liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wu, Zhixing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Ding, Penghui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric Daniel
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Conducting Polymer‐Based e‐Refinery for Sustainable Hydrogen Peroxide Production2024Ingår i: Energy & Environmental Materials, E-ISSN 2575-0356, artikel-id e12551Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources. De-centralized production of hydrogen peroxide (H2O2) from water and oxygen of air is highly desirable for daily life and industry. We report an effective electrochemical refinery (e-refinery) for H2O2 by means of electrocatalysis-controlled comproportionation reaction (2(H)O + O -> 2(HO)), feeding pure water and oxygen only. Mesoporous nickel (II) oxide (NiO) was used as electrocatalyst for oxygen evolution reaction (OER), producing oxygen at the anode. Conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) drove the oxygen reduction reaction (ORR), forming H2O2 on the cathode. The reactions were evaluated in both half-cell and device configurations. The performance of the H2O2 e-refinery, assembled on anion-exchange solid electrolyte and fed with pure water, was limited by the unbalanced ionic transport. Optimization of the operation conditions allowed a conversion efficiency of 80%.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Chen, Yi-Jing
    et al.
    Shantou Univ, Peoples R China.
    Zhang, Jun-Zheng
    Shantou Univ, Peoples R China.
    Wu, Zhixing
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material.
    Qiao, Ying-Xin
    Shantou Univ, Peoples R China.
    Zheng, Lei
    Shantou Univ, Peoples R China.
    Wondu Dagnaw, Fentahun
    Shantou Univ, Peoples R China.
    Tong, Qing-Xiao
    Shantou Univ, Peoples R China.
    Jian, Jing-Xin
    Shantou Univ, Peoples R China.
    Molecular Engineering of Perylene Diimide Polymers with a Robust Built-in Electric Field for Enhanced Solar-Driven Water Splitting2024Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 63, nr 8, artikel-id e202318224Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The built-in electric field of the polymer semiconductors could be regulated by the dipole moment of its building blocks, thereby promoting the separation of photogenerated carriers and achieving efficient solar-driven water splitting. Herein, three perylene diimide (PDI) polymers, namely oPDI, mPDI and pPDI, are synthesized with different phenylenediamine linkers. Notably, the energy level structure, light-harvesting efficiency, and photogenerated carrier separation and migration of polymers are regulated by the orientation of PDI unit. Among them, oPDI enables a large dipole moment and robust built-in electric field, resulting in enhanced solar-driven water splitting performance. Under simulated sunlight irradiation, oPDI exhibits the highest photocurrent of 115.1 mu A cm-2 for photoelectrochemical oxygen evolution, which is 11.5 times that of mPDI, 26.8 times that of pPDI and 104.6 times that of its counterparts PDI monomer at the same conditions. This work provides a strategy for designing polymers by regulating the orientation of structural units to construct efficient solar energy conversion systems. Three perylene diimide (PDI) polymers were designed and synthesized such that the molecular orientation of the PDI units was regulated to create and modulate their built-in electric fields. Due to the large dipole moment and interfacial electric field, oPDI enables an extraordinary photocurrent density of 115.1 mu A & sdot; cm-2, which is 11.5 and 26.8 times that of mPDI and pPDI, respectively.image

  • 3.
    Li, Xing-Yi
    et al.
    Shantou Univ, Peoples R China.
    Zhu, Ze-Lin
    City Univ Hong Kong, Peoples R China.
    Dagnaw, Fentahun Wondu
    Shantou Univ, Peoples R China.
    Yu, Jie-Rong
    Shantou Univ, Peoples R China.
    Wu, Zhixing
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Yi-Jing
    Shantou Univ, Peoples R China.
    Zhou, Mu-Han
    Shantou Univ, Peoples R China.
    Wang, Tieyu
    Shantou Univ, Peoples R China.
    Tong, Qing-Xiao
    Shantou Univ, Peoples R China.
    Jian, Jing-Xin
    Shantou Univ, Peoples R China.
    Silicon photocathode functionalized with osmium complex catalyst for selective catalytic conversion of CO2 to methane2024Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 15, nr 1, artikel-id 5882Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solar-driven CO2 reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO2 reduction catalysts for selective CO2-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO2 reduction catalytic rate constants of 0.544 and 6.41 s(-1), respectively. Under AM1.5 G irradiation, the optimal Si/TiO2/trzpOs have CH4 as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm(-2) photocurrent density at 0.0 V-RHE. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO2-adduct intermediates, which tend to be further hydrogenated to produce CH4, leading to their ultrahigh CO2-to-CH4 selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO2 reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO2 to methane.

  • 4.
    Wu, Zhixing
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Ding, Penghui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Leanderson, Per
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för prevention, rehabilitering och nära vård. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Medicincentrum, Arbets- och miljömedicin.
    Kozyatnyk, Ivan
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för prevention, rehabilitering och nära vård. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Medicincentrum, Arbets- och miljömedicin.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Effect of Product Removal in Hydrogen Peroxide Electrosynthesis on Mesoporous Chromium(III) Oxide2023Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 6, nr 20, s. 18748-18756Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    On-site electrosynthesis of hydrogen peroxide (H2O2) is a promising alternative technology to the conversional centralized anthraquinone oxidation process. Here, we report a platinum group metal (PGM)-free H2O2 electrogenerator with mesoporous Cr2O3 and NiCo2O4 used as electrocatalysts for oxygen reduction and evolution reactions (ORR and OER), respectively. The catalysts were synthesized via a hydrothermal synthesis route and had pore sizes of 3 and 7 nm and specific surface areas of 112 and 62 m(2) g(-1), respectively. Mesoporous Cr2O3 was evaluated in a half cell with 0.1 M KOH for electrocatalytic oxygen reduction, which shows 2.2 transferred electrons per oxygen and an in situ H2O2 yield of 70%. This enables the electrosynthesis of hydrogen peroxide in alkaline medium using Cr2O3 as a 2e-ORR-H2O2 electrocatalyst, with oxygen evolution as an auxiliary reaction on NiCo2O4. The effect of electrolyte flow on the H2O2 electrogenerator was investigated. It is observed that one-way feeding of the catholyte suppresses deterioration of the electrocatalyst and allows a faradic conversion up to similar to 90% with a production rate of similar to 0.36 [g (h<middle dot>g(cat))(-1)], operating within the cell voltage of 1.2 V. This work demonstrates both a viable method for electrosynthesis of H2O2 production using PGM-free electrocatalysts and the possibility to obtain a high faradic efficiency by mitigating the effect from catalyst degradation.

    Ladda ner fulltext (pdf)
    fulltext
  • 5. Beställ onlineKöp publikationen >>
    Wu, Zhixing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Mesoporous transition metal oxides for oxygen electrocatalysis in energy conversion technologies2023Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Electrocatalysis, the foundation of electrical to chemical energy transformation, enables the mitigation of the electrical energy losses during reactions and the control of selectivity of the process to certain chemical products. The slow rate and the multi-step complexity of oxygen-associated reactions, namely oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), motivate the use of platinum group metals (PGM) catalysts, which significantly increase the price of the technologies due to the cost and scarcity of PGM-based materials. This thesis aims to fundamentally understand the electrocatalytical aspects of oxygen-associated reactions and their relevance to sustainable technologies by development of cheap and abundant materials.

    In this work, hydrothermal treatment routes are developed for synthesis of mesoporous MOx (M = Cr, Fe, Co, Ni, Ce) and NiCo2O4 as water-processable oxygen electrocatalysts. Firstly, anionic surfactant templated mesoporous NiO shows the lowest voltage loss with the highest turnover frequency for OER in consequence of the most accessible active sites among of nanoporous nickel (II) oxide (Paper I). It is observed that nickel and cobalt oxides are efficient bifunctional oxygen electrocatalysts compared to other investigated metal oxides. This stems from the lower voltage loss and by the presence of surface adsorbed hydroxyl species. In situ quantification shows that hydrogen peroxide is either the terminal product or the intermediate for ORR on meso-Cr2O3 and on other electrocatalysts, respectively (Paper II). In Paper IV, mesoporous NiO and NiCo2O4 are synthesized by using a template-free hydrothermal route, and NiCo2O4 performs more efficient bifunctional oxygen catalysts compared to NiO. It is found that ORR on mesoporous NiO and NiCo2O4 follow (2+1)e- and 4e-ORR path, with hydroxyl radical and hydroxyl ion as terminal products, respectively.

    Integrating the ORR and OER in electrochemical cells enables the study and development of energy conversion technologies. The bifunctional oxygen activity of meso-NiO is demonstrated in a PGM-free oxygen pump fed with air and water, resulting in a low faradic efficiency due to limited triple reaction points (Paper II). The performance of the oxygen pump has been significantly improved by exchanging the catalyst to mesoporous NiCo2O4 and the anolyte to concentrated KOH. The same setup is used for synthesis of the hydroxyl radical using mesoporous NiO. The hydroxyl radical is identified using degradation of rhodamine B, and a degradation rate of 0.034 min−1 is obtained in Paper IV. Additionally, two effective 2e-ORR electrocatalysts of porous organic conducting polymer poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) (Paper III) and mesoporous chromium (Paper V) have been studied for electrochemical refinery H2O2 by electrocatalysis-controlled comproportionation reaction (2𝐻2𝑂 + 𝑂2 → 2𝐻2𝑂2). It is observed that the hydrogen peroxide as terminal product of oxygen reduction shows ~70% Faradic efficiency on these two materials. The optimization of operation conditions on PEDOT: PSS-based hydrogen peroxide electrolyzer allows the conversion efficiency of 80% below 1V cell voltage. The optimized meso-Cr2O3-based hydrogen peroxide electrolyzer enables the conversion efficiency up to 90% that can be assigned to the suppressed of deterioration of catalyst.

    To summarize, this thesis has developed mesoporous metal oxides use as PGM-free electrocatalysts for investigating oxygen-associated reactions in the alkaline condition. Furthermore, the work has explored the energy conversion applications using the functionality of the developed oxygen electrocatalysts.

    Delarbeten
    1. Morphology effects on electrocatalysis of anodic water splitting on nickel (II) oxide
    Öppna denna publikation i ny flik eller fönster >>Morphology effects on electrocatalysis of anodic water splitting on nickel (II) oxide
    Visa övriga...
    2022 (Engelska)Ingår i: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 333, artikel-id 111734Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Oxygen evolution reaction (OER) is critical for producing high purity hydrogen and oxygen via electrocatalytic water splitting. In this work, single crystalline, nanoporous nickel oxide (NiO) was prepared using a hydro thermal, soft-templated synthesis route followed by calcination at different temperatures. It is shown that the NiO crystals have a cubic lattice, and the pore size can be tuned from similar to 1 to similar to 70 nm by varying the calcination temperature, i.e. variation from micro to macroporosity. The NiOs catalytic performance as electrocatalysts was evaluated in OER, both thermodynamically and kinetically. Mesoporous NiO with calcination temperature of 400 degrees C had the lowest overpotential (335 mV) required @ 10 mA/cm(2) accompanied with the highest turnover frequency value and mass activity among of the obtained NiO electrocatalysts. The study shows that the electrocatalytic activity of nanoporous NiO outperforms that of commercial catalyst Ir/C (similar to 360 mV @ 10 mA/cm(2)). Microporous NiO possess the highest specific surface area and electrical double layer capacitance, while the nonporous NiO particles have the highest specific activity and BET activity of the catalysts. It is concluded that the minimization of voltage losses by the nanoscale enlargement of the electrocatalyst surface area shows the coherence between gas adsorption and electrocapacitive measurements. Conversely, the OER kinetics showed deterioration with surface area maximization due to the impediment of ionic transport inside the micropores. This work demonstrates the importance of morphology optimization to obtain an efficient OER electrocatalyst with low required overpotential and kinetic loss.

    Ort, förlag, år, upplaga, sidor
    Elsevier, 2022
    Nyckelord
    Nickel (II) oxide; Oxygen evolution reaction; Nanoporosity; Single crystalline; Soft-templating
    Nationell ämneskategori
    Materialkemi
    Identifikatorer
    urn:nbn:se:liu:diva-183768 (URN)10.1016/j.micromeso.2022.111734 (DOI)000761774400001 ()
    Anmärkning

    Funding Agencies|competence center FunMat-II - Swedish Agency for Innovation Systems (Vinnova)Vinnova [2016-05156]; Swedish Energy AgencySwedish Energy AgencyMaterials & Energy Research Center (MERC) [42022-1]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR 2019-05577]

    Tillgänglig från: 2022-03-24 Skapad: 2022-03-24 Senast uppdaterad: 2023-01-30
    2. Bifunctional Mesoporous MO x (M = Cr, Fe, Co, Ni, Ce) Oxygen Electrocatalysts for Platinum Group Metal-Free Oxygen Pumps
    Öppna denna publikation i ny flik eller fönster >>Bifunctional Mesoporous MO x (M = Cr, Fe, Co, Ni, Ce) Oxygen Electrocatalysts for Platinum Group Metal-Free Oxygen Pumps
    Visa övriga...
    2022 (Engelska)Ingår i: Energy Technology, ISSN 2194-4288, E-ISSN 2194-4296, Vol. 10, nr 12, artikel-id 2200927Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Bifunctional electrocatalysts with both accelerated oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) enable high-power density electricity storage and decentralized extraction of pure oxygen from air for usage in health care. Herein, a hydrothermal synthesis employing the anionic surfactant sodium dodecyl sulfate as structure-directing agent is developed to fabricate a family of crystalline mesoporous metal oxides (meso-MO X , M = Cr, Fe, Co, Ni, Ce). The pore size and specific surface area depend on the metal used and they range from 3 to 6 nm and 60 to 200 m(2) g(-1), respectively. NiO and Co3O4 show a higher catalytic efficiency in alkaline media in comparison with the other oxides studied, and their activities are comparable with the values reported for platinum group metal (PGM)-based electrocatalysts. This stems from lower voltage losses and by the presence of specific hydroxide adsorbates on the surface. Both ORR and OER driven on Co3O4 show the unified rate-determining chemical step (|OO-|(center dot) (ads) + H2O <-> |OOH|(center dot) (ads) + OH-, where | X | ads are the species adsorbed on active sites). The bifunctional ORR/OER electrocatalysis obtained on mesoporous NiO is utilized for the first symmetrical PGM-free oxygen pump fed by air and water only.

    Ort, förlag, år, upplaga, sidor
    Wiley-V C H Verlag GMBH, 2022
    Nyckelord
    mesoporous metal oxides; oxygen evolution reaction; oxygen pumps; oxygen reduction reaction; soft-templating
    Nationell ämneskategori
    Energiteknik
    Identifikatorer
    urn:nbn:se:liu:diva-189316 (URN)10.1002/ente.202200927 (DOI)000863488800001 ()
    Anmärkning

    Funding Agencies|competence center FunMat-II - Swedish Agency for Innovation Systems (Vinnova) [2016-05156]; Swedish Energy Agency [42022-1]; Swedish Research Council [VR 2019-05577]

    Tillgänglig från: 2022-10-19 Skapad: 2022-10-19 Senast uppdaterad: 2023-06-02Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 6.
    Ail, Ujwala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, Jakob
    Ligna Energy AB, Sweden.
    Jansson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wu, Zhixing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Optimization of Non-Pyrolyzed Lignin Electrodes for Sustainable Batteries2023Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, Vol. 7, nr 2, artikel-id 2200396Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin, a byproduct from the pulp industry, is one of the redox active biopolymers being investigated as a component in the electrodes for sustainable energy storage applications. Due to its insulating nature, it needs to be combined with a conductor such as carbon or conducting polymer for efficient charge storage. Here, the lignin/carbon composite electrodes manufactured via mechanical milling (ball milling) are reported. The composite formation, correlation between performance and morphology is studied by comparison with manual mixing and jet milling. Superior charge storage capacity with approximate to 70% of the total contribution from the Faradaic process involving the redox functionality of lignin is observed in a mechanically milled composite. In comparison, manual mix shows only approximate to 30% from the lignin storage participation while the rest is due to the electric double layer at the carbon-electrolyte interface. The significant participation of lignin in the ball milled composite is attributed to the homogeneous, intimate mixing of the carbon and the lignin leading the electronic carrier transported in the carbon phase to reach most of the redox group of lignin. A maximum capacity of 49 mAh g(-1) is obtained at charge/discharge rate of 0.25 A g(-1) for the sample milled for 60 min.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Wu, Zhixing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Ding, Penghui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pshyk, Oleksandr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Selectivity Control of Oxygen Reduction Reaction over Mesoporous Transition Metal Oxide Catalysts for Electrified Purification Technologies2023Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 15, nr 21, s. 26093-26103Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct electrification of oxygen-associated reactionscontributesto large-scale electrical storage and the launch of the green hydrogeneconomy. The design of the involved catalysts can mitigate the electricalenergy losses and improve the control of the reaction products. Weevaluate the effect of the interface composition of electrocatalystson the efficiency and productivity of the oxygen reduction reaction(ORR) and oxygen evolution reaction (OER), both mechanistically andat device levels. The ORR and OER were benchmarked on mesoporous nickel-(II)oxide and nickel cobaltite (NiO and NiCo2O4,respectively) obtained by a facile template-free hydrothermal synthesis.Physicochemical characterization showed that both NiO and NiCo2O4 are mesoporous and have a cubic crystal structurewith abundant surface hydroxyl species. NiCo2O4 showed higher electrocatalytic activity in OER and selectivity towater as the terminal product of ORR. On the contrary, ORR over NiOyielded hydroxyl radicals as products of a Fenton-like reaction ofH(2)O(2). The product selectivity in ORR was usedto construct two electrolyzers for electrified purification of oxygenand generation of hydroxyl radicals.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Kumar, Divyaratan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Zhixing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zinc salt in "Water-in-Polymer Salt Electrolyte" for Zinc-Lignin Batteries: Electroactivity of the Lignin Cathode2023Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, Vol. 7, nr 4, artikel-id 2200433Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Zn-ion batteries are one of the hot candidates for low-cost and sustainable secondary batteries. The hydrogen evolution and dendritic growth upon zinc deposition are todays challenges for that technology. One of the new strategies to cope with these issues is to use "water-in-salt" electrolyte (WISE), that is, super concentrated aqueous electrolytes, to broaden its electrochemical stability window (ESW), suppressing hydrogen evolution reaction (HER), and perturbing the dendritic growth. Herein, this work proposes to use "water-in-polymer salt" electrolyte (WIPSE) concept to mitigate the challenges with Zn ion batteries and bring this technology toward one of the cheapest, greenest, and most sustainable electrodes: Lignin-carbon (L-C) electrode. Potassium polyacrylate (PAAK) as WISE bears out as better electrolyte for L-C electrodes in terms of self-discharge, cyclic stability, and specific capacity compared to conventional electrolyte based on chemically cousin molecule potassium acetate. Zinc bis(trifluoromethanesulfonyl) imide (Zn(TFSI)(2)) added into WIPSE shows deposition and dissolution of Zn in Zn//Zn symmetric cell suggesting that Zn2+ are moving into the polyanionic network. Furthermore, the added bis (trifluor omethanesul fonyl) imide (TFSI-) metal salts trigger a approximate to 40% enhancement of the capacity of L-C electrode. These results show a new promising direction toward the development of cost-effective and sustainable Zn-lignin batteries.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Wu, Zhixing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ding, Penghui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Bifunctional Mesoporous MO x (M = Cr, Fe, Co, Ni, Ce) Oxygen Electrocatalysts for Platinum Group Metal-Free Oxygen Pumps2022Ingår i: Energy Technology, ISSN 2194-4288, E-ISSN 2194-4296, Vol. 10, nr 12, artikel-id 2200927Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bifunctional electrocatalysts with both accelerated oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) enable high-power density electricity storage and decentralized extraction of pure oxygen from air for usage in health care. Herein, a hydrothermal synthesis employing the anionic surfactant sodium dodecyl sulfate as structure-directing agent is developed to fabricate a family of crystalline mesoporous metal oxides (meso-MO X , M = Cr, Fe, Co, Ni, Ce). The pore size and specific surface area depend on the metal used and they range from 3 to 6 nm and 60 to 200 m(2) g(-1), respectively. NiO and Co3O4 show a higher catalytic efficiency in alkaline media in comparison with the other oxides studied, and their activities are comparable with the values reported for platinum group metal (PGM)-based electrocatalysts. This stems from lower voltage losses and by the presence of specific hydroxide adsorbates on the surface. Both ORR and OER driven on Co3O4 show the unified rate-determining chemical step (|OO-|(center dot) (ads) + H2O <-> |OOH|(center dot) (ads) + OH-, where | X | ads are the species adsorbed on active sites). The bifunctional ORR/OER electrocatalysis obtained on mesoporous NiO is utilized for the first symmetrical PGM-free oxygen pump fed by air and water only.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Wu, Zhixing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Bakhit, Babak
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Björk, Emma
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Morphology effects on electrocatalysis of anodic water splitting on nickel (II) oxide2022Ingår i: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 333, artikel-id 111734Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Oxygen evolution reaction (OER) is critical for producing high purity hydrogen and oxygen via electrocatalytic water splitting. In this work, single crystalline, nanoporous nickel oxide (NiO) was prepared using a hydro thermal, soft-templated synthesis route followed by calcination at different temperatures. It is shown that the NiO crystals have a cubic lattice, and the pore size can be tuned from similar to 1 to similar to 70 nm by varying the calcination temperature, i.e. variation from micro to macroporosity. The NiOs catalytic performance as electrocatalysts was evaluated in OER, both thermodynamically and kinetically. Mesoporous NiO with calcination temperature of 400 degrees C had the lowest overpotential (335 mV) required @ 10 mA/cm(2) accompanied with the highest turnover frequency value and mass activity among of the obtained NiO electrocatalysts. The study shows that the electrocatalytic activity of nanoporous NiO outperforms that of commercial catalyst Ir/C (similar to 360 mV @ 10 mA/cm(2)). Microporous NiO possess the highest specific surface area and electrical double layer capacitance, while the nonporous NiO particles have the highest specific activity and BET activity of the catalysts. It is concluded that the minimization of voltage losses by the nanoscale enlargement of the electrocatalyst surface area shows the coherence between gas adsorption and electrocapacitive measurements. Conversely, the OER kinetics showed deterioration with surface area maximization due to the impediment of ionic transport inside the micropores. This work demonstrates the importance of morphology optimization to obtain an efficient OER electrocatalyst with low required overpotential and kinetic loss.

    Ladda ner fulltext (pdf)
    fulltext
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf