liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 527
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alanne, K.
    et al.
    Department of Mechanical Engineering, Laboratory of Heating, Ventilating and Air-Conditioning, P.O. Box 1100, 02015 TKK, Finland.
    Salo, A.
    Department of Engineering Physics and Mathematics, Systems Analysis Laboratory, Helsinki University of Technology, P.O. Box 1100, 02015 TKK, Finland.
    Saari, A.
    Department of Civil and Environmental Engineering, Laboratory of Construction Economics and Management, Helsinki University of Technology, P.O. Box 2100, 02015 TKK, Finland.
    Gustafsson, Stig-Inge
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Energy Systems.
    Multi-criteria evaluation of residential energy supply systems2007In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 39, no 12, p. 1218-1226Article in journal (Refereed)
    Abstract [en]

    In this paper, we consider the selection of a residential energy supply system as a multi-criteria decision-making problem, which involves both financial and environmental issues. Specifically, we compare micro-CHP (micro-cogeneration) heating with traditional heating systems through an evaluation that accounts for: (i) the decision-makers' subjective preferences, (ii) uncertainties in the performance of micro-CHP heating systems (which are partly caused by the lack of long-term operational experiences) and (iii) the context-dependency of life-cycle costs and environmental burdens of heating systems. Motivated by these considerations, we employ the PAIRS multi-criteria decision-making methodology that captures incomplete information by way of interval-valued parameters and provides support for sensitivity analyses, too. Our comparative analysis of alternative heating systems suggests that micro-CHP is a reasonable alternative to traditional systems, particularly from the environmental point of view. © 2007 Elsevier B.V. All rights reserved.

  • 2.
    Alsbjer, Markus
    Linköping University, Department of Management and Engineering, Energy Systems.
    Hur elpris och värmelast påverkar fjärrvärmesystem: fallet Göteborg Energi och Volvo Cars2009Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This report observes the energy systems at Göteborg Energi and Volvo Cars, Torslanda. The systems are integrated as one system and the influence of different measures is evaluated. The main purpose is to reduce the total cost of the integrated system.

    This work use the power bonus method, a margin perspective view where all additional electricity production is calculated to replace condense power. The allocation for emissions at a combined heat and power plant is also calculated with the power bonus method.

    The data is simulated with the optimisation program Modest. Using computer models for the energy systems at Göteborg Energi and Volvo Cars the systems have been connected. The results from measures on one of the systems can be evaluated in the complete system.

    Evaluated measures using the computer models:

    • Electricity price raised to European levels
    • A connection between the district heating networks at Göteborg Energi and Volvo Cars
    • Conversions to district heating in Volvo Cars network

    Important conclusions in this report:

    • Raised electricity prices increases the profit vastly and reduces the global emissions for energy systems with combined heat and power production
    • Connecting two nearby district heating networks is profitable
    • Conversions to district heating at Volvo Cars is not profitable in the present situation but gains interest if electricity prices in Sweden increases to a European level
    • An electricity price on the present European level is enough to make the shadow prices for heat negative during the summer months if a combined heat and power plant is on the margin for heat production
  • 3.
    Alvors, Per
    et al.
    Kungl. Tekniska Högskolan, KTH, Stockholm.
    Arnell, Jenny
    Svenska Miljöinstitutet.
    Berglin, Niklas
    Innventia AB, Stockholm, Sweden.
    Björnsson, Lovisa
    Miljö- och energisystem, Lunds Tekniska Högskola, Lund.
    Börjesson, Pål
    Miljö- och energisystem, Lunds Tekniska Högskola, Lund.
    Grahn, Maria
    Department of Energy and Environment, Chalmers University of Technology, Sweden.
    Harvey, Simon
    Chalmers University of Technology, Dept. of Energy and Environment, Heat and Power Technology Division,Göteborg, Sweden.
    Hoffstedt, Christian
    Innventia AB, Stockholm, Sweden.
    Holmgren, Kristina
    Svenska Miljöinstitutet.
    Jelse, Kristian
    Svenska Miljöinstitutet.
    Klintbom, Patrik
    Volvo AB, Sweden.
    Kusar, Henrik
    Kemisk Teknologi, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Lidén, Gunnar
    Department of Chemical Engineering, Lund University, Sweden.
    Magnusson, Mimmi
    Skolan för kemivetenskap, Kungliga Tekniska Högskolan, Stockholm.
    Pettersson, Karin
    Energi och miljö/Energiteknik, Chalmers Tekniska Högskola, Göteborg.
    Rydberg, Tomas
    Svenska Miljöinstitutet.
    Sjöström, Krister
    School of Chemical Science and Engineering, Kungliga Tekniska Högskolan, Stockholm.
    Stålbrand, Henrik
    Biokemi och Strukturbiologi, Lunds universitet, Lund.
    Wallberg, Ola
    Institutionen för kemiteknik, Lunds universitet, Lund.
    Wetterlund, Elisabeth
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Zacchi, Guido
    Institutionen för kemiteknik, Lunds universitet, Lund.
    Öhrman, Olof
    Institutionen för samhällsbyggnad och naturresurser, Luleå Tekniska universitet.
    Research and development challenges for Swedish biofuel actors – three illustrative examples: Improvement potential discussed in the context of Well-to-Tank analyses2010Report (Other academic)
    Abstract [en]

    Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use.

    Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology.

    In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study.

    We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose.

    From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.

    Three important results from the lignocellulosic ethanol study are: (i) the production systems could be far more complex and intelligently designed than previous studies show, (ii) the potential improvements consist of a large number of combinations of process integration options wich partly depends on specific local conditions, (iii) the environmental performance of individual systems may vary significantly due to systems design and local conditons.

    From the case study on gasification of solid biomass for the production of biomethane we find that one of the main advantages of this technology is its high efficiency in respect to converting biomass into fuels for transport. For future research we see a need for improvements within the gas up-grading section, including gas cleaning and gas conditioning, to obtain a more efficient process. A major challenge is to remove the tar before the methanation reaction.

    Three important results from the biomethane study are: (i) it is important not to crack the methane already produced in the syngas, which indicates a need for improved catalysts for selective tar cracking, (ii) there is a need for new gas separation techniques to facilitate the use of air oxidation agent instead of oxygen in the gasifier, and (iii) there is a need for testing the integrated process under realistic conditions, both at atmospheric and pressurized conditions.

    From the case study on black liquor gasification for the production of DME we find that the process has many advantages compared to other biofuel production options, such as the fact that black liquor is already partially processed and exists in a pumpable, liquid form, and that the process is pressurised and tightly integrated with the pulp mill, which enhances fuel production efficiency. However, to achieve commercial status, some challenges still remain, such as demonstrating that materials and plant equipment meet the high availability required when scaling up to industrial size in the pulp mill, and also proving that the plant can operate according to calculated heat and material balances. Three important results from the DME study are: (i) that modern chemical pulp mills, having a potential surplus of energy, could become important suppliers of renewable fuels for transport, (ii) there is a need to demonstrate that renewable DME/methanol will be proven to function in large scale, and (iii) there is still potential for technology improvements and enhanced energy integration.

    Although quantitative improvement potentials are given in the three biofuel production cases, it is not obvious how these potentials would affect WTT values, since the biofuel production processes are complex and changing one parameter impacts other parameters. The improvement potentials are therefore discussed qualitatively. From the entire study we have come to agree on the following common conclusions: (i) research and development in Sweden within the three studied 2G biofuel production technologies is extensive, (ii) in general, the processes, within the three cases, work well at pilot and demonstration scale and are now in a phase to be proven in large scale, (iii) there is still room for improvement although some processes have been known for decades, (iv) the biofuel production processes are complex and site specific and process improvements need to be seen and judged from a broad systems perspective (both within the production plant as well as in the entire well-to-tank perspective), and (v) the three studied biofuel production systems are complementary technologies. Futher, the process of conducting this study is worth mentioning as a result itself, i.e. that many different actors within the field have proven their ability and willingness to contribute to a common report, and that the cooperation climate was very positive and bodes well for possible future collaboration within the framework of the f3 center.

    Finally, judging from the political ambitions it is clear that the demand for renewable fuels will significantly increase during the coming decade. This will most likely result in opportunities for a range of biofuel options. The studied biofuel options all represent 2G biofuels and they can all be part of the solution to meet the increased renewable fuel demand.

  • 4.
    Amiri, Shahnaz
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Economic and Environmental Benefits of CHP-based District Heating Systems in Sweden2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Future energy systems and thus the climate are affected by many factors, such as energy resources, energy demand, energy policy and the choice of energy technologies. Energy systems of the future are facing three main challenges; the steady growth of global energy demand, the energy resource depletion, as well as the increasing emissions of carbon dioxide (CO2) and other greenhouse gases and their impact on climate change. To meet the mentioned challenges with sustainability in mind, actions that increase energy efficiency and choosing an energy-efficient energy system which is cost efficient will be essential. Combined heat and power (CHP) plants and district heating and cooling could contribute greatly to increased system efficiency by using energy otherwise wasted.

    The aim of this study is to increase the understanding of how CHP-based district heating and cooling systems using different primary energy sources can contribute to more cost-efficient energy systems, which reduce global CO2 emissions, and to highlight the impact of some important parameters and measures on Swedish municipal district heating systems. An important assumption in this study is the estimation of CO2 emissions from electricity production, which is based on marginal electricity perspectives. In the short term, the marginal electricity is assumed to come from coal-fired condensing power plants while in the long term it consists of electricity produced by natural gas-fired combined cycle condensing power plants. This means that the local electricity production will replace the marginal electricity production. The underlying assumption is an ideal fully deregulated European electricity market where trade barriers are removed and there are no restrictions on transfer capacity.

    The results show that electricity generation in CHP plants, particularly in higher efficiency combined steam and gas turbine heat and power plants using natural gas, can reduce the global environmental impact of energy usage to a great extent. The results confirm, through the scenarios presented in this study, that waste as a fuel in CHP-based district heating systems is fully utilised since it has the lowest operational costs. The results also show how implementation of a biogas-based CHP plant in a biogas system contributes to an efficient system, as well as lowering both CO2 emissions and system costs. The results show that replacing electricity-driven (e.g. compression) cooling by heat-driven cooling using district heating (e.g. absorption chillers) in a CHP system is a cost-effective and climate friendly technology as electricity consumption is reduced while at the same time the electricity generation will be increased. The results of the study also show that there is potential to expand district heating systems to areas with lower heat density, with both environmental and economic benefits for the district heating companies.

    The results reveal that the operation of a studied CHP-based district heating system with an imposed emission limit is very sensitive to the way CO2 emissions are accounted, i.e., local CO2 emissions or emissions from marginal electricity production. The results show how the electricity production increases in the marginal case compared with the local one in order to reduce global CO2 emissions. The results also revealed that not only electricity and fuel prices but also policy instruments are important factors in promoting CHP-based district heating and cooling systems. The use of electricity certificates has a large influence for the introduction of biogas-based cogeneration. Another conclusion from the modelling is that present Swedish policy instruments are strong incentives for cogeneration with similar impact as applying external costs.

    List of papers
    1. Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility
    Open this publication in new window or tab >>Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility
    2006 (English)In: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860, Vol. 175, no 2, p. 1224-1247Article in journal (Refereed) Published
    Abstract [en]

    District heating may help reduce environmental impact and energy costs, but policy instruments and waste management may influence operations. The energy system optimisation model MODEST has been used for 50 towns, regions and a nation. Investments and operation that satisfy energy demand at minimum cost are found through linear programming. This paper describes the application of MODEST to a municipal utility, which uses several fuels and cogeneration plants. The model reflects diurnal and monthly demand fluctuations. Several studies of the Linköping utility are reviewed. These indicate that the marginal heat cost is lower in summer, a new waste or wood fired cogeneration plant is more profitable than a natural-gas-fired combined cycle, material recycling of paper and hard plastics is preferable to waste incineration from an energy-efficiency viewpoint, and considering external costs enhances wood fuel use. Here, an emission limit is used to show how fossil-fuel cogeneration displaces CO2 from coal-condensing plants. © 2005 Elsevier B.V. All rights reserved.

    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-43950 (URN)10.1016/j.ejor.2005.06.026 (DOI)75220 (Local ID)75220 (Archive number)75220 (OAI)
    Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13
    2. Internalising external costs of electricity and heat production in a municipal energy system
    Open this publication in new window or tab >>Internalising external costs of electricity and heat production in a municipal energy system
    2007 (English)In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 35, no 10, p. 5242-5253Article in journal (Refereed) Published
    Abstract [en]

    Both energy supply and waste treatment give rise to negative effects on the environment, so-called external effects. In this study, monetary values on external costs collected from the EU′s ExternE project are used to evaluate inclusion of these costs in comparison with an energy utility perspective including present policy instruments. The studied object is a municipal district heating system with a waste incineration plant as the base supplier of heat. The evaluation concerns fuels used for heat production and total electricity production, for scenarios with external costs included and for a scenario using the present policy instrument.

    Impacts of assumptions on marginal power producers (coal or natural gas power plants) are investigated, since locally produced electricity is assumed to replace marginal power and thus is credited for the avoided burden. Varying levels of external costs for carbon dioxide emissions are analysed. The method used is an economic optimisation model, MODEST.

    The conclusion is that present policy instruments are strong incentives for cogeneration, even when external costs are included. Waste is fully utilised in all scenarios. In cases where coal is the marginal power producer, more electricity is produced; when natural gas is the marginal power producer, less is produced. There are several uncertainties in the data for external costs, both methodological and ethical. In the ExternE data, not all environmental impacts are included. For waste incineration, ashes are not included, and another difficulty is how to treat the avoided burden of other waste treatment methods.

    Keywords
    External costs, Combined heat and power, Waste incineration
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-14206 (URN)10.1016/j.enpol.2007.04.026 (DOI)
    Available from: 2007-01-04 Created: 2007-01-04 Last updated: 2017-12-13
    3. European perspective on absorption cooling in a combined heat and power system: A case study of energy utility and industries in Sweden
    Open this publication in new window or tab >>European perspective on absorption cooling in a combined heat and power system: A case study of energy utility and industries in Sweden
    2007 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 84, no 12, p. 1319-1337Article in journal (Refereed) Published
    Abstract [en]

    Mankind is facing an escalating threat of global warming and there is increasing evidence that this is due to human activity and increased emissions of carbon dioxide. Converting from vapour compression chillers to absorption chillers in a combined heat and power (CHP) system is a measure towards sustainability as electricity consumption is replaced with electricity generation. This electricity produced in Swedish CHP-system will substitute marginally produced electricity and as result lower global emissions of carbon dioxide. The use of absorption chillers is limited in Sweden but the conditions are in fact most favourable. Rising demand of cooling and increasing electricity prices in combination with a surplus of heat during the summer in CHP system makes heat driven cooling extremely interesting in Sweden. In this paper we analyse the most cost-effective technology for cooling by comparing vapour compression chillers with heat driven absorption cooling for a local energy utility with a district cooling network and for industries in a Swedish municipality with CHP. Whilst this case is necessarily local in scope, the results have global relevance showing that when considering higher European electricity prices, and when natural gas is introduced, absorption cooling is the most cost-effective solution for both industries and for the energy supplier. This will result in a resource effective energy system with a possibility to reduce global emissions of CO2 with 80%, a 300% lower system cost, and a 170% reduction of the cost of producing cooling due to revenues from electricity production. The results also show that, with these prerequisites, a decrease in COP of the absorption chillers will not have a negative impact on the cost-effectiveness of the system, due to increased electricity production.

    Keywords
    Absorption cooling, European electricity prices, Natural gas, Carbon dioxide, Global emissions
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-14161 (URN)10.1016/j.apenergy.2006.09.016 (DOI)
    Available from: 2006-11-27 Created: 2006-11-27 Last updated: 2017-12-13
    4. Assessment of the natural gas potential for heat and power generation in the County of Ostergotland in Sweden
    Open this publication in new window or tab >>Assessment of the natural gas potential for heat and power generation in the County of Ostergotland in Sweden
    2009 (English)In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 37, no 2, p. 496-506Article in journal (Refereed) Published
    Abstract [en]

    The aim of this study is to investigate the potential use of natural gas for heat and power production for the municipality of Linkoping, Norrkoping and Finspang in the County of Ostergotland, Sweden.

    The results of the study revealed that these three municipalities with the present heating demand can convert 2030 GWh/year of the present fuel mixed to natural gas. The expansion of natural gas provides the possibility to increase the electricity generation with approximately 800 GWh annually in the County of Ostergotland. The global emissions of CO2 reduce also by approximately 490 ktonne/year by assuming the coal condensing power plant as the marginal power plant. The total system cost decreases by 76 Mkr/year with the present electricity price which varies between 432 and 173 SEK/MWh and with 248 Mkr/year if the present electricity price increases to 37% which is approximately corresponding to European electricity prices.

    Sensitivity analysis is done with respect to the different factors such as price of electricity, natural gas, etc. The findings show that increased price of electricity and increased district heating demand increases the profitability to convert to natural gas using CHP plant.

    Keywords
    Natural gas, CO2 emissions, Combined heat and power
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-16971 (URN)10.1016/j.enpol.2008.09.080 (DOI)
    Available from: 2009-03-01 Created: 2009-02-27 Last updated: 2017-12-13
    5. Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems
    Open this publication in new window or tab >>Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems
    2010 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 7, p. 2401-2410Article in journal (Refereed) Published
    Abstract [en]

    The objective of the study is to analyse the conditions for connection of residential buildings in heat sparse areas to district heating systems in order to increase electricity production in municipal combined heat and power plants. The European electricity market has been assumed to be fully deregulated. The relation between connection of heat sparse areas, increased electricity and heat production as well as electricity prices, fuel prices and emissions rights is investigated. The results of the study show that there is potential to expand the district heating market to areas with lower heat concentrations in the cities of Gavle, Sandviken and Borlange in Sweden, with both economic and environmental benefits. The expansion provides a substantial heat demand of approximately 181 GWh/year, which results in an electricity power production of approximately 43 GWh/year. Since the detached and stand-alone houses in the studied heat sparse areas have been heated either by oil boiler or by direct electricity, connection to district heating also provides a substantial reduction in emissions of CO2. The largest reductions in CO2 emissions are found to be 211 ktonnes/year assuming coal-fired condensing power as marginal electricity production. Connection of heat sparse areas to district heating decrease the system costs and provide a profitability by approximately 22 million EURO/year for the studied municipalities if the price of electricity is at a European level, i.e. 110 EURO/MWh. Sensitivity analysis shows, among other things, that a strong relation exists between the price of electricity and the profitability of connecting heat sparse areas to district heating systems.

    Place, publisher, year, edition, pages
    Elsevier Science B.V., Amsterdam., 2010
    Keywords
    Combined heat and power; Heat sparse areas; CO2 emissions; District heating; Deregulated electricity market
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-58385 (URN)10.1016/j.apenergy.2010.02.002 (DOI)000278675100034 ()
    Note
    Original Publication: Shahnaz Amiri and Bahram Moshfegh, Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems, 2010, Applied Energy, (87), 7, 2401-2410. http://dx.doi.org/10.1016/j.apenergy.2010.02.002 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/ Available from: 2010-08-13 Created: 2010-08-11 Last updated: 2017-12-12
    6. Simulation and introduction of a CHP plant in a Swedish biogas system
    Open this publication in new window or tab >>Simulation and introduction of a CHP plant in a Swedish biogas system
    2013 (English)In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 49, no SI, p. 242-249Article in journal (Refereed) Published
    Abstract [en]

    The objectives of this study are to present a model for biogas production systems to help achieve a more cost-effective system, and to analyse the conditions for connecting combined heat and power (CHP) plants to the biogas system. The European electricity market is assumed to be fully deregulated. The relation between connection of CHP. increased electricity and heat production, electricity prices, and electricity certificate trading is investigated. A cost-minimising linear programming model (MODEST) is used. MODEST has been applied to many energy systems, but this is the first time the model has been used for biogas production. The new model, which is the main result of this work, can be used for operational optimisation and evaluating economic consequences of future changes in the biogas system. The results from the case study and sensitivity analysis show that the model is reliable and can be used for strategic planning. The results show that implementation of a biogas-based CHP plant result in an electricity power production of approximately 39 GW h annually. Reduced system costs provide a profitability of 46 MSEK/year if electricity and heat prices increase by 100% and electricity certificate prices increase by 50%. CO2 emission reductions up to 32,000 ton/year can be achieved if generated electricity displaces coal-fired condensing power.

    Place, publisher, year, edition, pages
    Elsevier, 2013
    Keywords
    Biogas system, CO2 emissions, Energy systems optimisation, Combined heat and power plant, Marginal electricity
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-85624 (URN)10.1016/j.renene.2012.01.022 (DOI)000309902000051 ()
    Available from: 2012-11-26 Created: 2012-11-26 Last updated: 2017-12-07
  • 5.
    Amiri, Shahnaz
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Henning, Dag
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Karlsson, Björn
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Simulation and introduction of a CHP plant in a Swedish biogas system2013In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 49, no SI, p. 242-249Article in journal (Refereed)
    Abstract [en]

    The objectives of this study are to present a model for biogas production systems to help achieve a more cost-effective system, and to analyse the conditions for connecting combined heat and power (CHP) plants to the biogas system. The European electricity market is assumed to be fully deregulated. The relation between connection of CHP. increased electricity and heat production, electricity prices, and electricity certificate trading is investigated. A cost-minimising linear programming model (MODEST) is used. MODEST has been applied to many energy systems, but this is the first time the model has been used for biogas production. The new model, which is the main result of this work, can be used for operational optimisation and evaluating economic consequences of future changes in the biogas system. The results from the case study and sensitivity analysis show that the model is reliable and can be used for strategic planning. The results show that implementation of a biogas-based CHP plant result in an electricity power production of approximately 39 GW h annually. Reduced system costs provide a profitability of 46 MSEK/year if electricity and heat prices increase by 100% and electricity certificate prices increase by 50%. CO2 emission reductions up to 32,000 ton/year can be achieved if generated electricity displaces coal-fired condensing power.

  • 6.
    Amiri, Shahnaz
    et al.
    University of Gävle.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems2010In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 7, p. 2401-2410Article in journal (Refereed)
    Abstract [en]

    The objective of the study is to analyse the conditions for connection of residential buildings in heat sparse areas to district heating systems in order to increase electricity production in municipal combined heat and power plants. The European electricity market has been assumed to be fully deregulated. The relation between connection of heat sparse areas, increased electricity and heat production as well as electricity prices, fuel prices and emissions rights is investigated. The results of the study show that there is potential to expand the district heating market to areas with lower heat concentrations in the cities of Gavle, Sandviken and Borlange in Sweden, with both economic and environmental benefits. The expansion provides a substantial heat demand of approximately 181 GWh/year, which results in an electricity power production of approximately 43 GWh/year. Since the detached and stand-alone houses in the studied heat sparse areas have been heated either by oil boiler or by direct electricity, connection to district heating also provides a substantial reduction in emissions of CO2. The largest reductions in CO2 emissions are found to be 211 ktonnes/year assuming coal-fired condensing power as marginal electricity production. Connection of heat sparse areas to district heating decrease the system costs and provide a profitability by approximately 22 million EURO/year for the studied municipalities if the price of electricity is at a European level, i.e. 110 EURO/MWh. Sensitivity analysis shows, among other things, that a strong relation exists between the price of electricity and the profitability of connecting heat sparse areas to district heating systems.

  • 7.
    Amiri, Shahnaz
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Trygg, Louise
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Moshfegh , Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Assessment of the natural gas potential for heat and power generation in the County of Ostergotland in Sweden2009In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 37, no 2, p. 496-506Article in journal (Refereed)
    Abstract [en]

    The aim of this study is to investigate the potential use of natural gas for heat and power production for the municipality of Linkoping, Norrkoping and Finspang in the County of Ostergotland, Sweden.

    The results of the study revealed that these three municipalities with the present heating demand can convert 2030 GWh/year of the present fuel mixed to natural gas. The expansion of natural gas provides the possibility to increase the electricity generation with approximately 800 GWh annually in the County of Ostergotland. The global emissions of CO2 reduce also by approximately 490 ktonne/year by assuming the coal condensing power plant as the marginal power plant. The total system cost decreases by 76 Mkr/year with the present electricity price which varies between 432 and 173 SEK/MWh and with 248 Mkr/year if the present electricity price increases to 37% which is approximately corresponding to European electricity prices.

    Sensitivity analysis is done with respect to the different factors such as price of electricity, natural gas, etc. The findings show that increased price of electricity and increased district heating demand increases the profitability to convert to natural gas using CHP plant.

  • 8.
    Amiri, Shahnaz
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. University of Gavle, Sweden.
    Weinberger, Gottfried
    University of Gävle, Sweden.
    Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study2018In: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 116, p. 866-877Article in journal (Refereed)
    Abstract [en]

    The present study of the district heating (DH) system in the city of Kisa, Sweden, shows how, through energy cooperation with a nearby sawmill and paper mill, a local energy company contributes to energy efficient DH and cost-effective utilization of a new biofuel combined heat and power (CHP) plant. Cases of stand-alone and integrated energy systems are optimized with the linear program MODEST. The European power market is assumed to be fully deregulated. The results show clear advantages for the energy company to cooperate with these industries to produce heat for DH and process steam for industry. The cooperating industries gain advantages from heat and/or biofuel by-product supply as well. The opening to use a biofuel CHP plant for combined heat supply results in cogenerated electricity of almost 29 GWh/a with an increased biofuel use of 13 GWhia, zero fuel oil use and CO2 emission reductions of 25,800 tons CO2/a with coal-condensing power plant on the margin and biofuel as limited resource. The total system cost decreases by -2.18 MEUR/a through extended cooperation and renewable electricity sales. The sensitivity analysis shows that the profitability of investing in a biofuel CHP plant increases with higher electricity and electricity certificate prices. (C) 2017 Elsevier Ltd. All rights reserved.

  • 9.
    Ammenberg, Jonas
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Svensson, Bo
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Biogas Research Center.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Björn, Annika
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Karlsson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Tonderski, Karin
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Biogas Research Center, BRC: Slutrapport för etapp 12015Report (Other academic)
    Abstract [en]

    Biogas Research Center (BRC) is a center of excellence in biogas research funded by the Swedish Energy Agency, Linköping University and a number of external organizations with one-third each. BRC has a very broad interdisciplinary approach, bringing together biogas-related skills from several areas to create interaction on many levels:

    • between industry, academia and society,
    • between different perspectives, and
    • between different disciplines and areas of expertise.

    BRC’s vision is:

    BRC contributes to the vision by advancing knowledge and technical development, as well as by facilitating development, innovation and business. Resource efficiency is central, improving existing processes and systems as well as establishing biogas solutions in new sectors and enabling use of new substrates.

    For BRC phase 1, the first two year period from 2012-2014, the research projects were organized in accordance with the table below showing important challenges for biogas producers and other stakeholders, and how these challenges were tackled in eight research projects. Five of the projects had an exploratory nature, meaning that they were broader, more future oriented and, for example, evaluated several different technology paths (EP1-5). Three projects focused more on technology and process development (DP6-8).

    This final report briefly presents the background and contains some information about competence centers in general. Thereafter follows more detailed information about BRC, for example, regarding the establishment, relevance, organization, vision, corner stones and development. The participating organizations are presented, both the research groups within Linköping University and the partners and members. Further on, there is a more detailed introduction to and description of the challenges mentioned in the table above and a short presentation from each of the research projects, followed by some sections dealing with fulfillment of objectives and an external assessment of BRC. Detailed, listed information is commonly provided in the appendices.

    Briefly, the fulfillment of objectives is good and it is very positive that so many scientific articles have been published (or are to be published) from the research projects and also within the wider center perspective. Clearly, extensive and relevant activities are ongoing within and around BRC. In phase 2 it essential to increase the share of very satisfied partners and members, where now half of them are satisfied and the other half is very satisfied. For this purpose, improved communication, interaction and project management are central. During 2015, at least two PhD theses are expected, to a large extent based on the research from BRC phase 1.

    In the beginning of 2014 an external assessment of BRC was carried out, with the main purpose to assess how well the center has been established and to review the conditions for a future, successful competence center. Generally, the outcome was very positive and the assessors concluded that BRC within a short period of time had been able to establish a well-functioning organization engaging a large share of the participants within relevant areas, and that most of the involved actors look upon BRC as a justifiable and well working investment that they plan to continue to support. The assessment also contributed with several relevant tips of improvements and to clarify challenges to address.

    This report is written in Swedish, but for each research project there will be reports and/or scientific papers published in English.

    The work presented in this report has been financed by the Swedish Energy Agency and the participating organizations.

  • 10.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Arfwidsson, Oskar
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Bergstrand, Victor
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    A study of the comparability of energy audit program evaluations2017In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 142, p. 2133-2139Article in journal (Refereed)
    Abstract [en]

    There is a large untapped potential for improved energy efficiency in various sectors of the economy. Governmental industrial energy audit programs subsidizing the companies to conduct an energy audit are the most common policy in trying to overcome the energy efficiency gap. Evaluation studies have been carried out to gain knowledge about the success of a completed energy audit policy program. The evaluations were made in different ways and in addition focused on different performance indicators and used different ways of categorizing data. In this article, a literature review has been made of five evaluation studies from different energy audit programs, where the problems of the present incomparability between programs due to differences are discussed. The policy implication of this paper is that new energy audit policy programs must distinguish a harmonized way of categorizing data, both regarding energy efficiency measures and energy end-use. Further, a proposition for a standard for how to evaluate energy audit policy programs is suggested. Conclusions from this study are that important elements, such as the free-rider effect and harmonized energy end-use data, should be defined and included in evaluation studies. A harmonized standard for evaluating audit programs is not least needed within the EU, where member states are obliged to launch audit programs for large enterprises, and preferably also for small and medium-sized enterprises. This paper serves as an important contribution for the development of such a standard in further research. (C) 2016 Elsevier Ltd. All rights reserved.

  • 11.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Arfwidsson, Oskar
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Benchmarking energy performance of industrial small and medium-sized enterprises using an energy efficiency index: Results based on an energy audit policy program2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 182, p. 883-895Article in journal (Refereed)
    Abstract [en]

    Improved energy efficiency among industrial companies is recognized as a key effort to reduce emissions of greenhouse gases. In this context, benchmarking industrial energy efficiency plays an important part in increasing industrial companies awareness of their energy efficiency potential. A method for calculating an energy efficiency index is proposed in this paper. The energy efficiency index is used to benchmark the energy performance of industrial small and medium-sized companies support and production processes. This enables the possibility to compare the energy performance of single energy end-use processes. This papers proposed energy efficiency index is applied to energy data from 11 sawmills that participated in the Swedish national energy audit program. The index values were compared with each sawmills energy saving potential, as stated in the energy audits. One conclusion is that the energy efficiency index is suitable as an energy strategy tool in industrial energy management and could be used both by industrial SMEs and by governmental agencies with an auditing role. However, it does require a harmonized categorization of energy end-use processes as well as quality assured energy data. Given this, a national energy end-use database could be created to facilitate the calculation of an energy efficiency index. (C) 2018 Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2020-02-10 14:54
  • 12.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Paramonova, Svetlana
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises - A dataset analysis from the national energy audit program2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 93, p. 165-177Article, review/survey (Refereed)
    Abstract [en]

    Improving energy efficiency in industry is recognized as one of the most vital activities for the mitigation of climate change. Consequently, policy initiatives from governments addressing both energy-intensive and small and medium-sized industry have been enacted. In this paper, the energy end-use and the energy efficiency potential among industrial small and medium-sized companies participating in the Swedish Energy Audit Program are reviewed. The three manufacturing industries of wood and cork, food products and metal products (excluding machinery and equipment) are studied. A unique categorization of their production processes energy end-use is presented, the results of which show that the amount of energy used in various categories of production processes differ between these industries. This applies to support processes as well, highlighting the problem of generalizing results without available bottom-up energy end-use data. In addition, a calculation of conservation supply curves for measures related to production processes is presented, showing that there still remains energy saving potential among companies participating in the Swedish Energy Audit Program. However, relevant data in the database used from the Swedish Energy Audit Program is lacking which limits the conclusions that can be drawn from the conservation supply curves. This study highlights the need to develop energy policy programs delivering high-quality data. This paper contributes to a further understanding of the intricate matters of industrial energy end-use and energy efficiency measures.

  • 13.
    Andersson, H.
    et al.
    Univ Gavle, Sweden.
    Cehlin, M.
    Univ Gavle, Sweden.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. Univ Gavle, Sweden.
    Experimental and numerical investigations of a new ventilation supply device based on confluent jets2018In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 137, p. 18-33Article in journal (Refereed)
    Abstract [en]

    In developed countries, heating, ventilation, air conditioning (HVAC) systems account for more than 10% of national energy use. The primary function of a HVAC system is to create proper indoor environment. A number of ventilation strategies have been developed to minimize HVAC systems energy use whilst still maintaining a good indoor environment. Among these strategies are confluent jet ventilation and variable air volume. In this study, an air supply device with a novel nozzle design that uses both of the above-mentioned strategies was investigated both experimentally and numerically at three different airflow rates. The results from the numerical investigation using the SST k - omega turbulence model regarding velocities and flow patterns are validated by experimental data carried out by Laser Doppler Anemometry. The results from both studies show that the flow pattern and velocity in each nozzle is directly dependent on the total airflow rate. However, the flow pattern does not vary between the three different airflow rates. The numerical investigation shows that velocity profiles for each nozzle have the same pattern regardless of the airflow rate, but the magnitude of the velocity profile increases as the airflow increases. Thus, a supply device of this kind could be used for variable air volume and produce confluent jets for the airflow rates investigated.

  • 14.
    Andersson, Jim
    et al.
    Luleå University of Technology, Sweden.
    Lundgren, Joakim
    Luleå University of Technology, Sweden.
    Malek, Laura
    Lund University, Sweden.
    Hultegren, Christian
    Lund University, Sweden.
    Pettersson, Karin
    Chalmers University of Technology, Gothenburg, Sweden.
    Wetterlund, Elisabeth
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    System studies on biofuel production via integrated biomass gasification2013Report (Other academic)
    Abstract [en]

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly.

    The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for “fair” techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project.

    Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found.

    There are several reasons why the results of the reviewed techno-economic studies vary. Some examples are that different system boundaries have been set and that different technical and economic assumptions have been made, product yields and energy efficiencies may be calculated using different methods etc. For obvious reasons, the studies are not made in the same year, which means that different monetary exchange rates and indices have been applied. It is therefore very difficult, and sometimes even impossible, to compare the technical as well as the economic results from the different studies. When technical evaluations are to be carried out, there is no general method for how to set the system boundaries and no right or wrong way to calculate the system efficiencies as long as the boundaries and methods are transparent and clearly described. This also means that it becomes fruitless to compare efficiencies between different concepts unless the comparison is done on an exactly equal basis.

    However, even on an equal basis, a comparison is not a straight forward process. For example, calculated efficiencies may be based on the marginal supply, which then become very dependent on how the industries exploit their resources before the integration. The resulting efficiencies are therefore very site-dependent. Increasing the system boundaries to include all in- and outgoing energy carriers from the main industry, as well as the integrated gasification plant (i.e. total plant mass and energy balance), would inflict the same site-dependency problem. The resulting system efficiency is therefore a measure of the potential improvement that a specific industry could achieve by integrating a biomass gasification concept.

    When estimating the overall system efficiency of industrial biorefinery concepts that include multiple types of product flows and energy sources, the authors of this report encourage the use of electrical equivalents as a measure of the overall system efficiency. This should be done in order to take the energy quality of different energy carriers into concern.

    In the published economic evaluations, it has been found that there is a large number of studies containing both integration and production cost estimates. However, the number of references for the cost data is rather limited. The majority of these have also been published by the same group of people and use the same or similar background information. The information in these references is based on quotes and estimates, which is good, however none of these are publically available and therefore difficult to value with respect to content and accuracy.

    It has further been found that the variance in the operational costs is quite significant. Something that is particularly true for biomass costs, which have a high variance. This may be explained by natural variations in the quality of biomass used, but also to the different markets studied and the dates when the studies were performed. It may be seen from the specific investment costs that there is a significant spread in the data. It may also be seen that the differences in capital employed and process yields will result in quite large variations in the production cost of the synthetic fuels. On a general note, the studies performed are considering future plants and in some cases assumes technology development. It is therefore relevant to question the use of today’s prices of utilities and feedstock’s. It is believed that it would be more representative to perform some kind of scenario analysis using different parameters resulting in different cost assumptions to better exemplify possible futures.

    Due to the surprising lack of reports and articles regarding integration of biomass gasifiers in sawmills, it would be of great interest to carry out such a study. Also larger scale wood pellet production plants could be of interest as a potential gasification based biorefinery.

  • 15.
    Andersson, Viktor
    et al.
    Chalmers, Sweden.
    Broberg, Sarah
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Hackl, Roman
    Chalmers, Sweden.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Berntsson, Thore
    Chalmers, Sweden.
    Algae-based biofuel production as part of an industrial cluster2014In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 71, p. 113-124Article in journal (Refereed)
    Abstract [en]

    This paper presents a study on the production of biofuels from algae cultivated in municipal wastewater in Gothenburg, Sweden. A possible biorefinery concept is studied based on two cases; Case A) combined biodiesel and biogas production, and Case B) only biogas production. The cases are compared in terms of product outputs and impact on global CO2 emissions mitigation. The area efficiency of the algae-based biofuels is also compared with other biofuel production routes. The study investigates the collaboration between an algae cultivation, biofuel production processes, a wastewater treatment plant and an industrial cluster for the purpose of utilizing material flows and industrial excess heat between the actors. This collaboration provides the opportunity to reduce the CO2 emissions from the process compared to a stand-alone operation. The results show that Case A is advantageous to Case B with respect to all studied factors. It is found that the algae-based biofuel production routes investigated in this study has higher area efficiency than other biofuel production routes. The amount of algae-based biofuel possible to produce corresponds to 31 MWfuel for Case A and 26 MWfuel in Case B.

  • 16. Anton, R
    et al.
    Castiella, M
    Jonsson, H
    Moshfegh, Bahram
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Energy Systems.
    Smoke and CFD visualization of the flow after an EMC screen in a subrack model2005In: The Therminic,2005, 2005Conference paper (Refereed)
  • 17.
    Anton, R.
    et al.
    Antón, R., TECNUN, University of Navarra, Navarra 31080, Spain.
    Jonsson, H.
    Royal Institute of Technology, Stockholm SE-10044, Sweden, Department of Energy Technology, Stockholm 10044, Sweden.
    Moshfegh, Bahram
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Energy Systems.
    Compact CFD modeling of EMC screen for radio base stations: A porous media approach and a correlation for the directional loss coefficients2007In: IEEE transactions on components and packaging technologies (Print), ISSN 1521-3331, E-ISSN 1557-9972, Vol. 30, no 4, p. 875-885Article in journal (Refereed)
    Abstract [en]

    A methodology to obtain the directional pressure loss coefficients in a porous media model of an electromagnetically compatible screen of a radio base station model is presented. The directional loss coefficients of this compact model are validated against a detailed computational fluid dynamics model not only by comparing the total pressure drop, but also by evaluating the flow pattern after the screen. The detailed model was validated in an earlier article by the authors. A parametric study is conducted for 174 cases. Seven parameters were investigated: velocity, inlet height, screen porosity, printed circuit board (PCB) thickness, inlet-screen gap, distance between two PCBs and screen thickness. Based on the compact model parametric study, two correlations for the directional loss coefficients are developed as a function of the Reynolds number and the above geometrical parameters. The average disagreement between the compact model that uses the directional loss coefficients from the correlations and the detailed model was of 3% for the prediction of the total pressure drop and less than 6.5% and 9.5% for two coefficients that accurately characterize the flow pattern. © 2007 IEEE.

  • 18.
    Anton, R.
    et al.
    Antón, R., Department of TECNUN, University of Navarra, Navarra 31080, Spain.
    Jonsson, H.
    Royal Institute of Technology, Stockholm, SE-100 44, Sweden, Deparment of Energy Technology, Stockholm SE-100 44, Sweden.
    Moshfegh, Bahram
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Energy Systems.
    Detailed CFD modeling of EMC screen for radio base stations: A benchmark study2007In: IEEE transactions on components and packaging technologies (Print), ISSN 1521-3331, E-ISSN 1557-9972, Vol. 30, no 4, p. 754-763Article in journal (Refereed)
    Abstract [en]

    The objective of this paper is to investigate the performance of five well-known turbulence models, in order to find a model that predicts the details of the flow patterns through an electromagnetic compatibility (EMC) screen. The turbulence models investigated in the present study are five different eddy-viscosity models, the standard k-e model, the renormalization group (RNG) k-e model, the realizable k-e model, the standard k-? model, as well as the shear stress transport k-? model. A steady-state 3-D detailed model, which serves as the most accurate representation of the model, was used in order to evaluate the details of the airflow paths and pressure field. The flow was assumed to be isothermal, turbulent and incompressible. A general model that covers a considerable range of velocities and geometries was validated experimentally by wind tunnel measurements. The result shows that for most of the k-e models used with correct y+ and mesh strategy, the pressure drop and the velocity field deviation is small compared to experimental data. The k-? models overpredict the overall pressure drop. When using the RNG k-e model, the total static pressure drop predicted differs around 5%-10% and the average velocity deviation at several locations before and after the screen is around 5%. © 2007 IEEE.

  • 19. Antón, R
    et al.
    Jonsson, H
    Moshfegh, Bahram
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Energy Systems.
    Detail CFD modelling of EMC Screens for Radio Base Stations, a conjugate Heat Transfer Problem2007In: International journal of heat exchangers, ISSN 1524-5608, Vol. VIII, p. 95-116Article in journal (Refereed)
  • 20.
    Apeaning, Raphael Wentemi
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energy Efficiency and Management in Industries: a case study of Ghana’s largest industrial area.2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The judicious use of energy by industries is a key lever for ensuring a sustainable industrial development. The cost effective application of energy management and energy efficiency measures offers industries with an effective means of gaining both economic and social dividend, also reducing the negative environmental effects of energy use. Unfortunately, industries in developing countries are lagging behind in the adoption of energy efficiency and management measures; as such missing the benefits of implementation.

    This study is aims at enhance the knowledge of industrial energy efficiency and management strategies in Ghana, by investigating the present level of energy (and efficiency) management practices in Ghana largest industrial park (i.e. Tema industrial area). The study also incorporates the investigation of also investigation of barriers to and driving forces for the implementation of energy efficiency measure; to shed light on the rationale for both the adoption and non-adoption of cost effective industrial energy efficient technologies in Ghana. This study was carried out using a semi-structure interview due to the explorative nature of the study. The interviews were conducted in sessions, in the first session respondents were asked describe the energy management strategies in used in the respective companies. In the second session, respondents were asked to fill a structured questionnaire covering the various aspects of the study.

    The results reveal that energy is poorly managed in the industrial area and there is an energy efficiency gap resulting from the low implementation energy efficiency measures. In addition the reveals that the important barriers impeding the implementation of cost effective energy efficiency technologies or measures in the surveyed firms principally stems from rational behavior economic barriers, which are deeply linked to the lack of government frameworks for industrial energy efficiency. The study also finds that economic gains related to ‘cost reductions resulting from lowered energy use’ and ‘threats of rising energy prices’ are the most important drivers for implementing energy efficiency measures or technologies.

  • 21.
    Arababadi, Reza
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energy Use in the EU Building Stock - Case Study: UK2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Previous studies in building energy assessmnet have made it clear that the largest potential energy efficiency improvements are conected to the retrofitting of existing buildings. But, lack of information about the building stock and associated modelling tools is one of the barriers to assessment of energy efficiency strategies in the building stocks. Therefore, a methodology has been developed to describe any building stock by the means of archetype buildings.  The aim has been to assess the effects of energy saving measures. The model which is used for the building energy simulation is called:  Energy, Carbon and Cost Assessment for Buildings Stocks (ECCABS). This model calculated the net energy demand aggregated in heating, cooling, lighting, hotwater and appliances.

     

    This model has already been validated using the Swedish residential stock as a test case. The present work continues the development of the methodology by focusing on the UK building stock by discribing the UK building stock trough archetype buildings and their physical properties which are used as inputs to the ECCABS. In addition, this work seekes to check the adequacy of applying the ECCABS model to the UK building stock. The outputs which are the final energy use of the entire building stock are compared to data available in national and international sources.

     

    The UK building stoch is described by a total of 252 archetype buildings. It is determined by considering nine building typologies, four climate zones, six periods of construction and two types of heating systems. The total final energy demand calculated by ECCABS for the residential sector is 578.83 TWh for the year 2010, which is 2.6 % higher than the statistics provided by the Department of Energy and Climate Change(DECC). In the non-residential sector the total final energy demand is 77.28 TWh for the year 2009, which is about 3.2% lower than the energy demand given by DECC. Potential reasons which could have affected the acuracy of the final resualts are discussed in this master thesis. 

  • 22.
    Arfwidsson, Oskar
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems.
    Benchmarking av industriella små och medelstora företags energiprestanda: Presentation av en metod för beräkning av energieffektiviseringsindex2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The industrial sector currently accounts for about 30% of the final energy consumption in the western world, but a significant energy efficiency potential has been identified in the sector. Research has shown that there is a great potential for improving energy efficiency in the industrial sector, particularly among small and medium-sized enterprises. However, there are barriers hindering the implementation of cost-effective energy efficiency measures. These barriers include lack of knowledge about the industries own energy end-use.

    A tool that can address this barrier among companies is benchmarking of energy end-using processes that allow the companies to compare their energy performance to other companies. Based on previous research and experiences in the field, a new method was developed for calculating an energy efficiency index, which has the possibility to show each company's energy performance relative to other companies.

    The study began with a literature review of scientific articles and reports on the subject studied. In addition, interviews with government agencies and energy auditing companies that have insight into the companies' work with energy efficiency was conducted. The literature and interview study showed a demand of comparing the energy performance of industrial sites through benchmarking. Benchmarking of energy end-use processes was estimated to have particularly good potential to achieve energy saving potentials through identifying energy efficiency measures.

    The proposed method allows the calculation of an energy efficiency index that is based on individual energy end-using processes in an industrial site. This allows benchmarking of energy end-using processes as well as the entire industrial site. The method was tested and validated with data from Swedish small and medium-sized sawmills compiled by the Swedish Energy Agency in conjunction with the Swedish energy audit support program.

    Validation of the developed method demonstrated that the potential for energy efficiency can be identified by calculating the energy efficiency index. The method assumes that the comparison is conducted for each sector separately, particularly regarding the production processes. To strengthen the reliability of the results, the method should be tested on additional industrial sectors and further quality assurance of the data should be conducted for these sectors.

  • 23.
    Arnoldsson, Joel
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Adsorption Chillers: uptake of Ethanol on Type RD Silica gel2012Independent thesis Basic level (degree of Bachelor), 10,5 credits / 16 HE creditsStudent thesis
    Abstract [en]

    The adsorption cooling technology has the potential to replace all vapor compression based chillers in the future. So, in all over the world immense researches are going on in this field. The purpose of this report is to experimentally investigate whether ethanol could serve as a refrigerant in the technology. Compared to water it has freezing point below 0 °C (-114.1 °C) and can therefore in theory be used in refrigeration applications. The report begins with the theory regarding the adsorption cooling process, describing the cycle and parameters that affect the Coefficient of Performance (COP).In the actual experiment, adsorption between the silica gel and the ethanol vapor is studied at various pressures by maintaining isothermal conditions. An experimental apparatus (Constant Volume Variable Pressure apparatus - CVVP) was fabricated, assembled and tested for this project. After the assembly and testing, volume calibration for the apparatus was carried out as it is essential to know in further experimental calculation. All the data related with the fabrication, assembly and testing of the apparatus and the volume calibrations are presented later in this report in detail.Adsorption experiments are conducted at 301.15K, 311.15K, 321.15K and 331.15K with varying inlet pressure condition to the system and then the uptake data is calculated for each and every experiments using ideal gas equation. Subsequently, the validations of the experimental data with the standard adsorption isotherms are done. Dubinin-Astakhov is found to be the most ideal isotherm to simulate the theoretical data. Its RMSE (Root Mean Square Error) value is found to be 0.506%. It is concluded that ethanol valid option for refrigeration, but further research is needed and recommended.

  • 24.
    Assis Lana e Cruz, Igor
    Linköping University, Department of Management and Engineering, Energy Systems.
    Energy and material balances of wastewater treatment, including biogas production, at a recycled board mill2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Challenges surrounding energy have gained increased attention, which is not least reflected in the 2030 Agenda for Sustainable Development and the Sustainable Development Goals (SDGs). Energy issues have also become a pressing matter for most countries in the last decades. The reasons for this are not only related to the effects of the emission of greenhouse gases (GHG) from fossil fuels and their impact in climate change, but also span through other issues such as security of energy supply with geopolitical considerations and competitiveness of industry. To address these issues, a collection of public policies ranging from the international to local levels have been implemented.

    Sweden has historically had lower energy prices than its European counterparts, which has resulted in its industry having a relatively higher share of electricity in the total energy use by industry. The share of electricity accounts for 35% of total energy use in Swedish industry. This has led to efficiency measures being overlooked by industry, and the pulp and paper industry is by far the biggest energy user, with a share of 51% of the total energy use by industry. The variation of energy prices, and particularly electricity prices have obvious implications on the competitiveness of this sector.

    Production of biogas in pulp and paper mills has been gaining attention, and is now the target of an increasing number of scientific studies. The interest for this industry is not only related to security of energy supply and the environmental performance of the biogas itself, but there are also considerations regarding the biogas plant as an alternative to treat the large flows of wastewaters and other waste stream in this sector. There is an estimated biogas production potential of 1 TWh within this industry in Sweden, which accounts for 60% of the current biogas production in the country.

    Pulp and paper mills commonly rely on aerated biological treatment to deal with waste streams with high organic content This biological process has a high energy demand, and the integration of an anaerobic treatment, along with the use of the biogas for heat and electricity can yield a net positive energy recovery for the combined plant.

    This project analyses the current energy and material performance of an anaerobic biological treatment combined with an aerobic biological treatment in a recycled board mill. The anaerobic treatment is performed upstream of the aerobic one and removes most of the chemical oxygen demand of the wastewater.

    Energy and material balances for the plant are presented, and a comparison of the wastewater treatment plant running before and after the start-up of the biogas plant is made. The plant operation with the anaerobic digestion has shown an increased energy use of 9.4% coupled to an increased flow of wastewater of 7.7%. The average biogas production is 72 Nm³/h, which accounts for 440 kWh and is currently being flared. The introduction of AD has largely decrease the organic load in the aerobic treatment, by nearly 50%. This project ends with an optimisation model implemented with the optimisation tool reMIND to investigate potential optimisation strategies for the operation of the combined plant. The model has shown to be adequate to describe electricity use with mean error below 10%. For the biogas production, the mean error was of 16%.

  • 25.
    Backlund, Sandra
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Efficient improvement of energy efficiency in small and medium- sized Swedish firms2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This is a dissertation about efficient implementation of energy efficiency measures in small and medium-sized Swedish firms. The aim is to investigate the potential for economically efficient implementation of energy efficiency improvement measures in small and medium-sized firms. The thesis contains five papers that analyse different aspects that have been put forth in policy documents and academic debate as  methods to improve energy efficiency in non-energy intensive sectors.

    By reading policy documents, interviewing representatives of small and medium- sized firms and energy auditors as well as analysing data from the Swedish energy audit program, different aspects of energy management practices, energy services and energy audits are considered. The thesis is the product of an interdisciplinary context but economic theory is at the foundation of the analysis and has helped formulate questions and hypotheses that have been tested and explored with the data.

    The results show that while the potential for improving energy efficiency in the small and medium- sized sector in Sweden is large there are challenges to realizing it in each individual firm. There is potential for improving energy efficiency in the sector and not just for investments in new technology but also for adjusting existing machinery and changing behaviour, but costs for investigating the potential and implementing the measures are large relative to the improvement potential in each company. Energy management practices in this sector are lacking and energy services will only be demanded if reduction in production cost is estimated larger than transaction costs of the service. The Swedish energy audit program has led to the implementation of energy efficiency improvements in the participating firms but compared to other policy instruments it has been a less cost-efficient way to improve energy efficiency in Sweden.

    List of papers
    1. Extending the Energy efficiency gap
    Open this publication in new window or tab >>Extending the Energy efficiency gap
    2012 (English)In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 51, p. 392-396Article in journal (Refereed) Published
    Abstract [en]

    In order to reach the EU: s 20–20–20 primary energy savings target, energy efficiency needs to increase. Previous research on energy use and energy efficiency has focused mainly on the diffusion of energy efficient technologies. The discrepancy between optimal and actual implementation of energy efficient technologies has been illustrated in numerous articles and is often referred to as the energy efficiency gap. However, efficient technologies are not the only ways to increase energy efficiency. Empirical studies have found that a cost-effective way to improve energy efficiency is to combine investments in energy-efficient technologies with continuous energy management practices. By including energy management into an estimated energy efficiency potential this paper introduces an extended energy efficiency gap, mainly in manufacturing industries and the commercial sector. The inclusion of energy management components in future energy policy will play an important role if the energy savings targets for 2020, and later 2050, are to be met in the EU.

    Place, publisher, year, edition, pages
    Elsevier, 2012
    National Category
    Engineering and Technology Social Sciences
    Identifiers
    urn:nbn:se:liu:diva-86546 (URN)10.1016/j.enpol.2012.08.042 (DOI)000312620000042 ()
    Available from: 2012-12-18 Created: 2012-12-18 Last updated: 2017-12-06Bibliographically approved
    2. The energy service gap: What does it mean?
    Open this publication in new window or tab >>The energy service gap: What does it mean?
    2011 (English)In: ECEEE 2011 Summer Study; Energy efficiency first: The foundation of a low-carbon society: Conference proceedings, Stockholm Sweden: European Council for an Energy Efficient Economy (ECEEE), 2011, p. 649-656Conference paper, Published paper (Other academic)
    Abstract [en]

    Through the formulation of the 2020-targets, the EU has set as objective to reduce the use of primary energy with 20 % by2020. The target is supposed to be reached through increasedenergy efficiency. Despite a large potential for energy efficiency, cost effective measures are not always implemented which isexplained by market failures and barriers to energy efficiency. This difference between potential energy-efficiency and what is actually implemented, is referred to as the energy-efficiencygap.

    Energy service companies (ESCOs) have been put forth asa potential means of overcoming this gap to energy-efficiency.Well-functioning markets for ESCOs are therefore addressedas one of the key elements in the Energy Services Directive(ESD), a tool for the economy to move towards increased energy efficiency and sustainability. In other words, the developmentof the energy service market is of crucial importance if a Member State is to achieve the ambitious 2020-target.

    The aim of this article is to analyse the market for energyservices towards industrial small- and medium sized Enterprises(SMEs). Focus will be on the Swedish market, howevergeneral conclusions may be drawn from this example. A large part of the potential for energy services is not being implemented today - this is identified as the energy-service gap. The gap is explained by transaction cost economics; relatively hightransaction costs for consulting ESCOs inhibit further marketdevelopment. The ESCO market in Sweden is estimated, by the Swedish state, to still be immature but have potential forfurther development. A government report does not identify the market barriers on the energy service market as market failures. By introducing market development mechanisms (e.g.standardized contracts and an accreditation system) the state could decrease the transaction and thus the energy service gap. Reducing the energy-service gap could be a cost effective wayof reducing the energy efficiency gap and reach the 2020-target.

    Place, publisher, year, edition, pages
    Stockholm Sweden: European Council for an Energy Efficient Economy (ECEEE), 2011
    Keywords
    Energy efficiency, Energy Service, ESCO, Energy Efficiency Gap
    National Category
    Social Sciences
    Identifiers
    urn:nbn:se:liu:diva-71759 (URN)978-91-633-4455-8 (ISBN)
    Conference
    ECEEE 2011 Summer Study Energy efficiency first: The foundation of a low-carbon society, Belambra Presqu’île de Giens, France, 6–11 June 2011
    Available from: 2011-11-10 Created: 2011-11-03 Last updated: 2014-11-20Bibliographically approved
    3. Impact after three years of the Swedish energy audit program
    Open this publication in new window or tab >>Impact after three years of the Swedish energy audit program
    2015 (English)In: Energy, ISSN 0360-5442, Vol. 82, p. 54-60Article in journal (Refereed) Published
    Abstract [en]

    The Swedish energy audit program is a publicly financed program, mainly targeting small and medium-sized firms to help them finance energy audits. By examining suggested and implemented energy efficiency measures from the energy audits conducted in 241 firms in the program, the aim of this paper is to examine the energy efficiency implementation gap and the cost efficiency of the program.

    The autis show that the firms’ average annual energy efficiency improvement potential is between 860 and 1270 MWh/year which corresponds to a total energy efficiency improvement potential of between 6,980 -11,130 MWh / firm. The implementation rate of the suggested energy efficiency improvement measures in the SEAP is 53%. The program has resulted in investments in energy efficiency improvements between € 74,100- € 113,000 / firm.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-112267 (URN)10.1016/j.energy.2014.12.068 (DOI)000351788700005 ()
    Available from: 2014-11-20 Created: 2014-11-20 Last updated: 2015-05-20Bibliographically approved
    4. Estimations of energy efficiency management potential in small and medium sized firms
    Open this publication in new window or tab >>Estimations of energy efficiency management potential in small and medium sized firms
    2014 (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Energy management; information and knowledge gained by continuous work and attention to energy use can help discover inefficiencies, malfunctioning equipment and assess the performance and operation. This paper investigates how small and medium sized firms and energy auditors estimate energy efficiency potentials from energy management measures by studying the firms that have participated in the Swedish energy audit program. The largest potential for energy efficiency improvements in the energy audit reports is found in generic technologies and support processes, i.e. cross cutting technologies mainly in ventilation, space heating and lighting. Out of the suggested measures investments in new technology accounts for 48% of the estimated potential, and adjustments of existing technology for 27%. Behavioural changes in the energy audit reports accounts for a vanishingly small percentage of total suggested energy efficiency measures in the energy audit reports. Firms participating in the study estimate a higher potential for energy efficiency from behavioural changes than the energy auditors, as high as a quarter of the total potential. Implementation rates of suggested measures from the energy audit program rates are higher in the behavioural category. Despite this, the study shows that energy management practices at the firms are lacking. Energy auditors argue that energy management has low priority in firms because firm’s main focus on core business.

    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-112268 (URN)
    Available from: 2014-11-20 Created: 2014-11-20 Last updated: 2015-01-30Bibliographically approved
    5. Energy service collaborations—it is a question of trust
    Open this publication in new window or tab >>Energy service collaborations—it is a question of trust
    2013 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 6, no 3, p. 511-521Article in journal (Refereed) Published
    Abstract [en]

    Energy services have been highlighted both in European Union directives and in academic literature as an important tool to increase energy efficiency. Performance-based energy services, i.e., outsourcing energy management in performance-based remuneration contracts, is said to overcome many of the barriers that have been used to explain the energy efficiency gap. Energy service companies (ESCOs) help organizations to implement energy-efficient solutions in order to reduce energy costs. By combining science and technology studies (STS) analysis and economics in an interview study of firms, the paper contributes insights on the relational nature of energy service collaborations. The objective of the study is to describe how knowledge and incentives affect trust between partners in performance-remunerated energy service collaborations. Performance-based remuneration is one aspect that makes energy service contracts complex. On the one hand, risk is recognized as an important barrier to energy efficiency. Since remuneration to ESCOs is based on energy savings, they also share the financial and technical project risk with their clients. On the other hand, performance-based remuneration can create a lack of trust. Performance is measured in calculations made by the ESCO, calculations that demand expertise that client firms do not possess. ESCOs are consulted for their knowledge on energy efficiency and therefore an imbalance of knowledge is in the nature of energy service collaborations. The paper concludes that if the initial doubt is overcome, long-term collaborations can be advantageous for both parties, since this builds trust and generates long-term profits.

    Place, publisher, year, edition, pages
    Springer Netherlands, 2013
    Keywords
    ESCO, Energy services, Barriers to energy efficiency, Energy efficiency, Trust
    National Category
    Economics Social Sciences Interdisciplinary
    Identifiers
    urn:nbn:se:liu:diva-87148 (URN)10.1007/s12053-012-9189-z (DOI)000321437000006 ()
    Available from: 2013-01-10 Created: 2013-01-10 Last updated: 2018-01-11
  • 26.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Broberg, Sarah
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Ottosson, Mikael
    Linköping University, Department of Management and Engineering, Business Administration. Linköping University, Faculty of Arts and Sciences.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energy efficiency potentials and energy management practices in Swedish firms2012In: : European Council for an Energy Efficient Economy – now introduces a new series of events, focusing on, Papendal Hotel and Conference Centre, Arnhem, The Netherlands 11–14 September 2012, 2012Conference paper (Other academic)
    Abstract [en]

    In order to improve energy efficiency and reach the EU:s 20-20-20 primary energy saving target, focus has mainly been on diffusion of technology. Previous studies have illustrated large untapped energy saving potentials from implementing energy management practices in firms. Energy management practices have large effects on energy utilization and also a short pay-back time. According to these studies, energy management practices also effect investment decisions and the outcome of investments in energy efficient technologies. This paper investigates to what extent energy management practices influence firms estimation of energy efficiency potentials. Further it investigates two Swedish policy programs that promote industrial energy management practices: The Programme For improving Energy efficiency in energy-intensive industry (PFE) and the energy audit program and whether these have increased energy management practices in Swedish firms. A multiple case study has been conducted in order to investigate energy practices in firms in different industrial sectors. Employment of energy management varies between firms. The firms estimate equal energy efficiency potentials from implementation of energy efficient technology as for energy management practices. In total the firms estimate energy efficiency potentials of 12 %. The study shows that firms that have participated in the programs work more actively with energy management. This can be illustrated by the fact that 75 % of the firms that have not participated in any of the programs lack a person responsible for energy management and 50 % also lack a long term energy strategy. For firms that have participated in the programs the corresponding figures are 30 % and 33 %. The results indicate an untapped potential of energy efficiency measures that could be reached through increased energy management in Swedish industries.

  • 27.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Eidenskog, Maria
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Energy service collaborations—it is a question of trust2013In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 6, no 3, p. 511-521Article in journal (Refereed)
    Abstract [en]

    Energy services have been highlighted both in European Union directives and in academic literature as an important tool to increase energy efficiency. Performance-based energy services, i.e., outsourcing energy management in performance-based remuneration contracts, is said to overcome many of the barriers that have been used to explain the energy efficiency gap. Energy service companies (ESCOs) help organizations to implement energy-efficient solutions in order to reduce energy costs. By combining science and technology studies (STS) analysis and economics in an interview study of firms, the paper contributes insights on the relational nature of energy service collaborations. The objective of the study is to describe how knowledge and incentives affect trust between partners in performance-remunerated energy service collaborations. Performance-based remuneration is one aspect that makes energy service contracts complex. On the one hand, risk is recognized as an important barrier to energy efficiency. Since remuneration to ESCOs is based on energy savings, they also share the financial and technical project risk with their clients. On the other hand, performance-based remuneration can create a lack of trust. Performance is measured in calculations made by the ESCO, calculations that demand expertise that client firms do not possess. ESCOs are consulted for their knowledge on energy efficiency and therefore an imbalance of knowledge is in the nature of energy service collaborations. The paper concludes that if the initial doubt is overcome, long-term collaborations can be advantageous for both parties, since this builds trust and generates long-term profits.

  • 28.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Eidenskog, Maria
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Energy services in Swedish industrial firms: A multidisciplinary analysis of an emerging market2011Report (Other academic)
    Abstract [en]

    The European commission highlight the energy service market as an important means to improve energy efficiency. Both the Energy service directive and the new suggested Energy Efficiency Directive urge member states to facilitate market development for energy services. The industrial sector is estimated to have large energy efficiency potential. The aim of this multidisciplinary report is to investigate the state of the Swedish energy service market 2011, both from the supply side and from the industrial demand side in order to contribute with knowledge to the discussion of energy services as a way to improve industrial energy efficiency. Economic market theory and Socio-technical theory (the theory of economization presented by Caliskan and Callon) is used to analyse different aspects of the emerging market. The results show that the market for industrial energy services in Sweden is more extensive than previous reports have assessed. Our study describes how energy service collaborations can be complex and how calculations and measurements of expected energy savings lead to controversies and power imbalances.

  • 29.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Estimations of energy efficiency management potential in small and medium sized firms2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Energy management; information and knowledge gained by continuous work and attention to energy use can help discover inefficiencies, malfunctioning equipment and assess the performance and operation. This paper investigates how small and medium sized firms and energy auditors estimate energy efficiency potentials from energy management measures by studying the firms that have participated in the Swedish energy audit program. The largest potential for energy efficiency improvements in the energy audit reports is found in generic technologies and support processes, i.e. cross cutting technologies mainly in ventilation, space heating and lighting. Out of the suggested measures investments in new technology accounts for 48% of the estimated potential, and adjustments of existing technology for 27%. Behavioural changes in the energy audit reports accounts for a vanishingly small percentage of total suggested energy efficiency measures in the energy audit reports. Firms participating in the study estimate a higher potential for energy efficiency from behavioural changes than the energy auditors, as high as a quarter of the total potential. Implementation rates of suggested measures from the energy audit program rates are higher in the behavioural category. Despite this, the study shows that energy management practices at the firms are lacking. Energy auditors argue that energy management has low priority in firms because firm’s main focus on core business.

  • 30.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Impact after three years of the Swedish energy audit program2015In: Energy, ISSN 0360-5442, Vol. 82, p. 54-60Article in journal (Refereed)
    Abstract [en]

    The Swedish energy audit program is a publicly financed program, mainly targeting small and medium-sized firms to help them finance energy audits. By examining suggested and implemented energy efficiency measures from the energy audits conducted in 241 firms in the program, the aim of this paper is to examine the energy efficiency implementation gap and the cost efficiency of the program.

    The autis show that the firms’ average annual energy efficiency improvement potential is between 860 and 1270 MWh/year which corresponds to a total energy efficiency improvement potential of between 6,980 -11,130 MWh / firm. The implementation rate of the suggested energy efficiency improvement measures in the SEAP is 53%. The program has resulted in investments in energy efficiency improvements between € 74,100- € 113,000 / firm.

  • 31.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    The energy service gap: What does it mean?2011In: ECEEE 2011 Summer Study; Energy efficiency first: The foundation of a low-carbon society: Conference proceedings, Stockholm Sweden: European Council for an Energy Efficient Economy (ECEEE), 2011, p. 649-656Conference paper (Other academic)
    Abstract [en]

    Through the formulation of the 2020-targets, the EU has set as objective to reduce the use of primary energy with 20 % by2020. The target is supposed to be reached through increasedenergy efficiency. Despite a large potential for energy efficiency, cost effective measures are not always implemented which isexplained by market failures and barriers to energy efficiency. This difference between potential energy-efficiency and what is actually implemented, is referred to as the energy-efficiencygap.

    Energy service companies (ESCOs) have been put forth asa potential means of overcoming this gap to energy-efficiency.Well-functioning markets for ESCOs are therefore addressedas one of the key elements in the Energy Services Directive(ESD), a tool for the economy to move towards increased energy efficiency and sustainability. In other words, the developmentof the energy service market is of crucial importance if a Member State is to achieve the ambitious 2020-target.

    The aim of this article is to analyse the market for energyservices towards industrial small- and medium sized Enterprises(SMEs). Focus will be on the Swedish market, howevergeneral conclusions may be drawn from this example. A large part of the potential for energy services is not being implemented today - this is identified as the energy-service gap. The gap is explained by transaction cost economics; relatively hightransaction costs for consulting ESCOs inhibit further marketdevelopment. The ESCO market in Sweden is estimated, by the Swedish state, to still be immature but have potential forfurther development. A government report does not identify the market barriers on the energy service market as market failures. By introducing market development mechanisms (e.g.standardized contracts and an accreditation system) the state could decrease the transaction and thus the energy service gap. Reducing the energy-service gap could be a cost effective wayof reducing the energy efficiency gap and reach the 2020-target.

  • 32.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Ottosson, Mikael
    Linköping University, Department of Management and Engineering, Business Administration. Linköping University, Faculty of Arts and Sciences.
    Palm, Jenny
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Extending the Energy efficiency gap2012In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 51, p. 392-396Article in journal (Refereed)
    Abstract [en]

    In order to reach the EU: s 20–20–20 primary energy savings target, energy efficiency needs to increase. Previous research on energy use and energy efficiency has focused mainly on the diffusion of energy efficient technologies. The discrepancy between optimal and actual implementation of energy efficient technologies has been illustrated in numerous articles and is often referred to as the energy efficiency gap. However, efficient technologies are not the only ways to increase energy efficiency. Empirical studies have found that a cost-effective way to improve energy efficiency is to combine investments in energy-efficient technologies with continuous energy management practices. By including energy management into an estimated energy efficiency potential this paper introduces an extended energy efficiency gap, mainly in manufacturing industries and the commercial sector. The inclusion of energy management components in future energy policy will play an important role if the energy savings targets for 2020, and later 2050, are to be met in the EU.

  • 33.
    Backlund, Sandra
    et al.
    Naturvårdsverket, Sweden.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Paramonova, Svetlana
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Rohdin, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    A regional method for increased resource-efficiency in industrial energy systems2014In: eceee Industrial Summer Study Proceedings, 2014Conference paper (Refereed)
    Abstract [en]

    The impact of global climate change as a result of greenhouse gas emissions (GHG), primarily from the use of fossil fuels, is demanding actions from all sectors of society. The industry sector is one of the world’s largest energy using sectors and GHG emitters. Improved energy efficiency in industry is one of the foremost means of improving energy efficiency and reducing GHG emissions. Research shows that despite large untapped potentials for improved energy efficiency in industry, cost-efficient energy efficiency measures are not always implemented, explained by the existence of barriers to energy efficiency, e.g. information imperfections and asymmetries. Moreover, research shows that a major energy efficiency potential lies in the energy system and the way it is governed. For regional governments, the industrial energy use is difficult to affect as they only have indirect power to influence the decisions in those organizations. This underlies the importance of developing methods on how a region can support and effectively contribute to energy efficiency improvements in the local industry. So far, methods are limited related to regional governance of industrial energy systems. The aim of this paper is to present a structured methodology for improved regional resource efficiency in the local industry from a regional perspective, inspired by the Triple Helix Model. Results display the county administrative board of administration’s current method how to target industry, and ends with a proposal for how the methods could be improved.

  • 34.
    Bengtsson, C
    et al.
    Chalmers.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Co-operation of the MIND-method and the Pinch Technology: Energy Efficient Pre-evaporation of Bleach Plant Filtrate Using Waste Heat1999Book (Other academic)
    Abstract [en]

    In order to decrease the environmental impacts caused by the pulp- and paper industry it is nowadays more or less common to perform a closure of the mill. The closure of the bleach plant will result in a minimal intake of fresh water and thereby the effluent will be contaminated to a greater extent. The bleach plant filtrate can be mixed with the black liquor and combusted in the soda recovery boilers. The necessity of pre-evaporating the bleach plant filtrate will thereby arise. In this study some alternatives have been investigated how to process integrate a pre-evaporation plant. Three alternatives have been investigated where the pre-evaporation can be fulfilled by using live steam only or live steam combined with waste heat. It can also be achieved by using a mechanical vapour recompression unit, which uses low temperature waste heat to accomplish the pre-evaporation.

     

    Due to the complexity of the mill two different methods have been used to evaluate the alternatives for pre-evaporation. The pinch-method is used on a lower aggregation level where the different components for pre-evaporation is considered, while the MIND-method is used on the higher aggregation level to take into account the whole mill.

     

    Two different scenarios have been studied, one with the existing electricity prices and one with an increase of the electricity prices with 50%. In both scenarios it is shown preferable to use the live steam/waste heat alternative compared to the ”worst case”, using mere live steam. The investment costs for the live steam/waste heat case will imply that the payback period will be approximately 3.5 years. The mechanical vapour recompression alternative is shown profitable with the existing electricity prices, compared to the live steam case. But due to the high investment costs it gives an unacceptable payback period. When the electricity price is increased by 50% it shows not profitable. In case of an increase of the fuel prices the mechanical vapour recompression alternative will be more profitable due to the usage of less fuel compared to the other cases.

  • 35.
    Bengtsson, Cecilia
    et al.
    Department of Heat and Power Technology, Chalmers University of Technology, Göteborg, Sweden.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Berntsson, Thore
    Department of Heat and Power Technology, Chalmers University of Technology, Göteborg, Sweden.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Co-ordination of pinch technology and the MIND method: applied to a Swedish board mill2002In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 22, no 2, p. 133-144Article in journal (Refereed)
    Abstract [en]

    By combining the pinch technology and the MIND method, it is possible to identify beneficial and energy-efficient measures in a complex industrial energy system. By tackling a problem on the two different aggregation levels, the result is thoroughly evaluated and durable measures are achieved. The strength of the combination of methods is elucidated in a case study where a Scandinavian pulp and paper mill is analysed. The studied problem concerns pre-evaporation of effluents in a board mill using excess heat. Different alternatives are evaluated, taking into account economic, technical and practicable constraints. The results show that it is cost-effective to pre-evaporate the effluent using excess heat in the studied mill.

  • 36.
    Bengtsson, Cecilia
    et al.
    Department of Heat and Power Technology, Chalmers University of Technology, Gothenburg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Berntsson, Thore
    Department of Heat and Power Technology, Chalmers University of Technology, Gothenburg.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Cost-efficient CO2-reduction in the pulp and paper industry: a case study2002In: International Conference on Sustainable Energy Technologies, 2002, Porto, Portugal: FEUP , 2002, p. EES58-Conference paper (Refereed)
    Abstract [en]

    It is generally accepted that human activities have a large influence on global climate. In order to minimize human impact on global warming, regulations and agreements may be introduced for all CO2‑generating sectors. Therefore, measures to reduce CO2-emissions will be of importance to the industrial sector. Strategic decisions and long-term thinking are needed to comply with the regulations and to fulfil the agreements.

    The pulp and paper industry is an energy intensive sector with relatively large potentials to accomplish energy efficiency measures that result in reduction of CO2-emissions. To settle the cost-effectiveness for each measure a number of system parameters have to be considered, such as investment costs, boundary conditions and reference systems.

    This paper presents two methods, pinch technology and the MIND method. These methods are used for analysis of industrial energy systems considering different parameters and aspects. Pinch technology is used for thermodynamic and economic evaluation of process integration possibilities and the MIND method is used for strategic evaluation of different energy efficiency measures. Foundation for long-term decision-making can be obtained by co-ordinating the results from the two methods. In this paper, cost-effectiveness has been determined for different energy efficiency measures. The measures are non-conventional evaporation and heat pumping. The case studied is from a Swedish board mill. Economic potentials and consequences for these CO2-reducing measures are discussed from both an industrial and a societal perspective.

  • 37.
    Bergdahl, Gustav
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Olevik, Jonas
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    En algoritm för automatisk feldetektering och diagnos av ett luftbehandlingsaggregat2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    Större byggnader innehåller en mängd installationsteknik för att hålla inneklimatet behagligt. Dessa tekniska system övervakas automatiskt för att större fel och driftavvikelser ska identifieras. Att gå ett steg längre och analysera dessa system på daglig basis är något som kräver både tid och resurser. Det pågår forskning kring att automatisera denna analys, vilken ryms inom den akademiska termen Fault Detection and Diagnosis (FDD). Denna masteruppsats tar avstamp i detta forskningsområde med ambitionen att utveckla en algoritm som automatiskt analyserar ett luftbehandlingsaggregat av FTX-typ för ökad energiprestanda.

     

    Utgångspunkten för algoritmen var att använda de befintliga mät- och styrsignalerna som visas i en driftbild i övervakningssystemet. En litteraturstudie genomfördes för att identifiera möjliga metodval där den kvalitativa metoden expertsystem valdes. I denna tillämpning av expertsystem skapades ett regelverk som detekterar avvikelser från ett förmodat normalfall, sedan analyseras möjliga rotorsaker till avvikelserna genom trädsökning varpå diagnoser kan utfärdas.

     

    För att bedöma hur väl algoritmen fungerade gjordes en fallstudie på delar av universitetssjukhuset i Linköping, där algoritmen testkördes på 8 luftbehandlingsaggregat. Resultatet visade att utfärdade diagnoser är fullt rimliga men för många till antalet, då varje uppmärksammad avvikelse ofta genererar likvärdiga diagnoser. Precisionen bedömdes till 75 % baserat på testningens resultat och begränsas framförallt av antalet tillgängliga sensorer och mätnoggrannhet. En nyckelegenskap för algoritmen är att kvantifiera de uppmärksammade fel som bidrar till en ökad energianvändning. Exempelvis visade resultatet att 6 % av inköpt värme kan ersättas om tilluftsverkningsgraden ökas till 75 %. Här behöver dock hänsyn tas till att beräkningen bakom tilluftsverkningsgraden, som baseras på data från tillgängliga sensorer, dras med en mängd osäkerheter.

     

    Utöver befintliga temperatursensorer undersöktes om ytterligare mätpunkter kunde motiveras för utökad feldetektering och diagnos. En tes var att mindre ventilläckage går att upptäcka genom mätning, vilket inte kunde styrkas. Vidare framkom vikten av att veta temperaturen på uteluften som kommer aggregatet tillhanda, och inte fasad- eller taktemperaturen, för att i efterhand kunna avgöra om systemet körts på ett effektivt sätt.

     

    Fortsatt arbete kan sammanfattas i att minska manuell datahantering och förbättra diagnosmodulen genom att dels införa fel på ett luftbehandlingsaggregat under kontrollerade former, dels genom förfinandet av det grafiska gränssnittet där algoritmens resultat presenteras. 

  • 38.
    Bjurman, Therese
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Department of Management and Engineering.
    Waste from glued wood - A base for new products and/or bio-fuel?2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

     

    The Swedwood Company is a supplier to IKEA of wood furniture. They have grown larger concurrently with IKEA and at present they have 47 production units spread over twelve countries of which most are located in Eastern Europe.

    One of the factories is Zbaszynek which is located in Poland. They manufacture so called board-on-frame furniture. A board-on-frame is basically made out of particle board frames which are filled with special design paper that enfolds air. The frames are then covered with their skin; thinner particle boards, so called High Density Fibre (HDF) boards, and then edge banded with plastic stripes and painted and lacquered into desired design.

    This production generates not only furniture, last financial year Zbaszynek generated about 61 000 tons wood waste too. It can be compared to their total production of furniture which reached 439 000 tons during the same period of time. This generation of wood waste has caused a problem for Swedwood in general. A project called IKEA Goes Renewable (IGR) has started within IKEA with the aim to reduce the electric- and heat energy consumption and increase the use of renewable energy sources. But to be able to reduce the heat energy at a board-on-frame factory, such as Zbaszynek, there has to be an economic incentive to do so. But the wood waste is contaminated in comparison with waste from pure wood (free from adhesives, plastics etc.) so purchasers have been hard to find. And since the wood waste is used to generate the heat at the factories, the economic value has become relative low. Zbaszynek earn 1.4 €/MWh for their wood waste at present (energy value of 5.1 MWh/ton), while for example recycled contaminated wood chippings (RT-chippings) are worth about 7.3 €/MWh in Sweden (energy value of 4.4-5.1 MWh/ton). RT-chippings in Sweden are even allowed to contain more contaminations to receive that price, as long as it is not pressure creosoted. 1.4 €/MWh can also be compared to the economic value of coal which is about 13.7 €/MWh, and for district heating to households in Sweden was the average price about 68 €/MWh during 2007 (Energimarknadsinspektionen, 2007).Therefore, the main task of this thesis has been to investigate if there are any possible solutions to increase the economic value of the wood waste in Zbaszynek. There are more board-on-frame factories within Swedwood with the same problem, but Zbaszynek has been the pilot factory during this research.

    The first thing which should be considered in Zbaszynek is to keep the amount of waste as low as possible. The main task should be to reduce the amounts of wood waste; in the end it is a furniture factory and not a waste producer, which should be concerned before taking any further action. It is assumed though that this has already been thought through in Zbaszynek and further investigation of the waste has taken place.The wood waste has been sent to the Eurofins laboratory in Sweden for an analysis and the test results were then compared to wood waste of pure wood. The comparison indicates the nitrogen content being the main difference between Zbaszynek's wood waste and pure wood. Nitrogen compounds, often referred to as NOx can cause severe damage to the environment and foremost lead to increased eutrophication (= Eutrofizacja (Polish) / Övergödning (Swedish)) when it is emitted to the air. Apart from the nitrogen contamination, other significant differences have not been found. The energy content of the wood waste has even revealed it would suit well as bio-fuel, on the condition that proper equipment to reduce the NOx emissions is present. It has been calculated that the energy content, of the generated wood waste in Zbaszynek during Financial Year 2008, reached 310 GWh. Which can be compared to the electricity consumption of 78 GWh as was bought during the same time of period.

    Four main possibilities have been investigated in this report and they are:

    • - Selling the waste to cement producers as alternative fuel

    • - Make new products and use for furniture production again

    • - Make briquettes or pellets and sell as fuel

    • - Start up a Combined Heat and Power plant and produce electricity

    All these alternatives have their advantages and disadvantages but they all seem to be realistic solutions, on a few conditions.

  • 39.
    Björkman, Thomas
    et al.
    Energimyndigheten, Sweden.
    Cooremans, Catherine
    University of Geneva, Switzerland.
    Nehler, Therese
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy Management: a driver to sustainable behavioural change in companies2016In: eceee Industrial Summer Study proceedings – Industrial Efficiency 2016: Going beyond energy efficiency to deliver savings, competitiveness and a circular economy, 2016Conference paper (Refereed)
    Abstract [en]

    Improved industrial energy efficiency is a cornerstone in mitigating climate change. One of the foremost means to improve energy efficiency in industry is energy management. A pioneer European policy program including energy management system components was the Swedish PFE, a voluntary long-term agreement programme for improving energy efficiency in energy-intensive industries, which was under operation from 2004 to 2014.The aim of this paper is to analyse the results of the 2004-2014 PFE using an interdisciplinary approach combining experience from this program with academic concepts in the field of change management and investment decision-making. Results show how academic conceptual frameworks in the field of change management and investment behaviour in industry can explain PFE results and, more generally, support improved policy evaluation further explaining voluntary agreement programs such as the PFE. Finally, we formulate future research suggestions to improve industrial energy policy conception and evaluation.

  • 40.
    Blomqvist, Eva
    et al.
    Linköping University, Department of Computer and Information Science, Human-Centered systems. Linköping University, Faculty of Arts and Sciences.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    An integrated dataset of energy efficiency measures published as linked open data2015In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 6, p. 1125-1147Article in journal (Refereed)
    Abstract [en]

    Despite an extensive energy efficiency potential, measures are sometimes not adopted due to barriers, such as lack of information. An integrated database of available energy efficiency measures, which has not existed previously, is one step towards overcoming such barriers. To address this, we present a dataset (i.e., data-base) integrating energy efficiency data from Sweden (from the Swedish Energy Agency) and the USA (from the Department of Energys Industrial Assessment Centers), and publishing the data on the Web, using standardized Web languages and following the principles and best practices of so-called linked data. Additionally, several demonstration interfaces to access the data are provided, in order to show the potential of the result. These are entirely novel results, since this is the first dataset we are aware of that publishes this type of data using linked data principles and standards, thus integrating data from entirely different sources making them jointly searchable and reusable. Our results show that such data integration is possible, and that the integrated dataset has several benefits for different categories of users, e.g., supporting industry and energy efficiency auditors in overcoming the information barrier for investment in energy efficiency measures, and supporting application developers to more easily integrate such data into support tools for energy efficiency assessment.

  • 41.
    Borén, Sven
    et al.
    Department of Strategic Sustainable Development, Blekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Nurhadi, Lisiana
    Department of Strategic Sustainable Development, Blekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Ny, Henrik
    Department of Strategic Sustainable Development, Blekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Robért, Karl-Henrik
    Department of Strategic Sustainable Development, Blekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Broman, Göran
    Department of Strategic Sustainable Development, Blekinge Institute of Technology, 37179 Karlskrona, Sweden.
    Trygg, Louise
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    A strategic approach to sustainable transport system development – part 2: the case of a vision for electric vehicle systems in southeast Sweden2017In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 140, p. 62-71Article in journal (Refereed)
    Abstract [en]

    Electric vehicles seem to offer a great potential for sustainable transport development. The Swedish pioneer project GreenCharge Southeast is designed as a cooperative action research approach that aims to explore a roadmap for a fossil-free transport system by 2030 with a focus on electric vehicles. In the first paper of this tandem publication, the authors propose a new generic process model embedding the Framework of Strategic Sustainable Development. The purpose of applying it in an action-research mode as described in this paper was twofold: (i) to develop a vision for sustainable regional transport and a coarse roadmap towards that vision, and, while doing so, (ii) get additional empirical experiences to inform the development of the new generic process model. Experts from many sectors and organizations involved in the GreenCharge project provided vital information and reviewed all planning perspectives presented in Paper 1 in two sequential multi-stakeholder seminars. The results include a sustainable vision for electric vehicle systems in southeast Sweden within a sustainable regional transport system within a sustainable global society, as well as an initial development plan towards such a vision for the transport sector. The vision is framed by the universal sustainability principles, and the development plan is informed by the strategic guidelines, of the above-mentioned framework. Among other things, the vision and plan imply a shift to renewable energy and a more optimized use of areas and thus a new type of spatial planning. For example, the vision and plan implies a lower built-in demand for transport, more integrated traffic modes, and more multi-functional use of areas for energy and transport infrastructures, for example. Some inherent benefits of electric vehicles are highlighted in the vision and plan, including near-zero local emissions and flexibility as regards primary energy sources. The vision and plan also imply improved governance for more effective cross-sector collaboration to ensure coordinated development within the transport sector and between the transportation sector and other relevant sectors. Meanwhile, the new generic process model was refined and is ready to be applied and further tested in the GreenCharge project and in other projects within the transport sector as well as other sectors. The study confirmed that the new generic process model suggested in support of sustainable transport system and community development is helpful for giving diverse stakeholders, with various specialties and perspectives, a way of working that is goal-oriented and builds on effective, iterative learning loops and co-creation.

  • 42.
    Bringner, Martin
    Linköping University, Department of Management and Engineering, Energy Systems.
    Energianalys av Lavalverkstaden: Siemens Industrial Turbomachinery2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In recent years the Swedish electricity price has risen sharply, which resulted in significantly higher energy costs for the companies. Siemens Industrial Turbomachinery in Finspång is one of those companies and for a long time they have seen how the energy usage is increasing every year, mainly due to an increased production. Therefore the company wants to investigate the energy usage and make an energy analysis of Laval workshop, the biggest production plant of the company.

     

    The energy analysis is fundamentally based on measurements to get an overview of the energy usage of the plant. By dividing those in support and production processes, possibilities to energy efficiency measures have been identified and the savings potential quantified. The investment cost is quantified for the two largest investments, in other energy efficiency measures only the saving is taken into account.

     

    The conclusion is that there are great possibilities to increase energy efficiency. A change of general illumination and a new air compressor calls for the greatest investments but also provides the greatest savings. LCC-analysis shows in both cases high profitability and investments are payed back within four and six years respectively. Moreover, a conversion, reduced lighting and idling losses is suggested. Due to the proposed actions, savings of totally 1.6 million SEK a year can be made by reducing

     

    • 1537 MWh (-13 %) of electricity
    • 733 MWh (-15 %) of district heating
    • 261 MWh (-12 %) of district cooling

     

    In addition to the energy efficiency measures that can be concretized there is a great potential to reduce the energy use also in longer term by focusing more of energy use in daily work. By adding routines when purchasing, energy efficient equipment can be promoted and energy use will be reduced even more.

  • 43.
    Broberg, Nicklas
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Kartläggning och utvärdering av svenska energinätverk: Företagsnätverk och samarbeten inriktade på energi2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The industrial energy use causes carbon emissions that contribute to climate change. Simultaneously within EU and Sweden a competitive industry is pursued. In the aim to achieve both aspects energy efficiency and a reduced energy use is advocated for companies. Although energy efficiency often is cost-effective there exists an energy efficiency gap where cost-effective measures remain unimplemented for different reasons. Energy efficiency networks can in this case be a potential approach for increasing the degree of implementation, resulting in energy efficiency and company development. Financial support is already given from EU and Sweden that could lead to energy efficiency networks, for both small and medium-sized enterprises as well as for large enterprises.

    There exist numerous projects variations in energy efficiency networks with different structures and designs. The knowledge of these networks aimed towards energy efficiency and energy use is very limited. The aim of this work is therefore to identify Swedish energy efficiency networks in order to determine whether they work well by evaluating them from a public perspective.

    To identify energy efficiency networks documents where collected and interviews were held in which random selection was allowed in the form of snowball method. An underlying study has previously been carried out in which a number of networks was identified, which are integrated as a part of the work identification. Overall, this resulted in the identification of 35 different networks projects, which may consist of a single network, multiple networks or stages of a single network. The identified energy networks are divided by larger networks and other networks that have been split into four general networks forms cluster, industrial districts, regional strategic networks and strategic networks as well as alternative network forms for the networks that could not be associated.

    An evaluation has been performed on the underlying policy instrument “Application for financial support to information, education and collaborative projects 2013-2014” which stated that the support allows a wide range of energy efficiency networks and cannot be seen as a particular ruling in the design and implementation of an energy efficiency network. Furthermore it is recommended that a separation is made for collaborative projects in the form of energy efficiency networks in the support system since it would likely lead to more target and specific energy efficiency networks with clearer objectives and follow up. This would still allow a very large variety of network constructions.

    Energy efficiency networks with an efficient information and knowledge sharing has the potential to make enterprises more innovative. However, energy efficiency networks without an initial public financing does not seem to be initialized spontaneously in Sweden. Letters of intent or agreements in the strategic networks are believed to lead into reports with concrete results unlike for the regional strategic networks with no agreements.

    For the larger energy efficiency networks there is a point with being branch-specific because their energy use is more complex to audit. The other energy efficiency networks should instead find interested participants primarily. In combination with this, the participants should have the opportunity to meet and later on branch adapt if possible. This is because several network projects have stated problems with network formation that affects the projects. Furthermore, it appears that the creation of an efficient energy efficiency network sometimes is a maturation process in which several underlying projects can be a reason for an identified network project.

    Finally, we need further research on how the participating enterprises see energy efficiency networks as a supporting and developmental instrument.

  • 44.
    Broberg, Sarah
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energy efficiency through industrial excess heat recovery-policy impacts2015In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 1, p. 19-35Article in journal (Refereed)
    Abstract [en]

    The EU target on energy efficiency implies a 20 % reduction in the use of primary energy by implementation of energy efficiency measures. Not all potential cost-effective measures for improved energy efficiency are implemented. This energy efficiency gap is explained by market barriers. Policy instruments can be used to overcome these barriers. The target could, for example, be obtained through industrial excess heat recovery; but there is a knowledge gap on factors affecting excess heat utilization. In this study, interviews were carried out with energy managers in order to study excess heat utilization from industrys perspective. The study seeks to present how excess heat recovery can be promoted or discouraged through policy instruments, and several factors are raised in the paper. The interviews revealed that excess heat recovery is generally referred to in terms of heat deliveries to the district heating network. One may need to look for innovative recovery solutions, and policies are needed to bring these solutions into action. Due to inefficient conversion for heat-driven electricity generation, a system favoring this implementation could favor an inefficient system. Beyond external instruments, internal goals, visions, and the importance of energy as a priority were shown to be important in the work with improved energy management.

  • 45.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Andersson, Vikor
    Institutionen för energi och miljö, Värmeteknik och maskinlära, Chalmers tekniska högskola.
    Hackl, Roman
    Institutionen för energi och miljö, Värmeteknik och maskinlära, Chalmers tekniska högskola.
    Integrated Algae Cultivation for Biofuels Production in Industrial Clusters2011Report (Other academic)
    Abstract [en]

    Declining fossil resources and the issue of climate change caused by anthropogenic emissions of greenhouse gases make global action towards a more sustainable society inevitable. The EU decided in 2007 that 20 % of the union´s energy use should origin from renewable resources by the year 2020. One way of achieving this goal is to increase the utilisation of biofuels.

    Today 2nd generation biofuels are being developed. They are seen as a more sustainable solution than 1st generation biofuels since they have a higher area efficiency (more fuel produced per area) and the biomass can be cultivated at land which is not suitable for food crops. One of these 2nd generation biofuels are fuels derived from microalgae.

    In this study a thorough literature survey has been conducted in order to assess the State-of-the-Art in algae biofuels production. The literature review showed the importance of a supplementary function in conjunction with algae cultivation and therefore algae cultivation for municipal wastewater treatment and capturing CO2 emissions from industry was included in the study. It was assumed that all the wastewater of the city of Gothenburg, Sweden, was treated by algae cultivation.

    A computer model of the whole production process has been developed, covering; algae cultivation in conjunction with wastewater treatment, algae harvesting and biofuels production. Two different cases are modelled; a first case including combined biodiesel and biogas production, and a second case investigating only biogas production. Both cases have been evaluated in terms of product outputs, CO2 emissions savings and compared to each other in an economic sense.

    Utilising the nutrients in the wastewater of Gothenburg it is possible to cultivate 29 ktalgae/year. In the biogas case it is possible to produce 205 GWhbiogas/year. The biogas/biodiesel case showed a production potential of 63 GWhbiodiesel/year and 182 GWhbiogas/year. There is a deficit of carbon in the wastewater, hence CO2 is injected as flue gases from industrial sources. The biodiesel/biogas case showed an industrial CO2 sequestration capacity of 24 ktCO2/year while in the biogas case 22.6 ktCO2/year, could be captured. Estimating the total CO2 emissions savings showed 46 ktCO2/year in the biodiesel/biogas case and 38 ktCO2/year for the biogas case. The importance of including wastewater treatment in the process was confirmed, as it contributes with 13.7 ktCO2/year to the total CO2 emissions savings.

    Economic comparison of the two cases showed that biodiesel in conjunction with biogas production is advantageous compared to only biogas production. This is mainly due to the higher overall fuel yield and the high willingness to pay for biodiesel. The total incomes from biodiesel/biogas sales were calculated to 221 million SEK/year and 193 million SEK/year for biogas. It was found that the higher incomes from biodiesel/biogas sales repay the increased investment for the biodiesel process in approximately 3 years.

  • 46.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Backlund, Sandra
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Industrial excess heat deliveries to Swedish district heating networks: drop it like it's hot2012In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 51, p. 332-339Article in journal (Refereed)
    Abstract [en]

    Using industrial excess heat in District Heating (DH) networks reduces the need for primary energy and is considered efficient resource use. The conditions of Swedish DH markets are under political discussion in the Third Party Access (TPA) proposal, which would facilitate the delivery of firms' industrial excess heat to DH networks. This paper estimates and discusses the untapped potential for excess heat deliveries to DH networks and considers whether the realization of this potential would be affected by altered DH market conditions. The results identify untapped potential for industrial excess heat deliveries, and calculations based on estimated investment costs and revenues indicate that realizing the TPA proposal could enable profitable excess heat investments.

  • 47.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems.
    SYSTEMS ANALYSIS AND CO2 REDUCTIONS USING INDUSTRIAL EXCESS HEAT2013Conference paper (Other academic)
    Abstract [en]

    The adopted Energy Efficiency Directive stresses the importance of using excess heat as a way to reach the EU target of primary energy consumption. Utilization of industrial excess heat may result in decreased energy demand, CO2 emissions reduction, and economic gains. In this study, an energy systems analysis is performed with the aim of investigating how excess heat should be used, and the impact of global CO2 emissions. The manner in which the heat is recovered will affect the system. The influence of excess heat recovery and the trade-off between heat recovery for heating or cooling applications and electricity production has been investigated using the energy systems modeling tool reMIND. The model has been optimized with regard to system cost. The results show that it is favorable to recover the available excess heat in all the investigated energy market scenarios, and that electricity production is not a part of the optimal solution. The trade-off between utilization of excess heat in the heating or cooling system depends on the energy market prices and the type of heat production. The introduction of excess heat also reduces the CO2 emissions in the system for all the studied energy market scenarios.  

  • 48.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Lindkvist, Emma
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Biogas production supported by excess heat - A systems analysis within the food industry2015In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 91, p. 249-258Article in journal (Refereed)
    Abstract [en]

    The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets. (C) 2014 Elsevier Ltd. All rights reserved.

  • 49.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Svensson, Inger-Lise
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Restenergi inom industrin i Östergötlands och Örebro län: Resultat av enkätundersökning av 85 företag2011Report (Other academic)
    Abstract [sv]

    Bakgrund: Under våren 2011 har Länsstyrelsen Östergötlands län och Länsstyrelsen i Örebro län inventerat restenergin inom industrin i Östergötlands och Örebro län. Enkäten som skickades ut utformades i samarbete med Linköpings Universitet och skickades ut till 85 industrier i länen.

    Syfte: Syftet med undersökningen är att undersöka mängden tillgänglig restenergi i industrin inom Östergötlands och Örebro län. Enkäten syftade till att få fram värmetillgången inom företagen, dels total tillgång i länen och dels spillvärme per län. Syftet med rapporten är också att översiktligt undersöka möjliga användningsområden för den tillgängliga restvärmen. Genom användning av energiinnehållet för uppvärmningsbehov internt eller som när-/fjärr-värme kan användningen av fossila bränslen och el minskas.

    Metod: Metoden som användes för att uppfylla ovanstående syfte är en enkätstudie. Tillsammans med Energisystem vid Linköpings universitet tog Länsstyrelsen fram en lista på frågor inför enkätutskicket. 85 företag inom Östergötlands och Örebro län valdes ut och en enkät sammanställdes av Länsstyrelsen i Östergötlands, Länsstyrelsen i Örebro län och Linköpings Universitet. Företagen är verksamma inom miljö, verkstads-, stål-, glas-, gruv-, kemi-, pappers-, drivmedel- och betongindustrin. Informationen om enkäten skickades ut under våren och sommaren via e-post och svar har inkommit från 28 företag via webbaserade enkätplattformen. Bland de 28 företagen som svarade på enkäten har 9 företag mindre än 50 anställda och ytterligare 15 företag mindre än 500 anställda.

    I den andra delen av studien studeras möjliga användningsområden för användning av den tillgängliga restenergin i länen.

  • 50.
    Broberg Viklund, Sarah
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    System studies of the use of industrial excess heat2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Energy, materials, and by-products, can be exchanged between companies, having positive effects in the form of improved resource efficiency, environmental benefits, and economic gains. One such energy stream that can be exchanged is excess heat, that is, heat generated as a by-product during, for example, industrial production. Excess heat will continue to play an important role in efforts to reduce greenhouse gas (GHG) emissions and improve energy efficiency. Using excess heat is therefore currently emphasized in EU policy as a way to reach EU climate targets.

    This thesis examines the opportunities of manufacturing industries to use industrial excess heat, and how doing so can positively affect industry, society, and the climate. Since different parts of the energy system are entangled, there is an inherent complexity in studying these systems and introducing excess heat in one part of the energy system may influence other parts of the system. This analysis has accordingly been conducted by combining studies from various perspectives, by applying both quantitative and qualitative methods and covering a broad range of aspects, such as technical possibilities as well as climate, policy, economics, and resource aspects.

    The results identify several opportunities and benefits accruing from excess heat use. Although excess heat is currently partly used as a thermal resource in district heating in Sweden, this thesis demonstrates that significant untapped excess heat is still available. The mapping conducted in the appended studies identifies excess heat in different energy carriers, mainly low-temperature water. Analysis of excess heat use in different recovery options demonstrated greater output when using excess heat in district heating than electricity production. Optimizing the trade-offs in excess heat used in a district heating network, heat-driven cooling, and electricity production under different energy market conditions while minimizing the system cost, however, indicated that the attractiveness of excess heat in district heating depends on the type of heat production in the system. Viewing excess heat as a low-cost energy source also makes it economically interesting, and creates opportunities to invest in excess heat-recovery solutions. Excess heat is often viewed as CO2 neutral since unused excess heat may be regarded as wasted energy. The GHG mitigation potential of using excess heat, however, was found to be ambiguous. The appended studies demonstrate that using excess heat for electricity production or for applications that reduce the use of electricity reduces GHG emissions. The effects of using excess heat in district heating, on the other hand, depend on the energy market development, for example, the marginal electricity production and marginal use of biomass, and on the type of district heating system replaced. The interviews performed reveal that energy policy does influence excess heat use, being demonstrated both to promote and discourage excess heat use. Beyond national energy policies, internal goals and core values were identified as important for improved energy efficiency and increased excess heat use.

    List of papers
    1. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
    Open this publication in new window or tab >>Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
    2014 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 77, p. 369-379Article in journal (Refereed) Published
    Abstract [en]

    Industrial excess heat is a large untapped resource, for which there is potential for external use, whichwould create benefits for industry and society. Use of excess heat can provide a way to reduce the useof primary energy and to contribute to global CO2 mitigation. The aim of this paper is to present differentmeasures for the recovery and utilization of industrial excess heat and to investigate how the developmentof the future energy market can affect which heat utilization measure would contribute the mostto global CO2 emissions mitigation. Excess heat recovery is put into a context by applying some of theexcess heat recovery measures to the untapped excess heat potential in Gävleborg County in Sweden.Two different cases for excess heat recovery are studied: heat delivery to a district heating system andheat-driven electricity generation. To investigate the impact of excess heat recovery on global CO2 emissions,six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrialexcess heat in Gävleborg County is not used today. The results show that with the proposed recoverymeasures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be suppliedfrom this heat. Electricity generation would result in reduced global CO2 emissions in all of the analyzedscenarios, while heat delivery to a DH system based on combined heat and power production frombiomass would result in increased global CO2 emissions when the CO2 emission charge is low.

    Place, publisher, year, edition, pages
    Elsevier, 2014
    Keywords
    Industrial excess heat; Heat recovery; Electricity generation; District heating; CO2 emission; Energy market scenario
    National Category
    Energy Systems
    Identifiers
    urn:nbn:se:liu:diva-102611 (URN)10.1016/j.enconman.2013.09.052 (DOI)000330494600041 ()
    Funder
    Swedish Energy Agency
    Available from: 2013-12-17 Created: 2013-12-17 Last updated: 2017-12-06Bibliographically approved
    2. Industrial excess heat use: Systems analysis and CO2 emissions reduction
    Open this publication in new window or tab >>Industrial excess heat use: Systems analysis and CO2 emissions reduction
    2015 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 152, p. 189-197Article in journal (Refereed) Published
    Abstract [en]

    The adopted energy efficiency directive stresses the use of excess heat as a way to reach the EU target of primary energy use. Use of industrial excess heat may result in decreased energy demand, CO2 emissions reduction, and economic gains. In this study, an energy systems analysis is performed with the aim of investigating how excess heat should be used, and the impact on CO2 emissions. The manner in which the heat is recovered will affect the system. The influence of excess heat recovery and the trade-off between heat recovery for heating or cooling applications and electricity production has been investigated using the energy systems modeling tool reMIND. The model has been optimized by minimizing the system cost. The results show that it is favorable to recover the available excess heat in all the investigated energy market scenarios, and that heat driven electricity production is not a part of the optimal solution. The trade-off between use of recovered excess heat in the heating or cooling system depends on the energy market prices and the type of heat production. The introduction of excess heat reduces the CO2 emissions in the system for all the studied energy market scenarios. (C) 2014 Elsevier Ltd. All rights reserved.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    Keywords
    Excess heat; Waste heat; Energy systems modeling; CO2 emission reduction; Heat recovery
    National Category
    Mechanical Engineering
    Identifiers
    urn:nbn:se:liu:diva-120206 (URN)10.1016/j.apenergy.2014.12.023 (DOI)000356745200019 ()
    Note

    Funding Agencies|Swedish Energy Agency

    Available from: 2015-07-21 Created: 2015-07-20 Last updated: 2017-12-04
    3. Biogas production supported by excess heat - A systems analysis within the food industry
    Open this publication in new window or tab >>Biogas production supported by excess heat - A systems analysis within the food industry
    2015 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 91, p. 249-258Article in journal (Refereed) Published
    Abstract [en]

    The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets. (C) 2014 Elsevier Ltd. All rights reserved.

    Place, publisher, year, edition, pages
    Elsevier, 2015
    Keywords
    Systems analysis; Biogas production; Industrial excess heat; Climate impact; Investment opportunity; Synergies
    National Category
    Mechanical Engineering
    Identifiers
    urn:nbn:se:liu:diva-114983 (URN)10.1016/j.enconman.2014.12.017 (DOI)000348887000025 ()
    Note

    Funding Agencies|Swedish Energy Agency; Linkoping University

    Available from: 2015-03-10 Created: 2015-03-06 Last updated: 2017-12-04
    4. Algae-based biofuel production as part of an industrial cluster
    Open this publication in new window or tab >>Algae-based biofuel production as part of an industrial cluster
    Show others...
    2014 (English)In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 71, p. 113-124Article in journal (Refereed) Published
    Abstract [en]

    This paper presents a study on the production of biofuels from algae cultivated in municipal wastewater in Gothenburg, Sweden. A possible biorefinery concept is studied based on two cases; Case A) combined biodiesel and biogas production, and Case B) only biogas production. The cases are compared in terms of product outputs and impact on global CO2 emissions mitigation. The area efficiency of the algae-based biofuels is also compared with other biofuel production routes. The study investigates the collaboration between an algae cultivation, biofuel production processes, a wastewater treatment plant and an industrial cluster for the purpose of utilizing material flows and industrial excess heat between the actors. This collaboration provides the opportunity to reduce the CO2 emissions from the process compared to a stand-alone operation. The results show that Case