parameterization of the generalized gradient approximation of the exchange and correlation energy functional to account for many-body effects of the interacting electron system. Convergent sampling of the Brillouin-zone was achieved by a Γ-centered 15×15×1 grid. In order to model a single sheet of MXene we ensured at least 30 Å vacuum between the periodically repeated sheets. For the structural optimization 1×10−3 eV/Å force criteria was used. The relativistic spin-orbit coupling effects were also included in our simulations regarding band structure and density of states.

    Nyckelord
    Cone-point, MAX phase, MXene, Dirac fermion, Spin-orbit coupling
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-113761 (URN)10.1103/PhysRevB.92.155142 (DOI)000363512700002 ()
    Tillgänglig från: 2015-05-01 Skapad: 2015-01-30 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    Development of theoretical approaches for post-silicon information processing
    Ladda ner (pdf)
    omslag
    Ladda ner (jpg)
    presentationsbild
  • 29.
    Ivády, Viktor
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Hungarian Academic Science, Hungary.
    Klimov, Paul V.
    University of Chicago, IL 60637 USA.
    Miao, Kevin C.
    University of Chicago, IL 60637 USA.
    Falk, Abram L.
    University of Chicago, IL 60637 USA; IBM TJ Watson Research Centre, NY 10598 USA.
    Christle, David J.
    University of Chicago, IL 60637 USA.
    Szasz, Krisztian
    Hungarian Academic Science, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. National University of Science and Technology MISIS, Russia.
    Awschalom, David D.
    University of Chicago, IL 60637 USA.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    High-Fidelity Bidirectional Nuclear Qubit Initialization in SiC2016Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, nr 22, artikel-id 220503Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we theoretically demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled electron spin-nuclear spin systems. Furthermore, we theoretically and experimentally show that the nuclear spin polarization can be reversed by magnetic field variations as small as 0.8 Gauss. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Fashandi, Hossein
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska högskolan.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lloyd Spetz, Anita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska högskolan.
    Katsnelson, Mikhail I.
    Radboud University of Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands / Dept. of Theoretical Physics and Applied Mathematics, Ural Federal University, Russia.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. School of Information and Communication Technology, KTH, Stockholm, Sweden.
    Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides2015Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, nr 15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigated the structural and electrical properties of 2D MXene sheets by means of firstprinciples density functional theory (DFT) calculations. To describe the Kohn-Sham states, plane wave basis set and projector augmented wave method (PAW) were used as implemented in the Vienna ab initio Simulation Package (VASP). We applied PBE parameterization of the generalized gradient approximation of the exchange and correlation energy functional to account for many-body effects of the interacting electron system. Convergent sampling of the Brillouin-zone was achieved by a Γ-centered 15×15×1 grid. In order to model a single sheet of MXene we ensured at least 30 Å vacuum between the periodically repeated sheets. For the structural optimization 1×10−3 eV/Å force criteria was used. The relativistic spin-orbit coupling effects were also included in our simulations regarding band structure and density of states.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Trinh, Xuan Thang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. Hungarian Academy of Sciences, Budapest, Hungary.
    Kawahara, Koutarou
    Department of Electronic Science and Engineering, Kyoto University, Japan.
    Suda, Jun
    Department of Electronic Science and Engineering, Kyoto University, Japan.
    Kimoto, Tsunenobu
    Department of Electronic Science and Engineering, Kyoto University, Japan.
    Gali, Ádam
    Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary / Department of Atomic Physics, Budapest University of Technology and Economics, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Son, Nguyen Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Electron paramagnetic resonance studies of carbon interstitial related defects in 4H-SiC2015Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    In n-type 4H-SiC grown by chemical vapor deposition and irradiated by low-energy (250 keV) electrons, an electron paramagnetic resonance center, labeled EI8a, was observed at room temperature. A short anneal at temperatures in the range of 300-500 °C in darkness changes EI8a to a new center, labeled EI8b, which can be converted back by illumination at room temperature. We show that EI8a and EI8b are the two different configurations of the same defect, labeled EI8, with C1h symmetry and an electron spin S=1/2. The EI8 center is stable up to ~650 °C and annealed out at ~800 °C. Based on the observed hyperfine structures due to the hyperfine interaction between the electron spin and the nuclear spins of four 29Si atoms and three 13C atoms, the EI8 center is suggested to be related to a carbon interstitial cluster.

  • 32.
    Falk, Abram L.
    et al.
    University of Chicago, IL 60637 USA; IBM TJ Watson Research Centre, NY 10598 USA.
    Klimov, Paul V.
    University of Chicago, IL 60637 USA; University of Calif Santa Barbara, CA 93106 USA; Hungarian Academic Science, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary.
    Szasz, Krisztian
    Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary; Eotvos Lorand University, Hungary.
    Christle, David J.
    University of Chicago, IL 60637 USA; University of Calif Santa Barbara, CA 93106 USA; Hungarian Academic Science, Hungary.
    Koehl, William F.
    University of Chicago, IL 60637 USA.
    Gali, Adam
    Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary; Budapest University of Technology and Econ, Hungary.
    Awschalom, David D.
    University of Chicago, IL 60637 USA.
    Optical Polarization of Nuclear Spins in Silicon Carbide2015Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, nr 24, s. 247603-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We demonstrate optically pumped dynamic nuclear polarization of Si-29 nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99% +/- 1% degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 mu K. By combining ab initio theory with the experimental identification of the color centers optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Gällström, Andreas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Magnusson, Björn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Leone, Stefano
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kordina, Olof
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Son, Nguyen Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Wigner Research Center for Physics, Hungarian Academy of Sciences, Hungary.
    Gali, Adam
    Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest Hungary; Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary.
    Abrikosov, Igor A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Materials Modeling and Development Laboratory, NUST “MISIS,” Moscow, Russia; LACOMAS Laboratory, Tomsk State University, Tomsk, Russia.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan G.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Optical properties and Zeeman spectroscopy of niobium in silicon carbide2015Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, nr 7, s. 1-14, artikel-id 075207Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The optical signature of niobium in the low-temperature photoluminescence spectra of three common polytypes of SiC (4H, 6H, and 15R) is observed and confirms the previously suggested concept that Nb occupies preferably the Si-C divacancy with both Si and C at hexagonal sites. Using this concept we propose a model considering a Nb-bound exciton, the recombination of which is responsible for the observed luminescence. The exciton energy is estimated using first-principles calculation and the result is in very good agreement with the experimentally observed photon energy in 4H SiC at low temperature. The appearance of six Nb-related lines in the spectra of the hexagonal 4H and 6H polytypes at higher temperatures is tentatively explained on the grounds of the proposed model and the concept that the Nb center can exist in both C1h and C3v symmetries. The Zeeman splitting of the photoluminescence lines is also recorded in two different experimental geometries and the results are compared with theory based on phenomenological Hamiltonians. Our results show that Nb occupying the divacancy at the hexagonal site in the studied SiC polytypes behaves like a deep acceptor.

    Ladda ner fulltext (pdf)
    fulltext
  • 34.
    Szasz, Krisztian
    et al.
    Hungarian Academic Science, Hungary; Eotvos Lorand University, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. Hungarian Academic Science, Hungary.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. National University of Science and Technology MISIS, Russia; Tomsk State University, Russia.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Bockstedte, Michel
    University of Erlangen Nurnberg, Germany; Salzburg University, Austria; University of Basque Country, Spain.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: A potential quantum bit2015Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 91, nr 12, s. 121201-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Silicon carbide with engineered point defects is considered as very promising material for the next generation devices, with applications ranging from electronics and photonics to quantum computing. In this context, we investigate the spin physics of the carbon antisite-vacancy pair that in its positive charge state enables a single photon source. We find by hybrid density functional theory and many-body perturbation theory that the neutral defect possesses a high spin ground state in 4H silicon carbide and provide spin-resonance signatures for its experimental identification. Our results indicate the possibility for the coherent manipulation of the electron spin by optical excitation of this defect at telecom wavelengths, and suggest the defect as a candidate for an alternative solid state quantum bit.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Hungarian Academic Science, Hungary.
    Szasz, Krisztian
    Hungarian Academic Science, Hungary.
    Falk, Abram L.
    University of Chicago, IL 60637 USA; IBM Corp, NY 10598 USA.
    Klimov, Paul V.
    University of Chicago, IL 60637 USA; University of Calif Santa Barbara, CA 93106 USA.
    Christle, David J.
    University of Chicago, IL 60637 USA; University of Calif Santa Barbara, CA 93106 USA.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. National University of Science and Technology MISIS, Russia; Tomsk State University, Russia.
    Awschalom, David D.
    University of Chicago, IL 60637 USA.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide2015Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, nr 11, s. 115206-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Castelletto, S.
    et al.
    RMIT University, Australia .
    Johnson, B. C.
    University of Melbourne, Australia Japan Atom Energy Agency, Japan .
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Stavrias, N.
    University of Melbourne, Australia .
    Umeda, T.
    University of Tsukuba, Japan .
    Gali, A.
    Hungarian Academic Science, Hungary Budapest University of Technology and Econ, Hungary .
    Ohshima, T.
    Japan Atom Energy Agency, Japan .
    A silicon carbide room-temperature single-photon source2014Ingår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 13, nr 2, s. 151-156Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules(1), quantum dots(2-4), diamond colour centres5 and others(6). The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics(7) and measurement theory(8). An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing(9). Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2 x 10(6) counts s(-1)) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices(9).

  • 37.
    Falk, Abram L.
    et al.
    University of Chicago, IL 60637 USA University of Calif Santa Barbara, CA 93106 USA .
    Klimov, Paul V.
    University of Chicago, IL 60637 USA University of Calif Santa Barbara, CA 93106 USA .
    Buckley, Bob B.
    University of Calif Santa Barbara, CA 93106 USA .
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Calusine, Greg
    University of Calif Santa Barbara, CA 93106 USA .
    Koehl, William F.
    University of Chicago, IL 60637 USA University of Calif Santa Barbara, CA 93106 USA .
    Gali, Adam
    Hungarian Academic Science, Hungary Budapest University of Technology and Econ, Hungary .
    Awschalom, David D.
    University of Chicago, IL 60637 USA University of Calif Santa Barbara, CA 93106 USA .
    Electrically and Mechanically Tunable Electron Spins in Silicon Carbide Color Centers2014Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, nr 18, s. 187601-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields.

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Szasz, K.
    et al.
    Institute for Solid State Physics and Optics, Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Hungary, Institute of Physics, Loránd Eötvös University, Hungary.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. Institute for Solid State Physics and Optics, Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Hungary .
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gali, A.
    Institute for Solid State Physics and Optics, Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Hungary, Department of Atomic Physics, Budapest University of of Technology and Economics, Hungary.
    First principles investigation of divacancy in SiC polytypes for solid state qubit application2014Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2013, PTS 1 AND 2, Stafa-Zurich, Switzerland: Trans Tech Publications , 2014, Vol. 778-780, s. 499-502Konferensbidrag (Refereegranskat)
    Abstract [en]

    We calculated the hyperfine structure and the zero-field splitting parameters of divacancies in 3C, 4H and 6H SiC in the ground state and in the excited state for 4H SiC within the framework of density functional theory. Besides that our calculations provide identification of the defect in different polytypes, we can find some carbon atoms next to the divacancy that of the spin polarizations are similar in the ground and excited states. This coherent nuclear spin polarization phenomenon can be the base to utilize 13C spins as quantum memory.

  • 39.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. Hungarian Academic Science, Hungary.
    Simon, Tamas
    Budapest University of Technology and Econ, Hungary.
    Maze, Jeronimo R.
    Pontificia University of Catolica Chile, Chile.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan. National University of Science and Technology MISIS, Russia; Tomsk State University, Russia.
    Gali, Adam
    Hungarian Academic Science, Hungary; Budapest University of Technology and Econ, Hungary.
    Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study2014Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, nr 23, s. 235205-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nitrogen-vacancy centers in diamond (NV) attract great attention because they serve as a tool in many important applications. The NV center has a polarizable spin S = 1 ground state and its spin state can be addressed by optically detected magnetic resonance (ODMR) techniques. The m(S) = 0 and m(S) = +/- 1 spin levels of the ground state are separated by about 2.88 GHz in the absence of an external magnetic field or any other perturbations. This zero-field splitting (ZFS) can be probed by ODMR. As this splitting changes as a function of pressure and temperature, the NV center might be employed as a sensor operating at the nanoscale. Therefore, it is of high importance to understand the intricate details of the pressure and temperature dependence of this splitting. Here we present an ab initio theory of the ZFS of the NV center as a function of external pressure and temperature including detailed analysis on the contributions of macroscopic and microscopic effects. We found that the pressure dependence is governed by the change in the distance between spins as a consequence of the global compression and the additional local structural relaxation. The local structural relaxation contributes to the change of ZFS with the same magnitude as the global compression. In the case of temperature dependence of ZFS, we investigated the effect of macroscopic thermal expansion as well as the consequent change of the microscopic equilibrium positions. We could conclude that theses effects are responsible for about 15% of the observed decrease of ZFS.

    Ladda ner fulltext (pdf)
    fulltext
  • 40.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gali, Adam
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Theoretical investigation of the single photon emitter carbon antisite-vacancy pair in 4H-SiC2014Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2013, PTS 1 AND 2, Trans Tech Publications , 2014, Vol. 778-780, s. 495-498Konferensbidrag (Refereegranskat)
    Abstract [en]

    Well addressable and controllable point defects in device friendly semiconductors are desired for quantum computational and quantum informational processes. Recently, such defect, an ultra-bright single photon emitter, the carbon antisite - vacancy pair, was experimentally investigated in 4H-SiC. In our theoretical work, based on ab initio calculation and group theory analysis, we provide a deeper understanding of the features of the electronic structures and the luminescence process of this defect.

  • 41.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Szasz, Krisztian
    Hungarian Academic Science, Hungary Eotvos Lorand University, Hungary .
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gali, Adam
    Hungarian Academic Science, Hungary Budapest University of Technology and Econ, Hungary .
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Theoretical unification of hybrid-DFT and DFT plus U methods for the treatment of localized orbitals2014Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, nr 3, s. 035146-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hybrid functionals serve as a powerful practical tool in different fields of computational physics and quantum chemistry. On the other hand, their applicability for the case of correlated d and f orbitals is still questionable and needs more considerations. In this article we formulate the on-site occupation dependent exchange correlation energy and effective potential of hybrid functionals for localized states and connect them to the on-site correction term of the DFT+ U method. The resultant formula indicates that the screening of the onsite electron repulsion is governed by the ratio of the exact exchange in hybrid functionals. Our derivation provides a theoretical justification for adding a DFT+ U-like on-site potential in hybrid-DFT calculations to resolve issues caused by overscreening of localized states. The resulting scheme, hybrid DFT+ V-w, is tested for chromium impurity in wurtzite AlN and vanadium impurity in 4H-SiC, which are paradigm examples of systems with different degrees of localization between host and impurity orbitals.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Gueorguiev Ivanov, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gällström, Andreas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Leone, Stefano
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Kordina, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Tien Son, Nguyen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Henry, Anne
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Ivády, Viktor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Gali, Adam
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Optical properties of the niobium centre in 4H, 6H, and 15R SiC2013Ingår i: SILICON CARBIDE AND RELATED MATERIALS 2012, Trans Tech Publications , 2013, Vol. 740-742, s. 405-408Konferensbidrag (Refereegranskat)
    Abstract [en]

    A set of lines in the photoluminescence spectra of 4H-, 6H-, and 15R-SiC in the near-infrared are attributed to Nb-related defects on the ground of doping experiments conducted with 4H-SiC. A model based on a an exciton bound at the Nb-centre in an asymmetric split vacancy configuration at a hexagonal site is proposed, which explains the structure of the luminescence spectrum and the observed Zeeman splitting of the lines.

  • 43.
    Ivády, Viktor
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gali, A
    Hungarian Academic Science, Hungary.
    Role of screening in the density functional applied to transition-metal defects in semiconductors2013Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 87, nr 20Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study selected transition-metal-related point defects in silicon and silicon carbide semiconductors by a range-separated hybrid density functional (HSE06). We find that HSE06 does not fulfill the generalized Koopmans' theorem for every defect, which is due to the self-interaction error in the functional in such cases. Restoring the so-called generalized Koopmans' condition with a simple correction in the functional can eliminate this error and brings the calculated charge transition levels remarkably close to the experimental data as well as to the calculated quasiparticle levels from many-body perturbation theory.

    Ladda ner fulltext (pdf)
    fulltext
1 - 43 av 43
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf