liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Becker, Richard
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry . Linköping University, The Institute of Technology.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry . Linköping University, The Institute of Technology.
    CTAB promoted synthesis of Au nanorods - Temperature effects and stability consideration2010In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 343, no 1, p. 25-30Article in journal (Refereed)
    Abstract [en]

    A systematic study is performed of the influence of surfactant and temperature on the aspect ratio and monodispersity of Au nanorods, synthesized by a seed-mediated growth technique in water using cetyltrimethylammonium bromide (CTAB) as surfactant. The changes in aspect ratio with temperature show an "anomalous" behaviour, where the aspect ratio first decreases with increasing temperature, reaching a minimum at about 55oC, and after that increases again reaching a maximum at about 80oC. A physical explanation of the observed behaviour is proposed. It has also been studied how the CTAB concentration in the cleansing water used in the post-synthesis treatment of the samples affected the stability of the gold suspension. It was found that without the presence of a surfactant such as CTAB in the washing medium, only very few centrifugations can be carried out without considerable loss of product. Characterization of prepared samples was performed with UV-Vis and TEM.

  • 2.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Bhattacharyya, P.
    Dept. of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, India.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Kanungo, Jayita
    IC Design & Fabrication Centre, Dept. of Electronics & Telecommunications Engineering, Jadavpur University, Kolkata, India.
    Basu, Sukumar
    IC Design & Fabrication Centre, Dept. of Electronics & Telecommunications Engineering, Jadavpur University, Kolkata, India.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry.
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    SiC-FET methanol sensors for process control and leakage detection2013In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 187, no SI, p. 553-562Article in journal (Refereed)
    Abstract [en]

    Two types of SiC based field effect transistor sensors, with Pt or Ir gate, were tested to detect methanol in the concentration range of 0–1600 ppm for both process control and leak detection applications. The methanol response was investigated both with and without oxygen, since the process control might be considered as oxygen free application, while the sensor is operated in air during leak detection. Pt sensors offered very fast response with appreciably high response magnitude at 200 °C, while Ir sensors showed both higher response and response time up to 300 °C, but this decreased considerably at 350 °C. Cross sensitivity effect in presence of oxygen, hydrogen, propene and water vapor was also investigated. The presence of oxygen improved the response of both sensors, which is favorable for the leak detection application. Hydrogen had a large influence on the methanol response of both sensors, propene had a negligible influence, while water vapor changed direction of the methanol response for the Pt sensor. The detection mechanism and different sensing behavior of Pt and Ir gate sensors were discussed in the light of model reaction mechanisms derived from hybrid density-functional theory quantum-chemical calculations.

  • 3.
    Lenz, Annika
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Selegård, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, Faculty of Science & Engineering.
    Larsson, Arvid
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    ZnO Nanoparticles Functionalized with Organic Acids: An Experimental and Quantum-Chemical Study2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 40, p. 17332-17341Article in journal (Refereed)
    Abstract [en]

    Electrochemical synthesis and physical characterization of ZnO nanoparticles functionalized with four different organic acids, three aromatic (benzoic, nicotinic, and trans-cinnamic acid) and one nonaromatic (formic acid), are reported. The functionalized nanoparticles have been characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV−vis, and photoluminescence spectroscopy. The adsorption of the organic acids at ZnO nanoparticles was further analyzed and interpreted using quantum-chemical density-functional theory computations. Successful functionalization of the nanoparticles was confirmed experimentally by the measured splitting of the carboxylic group stretching vibrations as well as by the N(1s) and C(1s) peaks from XPS. From a comparison between computed and experimental IR spectra, a bridging mode adsorption geometry was inferred. PL spectra exhibited a remarkably stronger near band edge emission for nanoparticles functionalized with formic acid as compared to the larger aromatic acids. From the quantum-chemical computations, this was interpreted to be due to the absence of aromatic adsorbate or surface states in the band gap of ZnO, caused by the formation of a complete monolayer of HCOOH. In the UV−vis spectra, strong charge-transfer transitions were observed.

  • 4.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    Colloidal Synthesis and Characterisation of (a) Na0.5K0.5NbO3 Thin Films; and (b) Functionalised Gd2O3 Nanocrystals2004Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    (a) Thin films of the perovskite structured Na0.5K0.5NbO3 (NKN) have been synthesised with several different sol-gel methods. Only one method gave pure NKN phase while the other methods gave extra peaks in the x-ray diffraction patterns, indicating that other, unidentified, phases were present. Scanning electron microscopy revealed grain sizes ranging from about 50 to 300 nm. The films prepared by chemical methods are compared with sputtered thin films.

    (b) Nanocrystals of Gd2O3 have been prepared by various methods, using e.g. trioctylphosphine oxide (TOPO), diethylene glycol (DEG). The crystalline particles were of sizes 5 to 15 nm. Onto the surface of the particles, made with DEG, different carboxylic acids e.g. oleic acid or citric acid etc, were adsorbed. From IR measurements the bonding to the surface is recognised as chemisorbed via the carboxylate group in a bidentate or bridging fashion, with preference for the bridging coordination. The organic acid-particle complexes were characterised by XRPD, TEM, FTIR, Raman and XPS.

    List of papers
    1. Low temperature growth and characterization of (Na,K)NbOx thin films
    Open this publication in new window or tab >>Low temperature growth and characterization of (Na,K)NbOx thin films
    Show others...
    2003 (English)In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 254, no 3-4, p. 400-404Article in journal (Refereed) Published
    Abstract [en]

    Thin (Na,K)NbOx perovskite films (NKN) have been deposited on SiO2/Si(0 0 1) substrates at low temperatures, from 350°C to 550°C, by RF magnetron sputtering. The effects of substrate temperature on microstructure, electrical-, and mechanical properties of the NKN films have been studied. X-ray diffraction analysis revealed that films deposited at temperatures in the range of 450–550°C were crystalline, growing as a single phase, with a preferred orientation of (0 0 1). Films deposited at 350°C, were shown to be amorphous. The growth temperature had a strong influence on the electrical properties of the NKN films and the relative dielectric constants of the obtained films were in between 38 and 78. Variations of the mechanical properties of the NKN films were observed for different substrate temperatures: The elastic moduli and the hardness values ranged from 205±26 to 93±29 GPa, and from 12±2 to around 2 GPa, for films deposited at 550°C and 450°C, respectively.

    Keywords
    A1. Characterization; A3. Physical vapor deposition processes; B1. Niobates; B2. Dielectric materials
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-46555 (URN)10.1016/S0022-0248(03)01184-9 (DOI)000183468100016 ()
    Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13
    2. Microstructure/dielectric property relationship of low temperature synthesised (Na,K)NbOx thin films
    Open this publication in new window or tab >>Microstructure/dielectric property relationship of low temperature synthesised (Na,K)NbOx thin films
    Show others...
    2004 (English)In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 262, no 1-4, p. 322-326Article in journal (Refereed) Published
    Abstract [en]

    Thin films of (Na,K)NbOx (NKN) were grown by reactive RF magnetron sputtering on polycrystalline Pt80Ir20 substrates, at relatively low growth temperatures between 300°C and 450°C. The results show that the electrical performance and the microstructure of the films are a strong function of the substrate temperature. X-ray diffraction of films grown up to 400°C revealed the formation of only one crystalline NKN-phase with a preferred (0 0 2)-orientation. However, a mixed orientation together with a secondary, paraelectric potassium niobate phase, were observed for NKN films deposited at 450°C. The differences in the microstructure explains the variations in the dielectric constants and losses: The single phase NKN films displayed a dielectric constant and a dielectric loss of 506 and 0.011, respectively, while the films with mixed phases exhibited values of 475 and 0.022, respectively. The possibility of fabricating NKN films with relatively high dielectric properties at low growth temperatures, as demonstrated here, is of high technological importance.

    Keywords
    A1. Characterization, A3. Physical vapor deposition processes, B1. Niobates, B2. Dielectric materials
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-45820 (URN)10.1016/j.jcrysgro.2003.10.035 (DOI)000189098700050 ()
    Available from: 2009-10-11 Created: 2009-10-11 Last updated: 2017-12-13
    3. Sol–gel synthesis and characterization of Na0.5K0.5NbO3 thin films
    Open this publication in new window or tab >>Sol–gel synthesis and characterization of Na0.5K0.5NbO3 thin films
    2005 (English)In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 281, no 2-4, p. 468-474Article in journal (Refereed) Published
    Abstract [en]

    Thin films of the perovskite structured Na0.5K0.5NbO3 (NKN) have been synthesized with three different sol–gel methods, viz. the alkoxide method, a modified Pechini method and a somewhat novel oxalate method, based on 2-methoxy ethanol as solvent with oxalic acid and ethylene glycol as chelating ligand and stabilizer. Only one method (the modified Pechini method) gave pure NKN phase while the other two methods gave extra peaks in the X-ray diffraction patterns, indicating that other, unidentified, phases were present. SEM images revealed grain sizes ranging from 100 to 300 nm.

    Keywords
    Characterization; Chemical solution deposition processes; Niobates; Dielectric materials
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-13299 (URN)10.1016/j.jcrysgro.2005.04.044 (DOI)000231011600038 ()
    Available from: 2008-05-21 Created: 2008-05-21 Last updated: 2017-12-13
    4. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids
    Open this publication in new window or tab >>Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids
    Show others...
    2005 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 288, no 1, p. 140-148Article in journal (Refereed) Published
    Abstract [en]

    Nanocrystals of Gd2O3 have been prepared by various methods, using, e.g., trioctylphosphine oxide (TOPO), diethylene glycol (DEG) or glycine. The crystalline particles were of sizes 5 to 15 nm. Different carboxylic acids, e.g., oleic acid or citric acid, were adsorbed onto the surface of the particles made with DEG. IR measurements show that the molecules coordinate to the Gd2O3 surface via the carboxylate group in a bidentate or bridging manner. The organic-acid/particle complexes were characterised by XRPD, TEM, FTIR, Raman, and XPS.

    Keywords
    Nanocrystals; Synthesis; Functionalisation; IR; XPS
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:liu:diva-13295 (URN)10.1016/j.jcis.2005.02.089 (DOI)000229861600019 ()
    Available from: 2008-05-21 Created: 2008-05-21 Last updated: 2017-12-13
  • 5.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Sol–gel synthesis and characterization of Na0.5K0.5NbO3 thin films2005In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 281, no 2-4, p. 468-474Article in journal (Refereed)
    Abstract [en]

    Thin films of the perovskite structured Na0.5K0.5NbO3 (NKN) have been synthesized with three different sol–gel methods, viz. the alkoxide method, a modified Pechini method and a somewhat novel oxalate method, based on 2-methoxy ethanol as solvent with oxalic acid and ethylene glycol as chelating ligand and stabilizer. Only one method (the modified Pechini method) gave pure NKN phase while the other two methods gave extra peaks in the X-ray diffraction patterns, indicating that other, unidentified, phases were present. SEM images revealed grain sizes ranging from 100 to 300 nm.

  • 6.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Petoral, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids2005In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 288, no 1, p. 140-148Article in journal (Refereed)
    Abstract [en]

    Nanocrystals of Gd2O3 have been prepared by various methods, using, e.g., trioctylphosphine oxide (TOPO), diethylene glycol (DEG) or glycine. The crystalline particles were of sizes 5 to 15 nm. Different carboxylic acids, e.g., oleic acid or citric acid, were adsorbed onto the surface of the particles made with DEG. IR measurements show that the molecules coordinate to the Gd2O3 surface via the carboxylate group in a bidentate or bridging manner. The organic-acid/particle complexes were characterised by XRPD, TEM, FTIR, Raman, and XPS.

  • 7.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, Faculty of Science & Engineering.
    Selegård, Linnea
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Nordblad, Per
    Uppsala University.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Sol-gel synthesis and characterization of polycrystalline GdFeO3 and Gd3Fe5O12 thin films2009In: Journal of Sol-Gel Science and Technology, ISSN 0928-0707, E-ISSN 1573-4846, Vol. 49, no 2, p. 253-259Article in journal (Refereed)
    Abstract [en]

    Thin films of the perovskite and garnet structured gadolinium ferrites GdFeO3 and Gd3Fe5O12 have been synthesized by a sol-gel method, based on stoichiometric mixtures of acetyl acetone chelated Gd3+ and Fe3+ dissolved in 2-methoxy ethanol. After spin coating onto Si wafers, and heating in air at 700 degrees C for 20 h, neatly grown essentially single phase films were obtained. From X-ray photoelectron spectroscopy an iron deficiency is observed in the uppermost layer of both films, implying that the crystallites preferably end in planes rich in Gd and O but not in Fe. The films were also characterized by X-ray powder diffraction, scanning electron microscopy, infrared spectroscopy, and magnetic measurements.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf