liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
123 1 - 50 av 132
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Nakshatharan, S. Sunjai
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Tartu, Estonia.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Punning, Andres
    Univ Tartu, Estonia.
    Aabloo, Alvo
    Univ Tartu, Estonia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Soft parallel manipulator fabricated by additive manufacturing2020Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, SENSORS AND ACTUATORS B-CHEMICAL, Vol. 305, artikel-id 127355Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymer (CP) based soft actuators are good candidates for miniaturised manipulation systems and soft robotic applications. We present the fabrication, characterization, and modelling, of a novel ionically driven soft, flat, parallel manipulator with minimal footprint actuated by CP actuators. This three degrees of freedom (3Dof) manipulator consists of four trilayer actuators with poly (3, 4- ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes on both sides of PVDF separator membrane with 1-Ethyl-3-methylimidazoliummethyl imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid used as the electrolyte. The complete manipulator is fabricated as a monolithic structure using commercially available off the shelf materials by additive manufacturing technique including a syringe type printer. Its workspace and dynamics are characterised and the results are compared with a multiphysics model based on the finite element method. The model uses two types of charge storage mechanism namely electrical double layer and redox reactions to describe the electrode kinetics. Through simulation the charge contributed by each of the processes is separated and presented providing new insights in the underlying kinetics in this type of actuators. It is found the double layer charge is the dominant phenomenon driving these actuators compared to the redox process. Finally, to demonstrate the versatile applications, the manipulator is explored for a four-way laser steering application. This work has demonstrated high levels of manipulability along three degrees of freedom from the printed CP actuators that are outstanding within the class of soft ionic actuators while using off the shelf commercially available materials keeping the fabrication method simple, scalable and cost-effective along with the electro-chemo-mechanical model providing an insightful view of the charge storage mechanism.

  • 2.
    Mashayekhimazar, Fariba
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Malek Ashtar Univ Technol, Iran.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tyagi, Manav
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Alijanianzadeh, Mahdi
    Kharazmi Univ, Iran.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Cranfield Univ, England.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Artificial Muscles Powered by Glucose2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 32, artikel-id 1901677Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Untethered actuation is important for robotic devices to achieve autonomous motion, which is typically enabled by using batteries. Using enzymes to provide the required electrical charge is particularly interesting as it will enable direct harvesting of fuel components from a surrounding fluid. Here, a soft artificial muscle is presented, which uses the biofuel glucose in the presence of oxygen. Glucose oxidase and laccase enzymes integrated in the actuator catalytically convert glucose and oxygen into electrical power that in turn is converted into movement by the electroactive polymer polypyrrole causing the actuator to bend. The integrated bioelectrode pair shows a maximum open-circuit voltage of 0.70 +/- 0.04 V at room temperature and a maximum power density of 0.27 mu W cm(-2) at 0.50 V, sufficient to drive an external polypyrrole-based trilayer artificial muscle. Next, the enzymes are fully integrated into the artificial muscle, resulting in an autonomously powered actuator that can bend reversibly in both directions driven by glucose and O-2 only. This autonomously powered artificial muscle can be of great interest for soft (micro-)robotics and implantable or ingestible medical devices manoeuvring throughout the body, for devices in regenerative medicine, wearables, and environmental monitoring devices operating autonomously in aqueous environments.

    Publikationen är tillgänglig i fulltext från 2020-06-19 08:54
  • 3.
    Melling, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Conjugated Polymer Actuators and Devices: Progress and Opportunities2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 22, artikel-id 1808210Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Conjugated polymers (CPs), as exemplified by polypyrrole, are intrinsically conducting polymers with potential for development as soft actuators or artificial muscles for numerous applications. Significant progress has been made in the understanding of these materials and the actuation mechanisms, aided by the development of physical and electrochemical models. Current research is focused on developing applications utilizing the advantages that CP actuators have (e.g., low driving potential and easy to miniaturize) over other actuating materials and on developing ways of overcoming their inherent limitations. CP actuators are available as films, filaments/yarns, and textiles, operating in liquids as well as in air, ready for use by engineers. Here, the milestones made in understanding these unique materials and their development as actuators are highlighted. The primary focus is on the recent progress, developments, applications, and future opportunities for improvement and exploitation of these materials, which possess a wealth of multifunctional properties.

    Publikationen är tillgänglig i fulltext från 2020-03-25 13:07
  • 4.
    Tyagi, Manav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Pan, Jingle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Novel fabrication of soft microactuators with morphological computing using soft lithography2019Ingår i: MICROSYSTEMS and NANOENGINEERING, ISSN 2055-7434, Vol. 5, artikel-id UNSP 44Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A simple and cost-effective method for the patterning and fabrication of soft polymer microactuators integrated with morphological computation is presented. The microactuators combine conducting polymers to provide the actuation, with spatially designed structures for a morphologically controlled, user-defined actuation. Soft lithography is employed to pattern and fabricate polydimethylsiloxane layers with geometrical pattern, for use as a construction element in the microactuators. These microactuators could obtain multiple bending motions from a single fabrication process depending on the morphological pattern defined in the final step. Instead of fabricating via conventional photolithography route, which involves multiple steps with different chromium photomasks, this new method uses only one single design template to produce geometrically patterned layers, which are then specifically cut to obtain multiple device designs. The desired design of the actuator is decided in the final step of fabrication. The resulting microactuators generate motions such as a spiral, screw, and tube, using a single design template.

  • 5.
    Mehraeen, Shayan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Asadi, Milad
    University of Borås, Borås, Sweden.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Smart yarns as the building blocks of textile actuators2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The field of smart textile actuators has been progressing rapidly during the last years. Smart textiles are a class of textile products which exploit the determinant feature of responding to a stimulus, input, which can be chemical, mechanical, optical, magnetic or electrical. The building block for fabrication of such products is smart yarn. However, most smart textiles are focused on receiving an input stimulus (sensors) and only a few are dedicated to providing an output response (actuators). Yarn actuators show strain or apply force upon application of electrical stimulation in isotonic or isometric conditions, respectively. A small actuation in the yarn scale can be amplified by knitting or weaving the smart yarns into a fabric. In this work, we have investigated the effect of inherent properties of different commercial yarns on the linear actuation of the smart yarns in aqueous media. Since actuation significantly depends on the structure and mechanical properties of the yarns, elastic modules, and tenacity of the yarns were characterized. Investigating the actuation behavior, yarns were coated with PEDOT:PSS to make them conductive. Then polypyrrole which provides the electromechanical actuation was electropolymerized on the yarn surface under controlled conditions. Finally, linear actuation of the prepared smart yarns was investigated under aqueous electrolyte in both isotonic and isometric conditions.

  • 6.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Cergy Pontoise, France.
    Nguyen, Giao T. M.
    Univ Cergy Pontoise, France.
    Plesse, Cedric
    Univ Cergy Pontoise, France.
    Vidal, Frederic
    Univ Cergy Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tailorable, 3D structured and micro-patternable ionogels for flexible and stretchable electrochemical devices2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 2, s. 256-266Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new family of ionogels for electrochemical devices was developed from a mixture of multifunctional thiols, diacrylate and triethylamine in the presence of ionic liquid using Michael addition chemistry. Polymerization kinetic studies show that the ionic liquid not only acts as an ion source but also a co-catalyst in the polymerization. Ionogels with tailorable surface and mechanical properties were prepared using three approaches: off-stoichiometry, methacrylate addition, and dithiol chain extender addition. 3-Dimensional ionogels were constructed by bonding the flexible ionogel film together using the ionogel solution as an ionic adhesive. A tube actuator with PEDOT-PSS patterned on inner and outer wall was prepared to illustrate the potential of these ionogels with reactive surfaces. In addition, micro-patterns of the ionogels were obtained by photolithography and soft imprinting lithography. All in all, this thiol acrylate Michael chemistry provides a platform to prepare various forms (films, micro-patterns, 3-dimensional structures, and adhesive) of ionogels for the next generation of flexible electrochemical devices.

  • 7.
    Backe, Carin
    et al.
    University of Borås.
    Guo, Li
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    University of Borås.
    Towards responding fabrics – textile processing of thin threadlike pneumatic actuators2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    With few exceptions (such as 1) textiles have not been considered as means for obtaining actuation. This is surprising as textiles have many advantageous characteristics such as the D=M property, which stands for Doing Devices while Making the Material. This means that functions are introduced simultaneously as the material, such as in a weave, is built up tread by tread. Traditionally a tread could have a certain colour so in total an aesthetical pattern is formed. Now we take a step beyond this working with threads having more advanced functions. Included are fiber formed structures showing actuation behavior. 

    This we employ here. We make fiber formed actuating structures (FAS) following the McKibben principle (2) with braided mesh sleeves surrounding a prolonged inflatable tube. Here we worked with relatively large diameters in the relaxed state but show that there is prospect for obtaining relaxed diameters of less than 1 mm approaching the range of large scale weaving manufacturing.

    We study the behavior of these fibre formed actuating structures individually. Length changes obtained are -20%. We then make textile constructions by integrating several of these FASes with textile processing. By this, we build simple models of fabrics showing actuating behavior.  

     

    This study shows how textile constructions can support or hinder overall movement. It is a first logical step in order to get an understanding of actuating fabrics based also on other actuating mechanisms (3).

  • 8.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Klaus, Richter
    ITP GmbH Gesellschaft für Intelligente Produkte (ITP), Weimar, Germany.
    Nils-Krister, Persson
    University of Borås, Smart Textiles, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Use of conducting yarns to develop textile actuators2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The feasibility of textile actuators and their advantages to develop soft actuators with synergetic actuation have been proven. They are composed of a passive fabric coated with an electroactive polymer that provides the mechanical motion. Until now, a two-step coating process was followed to make the textile actuators: a first coating that provided conductivity to the passive fabrics and, once conducting, a second coating by electropolymerization was used to get a highly electroactive (moving as much as possible) material. To simplify the fabrication process, we here used different commercially available conducting yarns (polyamide+carbon, silicon+carbon, polyamide+silver coated, cellulose+carbon, polyester+2 × INOX 50 μm, polyester+2 × Cu/Sn and polyester+gold coated) to develop such textile actuators.

    Thus, it was possible to coat them through direct electrochemical synthesis, avoiding the first step, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices.

  • 9.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Mehraeen, Shayan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Escobar, Freddy
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Aziz, Shazed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Milad, Milad Asadi Miankafshe
    University of Borås, Borås, Sweden.
    Persson, Nils-Krister
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Woven and knitted artificial muscles for wearable devices2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Diseases of the nervous system, traumas, or natural causes can reduce human muscle capacity. Robotic exoskeletons are forthcoming to support the movement of body parts, e.g. assist walking or aid rehabilitation. Current available devices are rigid and driven by electric motors or pneumatic actuators, making them noisy, heavy, stiff and noncompliant. We are developing textile based assistive devices that can be worn like clothing being light, soft, compliant and comfortable. We have merged advanced textile technology with electroactive polymers. By knitting and weaving electroactive yarns, we are developing soft textile actuators ("Knitted Muscles") that can be used in wearable assistive devices. We will present the latest progress increase the performance and to rationalise the fabrication. In addition we will show some demonstrators of the textile exoskeletons.

  • 10.
    Persson, Nils-Krister
    et al.
    Univ Boras, Sweden.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Zhong, Yong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Univ Toulouse, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Actuating Textiles: Next Generation of Smart Textiles2018Ingår i: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, Vol. 3, nr 10, artikel-id 1700397Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Smart textiles have been around for some decades. Even if interactivity is central to most definitions, the emphasis so far has been on the stimuli/input side, comparatively little has been reported on the responsive/output part. This study discusses the actuating, mechanical, output side in what could be called a second generation of smart textiles-this in contrast to a first generation of smart textiles devoted to sensorics. This mini review looks at recent progress within the area of soft actuators and what from there that is of relevance for smart textiles. It is found that typically still forces exerted are small, so are strains for many of the actuators types (such as electroactive polymers) that could be considered for textile integration. On the other side, it is argued that for many classes of soft actuators-and, in the extension, soft robotics-textiles could play an important role. The potential of weaving for stress and knitting for strain amplification is shown. Textile processing enables effective production, as is analyzed. Textile systems are made showing automatic actuation asked for in stand-alone solutions. It is envisioned that soft exoskeletons could be an achievable goal for this second generation of smart textiles.

  • 11.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Book review: Biosensors: Essentials, by Gennady Evtugyn (Lecture Notes in Chemistry Vol.84), 265 pages, Springer, 2014, ISBN 978-3-642–40240-1 Hardcover − 124,79 €; Softcover 106,90 €; eBook 86,86 €2018Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 115, s. 111-111Artikel i tidskrift (Övrigt vetenskapligt)
  • 12.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018Ingår i: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 4, nr 1, artikel-id 19Artikel i tidskrift (Refereegranskat)
  • 13.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Lundemo, Staffan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Development of polypyrrole based solid state on-chip microactuators using photolithography2018Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, nr 7, artikel-id 074006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is a need for soft microactuators, especially for biomedical applications. We have developed a microfabrication process to create such soft, on-chip polymer-based microactuators that can operate in air. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special designed process to micropattern the electroactive polymer polypyrrole that drives the microactuators. By immobilizing a UV-patternable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air was achieved although with reduced movement. Further optimization of the processing is currently on-going. The result shows the possibility to batch fabricate complex microsystems such as microrobotics and micromanipulators based on these solid state on-chip microactuators using microfabrication methods including standard photolithographic processes.

  • 14.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Giao
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Plesse, Cedric
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Vidal, Frederic
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Flexible gel electrolytes with reactive surfaces for soft electrochemical systems2018Konferensbidrag (Övrigt vetenskapligt)
  • 15.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Giao T. M.
    Univ Cergy Pontoise, France.
    Nesse, Cedric
    Univ Cergy Pontoise, France.
    Vida, Frederic
    Univ Cergy Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Highly Conductive, Photolithographically Patternable Ionogels for Flexible and Stretchable Electrochemical Devices2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 25, s. 21601-21611Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An ionic conducting membrane is an essential part in various electrochemical devices including ionic actuators. To miniaturize these devices, micropatterns of ionic conducting membrane are desired. Here, we present a novel type of ionogel that can be patterned using standard photolithography and soft imprinting lithography. The ionogel is prepared in situ by UV-initiated free-radical polymerization of thiol acrylate precursors in the presence of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resultant ionogel is very flexible with a low Youngs modulus (as low as 0.23 MPa) and shows a very high ionic conductivity (up to 2.4 X 10(-3) S/cm with 75 wt % ionic liquid incorporated) and has a reactive surface due to the excess thiol groups. Micropatterns of ionogel are obtained by using the thiol acrylate ionogel solution as an ionic conducting photoresist with standard photolithography. Water, a solvent immiscible with ionic liquid, is used as the photoresist developer to avoid complete removal of ionic liquid from thin micropatterns of the ionogel. By taking advantage of the reactive surface of ionogels and the photopatternability, ionogels with complex three-dimensional microstructure are developed. The surface of the ionogels can also be easily patterned using UV-assisted soft imprinting lithography. This new type of ionogels may open up for building high-performance flexible electrochemical microdevices.

  • 16.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Richter, Klaus
    ITP GmbH Gesellschaft für Intelligente Produkte (ITP), Weimar, Germany.
    Persson, Nils-Krister
    Smart Textiles, Swedish School of Textiles (THS) , University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Investigation of electrically conducting yarns for use in textile actuators2018Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, nr 7, artikel-id 074004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 x INOX 50µm, polyester + 2 x Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

  • 17.
    Khaldi, Alexandre
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Falk, Daniel
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Bengtsson, Katarina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Robinson, Nathaniel D
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Patterning highly conducting conjugated polymer electrodes for soft and flexible microelectrochemical devices2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 17, s. 14978-14985Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is a need for soft actuators in various biomedical applications in order to manipulate delicate objects such as cells and tissues. Soft actuators are able to adapt to any shape and limit the stress applied to delicate objects. Conjugated polymer actuators, especially in the so-called trilayer configuration, are interesting candidates for driving such micromanipulators. However, challenges involved in patterning the electrodes in a trilayer with individual contact have prevented further development of soft micromanipulators based on conjugated polymer actuators. To allow such patterning, two printing-based patterning techniques have been developed. First an oxidant layer is printed using either syringe-based printing or micro-contact printing, followed by vapor phase polymerization of the conjugated polymer. Sub-millimeter patterns with electronic conductivities of 800 Scm-1 are obtained. Next, laser ablation is used to cleanly cut the final device structures including the printed patterns, resulting in fingers with individually controllable digits and miniaturized hands. The methods presented in this paper will enable integration of patterned electrically active conjugated polymer layers in many types of complex 3-D structures.

  • 18.
    Jager, Edwin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Ladegaard-Skov, Anne
    Technical University of Denmark (DTU), Denmark.
    Otero, Toribio
    Technical University of Cartagena, Spain.
    Jean-Mistral, Claire
    National Institute of Applied Science—INSA de Lyon, France,.
    Progress in electromechanically active polymers: selected papers from EuroEAP 20172018Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, nr 7, artikel-id 070201Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

  • 19.
    Baumgartner, Johanna
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Jönsson, Jan-Ingvar
    Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för hematopoes och utvecklingsbiologi.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells2018Ingår i: Journal of Materials Chemistry B, ISSN 2050-750X, Vol. 6, nr 28, s. 4665-4675Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hematopoietic stem cells are used in transplantations for patients with hematologic malignancies. Scarce sources require efficient strategies of expansion, including polymeric biomaterials mimicking architectures of bone marrow tissue. Tissue microenvironment and mode of cytokine presentation strongly influence cell fate. Although several cytokines with different functions as soluble or membrane-bound mediators have already been identified, their precise roles have not yet been clarified. A need exists for in vitro systems that mimic the in vivo situation to enable such studies. One way is to establish surfaces mimicking physiological presentation using protein-immobilization onto polymer films. However these films merely provide a static presentation of the immobilized proteins. It would be advantageous to also dynamically change protein presentation and functionality to better reflect the in vivo conditions. The electroactive polymer polypyrrole shows excellent biocompatibility and electrochemically alters its surface properties, becoming an interesting choice for such setups. Here, we present an in vitro system for switchable presentation of membrane-bound cytokines. We use interleukin IL-3, known to affect hematopoiesis, and show that when immobilized on polypyrrole films, IL-3 is bioavailable for the bone marrow-derived FDC-P1 progenitor cell line. Moreover, IL-3 presentation can be successfully altered by changing the redox state of the film, in turn influencing FDC-P1 cell viability. This novel in vitro system provides a valuable tool for stimuli-responsive switchable protein presentation allowing the dissection of relevant mediators in stem and progenitor cell behavior.

  • 20.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Giao
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Plesse, Cedric
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Vidal, Frederic
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tailorable polymer gel electrolytes with reactive surfaces from thiol acrylate Michael reaction for ionic actuator2018Konferensbidrag (Övrigt vetenskapligt)
  • 21.
    Guan, Na N.
    et al.
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Urology, Karolinska University Hospital, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Sharma, Nimish
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
    Hallén‐Grufman, Katarina
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Svennersten, Karl
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools2018Ingår i: Journal of Cellular and Molecular Medicine (Print), ISSN 1582-1838, E-ISSN 1582-4934, Vol. 22, nr 4, s. 2319-2328Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The capacity to store urine and initiate voiding is a valued characteristic of the human urinary bladder. To maintain this feature, it is necessary that the bladder can sense when it is full and when it is time to void. The bladder has a specialized epithelium called urothelium that is believed to be important for its sensory function. It has been suggested that autocrine ATP signalling contributes to this sensory function of the urothelium. There is well‐established evidence that ATP is released via vesicular exocytosis as well as by pannexin hemichannels upon mechanical stimulation. However, there are still many details that need elucidation and therefore there is a need for the development of new tools to further explore this fascinating field. In this work, we use new microphysiological systems to study mechanostimulation at a cellular level: a mechanostimulation microchip and a silicone‐based cell stretcher. Using these tools, we show that ATP is released upon cell stretching and that extracellular ATP contributes to a major part of Ca2+ signalling induced by stretching in T24 cells. These results contribute to the increasing body of evidence for ATP signalling as an important component for the sensory function of urothelial cells. This encourages the development of drugs targeting P2 receptors to relieve suffering from overactive bladder disorder and incontinence.

  • 22.
    Ravichandran, Ranjithkumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Type I Collagen-Derived Injectable Conductive Hydrogel Scaffolds as Glucose Sensors2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 19, s. 16244-16249Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The advent of home blood glucose monitoring revolutionized diabetes management, and the recent introduction of both wearable devices and closed-loop continuous systems has enormously impacted the lives of people with diabetes. We describe the first fully injectable soft electrochemical glucose sensor for in situ monitoring. Collagen, the main component of a native extracellular matrix in humans and animals, was used to fabricate an in situ gellable self-supporting electroconductive hydrogel that can be injected onto an electrode surface or into porcine meat to detect glucose amperometrically. The study provides a proof-of-principle of an injectable electrochemical sensor suitable for monitoring tissue glucose levels that may, with further development, prove clinically useful in the future.

  • 23.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Laboratoire d'analyse et d'architecture des systèmes.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära.
    Persson, Nils-Krister
    Hogskolan i Borås.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    ELECTROACTIVE TEXTILES FOR EXOSKELETON LIKE SUITS2017Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    There is a need for soft assistive robotic devices such as prosthetics, exoskeletons and robot assistants. One particular area of interest is robotic exoskeletons to support the movement of body parts, e.g. assisting or enhancing walking and rehabilitation. Although technologically advanced, current exoskeletons are rigid and driven by electric motors or pneumatic actuators making them noisy, heavy, stiff and non-compliant. Ideally, assistive devices would be shaped as an exoskeleton suit worn under clothing and well-hidden. By merging one of humankind oldest technology with one of the latest, that is by combining knitting and weaving with novel electroactive polymers, we have developed soft textile actuators ("Knitted Muscles"). In this paper we will present the textile actuators in more detail as well as share the latest progress in the development of textile actuators for soft robotics.

  • 24.
    Golabi, Mohsen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Kuralay, Filiz
    Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Acreo Swedish ACT AB, Norrköping, Sweden.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer.2017Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 93, s. 87-93Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biosensors can deliver the rapid bacterial detection that is needed in many fields including food safety, clinical diagnostics, biosafety and biosecurity. Whole-cell imprinted polymers have the potential to be applied as recognition elements in biosensors for selective bacterial detection. In this paper, we report on the use of 3-aminophenylboronic acid (3-APBA) for the electrochemical fabrication of a cell-imprinted polymer (CIP). The use of a monomer bearing a boronic acid group, with its ability to specifically interact with cis-diol, allowed the formation of a polymeric network presenting both morphological and chemical recognition abilities. A particularly beneficial feature of the proposed approach is the reversibility of the cis-diol-boronic group complex, which facilitates easy release of the captured bacterial cells and subsequent regeneration of the CIP. Staphylococcus epidermidis was used as the model target bacteria for the CIP and electrochemical impedance spectroscopy (EIS) was explored for the label-free detection of the target bacteria. The modified electrodes showed a linear response over the range of 103–107 cfu/mL. A selectivity study also showed that the CIP could discriminate its target from non-target bacteria having similar shape. The CIPs had high affinity and specificity for bacterial detection and provided a switchable interface for easy removal of bacterial cell.

  • 25.
    Maziz, Ali
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Concas, Alexandre
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Khaldi, Alexandre
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Swedish School of Textiles (THS), SmartTextiles, University of Borås, 50190 Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Knitting and weaving artificial muscles2017Ingår i: Science Advances, ISSN 2375-2548, Vol. 3, nr 1, artikel-id e1600327Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A need exists for artificial muscles that are silent, soft, and compliant, with performance characteristics similar to those of skeletal muscle, enabling natural interaction of assistive devices with humans. By combining one of humankind’s oldest technologies, textile processing, with electroactive polymers, we demonstrate here the feasibility of wearable, soft artificial muscles made by weaving and knitting, with tunable force and strain. These textile actuators were produced from cellulose yarns assembled into fabrics and coated with conducting polymers using a metal-free deposition. To increase the output force, we assembled yarns in parallel by weaving. The force scaled linearly with the number of yarns in the woven fabric. To amplify the strain, we knitted a stretchable fabric, exhibiting a 53-fold increase in strain. In addition, the textile construction added mechanical stability to the actuators. Textile processing permits scalable and rational production of wearable artificial muscles, and enables novel ways to design assistive devices.

  • 26.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    TM Nguyen, Giao
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Plesse, Cedric
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Vidal, Frederic
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Micropatterning of solid polymer electrolytes using photolithography2017Konferensbidrag (Övrigt vetenskapligt)
  • 27.
    Persson, Nils-Krister
    et al.
    University of Borås.
    Maziz, Ali
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Öberg, Ingrid
    University of Borås.
    Christiansson, Isabella
    University of Borås.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Next generation Smart Textiles - morphing and actuating devices2017Konferensbidrag (Refereegranskat)
  • 28.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2017Ingår i: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 3, artikel-id 19Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in Salmonella cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.

  • 29.
    Maziz, Ali
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Guan, Na
    Karolinska Insitutet.
    Sharma, Nimish
    Karolinska Institutet.
    Svennersten, Karl
    Karolinska Institutet.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Second generation micromechanical stimulation chips to study mechanotransduction in the urinary tract2017Konferensbidrag (Övrigt vetenskapligt)
  • 30.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Högskolan i Borås.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Textile actuators for wearable devices2017Konferensbidrag (Övrigt vetenskapligt)
  • 31.
    Khaldi, Alexandre
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Maziz, Ali
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Alici, Gursel
    University of Wollongong, Australia.
    Spinks, Geoffrey M.
    University of Wollongong, Australia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. University of Wollongong, Australia.
    Bottom-up microfabrication process for individually controlled conjugated polymer actuators2016Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 230, s. 818-824Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Handling of soft and fragile sub-millimeter sized samples such as cells and tissues requires new tools that allow delicate manipulation. Conducting polymer actuators show unique characteristics suitable to driving such manipulators, however despite their potential, the current fabrication method of the trilayer structures does not allow constructing advanced micromanipulators operating in air using this technology. Here we show a novel bottom-up microfabrication process for conjugated polymer trilayer actuators using various solid polymer electrolytes. In addition, the process design integrates contact pads, which has been an issue for small scale conducting polymer actuators. The microfabrication process starts with a patterned layer of conjugated polymer, followed by depositing a polymer electrolyte and a second patterning of the second conjugated polymer layer. The process resulted in successful fabrication of individually controllable conducting polymer trilayer actuators comprising polyvinylidenefluoride and poly( vinylidenefluoride-co-hexafluoropropylene) membranes and showed good interfacial adhesion between the different layers in the final device. The polyvinylidenefluoride trilayer actuator showed good actuation capability. The developed bottom-up microfabrication method paves the way for the development of novel micromanipulation tools. (C) 2016 Elsevier B.V. All rights reserved.

  • 32.
    Kaneto, Keiichi
    et al.
    Osaka Institute of Technology, Eamex Co. Ltd., Osaka, Japan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Alici, Gursel
    School of Mechanical, Materials, and Mechatronic Engineering, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Okuzaki, Hidenori
    Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan.
    Conducting Polymers as EAPs: Applications2016Ingår i: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, s. 385-412Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Artificial muscles are the longtime dream of human being to replace the existing engines, motors, and piezoelectric actuators because of the low-noise, environment-friendly, and energy-saving actuators (or power force generators). This chapter describes applications of conducting polymers (CPs) to EAPs such as bending actuators, microactuators, and linear actuators. The bending actuators were applied to diaphragm pumps, swimming devices, and flexural-jointed grippers with the trilayer configurations. On the other hand, the microactuators have the advantage of short diffusion times and thus fast actuation. Since the CP actuators operate in any salt solutions, such as a saline solution, cell culture media, and biological liquid, the PPy microactuators have potential applications in microfluidics and drug delivery, cell biology, and medical devices. Furthermore, the linear actuators were developed for the applications to the Braille cells, artificial muscles for soft robots.

  • 33.
    Melling, Daniel
    et al.
    Institute for Medical Science and Technology, University of Dundee, Dundee, UK.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Conducting Polymers as EAPs: Characterization Methods and Metrics2016Ingår i: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, s. 319-352Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    This chapter outlines the various methods that have been developed in the past three decades to characterize the electroactive performance of conducting polymers (CP) to provide fundamental metrics such as strain, strain rate, stress, force, modulus of elasticity, and work capacity. In addition to providing metrics, these characterization techniques have served as valuable tools for studying CPs, providing a greater understanding of the actuation process, optimizing synthesis conditions, and geometric parameters for optimal device performance. The issues associated with the determination of metrics and the need for standardization are discussed.

  • 34.
    Alici, Gursel
    et al.
    School of Mechanical, Materials, and Mechatronic Engineering, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Mutlu, Rahim
    School of Mechanical, Materials, and Mechatronic Engineering, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Melling, Daniel
    Institute for Medical Science and Technology, University of Dundee, Dundee, UK.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Kaneto, Keiichi
    Kyushu Institute of Technology, Eamex Co. Ltd, Chuoku, Fukuoka, Japan.
    Conducting Polymers as EAPs: Device Configurations2016Ingår i: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, s. 257-292Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    This chapter focuses on device configurations based on conjugated polymer transducers. After the actuation and sensing configurations in the literature are presented, some successful device configurations are reviewed, and a detailed account of their operation principles is described. The chapter is concluded with critical research issues. With reference to the significant progress made in the field of EAP transducers in the last two decades, there is an increasing need to change our approach to the establishment of new device configurations, novel device concepts, and cutting-edge applications. To this aim, we should start from the performance specifications and end up with the material synthesis conditions and properties which will meet the performance specifications (top-to-down approach). The question should be “what electroactive material or materials can be used for a specific purpose or application,” rather than looking for an application or a device concept suitable to the unique properties of the EAPs and transducers already made of these materials. The field is mature enough to undertake this paradigm change.

  • 35.
    Jager, Edwin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Khaldi, Alexandre
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Conducting Polymers as EAPs: Microfabrication2016Ingår i: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, s. 293-318Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    In this chapter, first some basic principles of photolithography and general microfabrication are introduced. These methods have been adapted to fit the microfabrication of conducting polymer actuators, resulting in a toolbox of techniques to engineer microsystems comprising CP microactuators, which will be explained in more detail. CP layers can be patterned using both subtractive and additive techniques to form CP microactuators in a variety of configurations including bulk expansion, bilayer, and trilayer actuators. Methods to integrate CP microactuators into complex microsystems and interfaces to connect them to the outside world are also described. Finally, some specifications, performance, and a short introduction to various applications are presented.

  • 36.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Lundemo, Staffan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Development of dry state on-chip microactuators based on polypyrrole2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    We have developed a microfabrication process to fabricate on-chip microactuators that can operate outside of a liquid electrolyte. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special design processing to micropattern polypyrrole. By immobilizing a UV-patternable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air is achieved. The result shows the possibility to fabricate complex microsystems such as microrobotics and micromanipulators based on these dry state on-chip microactuators.

  • 37.
    Zondaka, Zane
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Zhong, Yong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Development of hybrid material soft microactuators2016Konferensbidrag (Övrigt vetenskapligt)
  • 38.
    Zondaka, Zane
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Zhong, Yong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Development of hybrid material soft microactuators2016Konferensbidrag (Övrigt vetenskapligt)
  • 39.
    Gelmi, Amy
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Imperial Coll London, England.
    Cieslar-Pobuda, Artur
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Silesian Technical University, Poland.
    de Muinck, Ebo
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Kardiologiska kliniken US. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Los, Marek Jan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Pomeranian Medical University, Poland.
    Rafat, Mehrdad
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering2016Ingår i: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 5, nr 12, s. 1471-1480Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.

  • 40.
    Golabi, Mohsen
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Padiolleau, Laurence
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Cranfield University, England.
    Chen, Xi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. University of Dundee, Scotland.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Sheikhzadeh, Elham
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Ferdowsi University of Mashhad, Iran.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Acreo Swedish ICT AB, Sweden.
    Doping Polypyrrole Films with 4-N-Pentylphenylboronic Acid to Enhance Affinity towards Bacteria and Dopamine2016Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, nr 11, artikel-id e0166548Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here we demonstrate the use of a functional dopant as a fast and simple way to tune the chemical affinity and selectivity of polypyrrole films. More specifically, a boronic-functionalised dopant, 4-N-Pentylphenylboronic Acid (PBA), was used to provide to polypyrrole films with enhanced affinity towards diols. In order to prove the proposed concept, two model systems were explored: (i) the capture and the electrochemical detection of dopamine and (ii) the adhesion of bacteria onto surfaces. The chemisensor, based on overoxidised polypyrrole boronic doped film, was shown to have the ability to capture and retain dopamine, thus improving its detection; furthermore the chemisensor showed better sensitivity in comparison with overoxidised perchlorate doped films. The adhesion of bacteria, Deinococcus proteolyticus, Escherichia coli, Streptococcus pneumoniae and Klebsiella pneumoniae, onto the boric doped polypyrrole film was also tested. The presence of the boronic group in the polypyrrole film was shown to favour the adhesion of sugar-rich bacterial cells when compared with a control film (Dodecyl benzenesulfonate (DBS) doped film) with similar morphological and physical properties. The presented single step synthesis approach is simple and fast, does not require the development and synthesis of functional monomers, and can be easily expanded to the electrochemical, and possibly chemical, fabrication of novel functional surfaces and interfaces with inherent pre-defined sensing and chemical properties.

  • 41.
    Martinez, J. G.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. University of Politecn Cartagena, Spain.
    Otero, T. F.
    University of Politecn Cartagena, Spain.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemo-dynamical characterization of polypyrrole actuators coated on gold electrodes2016Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, nr 2, s. 827-836Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polypyrrole coated gold wires were subjected to consecutive square current waves in LiClO4 aqueous solutions using the same constant anodic and cathodic charge. Parallel in situ diameter variations were followed using a laser scan micrometer. The procedure was repeated by changing one experimental variable every time: applied current, electrolyte concentration or working temperature to perform electrochemodynamical characterization of the system. On average, the diameter follows a linear variation of the consumed charge, as expected for any faradaic system, although a high dispersion was attained in the data. Such deviations were attributed to the presence of irreversible hydrogen evolution at the gold/polypyrrole interface at cathodic potentials more than 0.0 V vs. Ag/AgCl, detected and quantified from separated coulovoltammetric responses. Despite this parallel hydrogen evolution the consumed energy during reactions is a robust sensor of the working conditions. In conclusion a gold support, the metal most used for technological applications of conducting polymers, should be avoided when a device is driven by current flow in the presence of aqueous solutions, water contamination or moisture: a fraction of the charge will be consumed by hydrogen generation with possible degradation of the device.

  • 42.
    Jager, Edwin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemomechanical Devices from Conjugated Polymers2016Ingår i: Reference Module in Materials Science and Materials Engineering / [ed] Saleem Hashmi, Oxford: Elsevier, 2016, s. 1-5Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Conjugated polymer actuators are devices where the volume of a conjugated (or conducting) polymer material is changed during a change of the state of oxidation or reduction of the polymer. This volume change can be utilized to construct actuators, for instance as a single layer or fiber resulting in a linear actuator or assembled into a multilayer structure where the active material is combined with a passive supporting material forming bending actuator.

  • 43.
    Khaldi, Alexandre
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Falk, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Fabrication and adhesion of conjugated polymer trilayer structures for soft, flexible micromanipulators2016Ingår i: Proc. SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, SPIE - International Society for Optical Engineering, 2016, Vol. 9797, s. 97980N-1-97980N-8Konferensbidrag (Refereegranskat)
    Abstract [en]

    We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. However, the displacement of the current developed micromanipulator remains limited due to the low ionic conductivity of the materials. Here, we present developed methods for the fabrication of conjugated polymer trilayer structure which exhibit potential to high stretchability/flexibility as well as a good adhesion between the three different layers. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new flexible trilayer structure, which will allow the fabrication of metal-free soft microactuators.

  • 44.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Lundemo, Staffan
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Fabrication of polypyrrole based dry state on-chip microactuators2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    We have developed a microfabrication process to fabricate on-chip microactuators that can work in open air. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special design processing to micropattern polypyrrole. By patterning a UV-polymerizable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air is achieved. The resulting microactuators were able to move, although with reduced movement which we contribute to poor ionic conductivity. Further optimization of the processing is currently on-going. The result shows the possibility to fabricate complex microsystems such as microrobotics and micromanipulators based on these dry state on-chip microactuators.

  • 45.
    Maziz, Ali
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Guan, Na
    Karolinska Institute, Sweden.
    Svennerstan, Karl
    Karolinska Institute, Sweden.
    Hallen-Grufman, Katarina
    Karolinska Institute, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Lab on chip microdevices for cellular mechanotransduction in urothelial cells2016Ingår i: Proc. SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, SPIE - International Society for Optical Engineering, 2016, Vol. 9798, s. 97981R-1-97981R-9Konferensbidrag (Refereegranskat)
    Abstract [en]

    Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.

  • 46.
    Sheikhzadeh, E.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. S University of Mashhad, Iran.
    Chamsaz, M.
    Ferdowsi University of Mashhad, Iran.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer2016Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 80, s. 194-200Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Gram-negative bacterium, Salmonella Typhimurium (S. Typhimurium) is a food borne pathogen responsible for numerous hospitalisations and deaths all over the world. Conventional detection methods for pathogens are time consuming and labour-intensive. Hence, there is considerable interest in faster and simpler detection methods. Polypyrrole-based polymers, due to their intrinsic chemical and electrical properties, have been demonstrated to be valuable candidates for the fabrication of chemo/biosensors and functional surfaces. Similarly aptamers have been shown to be good alternatives to antibodies in the development of affinity biosensors. In this study, we report on the combination of Poly [pyrrole-co-3-carboxyl-pyrrole] copolymer and aptamer for the development of a label-less electrochemical biosensor suitable for the detection of S. Typhimurium. Impedimetric measurements were facilitated by the effect of the aptamer/target interaction on the intrinsic conjugation of the poly [pyrrole-co-3-carboxyl-pyrrole] copolymer and subsequently on its electrical properties. The aptasensor detected S. Typhimurium in the concentration range 10(2)-10(8) CFU mL(-1) with high selectivity over other model pathogens and with a limit of quantification (LOQ) of 100 CFU mL(-1) and a limit of detection (LOD) of 3 CFU mL(-1). The suitability of the aptasensor for real sample detection was demonstrated via recovery studies performed in spiked apple juice samples. We envisage this to be a viable approach for the inexpensive and rapid detection of pathogens in food, and possibly in other environmental samples. (C) 2016 Elsevier B.V. All rights reserved.

  • 47.
    Sheikhzadeh, Elham
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Ferdowsi University of Mashhad, Iran.
    Golabi, Mohsen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Chamsaz, M
    Ferdowsi University of Mashhad, Iran.
    Housaindokht, M.R.
    Ferdowsi University of Mashhad, Iran.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Label-free impedimetric Salmonella aptasensor based on pyrrole (pyrrole -3-carboxyl acid ) copolymer and its application in apple juice analysis2016Ingår i: Biosensors 2016 – The World Congress on Biosensors, Gothenburg, Sweden, 25-27 May 2016, Elsevier, 2016Konferensbidrag (Övrigt vetenskapligt)
  • 48.
    Puckert, C.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Gelmi, A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Kozak Ljunggren, Monika
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.
    Rafat, Mehrdad
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Optimisation of conductive polymer biomaterials for cardiac progenitor cells2016Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, nr 67, s. 62270-62277Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The characterisation of biomaterials for cardiac tissue engineering applications is vital for the development of effective treatments for the repair of cardiac function. New smart materials developed from conductive polymers can provide dynamic benefits in supporting and stimulating stem cells via controlled surface properties, electrical and electromechanical stimulation. In this study we investigate the control of surface properties of conductive polymers through a systematic approach to variable synthesis parameters, and how the resulting surface properties influence the viability of cardiac progenitor cells. A thorough analysis investigating the effect of electropolymerisation parameters, such as current density and growth, and reagent variation on physical properties provides a fundamental understanding of how to optimise conductive polymer biomaterials for cardiac progenitor cells.

  • 49.
    Golabi, Mohsen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Phenylboronic acid-functionalised electrode interface for whole bacterial cell imprinting2016Ingår i: Biosensors 2016 – The World Congress on Biosensors, Gothenburg, Sweden, 25-27 May 2016, Elsevier, 2016Konferensbidrag (Övrigt vetenskapligt)
  • 50.
    Xiong, Kunli
    et al.
    Chalmers, Sweden.
    Emilsson, Gustav
    Chalmers, Sweden.
    Maziz, Ali
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik.
    Yang, Xinxin
    Chalmers, Sweden.
    Shao, Lei
    Chalmers, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Dahlin, Andreas B.
    Chalmers, Sweden.
    Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color2016Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 45, s. 9956-9960Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A flexible electronic paper in full color is realized by plasmonic metasurfaces with conjugated polymers. An ultrathin large-area electrochromic material is presented which provides high polarization-independent reflection, strong contrast, fast response time, and long-term stability. This technology opens up for new electronic readers and posters with ultralow power consumption.

123 1 - 50 av 132
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf