liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 54
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Xiong, Kunli
    et al.
    Chalmers Univ Technol, Sweden.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. TNO, Netherlands.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Dahlin, Andreas B.
    Chalmers Univ Technol, Sweden.
    Active control of plasmonic colors: emerging display technologies2019Ingår i: Reports on progress in physics (Print), ISSN 0034-4885, E-ISSN 1361-6633, Vol. 82, nr 2, artikel-id 024501Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures arc prepared the colors arc normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.

  • 2.
    Kim, Nara
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electric Transport Properties in PEDOT Thin Films2019Ingår i: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, s. 45-128Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

  • 3.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Acreo, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Acreo, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Greyscale and Paper Electrochromic Polymer Displays by UV Patterning2019Ingår i: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, nr 2, artikel-id 267Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

  • 4.
    Kang, Evan S. H.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shiran Chaharsoughi, Mina
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rossi, Stefano
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hybrid plasmonic metasurfaces2019Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 126, nr 14, artikel-id 140901Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plasmonic metasurfaces based on ensembles of distributed metallic nanostructures can absorb, scatter, and in other ways shape light at the nanoscale. Forming hybrid plasmonic metasurfaces by combination with other materials opens up for new research directions and novel applications. This perspective highlights some of the recent advancements in this vibrant research field. Particular emphasis is put on hybrid plasmonic metasurfaces comprising organic materials and on concepts related to switchable surfaces, light-to-heat conversion, and hybridized light-matter states based on strong coupling.

  • 5.
    Berggren, Magnus
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 22, artikel-id 1805813Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    Publikationen är tillgänglig i fulltext från 2020-01-08 15:37
  • 6.
    Chen, Shangzhi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Knight, Sean
    Univ Nebraska, NE 68588 USA.
    Brooke, Robert
    RISE Acreo, Sweden.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Schubert, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Univ Nebraska, NE 68588 USA; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 15, s. 4350-4362Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene): tosylate (PEDOT: Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization.

  • 7.
    Malekian, Bita
    et al.
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Xiong, Kunli
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Kang, Evan S. H.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Andersson, John
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Emilsson, Gustav
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Rommel, Marcus
    Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden.
    Sannomiya, Takumi
    Department of Materials Science and Engineering, 4259 Nagatsuta Midoriku, Yokohama, Japan.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Dahlin, Andreas
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Optical Properties of Plasmonic Nanopore Arrays Prepared by Electron Beam and Colloidal Lithography2019Ingår i: Nanoscale Advances, E-ISSN 2516-0230Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solid state nanopores are central structures for many applications. To date, much effort has been spent on controlled fabrication of single nanopores, while relatively little work has focused on large scale fabrication of arrays of nanopores. In this work we show wafer-scale fabrication of plasmonic nanopores in 50 nm thick silicon nitride membranes with one or two 30 nm gold films, using electron beam lithography with a negative resist or a new version of colloidal lithography. Both approaches offer good control of pore diameter (even below 100 nm) and with high yield (>90%) of intact membranes. Colloidal lithography has the advantage of parallel patterning without expensive equipment. Despite its serial nature, electron beam lithography provides high throughput and can make arbitrary array patterns. Importantly, both methods prevent metal from ending up on the membrane pore sidewalls. The new fabrication methods make it possible to compare the optical properties of structurally identical plasmonic nanopore arrays with either long-range order (e-beam) or short-range order (colloidal). The resonance features in the extinction spectrum are very similar for both structures when the pitch is the same as the characteristic spacing in the self-assembled colloidal pattern. Long-range ordering slightly enhances the magnitude of the extinction maximum and blueshift the transmission maximum by tens of nm. Upon reducing the diameter in long-range ordered arrays, the resonance is reduced in magnitude and the transmission maximum is further blue shifted, just like for short-range ordered arrays. These effects are well explained by interpreting the spectra as Fano interference between the grating-type excitation of propagating surface plasmons and the broad transmission via individual pores in the metal film. Furthermore, we find that only the short-range ordered arrays scatter light, which we attribute to the highly limited effective period in the short-range ordered system and the corresponding lack of coherent suppression of scattering via interference effects.

  • 8.
    Kang, Evan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ekinge, Hugo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Platen High Sch, Sweden.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness2019Ingår i: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 9, nr 3, s. 1404-1415Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the evolution from suppressed to enhanced optical transmission through metal nanohole arrays with increasing film thickness. Due to Fano interferences, the plasmon resonances gradually shift from transmission dips for ultrathin films to peaks for thick films, accompanied by a Fano asymmetry parameter that increases with film thickness. For intermediate thicknesses, both peaks and dips in transmission are far from the plasmon resonances, and hence, also far from the spectral positions of maximum light absorption and nearfield enhancements. Calculations for various hole diameters and periodicities confirm the universality of our conclusions. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

  • 9.
    Zhao, Dan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Martinelli, Anna
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg.
    Willfahrt, Andreas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fischer, Thomas
    Innovative Applications of The Printing Technologies, Stuttgart Media University.
    Bernin, Diana
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Shahi, Maryam
    Department of Physics and Astronomy, University of Kentucky.
    Brill, Joseph
    Department of Physics and Astronomy, University of Kentucky.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1093Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an “ambipolar” ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.

  • 10.
    Sardar, Samim
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wojcik, Pawel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kang, Evan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shanker, Ravi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Structural coloration by inkjet-printing of optical microcavities and metasurfaces2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 28, s. 8698-8704Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Structural color generation by plasmonic and other means has attracted significant interest as a solution to avoid inks based on dyes. Prominent advantages include better robustness compared with organic dyes while also providing high chromaticity and brightness in ultrathin films. However, lack of cheap and scalable fabrication techniques has so far limited structural coloration to only a few applications and functional devices. Here, we demonstrate reflective (plasmonic) structural coloration at high resolution by inkjet printing on non-patterned surfaces. The method is flexible, scalable to large areas, and avoids complicated or costly fabrication steps. Optical microcavities on flexible plastic substrates were made starting with an inkjet-printed silver film as a bottom mirror. Inkjet-printed organic dielectric micropixels then served as the spacer layer, resulting in optical microcavities with reflective structural colors after coating with a thin semi-transparent metallic top layer. Optimization of ink formulation allowed for uniform pixels with minimum coffee stain effects as well as control of spacer thickness (around 50-150 nm) and color by varying the solid content of the ink. We investigate the possibility to obtain red, green and blue (RGB) pixels and demonstrate the improvement of particularly the blue coloration using wavelength-dependent plasmon absorption of gold nanoislands as a top mirror. Inkjet printing of optical microcavities and plasmonic cavities may find use in various applications, such as reflective displays in color.

  • 11.
    Shiran Chaharsoughi, Mina
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Thermodiffusion-Assisted Pyroelectrics-Enabling Rapid and Stable Heat and Radiation Sensing2019Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 29, nr 28, artikel-id 1900572Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sensors for monitoring temperature, heat flux, and thermal radiation are essential for applications such as electronic skin. While pyroelectric and thermoelectric effects are suitable candidates as functional elements in such devices, both concepts show individual drawbacks in terms of zero equilibrium signals for pyroelectric materials and small or slow response of thermoelectric materials. Here, these drawbacks are overcome by introducing the concept of thermodiffusion-assisted pyroelectrics, which combines and enhances the performance of pyroelectric and ionic thermoelectric materials. The presented integrated concept provides both rapid initial response upon heating and stable synergistically enhanced signals upon prolonged exposure to heat stimuli. Likewise, incorporation of plasmonic metasurfaces enables the concept to provide both rapid and stable signals for radiation-induced heating. The performance of the concept and its working mechanism can be explained by ion-electron interactions at the interface between the pyroelectric and ionic thermoelectric materials.

  • 12.
    Che, Canyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Brooke, Robert
    RISE, Norrköping, Sweden.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mak, Wing Cheung
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage2019Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, nr 9, artikel-id 1900039Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Abstract Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer?polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g?1.

  • 13.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Varde nanoljus!2019Ingår i: Ett kalejdoskop av kunskap: Sveriges unga akademi om vetenskap och samhälle / [ed] David Håkansson, Stockholm: Santérus Förlag, 2019, s. 69-77Kapitel i bok, del av antologi (Övrig (populärvetenskap, debatt, mm))
  • 14.
    Che, Canyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Warczak, Magdalena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels2018Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 317Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.

  • 15.
    Chaharsoughi, Mina Shiran
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Grimoldi, Andrea
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations2018Ingår i: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    State-of-the-art solar energy harvesting systems based on photovoltaic technology require constant illumination for optimal operation. However, weather conditions and solar illumination tend to fluctuate. Here, a device is presented that extracts electrical energy from such light fluctuations. The concept combines light-induced heating of gold nanodisks (acting as plasmonic optical nanoantennas), and an organic pyroelectric copolymer film (poly(vinylidenefluoride-co-trifluoroethylene)), that converts temperature changes into electrical signals. This hybrid device can repeatedly generate current pulses, not only upon the onset of illumination, but also when illumination is blocked. Detailed characterization highlights the key role of the polarization state of the copolymer, while the copolymer thickness has minor influence on performance. The results are fully consistent with plasmon-assisted pyroelectric effects, as corroborated by combined optical and thermal simulations that match the experimental results. Owing to the tunability of plasmonic resonances, the presented concept is compatible with harvesting near infrared light while concurrently maintaining visible transparency.

  • 16.
    Kang, Evan S. H.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sardar, Samim
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Armakavicius, Nerijus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shegai, Timur
    Department of Physics, Chalmers University of Technology, Sweden.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces2018Ingår i: ACS Photonics, E-ISSN 2330-4022, s. 4046-4055Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plasmons and excitons can interact to form new hybridized light–matter states, with a multitude of potential applications including optical logic circuits and single-photon switches. Here, we report the first observation of strong coupling based on optically thin plasmonic nanohole films. The absorptive plasmon resonances of these nanohole films lead to suppressed transmission and Fano-shaped extinction peaks. We prepared silver nanohole films by colloidal lithography, which enables large-scale fabrication of nanoholes distributed in a short-range order. When coated with J-aggregate molecules, both extinction and absorption spectra show clear formation of two separated polariton resonances, with vacuum Rabi splitting on the order of 300 meV determined from anticrossing experiments. In accordance with strong coupling theory, the splitting magnitude increases linearly with the square root of molecular concentration. The extinction peak positions are blue-shifted from the absorption polariton positions, as explained by additional Fano interference between the hybridized states and the metal film. This highlights that absorption measurements are important not only to prove strong coupling but also to correctly determine hybridized polariton positions and splitting magnitudes in hybrid plasmonic nanohole systems. The polariton absorption peaks also show strong dependence on illumination direction, as found related to inherent directionality of the plasmonic nanohole metasurface and differences in light interaction with nonhybridized molecules. Importantly, optical simulations could successfully reproduce the experimental results and all coupling features. Furthermore, simulated spatial distribution of the absorption provides additional evidence of strong coupling in the hybrid nanohole system. The work paves the way toward strong coupling applications based on optically thin nanohole systems, as further promoted by the scalable fabrication.

  • 17.
    Valenti, Marco
    et al.
    Delft University of Technology, Netherlands.
    Venugopal, Anirudh
    Delft University of Technology, Netherlands.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biskos, George
    Delft University of Technology, Netherlands; Cyprus Institute, Cyprus.
    Schmidt-Ott, Andreas
    Delft University of Technology, Netherlands.
    Smith, Wilson A.
    Delft University of Technology, Netherlands.
    Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles2017Ingår i: ACS Photonics, E-ISSN 2330-4022, Vol. 4, nr 5, s. 1146-1152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies.

  • 18.
    Stavrinidou, Eleni
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, K. Peter R.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Franco- Gonzalez, Juan Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Volkov, Anton V.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Grimoldi, Andrea
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Elgland, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor V.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    In vivo polymerization and manufacturing of wires and supercapacitors in plants2017Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 11, s. 2807-2812Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization

  • 19.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mitraka, Evangelia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sardar, Samim
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sandberg, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Infrared electrochromic conducting polymer devices2017Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, nr 23, s. 5824-5830Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 [degree]C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 [times] 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 [degree]C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.

  • 20.
    Wang, Hui
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Puzinas, Skomantas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors2017Ingår i: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 3, nr 4, artikel-id 1700013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thermoelectric materials enable conversion of heat to electrical energy. The performance of electronic thermoelectric materials is typically evaluated using a figure of merit ZT = sigma alpha 2T/lambda, where sigma is the conductivity, alpha is the so-called Seebeck coefficient, and lambda is the thermal conductivity. However, it has been unclear how to best evaluate the performance of ionic thermoelectric materials, like ionic solids and electrolytes. These systems cannot be directly used in a traditional thermoelectric generator, because they are based on ions that cannot pass the interface between the thermoelectric material and external metal electrodes. Instead, energy can be harvested from the ionic thermoelectric effect by charging a supercapacitor. In this study, the authors investigate the ionic thermoelectric properties at varied relative humidity for the polyelectrolyte polystyrene sulfonate sodium and correlate these properties with the charging efficiency when used in an ionic thermoelectric supercapacitor (ITESC). In analogy with electronic thermoelectric generators, the results show that the charging efficiency of the ITESC can be quantitatively related to the figure of merit ZT(i) = sigma i alpha i2T/lambda. This means that the performance of ionic thermoelectric materials can also be compared and predicted based on the ZT, which will be highly valuable in the design of high-performance ITESCs.

  • 21.
    Elhag, Sami
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Deydier, T
    Department of Material Engineering, University of Toulon, FR-83041 Toulon, France .
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    LiU, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Willander, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nur, Omer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Low-temperature growth of polyethylene glycol-doped BiZn2VO6 nanocompounds with enhanced photoelectrochemical properties2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 3, s. 1112-1119Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We demonstrate scalable, low-cost and low-temperature (<100 °C) aqueous chemical growth of bismuth–zinc vanadate (BiZn2VO6) nanocompounds by BiVO4 growth on ZnO nanobelts (NBs). The nanocompounds were further doped with polyethylene glycol (PEG) to tune the electronic structure of the materials, as a means to lower the charge carrier recombination rate. The chemical composition, morphology, and detailed nanostructure of the BiZn2VO6 nanocompounds were characterized. They exhibit rice-like morphology, are highly dense on the substrate and possess a good crystalline quality. Photoelectrochemical characterization in 0.1 M lithium perchlorate in carbonate propylene shows that BiZn2VO6 nanocompounds are highly suitable as anodes for solar-driven photoelectrochemical applications, providing significantly better performance than with only ZnO NBs. This performance could be attributed to the heterogeneous catalysis effect at nanocompound and ZnO NB interfaces, which have enhanced the electron transfer process on the electrode surface. Furthermore, the charge collection efficiency could be significantly improved through PEG doping of nanocompounds. The photocurrent density of PEG-doped BiZn2VO6 nanocompounds reached values of 2 mA cm−2 at 1.23 V (vs. Ag/AgCl), over 60% larger than that of undoped BiZn2VO6 nanocompounds. Photoluminescence emission experiments confirmed that PEG plays a crucial role in lowering the charge carrier recombination rate. The presented BiZn2VO6 nanocompounds are shown to provide highly competitive performance compared with other state-of-the art photoelectrodes.

  • 22.
    Mitraka, Evangelia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Oxygen-induced doping on reduced PEDOT2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 9, s. 4404-4412Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT: Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O-2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.

  • 23.
    Jönsson, Gustav
    et al.
    Chalmers University of of Technology, Gothenburg, Sweden.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Pakizeh, Tavakol
    K. N. Toosi University of of Technology, Tehran, Iran.
    Jaysankar, Manoj
    Chalmers University of of Technology, Gothenburg, Sweden.
    Miljkovic, Vladimir
    NILT Sweden Filial, Stena Center 1B, Gothenburg, Sweden.
    Tong, Lianming
    Institute of Physics, Chinese Academy of Sciences, Beijing, China.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dmitriev, Alexandre
    Chalmers University of of Technology, Gothenburg, Sweden; Department of Physics, University of of Gothenburg, Gothenburg, Sweden; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States.
    Solar Transparent Radiators by Optical Nanoantennas2017Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 11, s. 6766-6772Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces. © 2017 American Chemical Society.

  • 24.
    Xiong, Kunli
    et al.
    Chalmers University of Technology, Göteborg, Sweden.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Emilsson, Gustav
    Chalmers University of Technology, Göteborg, Sweden.
    Olsson, Oliver
    rdot AB (559092-9831), Stena Center 1, Göteborg, Sweden.
    Linderhed, Ulrika
    RISE Acreo, Norrköping, Sweden.
    Jonsson, Magnus P
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dahlin, Andreas B
    Chalmers University of Technology, Göteborg, Sweden.
    Switchable Plasmonic Metasurfaces with High Chromaticity Containing Only Abundant Metals2017Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 11, s. 7033-7039Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plasmonic color generation offers several advantages but is also limited by the cost and availability of noble metals like gold. In this work, we present color-tunable metasurfaces with high chromaticity and reflectivity consisting of an aluminum mirror, a dielectric spacer, and a plasmonic nanohole array in copper. Copper is shown to be an excellent alternative to gold when properly protected from oxidation and makes it possible to generate a wide RGB gamut covering 27% of the standard RGB. By patterning the metasurfaces into microscale pixel triplets, color photos can be well reproduced with high resolution over wafer-sized areas. Further, we demonstrate active modulation of the reflected intensity using an electrochromic conductive polymer deposited on top of the nanostructures by screen printing. This technology opens up for ultrathin and flexible reflective displays in full color, that is, plasmonic electronic paper, compatible with large-scale sustainable production.

  • 25.
    Tordera, Daniel
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Volkov, Anton
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Thermoplasmonic Semitransparent Nanohole Electrodes2017Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 5, s. 3145-3151Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nonradiative decay of plasmons in metallic nanostructures offers unique means for light-to-heat conversion at the nanoscale. Typical thermoplasmonic systems utilize discrete particles, while metal nanohole arrays were instead considered suitable as heat sinks to reduce heating effects. By contrast, we show for the first time that under uniform broadband illumination (e.g., the sun) ultrathin plasmonic nanohole arrays can be highly competitive plasmonic heaters and provide significantly higher temperatures than analogous nanodisk arrays. Our plasmonic nanohole arrays also heat significantly more than nonstructured metal films, while simultaneously providing superior light transmission. Besides being efficient light-driven heat sources, these thin perforated gold films can simultaneously be used as electrodes. We used this feature to develop "plasmonic thermistors" for electrical monitoring of plasmon-induced temperature changes. The nanohole arrays provided temperature changes up to 7.5 K by simulated sunlight, which is very high compared to previously reported plasmonic systems under similar conditions (solar illumination and ambient conditions). Both temperatures and heating profiles quantitatively agree with combined optical and thermal simulations. Finally, we demonstrate the use of a thermoplasmonic nanohole electrode to power the first hybrid plasmonic ionic thermoelectric device, resulting in strong solar-induced heat gradients and corresponding thermoelectric voltages.

  • 26.
    Plesa, Calin
    et al.
    Delft University of Technology, Netherlands.
    Verschueren, Daniel
    Delft University of Technology, Netherlands.
    Pud, Sergii
    Delft University of Technology, Netherlands.
    van der Torre, Jaco
    Delft University of Technology, Netherlands.
    Ruitenberg, Justus W.
    Delft University of Technology, Netherlands.
    Witteveen, Menno J.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Delft University of Technology, Netherlands.
    Grosberg, Alexander Y.
    NYU, NY 10003 USA; NYU, NY 10003 USA.
    Rabin, Yitzhak
    Bar Ilan University, Israel; Bar Ilan University, Israel.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Direct observation of DNA knots using a solid-state nanopore2016Ingår i: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 11, nr 12, s. 1093-1097Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Long DNA molecules can self-entangle into knots. Experimental techniques for observing such DNA knots (primarily gel electrophoresis) are limited to bulk methods and circular molecules below 10 kilobase pairs in length. Here, we show that solid-state nanopores can be used to directly observe individual knots in both linear and circular single DNA molecules of arbitrary length. The DNA knots are observed as short spikes in the nanopore current traces of the traversing DNA molecules and their detection is dependent on a sufficiently high measurement resolution, which can be achieved using high-concentration LiCI buffers. We study the percentage of molecules with knots for DNA molecules of up to 166 kilobase pairs in length and find that the knotting occurrence rises with the length of the DNA molecule, consistent with a constant knotting probability per unit length. Our experimental data compare favourably with previous simulation based predictions for long polymers. From the translocation time of the knot through the nanopore, we estimate that the majority of the DNA knots are tight, with remarkably small sizes below 100 nm. In the case of linear molecules, we also observe that knots are able to slide out on application of high driving forces (voltage).

  • 27.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    Acreo Swedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Freestanding electrochromic paper2016Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, nr 41, s. 9680-9686Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochromic displays based on conducting polymers exhibit higher contrasts and are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. However, current devices are typically based on thin electrochromic layers on top of a reflecting surface, which limits the thickness of the polymer layer to a few hundred nanometers. Here, we embed a light-scattering material within the electrochromic material to achieve a freestanding electrochromic paper-like electrode (50 to 500 mm). The device is based on a cellulose composite combining PEDOT:PSS as the electrochromic material and TiO2 nanoparticles as the reflecting material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast around 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT: PSS at the surface. Variation of the amount of TiO2 within the composite material is shown to result in a trade-off in optical and electrical properties. A proof-of-concept freestanding electrochromic device was fabricated by casting all layers successively to maximize the interlayer conformation. This freestanding device was found to be stable for over 100 cycles when ramped between 3 and -3 V.

  • 28.
    Zhao, Dan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Hui
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chen, J. C.
    Xiamen University, Peoples R China.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic thermoelectric supercapacitors2016Ingår i: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, nr 4, s. 1450-1457Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient Delta T across the electrolyte, together with the ionic Seebeck coefficient alpha(i). So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as alpha(i) = 10 mV K-1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (Delta T alpha(i))(2). The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor.

  • 29.
    Sandberg, Mats
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Acreo Swedish ICT, Norrköping, Sweden; .
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT, Norrköping, Sweden.
    Dedic, Dina
    Innventia AB, Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing2016Ingår i: Flexible and printed electronics, ISSN 2058-8585, Vol. 1, nr 4, artikel-id 044003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Smartmaterials can be used for awide variety of applications, including sensing and energy harvesting.Implementation of smartmaterials in large area devices requires scalablemanufacturing. The use ofpaper-making techniques would offer an enormous production capacity, allowing for low-cost andlarge-scalemanufacturing. In thisworkwe present a successful pilot scale papermachinemanufacturingof functional composite papers (100mmin−1 with aweb width of 30 cm) based on cellulose fibres andcommercial tetrapodal zinc oxidemicrowhiskers (ZnO-Ts).Carbon electrodes could successfully beprinted on the paper to form complete electronic devices where the paper itself is the active material.Thisenabled development of aZnO-composite paper photosensor,where we characterized its stability,sensitivity and speed. The devices show excellent photosensing properties over awide range of lightirradiances (0.01–1Sun), including short response times (∼10 s) and long-term stability. Under simulatedsunlight and a bias voltage of 1 V, small (0.5 cm2) two-probe interdigitated photosensor devices provided12 μAphotocurrent.Under the same conditions, four-probe measurements of the composite papershowed a sheet resistance of 6.9·107Ω/sq. Four-probe measurements also demonstrated that the paperconductivity varies linearlywith light irradiance. To the best of ourknowledge, this is the first example ofpilot paper machine production of an optoelectronic paper, demonstrating the potential for large-scalepapermanufacturing of active smart paper from low-cost industrial bulk materials.

  • 30.
    Valenti, M.
    et al.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biskos, G.
    Delft University of Technology, Netherlands; Cyprus Institute, Cyprus.
    Schmidt-Ott, A.
    Delft University of Technology, Netherlands.
    Smith, W. A.
    Delft University of Technology, Netherlands.
    Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting2016Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, nr 46, s. 17891-17912Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar to fuel energy conversion efficiencies are obtained with earth abundant materials. This review article discusses recent developments and discoveries in the mechanisms by which the localized surface plasmon resonance (LSPR) in metallic nanoparticles can increase or complement a neighbouring semiconductor in light absorption for catalytic water splitting applications. These mechanisms can mitigate the intrinsic optical limitations of semiconductors (e.g., metal oxides) for efficient solar water splitting. We identify four types of enhancement mechanisms in the recent literature: (i) light scattering, (ii) light concentration, (iii) hot electron injection (HEI), and (iv) plasmon-induced resonance energy transfer (PIRET). (i) Light scattering and (ii) light concentration are light trapping mechanisms that can increase the absorption of light with energies above the semiconductor optical band-edge. These two mechanisms are ideal to enhance the absorption of promising semiconductors with narrow bandgap energies that suffer from limited absorption coefficients and bulk charge recombination. On the other hand, (iii) HEI and the recently discovered (iv) PIRET are mechanisms that can enhance the absorption also below the semiconductor optical band-edge. Therefore, HEI and PIRET have the potential to extend the light utilization to visible and near-infrared wavelengths of semiconductors with excellent electrochemical properties, but with large bandgap energies. New techniques and theories that have been developed to elucidate the above mentioned plasmonic mechanisms are presented and discussed for their application in metal oxide photoelectrodes. Finally, other plasmonic and non-plasmonic effects that do not increase the device absorption, but affect the electrochemical properties of the semiconductor (e.g., charge carrier transport) are also discussed, since a complete understanding of these phenomena is fundamental for the design of an efficient plasmonic NP-semiconductor water splitting device.

  • 31.
    Valenti, Marco
    et al.
    Delft University of Technology, Netherlands.
    Kontoleta, Evgenia
    Delft University of Technology, Netherlands.
    Digdaya, Ibadillah A.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biskos, George
    Delft University of Technology, Netherlands; Cyprus Institute, Cyprus.
    Schmidt-Ott, Andreas
    Delft University of Technology, Netherlands.
    Smith, Wilson A.
    Delft University of Technology, Netherlands.
    The Role of Size and Dimerization of Decorating Plasmonic Silver Nanoparticles on the Photoelectrochemical Solar Water Splitting Performance of BiVO4 Photoanodes2016Ingår i: CHEMNANOMAT, ISSN 2199-692X, Vol. 2, nr 7, s. 739-747Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ag nanoparticles (NPs) are deposited on BiVO4 photoanodes to study their effect on the photoelectrochemical (PEC) water splitting performance of the semiconductor. 15 nm light-absorbing NPs and 65 nm light scattering NPs were studied separately to compare their light trapping ability for enhancing the semiconductors absorption through light concentration and light scattering, respectively. The 15 nm NPs enhanced the BiVO4 external quantum efficiency throughout the semiconductors absorption range (e.g.,approximate to 2.5 fold at lambda=400 nm). However, when a hole scavenger was added to the electrolyte, no enhancement was ob-served upon NP deposition, indicating that the NPs only facilitate the injection of holes from the semiconductor surface to the electrolyte but do not enhance its absorption. On the other hand, the 65 nm scattering NPs not only facilitated hole injection to the electrolyte, but also enhanced the absorption of the semiconductor (by approximate to 6%) through light scattering. Such a dual effect, i.e., of enhancing both the surface properties and the absorption of the semiconductor, makes light scattering Ag NPs an ideal decoration for PEC water splitting photoelectrodes.

  • 32.
    Li, Yi
    et al.
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Nicoli, Francesca
    Delft University of Technology, Netherlands.
    Chen, Chang
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Lagae, Liesbet
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Groeseneken, Guido
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Stakenborg, Tim
    IMEC, Belgium.
    Zandbergen, Henny W.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Van Dorpe, Pol
    IMEC, Belgium; Katholieke University of Leuven, Belgium.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Photoresistance Switching of Plasmonic Nanopores2015Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, nr 1, s. 776-782Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (similar to 12 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.

  • 33.
    Belkin, Maxim
    et al.
    University of Illinois, IL 61801 USA.
    Chao, Shu-Han
    University of Illinois, IL 61801 USA.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Aksimentiev, Aleksei
    University of Illinois, IL 61801 USA.
    Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA2015Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 9, nr 11, s. 10598-10611Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization.

  • 34.
    Pud, Sergii
    et al.
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Verschueren, Daniel
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Vukovic, Nikola
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Plesa, Calin
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Jonsson, Magnus P
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Dekker, Cees
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown2015Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, nr 10, s. 7112-7117Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a novel cost-efficient method for the fabrication of high-quality self-aligned plasmonic nanopores by means of an optically controlled dielectric breakdown. Excitation of a plasmonic bowtie nanoantenna on a dielectric membrane localizes the high-voltage-driven breakdown of the membrane to the hotspot of the enhanced optical field, creating a nanopore that is automatically self-aligned to the plasmonic hotspot of the bowtie. We show that the approach provides precise control over the nanopore size and that these plasmonic nanopores can be used as single molecule DNA sensors with a performance matching that of TEM-drilled nanopores. The principle of optically controlled breakdown can also be used to fabricate nonplasmonic nanopores at a controlled position. Our novel fabrication process guarantees alignment of the nanopore with the optical hotspot of the nanoantenna, thus ensuring that pore-translocating biomolecules interact with the concentrated optical field that can be used for detection and manipulation of analytes.

  • 35.
    Verschueren, Daniel V
    et al.
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Jonsson, Magnus P
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Dekker, Cees
    Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
    Temperature dependence of DNA translocations through solid-state nanopores2015Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 26, s. 1-8, artikel-id 234004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to gain a better physical understanding of DNA translocations through solid-state nanopores, we study the temperature dependence of λ-DNA translocations through 10 nm diameter silicon nitride nanopores, both experimentally and theoretically. The measured ionic conductance G, the DNA-induced ionic-conductance blockades [Formula: see text] and the event frequency Γ all increase with increasing temperature while the DNA translocation time τ decreases. G and [Formula: see text] are accurately described when bulk and surface conductances of the nanopore are considered and access resistance is incorporated appropriately. Viscous drag on the untranslocated part of the DNA coil is found to dominate the temperature dependence of the translocation times and the event rate is well described by a balance between diffusion and electrophoretic motion. The good fit between modeled and measured properties of DNA translocations through solid-state nanopores in this first comprehensive temperature study, suggest that our model captures the relevant physics of the process.

  • 36.
    Nicoli, Francesca
    et al.
    Delft University of Technology, Netherlands.
    Verschueren, Daniel
    Delft University of Technology, Netherlands.
    Klein, Misha
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Jonsson, Magnus
    Delft University of Technology, Netherlands.
    DNA Translocations through Solid-State Plasmonic Nanopores2014Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 14, nr 12, s. 6917-6925Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  • 37.
    Hagman, Henning
    et al.
    Chalmers, Sweden.
    Backe, Olof
    Chalmers, Sweden.
    Kiskis, Juris
    Chalmers, Sweden.
    Svedberg, Fredrik
    Chalmers, Sweden.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Hook, Fredrik
    Chalmers, Sweden.
    Enejder, Annika
    Chalmers, Sweden.
    Plasmon-enhanced four-wave mixing by nanoholes in thin gold films2014Ingår i: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 39, nr 4, s. 1001-1004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nonlinear plasmonics opens up for wavelength conversion, reduced interaction/emission volumes, and nonlinear enhancement effects at the nanoscale with many compelling nanophotonic applications foreseen. We investigate nonlinear plasmonic responses of nanoholes in thin gold films by exciting the holes individually with tightly focused laser beams, employing a degenerated pump/probe and Stokes excitation scheme. Excitation of the holes results in efficient generation of both narrowband four-wave mixing (FWM) and broadband multiphoton excited luminescence, blueshifted relative to the excitation beams. Clear enhancements were observed when matching the pump/probe wavelength with the hole plasmon resonance. These observations show that the FWM generation is locally excited by nanoholes and has a resonant behavior primarily governed by the dimensions of the individual holes. (C) 2014 Optical Society of America

  • 38.
    Soni, Gautam V.
    et al.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Periodic Modulations of Optical Tweezers Near Solid-State Membranes2013Ingår i: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 9, nr 5, s. 679-684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Optical tweezers operated near solid-state membranes show unexplained periodic modulations in the optical trap position. An experimental study of the oscillations is presented, as well as optical simulations based on the finite-difference time-domain method, providing insight into the underlying interference phenomenon. This work provides a complete description as well as a solution to the enduring problem of modulations in optical traps near solid-state membranes.

  • 39.
    Jonsson, Magnus P.
    et al.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Plasmonic Nanopore for Electrical Profiling of Optical Intensity Landscapes2013Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 13, nr 3, s. 1029-1033Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a novel method for sensitive mapping of optical intensity distributions at subdiffraction-limited resolution. This is achieved with a novel device, a plasmonic nanopore, which combines a plasmonic bowtie nanoantenna with a 10 nm-in-diameter solid-state nanopore. Variations in the local optical intensity modulate the plasmonic heating, which we measure electrically through changes in the ionic conductance of the nanopore. We demonstrate the method by profiling the focal volume of a 10 mW laser beam that is tightly focused by a high-numerical-aperture microscope objective. The results show a complex three-dimensional intensity distribution that closely matches predictions obtained by theoretical calculations of the optical system. In addition to laser profiling, the ionic conductance of a nanopore is also shown to provide quantitative estimates of the temperature in the proximity of single plasmonic nanostructures.

  • 40.
    Mazzotta, Francesco
    et al.
    Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296, Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296, Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296, Gothenburg, Sweden.
    High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications2012Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, nr 41, artikel-id 415304Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One of the primary advantages of nanoscale sensors is that they often can provide conceptually new ways of performing sensing that are not feasible with their large-scale analogs. For example, the small size of nanoscale sensor elements, such as plasmonic metal nanoparticles, allows them to be combined with nanofluidic systems. Among the potential applications of such a combination is the efficient delivery of analyte to the sensor surface. With this in mind, in this work we look to address the challenge of creating and positioning nanoplasmonic sensor elements within nanofluidic pores. A scheme is presented that allows for the production of arrays of pores in a thin (220 nm) silicon nitride membrane with one plasmonic nanoparticle sensor element in each pore. The high throughput fabrication protocol is parallel and enables multiple sensor chips to be produced simultaneously, yet with accurate tuning of the dimension and shape of the nanoparticles. The presented system is shown to possess polarization-sensitive plasmonic resonances that can be tuned significantly in the visible wavelength range by just varying one process parameter. The thickness of the membrane could be optimized to minimize the influence of the optical membrane interference on the plasmonic readout. The sensitivity of the plasmon resonances to changes in refractive index, which forms the basis for using the system for biosensing, was found to be competitive with other nanoplasmonic sensors.

  • 41.
    Feuz, Laurent
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Material-Selective Surface Chemistry for Nanoplasmonic Sensors: Optimizing Sensitivity and Controlling Binding to Local Hot Spots2012Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 12, nr 2, s. 873-879Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Optical sensors utilizing the principle of localized surface plasmon resonance (LSPR) offer the advantage of a simple label-free mode of operation, but the sensitivity is typically limited to a very thin region close to the surface. In bioanalytical sensing applications, this can be a significant drawback, in particular since the surface needs to be coated with a recognition layer in order to ensure specific detection of target molecules. We show that the signal upon protein binding decreases dramatically with increasing thickness of the recognition layer, highlighting the need for thin high quality recognition layers compatible with LSPR sensors. The effect is particularly strong for structures that provide local hot spots with highly confined fields, such as in the gap between pairs of gold disks. While our results show a significant improvement in sensor response for pairs over single gold disks upon binding directly to the gold surface, disk pairs did not provide larger signal upon binding of proteins to a recognition layer (already for around 3 nm thin layers) located on the gold. Local plasmonic hot spots are however shown advantageous in combination with directed binding to the hot spots. This was demonstrated using a structure consisting of three surface materials (gold, titanium dioxide, and silicon dioxide) and a new protocol for material-selective surface chemistry of these three materials, which allows for controlled binding only in the gap between pairs of disks. Such a design increased the signal obtained per bound molecule by a factor of around four compared to binding to single disks.

  • 42.
    Janssen, Xander J. A.
    et al.
    Delft University of Technology, Netherlands.
    Jonsson, Magnus P.
    Delft University of Technology, Netherlands.
    Plesa, Calin
    Delft University of Technology, Netherlands.
    Soni, Gautam V.
    Delft University of Technology, Netherlands.
    Dekker, Cees
    Delft University of Technology, Netherlands.
    Dekker, Nynke H.
    Delft University of Technology, Netherlands.
    Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography2012Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, nr 47, artikel-id 475302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafers top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 mu m x 12 mu m) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate.

  • 43.
    McPhillips, John
    et al.
    Queens University of Belfast, North Ireland.
    Murphy, Antony
    Queens University of Belfast, North Ireland.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hendren, William R.
    Queens University of Belfast, North Ireland.
    Atkinson, Ronald
    Queens University of Belfast, North Ireland.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Zayats, Anatoly V.
    Queens University of Belfast, North Ireland.
    Pollard, Robert J.
    Queens University of Belfast, North Ireland.
    High-Performance Biosensing Using Arrays of Plasmonic Nanotubes2010Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 4, nr 4, s. 2210-2216Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We show that aligned gold nanotube arrays capable of supporting plasmonic resonances can be used as high performance refractive index sensors in biomolecular binding reactions. A methodology to examine the sensing ability of the inside and outside walls of the nanotube structures is presented. The sensitivity of the plasmonic nanotubes is found to increase as the nanotube walls are exposed, and the sensing characteristic of the inside and outside walls is shown to be different. Finite element simulations showed good qualitative agreement with the observed behavior. Free standing gold nanotubes displayed bulk sensitivities in the region of 250 nm per refractive index unit and a signal-to-noise ratio better than 1000 upon protein binding which is highly competitive with state-of-the-art label-free sensors.

  • 44.
    Feuz, Laurent
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Peter
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Improving the Limit of Detection of Nanoscale Sensors by Directed Binding to High-Sensitivity Areas2010Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 4, nr 4, s. 2167-2177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The revelation of protein protein-interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we use short-range ordered holes with a diameter of similar to 150 nm and a depth of similar to 50 nm as a nanoplasmonic template. A similar to 40 nm high cylindrical region of Au is exposed on the walls of the holes only, while the rest of the surface consists of TiO(2). Since the sensitivity is confined to the nanometric holes, the use of two different materials for the sensor substrate offers the opportunity to selectively bind proteins to the most sensitive Au regions on the sensor surface. This was realized by applying material-selective poly(ethylene glycol)-based surface chemistry, restricting NeutrAvidin binding to surface-immobilized biotin on the Au areas only. We show that under mass-transport limited conditions (low nM bulk concentrations), the initial time-resolved response of uptake could be increased by a factor of almost 20 compared with the case where proteins were allowed to bind on the entire sensor surface and stress the generic relevance of this concept for nanoscale sensors. In the scope of further optimizing the limit of detection (LOD) of the sensor structure, we present finite-element (FE) simulations to unravel spatially resolved binding rates. These revealed that the binding rates in the holes occur in a highly inhomogeneous manner with highest binding rates observed at the upper rim of the holes and the lowest rates observed at the bottom of the holes. By assuming a plasmonic field distribution with enhanced sensitivity at the Au-TiO(2)interface, the FE simulations reproduced the experimental findings qualitatively.

  • 45.
    Jonsson, Magnus P.
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Dahlin, Andreas B.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Feuz, Laurent
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Petronis, Sarunas
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Locally Functionalized Short-Range Ordered Nanoplasmonic Pores for Bioanalytical Sensing2010Ingår i: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 82, nr 5, s. 2087-2094Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanoplasmonic sensors based on short-range ordered nano-holes in thin metal films and discrete metal nanoparticles are known to provide similar sensing performance. However, a perforated metal film is unique in the sense that the holes can be designed to penetrate through the substrate, thereby also fulfilling the role of nanofluidic channels. This paper presents a bioanalytical sensing concept based on short-range ordered nanoplasmonic pores (diameter 150 nm) penetrating through a thin (around 250 nm) multilayer membrane composed of gold and silicon nitride (SiN) that is Supported on a Si wafer. Also, a fabrication scheme that enables parallel production of multiple (more than 50) separate sensor chips or more than 1000 separate nanoplasmonic membranes on it single wafer is presented. Together with the localization of the sensitivity to within such short-range ordered nanoholes, the structure provides it two-dimensional nanofluidic network, sized in the order of 100 x 100 mu m(2), with nanoplasmon active regions localized to each individual nanochannel. A material-specific surface-modification scheme was developed to promote specific binding of target molecules on the optically active gold regions only, while suppressing nonspecific adsorption on SiN. Using this protocol, and by monitoring the temporal variation in the plasmon resonance of the structure, we demonstrate flow-through nanoplasmonic sensing of specific biorecognition reactions with a signal-to-noise ratio of around 50 at a temporal resolution below 190 ms. With flow, the uptake was demonstrated to be at least 1 order of magnitude faster than under stagnant conditions, while still keeping the sample consumption at a minimum.

  • 46.
    Mazzotta, Francesco
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Wang, Guoliang
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hagglund, Carl
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Nanoplasmonic biosensing with on-chip electrical detection2010Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 26, nr 4, s. 1131-1136Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A nanoplasmonic biosensor chip with integrated electrical detection is presented. The concept is based on the local refractive index sensitivity of nanoplasmonic gold nanodisks (110 nm in diameter and 20 nm in height) that are fabricated, through a parallel method, directly on an array of silicon solar cells or photoactive diodes. The nanoplasmonic properties of the sensor chip were investigated both optically and electrically, with excellent agreement between the two. We show that local changes in the refractive index of the surrounding environment gives changes in the nanoplasmonic properties of the gold nanodisks, which induce corresponding changes in the photocurrent at single wavelengths of the nanoplasmonic solar cells. With a simple light-emitting diode as light source, and together with a material-specific modification protocol, the photocurrent output of the nanoplasmonic sensor chip was successfully used to monitor a specific biorecognition reaction in real-time. (C) 2010 Elsevier B.V. All rights reserved.

  • 47.
    Jonsson, Peter
    et al.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
    Sealing of Submicrometer Wells by a Shear-Driven Lipid Bilayer2010Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 10, nr 5, s. 1900-1906Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A supported lipid bilayer (SLB) was formed in a microfluidic channel by vesicle fusion. The SLB, formed on a flat part of the surface, was driven by the shear forces of a bulk flow above the SLB to a part of the surface with embedded submicrometer wells. When using a bulk solution with a pH of 9.5 the advancing lipid bilayer sealed the wells, creating free-spanning membranes, whereas at a pH of 8.0 the SLB instead followed the contour of the wells.

  • 48.
    Dahlin, Andreas B.
    et al.
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Chen, Si
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Jonsson, Magnus P.
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Gunnarsson, Linda
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Kall, Mikael
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Hook, Fredrik
    Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
    High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing2009Ingår i: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 81, nr 16, s. 6572-6580Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article, we demonstrate how to perform microscale spectroscopy of plasmonic nanostructures in order to minimize the noise when determining the resonance peak wavelength. This is accomplished using an experimental setup containing standard optical components mounted on an ordinary light microscope. We present a detailed comparison between extinction spectroscopy in transmission mode and scattering spectroscopy under dark field illumination, which shows that extinction measurements provide higher signal-to-noise in almost all situations. Furthermore, it is shown that rational selection of nanostructure, hardware components, and data analysis algorithms enables tracking of the particle plasmon resonance wavelength from a 10 mu m x 50 mu m area with a resolution of 10(-3) nm in transmission mode. We investigate how the temporal resolution, which can be improved down to 17 Ins, affects, the noise characteristics. In addition, we show how data can be acquired from an area as small as 2 mu m x 10 mu m (similar to 240 particles) at the expense of higher noise on longer time scales. In comparison with previous work on macroscopic sensor designs, this represents a sensor miniaturization of 5 orders of magnitude, without any loss in signal-to-noise performance. As a model system, we illustrate biomolecular detection using gold nanodisks prepared by colloidal lithography. The microextinction measurements of nanodisks described here provide detection of protein surface coverages as low as 40 pg/cm(2) (less than0.1% of saturated binding). In fact, the miniaturized system provides a detection limit in terms of surface coverage comparable to state of the art macroscopic sensors, while simultaneously being as close to single protein molecule detection as sensors based on a single nanoparticle.

  • 49.
    Jonsson, Peter
    et al.
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    Jonsson, Magnus P.
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    Tegenfeldt, Jonas O.
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    Hook, Fredrik
    Division of Solid State Physics, Lund University, SE-22100 Lund, Sweden.
    A Method Improving the Accuracy of Fluorescence Recovery after Photobleaching Analysis2008Ingår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 95, nr 11, s. 5334-5348Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fluorescence recovery after photobleaching has been an established technique of quantifying the mobility of molecular species in cells and cell membranes for more than 30 years. However, under nonideal experimental conditions, the current methods of analysis still suffer from occasional problems; for example, when the signal/noise ratio is low, when there are temporal fluctuations in the illumination, or when there is bleaching during the recovery process. We here present a method of analysis that overcomes these problems, yielding accurate results even under nonideal experimental conditions. The method is based on circular averaging of each image, followed by spatial frequency analysis of the averaged radial data, and requires no prior knowledge of the shape of the bleached area. The method was validated using both simulated and experimental fluorescence recovery after photobleaching data, illustrating that the diffusion coefficient of a single diffusing component can be determined to within similar to 1%, even for small signal levels (100 photon counts), and that at typical signal levels (5000 photon counts) a system with two diffusion coefficients can be analyzed with less than 10% error.

  • 50.
    Jonsson, Magnus P.
    et al.
    Chalmers, Sweden.
    Dahlin, Andreas B.
    Chalmers, Sweden.
    Jonsson, Peter
    Lund University, Sweden.
    Hook, Fredrik
    Chalmers, Sweden.
    Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films2008Ingår i: BIOINTERPHASES, ISSN 1934-8630, Vol. 3, nr 3, s. FD30-FD40Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The resonance conditions for excitation of propagating surface plasmons at planar metal/dielectric interfaces and localized surface plasmons associated with metal nanostructures are both sensitive to changes in the interfacial refractive index. This has made these phenomena increasingly popular as transducer principles in label-free sensing of biomolecular recognition reactions. In this article, the authors review the recent progress in the field of nanoplasmonic bioanalytical sensing in general, but set particular focus on certain unique possibilities provided by short-range ordered nanoholes in thin metal films. Although the latter structures are formed in continuous metal films, while nanoparticles are discrete entities, these two systems display striking similarities with respect to sensing capabilities, including bulk sensitivities, and the localization of the electromagnetic fields. In contrast, periodic arrays of nanoholes formed in metal films, most known for their ability to provide wavelength-tuned enhanced transmission, show more similarities with conventional propagating surface plasmon resonance. However, common for both short-range ordered and periodic nanoholes formed in metal films is that the substrate is electrically conductive. Some of the possibilities that emerge from sensor templates that are both electrically conductive and plasmon active are discussed and illustrated using recent results on synchronized nanoplasmonic and quartz crystal microbalance with dissipation monitoring of supported lipid bilayer formation and subsequent biomolecular recognition reactions. Besides the fact that this combination of techniques provides an independent measure of biomolecular structural changes, it is also shown to contribute with a general means to quantify the response from nanoplasmonic sensors in terms of bound molecular mass. c 2008 American Vacuum Society. [DOI: 10.1116/1.3027483]

12 1 - 50 av 54
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf