liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 56
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alici, Gursel
    et al.
    School of Mechanical, Materials, and Mechatronic Engineering, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Mutlu, Rahim
    School of Mechanical, Materials, and Mechatronic Engineering, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Melling, Daniel
    Institute for Medical Science and Technology, University of Dundee, Dundee, UK.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Kaneto, Keiichi
    Kyushu Institute of Technology, Eamex Co. Ltd, Chuoku, Fukuoka, Japan.
    Conducting Polymers as EAPs: Device Configurations2016In: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, p. 257-292Chapter in book (Other academic)
    Abstract [en]

    This chapter focuses on device configurations based on conjugated polymer transducers. After the actuation and sensing configurations in the literature are presented, some successful device configurations are reviewed, and a detailed account of their operation principles is described. The chapter is concluded with critical research issues. With reference to the significant progress made in the field of EAP transducers in the last two decades, there is an increasing need to change our approach to the establishment of new device configurations, novel device concepts, and cutting-edge applications. To this aim, we should start from the performance specifications and end up with the material synthesis conditions and properties which will meet the performance specifications (top-to-down approach). The question should be “what electroactive material or materials can be used for a specific purpose or application,” rather than looking for an application or a device concept suitable to the unique properties of the EAPs and transducers already made of these materials. The field is mature enough to undertake this paradigm change.

  • 2.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Möller, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Fashandi, Hossein
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Huotari, J.
    University of Oulu, Finland.
    Puustinen, J.
    University of Oulu, Finland.
    Lappalainen, J.
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Field Effect Based Gas Sensors, from Basic Mechanisms to the Latest Commercial Device Designs2016In: SENSORS AND ELECTRONIC INSTRUMENTATION ADVANCES (SEIA), INT FREQUENCY SENSOR ASSOC-IFSA , 2016, p. 19-21Conference paper (Refereed)
    Abstract [en]

    This contribution treats the latest developments in the understanding of basic principles regarding device design, transduction mechanisms, gas-materials-interactions, and materials processing for the tailored design and fabrication of SiC FET gas sensor devices, mainly intended as products for the automotive sector.

  • 3.
    Asres, Georgies Alene
    et al.
    Univ Oulu, Finland.
    Baldovi, Jose J.
    Max Planck Inst Struct and Dynam Matter, Germany; Univ Basque Country, Spain.
    Dombovari, Aron
    Univ Oulu, Finland.
    Jarvinen, Topias
    Univ Oulu, Finland.
    Lorite, Gabriela Simone
    Univ Oulu, Finland.
    Mohl, Melinda
    Univ Oulu, Finland.
    Shchukarev, Andrey
    Umea Univ, Sweden.
    Perez Paz, Alejandro
    Univ Basque Country, Spain; Yachay Tech Univ, Ecuador.
    Xian, Lede
    Max Planck Inst Struct and Dynam Matter, Germany; Univ Basque Country, Spain.
    Mikkola, Jyri-Pekka
    Umea Univ, Sweden; Abo Akad Univ, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Univ Oulu, Finland.
    Jantunen, Heli
    Univ Oulu, Finland.
    Rubio, Angel
    Max Planck Inst Struct and Dynam Matter, Germany; Univ Basque Country, Spain.
    Kordas, Krisztian
    Univ Oulu, Finland.
    Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials2018In: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 11, no 8, p. 4215-4224Article in journal (Refereed)
    Abstract [en]

    Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm(-1)) as well as high selectivity towards H2S relative to CO, NH3, H-2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm(-1), respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.

  • 4.
    Asres, Georgies Alene
    et al.
    Univ Oulu, Finland.
    Jarvinen, Topias
    Univ Oulu, Finland.
    Lorite, Gabriela S.
    Univ Oulu, Finland.
    Mohl, Melinda
    Univ Oulu, Finland.
    Pitkanen, Olli
    Univ Oulu, Finland.
    Dombovari, Aron
    Univ Oulu, Finland.
    Toth, Geza
    VTT Finland, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Univ Oulu, Finland.
    Vajtai, Robert
    Rice Univ, TX 77005 USA.
    Ajayan, Pulickel M.
    Rice Univ, TX 77005 USA.
    Lei, Sidong
    Univ Calif Los Angeles, CA 90095 USA.
    Talapatra, Saikat
    Southern Illinois Univ, IL 62901 USA.
    Kordas, Krisztian
    Univ Oulu, Finland.
    High photoresponse of individual WS2 nanowire-nanoflake hybrid materials2018In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 112, no 23, article id 233103Article in journal (Refereed)
    Abstract [en]

    van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and multiple layers and 1-dimensional nanowires of molybdenum and tungsten chalcogenides have been studied, their nanostructured derivatives with complex morphologies are not explored yet. Here, we report on the electrical and photosensitive properties of WS2 nanowire-nanoflake hybrid materials we developed lately. We probe individual hybrid nanostructured particles along the structure using focused ion beam deposited Pt contacts. Further, we use conductive atomic force microscopy to analyze electrical behavior across the nanostructure in the transverse direction. The electrical measurements are complemented by in situ laser beam illumination to explore the photoresponse of the nanohybrids in the visible optical spectrum. Photodetectors with responsivity up to similar to 0.4 AW(-1) are demonstrated outperforming graphene as well as most of the other transition metal dichalcogenide based devices. Published by AIP Publishing.

  • 5.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Saarland Univ, Germany.
    Baur, T.
    Saarland Univ, Germany.
    Richter, M.
    Bundesanstalt Mat Forsch and Prufung BAM, Germany.
    Mull, B.
    Bundesanstalt Mat Forsch and Prufung BAM, Germany; Fraunhofer Wilhelm Klauditz Inst, Germany.
    Schuetze, A.
    Saarland Univ, Germany.
    Sauerwald, T.
    Saarland Univ, Germany.
    Comparison of ppb-level gas measurements with a metal-oxide semiconductor gas sensor in two independent laboratories2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 273, p. 1037-1046Article in journal (Refereed)
    Abstract [en]

    In this work, we use a gas sensor system consisting of a commercially available gas sensor in temperature cycled operation. It is trained with an extensive gas profile for detection and quantification of hazardous volatile organic compounds (VOC) in the ppb range independent of a varying background of other, less harmful VOCs and inorganic interfering gases like humidity or hydrogen. This training was then validated using a different gas mixture generation apparatus at an independent lab providing analytical methods as reference. While the varying background impedes selective detection of benzene and naphthalene at the low concentrations supplied, both formaldehyde and total VOC can well be quantified, after calibration transfer, by models trained with data from one system and evaluated with data from the other system. The lowest achievable root mean squared errors of prediction were 49 ppb for formaldehyde (in a concentration range of 20-200 ppb) and 150 mu g/m(3) (in a concentration range of 25-450 mu g/m(3)) for total VOC. The latter uncertainty improves to 13 mu g/m(3) with a more confined model range of 220-320 mu g/m(3). The data from the second lab indicate an interfering gas which cannot be detected analytically but strongly influences the sensor signal. This demonstrates the need to take into account all sensor relevant gases, like, e.g., hydrogen and carbon monoxide, in analytical reference measurements.

  • 6.
    Cheung, Kitt
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Lai, Kwok Kei
    Hong Kong Univ Sci and Technol, Peoples R China.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools2018In: Zeitschrift fur physikalische Chemie (Munchen. 1991), ISSN 0942-9352, Vol. 232, no 5-6, p. 759-771Article in journal (Refereed)
    Abstract [en]

    Microparticles have attracted much attention for medical, analytical and biological applications. Calcium carbonate (CaCO3) templating method with the advantages of having narrow size distribution, controlled morphology and good biocompatibility that has been widely used for the synthesis of various protein-based microparticles. Despite CaCO3 template is biocompatible, most of the conventional methods to create stable protein microparticles are mainly driven by chemical crosslink reagents which may induce potential harmful effect and remains undesirable especially for biomedical or clinical applications. In this article, we demonstrate the fabrication of protein microparticles and microcapsules with an innovative method using biomolecular tools such as enzymes and affinity molecules to trigger the assembling of protein molecules within a porous CaCO3 template followed by a template removal step. We demonstrated the enzyme-assisted fabrication of collagen microparticles triggered by transglutaminase, as well as the affinity-assisted fabrication of BSA-biotin avidin microcapsules triggered by biotin-avidin affinity interaction, respectively. Based on the different protein assemble mechanisms, the collagen microparticles appeared as a solid-structured particles, while the BSA-biotin avidin microcapsules appeared as hollow-structured morphology. The fabrication procedures are simple and robust that allows producing protein microparticles or microcapsules under mild conditions at physiological pH and temperature. In addition, the microparticle morphologies, protein compositions and the assemble mechanisms were studied. Our technology provides a facile approach to design and fabricate protein microparticles and microcapsules that are useful in the area of biomaterials, pharmaceuticals and analytical chemistry.

  • 7.
    Ghani, Mozhdeh
    et al.
    Nanotechnology Institute, Amirkabir University of Technology, Tehran, Iran.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Cheung, Kwan Yee
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Montazer, M.
    Nanotechnology Institute, Amirkabir University of Technology, Tehran, Iran.
    Rezaei, B.
    Nanotechnology Institute, Amirkabir University of Technology, Tehran, Iran.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Cross-linked superfine electrospun tragacanth-based biomaterial as scaffolds for tissue engineering2016In: European Cells and Materials, ISSN 1473-2262, E-ISSN 1473-2262, Vol. 31, no Suppl. 1, p. 204-204Article in journal (Refereed)
    Abstract [en]

    Natural polymer-based nanofibrous structures promote cell adhesion and proliferation due to their high surface area/volume ratio, high porosity, and similarity to native extracellular matrix in terms of both chemical composition and physical structure. Gum tragacanth (Tg) is a natural polysaccharides obtained from plants. It is a biocompatible, biodegradable and anionic polysaccharides that has been used extensively as an emulsifier in food and pharmaceutical industries. Despite, its good rheological properties and compatibility, the potential biomedical applications of Tg have not been fully investigated. The objective of the present study was to explore the feasibility of combining Tg with gelatin to fabricate a scaffold that serves as a simple collagen-glycosaminoglycans analog for tissue engineering applications, e.g. as a scaffold for human skin epithelial cells.

  • 8.
    Gomaa, M. M.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Natl Res Ctr, Egypt.
    Yazdi, Gholamreza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Rodner, Marius
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Boshta, M.
    Natl Res Ctr, Egypt.
    Osman, M. B. S.
    Ain Shams Univ, Egypt.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Exploring NiO nanosize structures for ammonia sensing2018In: Journal of materials science. Materials in electronics, ISSN 0957-4522, E-ISSN 1573-482X, Vol. 29, no 14, p. 11870-11877Article in journal (Refereed)
    Abstract [en]

    Efficient ammonia gas sensor devices were fabricated based on nickel oxide (NiO) nanostructures films. Two chemical synthesis approaches were used: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD), aiming at obtaining highly developed surface area and high chemical reactivity of NiO. Crystal structure, morphology, and composition of NiO films and nanostructures were investigated by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. CSP method results in the synthesis of NiO films with pure cubic crystalline structure of preferred orientation along (111) direction. The type of the precursors used (nickel acetate, nickel chloride and nickel nitrate) affects the morphology and crystallites average size of the deposited films. CBD method consisted of two stages: (i) deposition of nickel hydroxide phase and (ii) thermal annealing of nickel hydroxide at 450 A degrees C in air for 4 h. Resulted structures were nanoflakes, vertically arranged in a "wall-like" morphology. Fabricated structures were found to be sensitive to ammonia differently, depending on the synthesis approach and material morphology. NiO films deposited by CBD demonstrated a stable response to ammonia with maximum magnitude at the operating temperature of 300 A degrees C. The highest average response for the CBD-NiO sample was 114.3-141.3% for 25 and 150 ppm NH3, respectively, whereas the response range observed for the film processed by spray pyrolysis using nickel chloride was 31.7-142.5% for 25 and 150 ppm NH3, respectively.

  • 9.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018In: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 4, no 1, article id 19Article in journal (Refereed)
  • 10.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018In: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 3, article id 19Article in journal (Refereed)
    Abstract [en]

    Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in Salmonella cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.

  • 11.
    Guan, Na N.
    et al.
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Urology, Karolinska University Hospital, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Sharma, Nimish
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
    Hallén‐Grufman, Katarina
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Jager, Edwin W. H.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Svennersten, Karl
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools2018In: Journal of Cellular and Molecular Medicine (Print), ISSN 1582-1838, E-ISSN 1582-4934, Vol. 22, no 4, p. 2319-2328Article in journal (Refereed)
    Abstract [en]

    The capacity to store urine and initiate voiding is a valued characteristic of the human urinary bladder. To maintain this feature, it is necessary that the bladder can sense when it is full and when it is time to void. The bladder has a specialized epithelium called urothelium that is believed to be important for its sensory function. It has been suggested that autocrine ATP signalling contributes to this sensory function of the urothelium. There is well‐established evidence that ATP is released via vesicular exocytosis as well as by pannexin hemichannels upon mechanical stimulation. However, there are still many details that need elucidation and therefore there is a need for the development of new tools to further explore this fascinating field. In this work, we use new microphysiological systems to study mechanostimulation at a cellular level: a mechanostimulation microchip and a silicone‐based cell stretcher. Using these tools, we show that ATP is released upon cell stretching and that extracellular ATP contributes to a major part of Ca2+ signalling induced by stretching in T24 cells. These results contribute to the increasing body of evidence for ATP signalling as an important component for the sensory function of urothelial cells. This encourages the development of drugs targeting P2 receptors to relieve suffering from overactive bladder disorder and incontinence.

  • 12.
    Hasegawa, Yuki
    et al.
    Saitama Univ, Japan.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Ethylene Gas Sensor for Evaluating Postharvest Ripening of Fruit2017In: 2017 IEEE 6TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    It is widely known that ethylene treatment is an effective method for postharvest handling of fruit. In this study, we employed a field effect transistor based on silicon carbide (SiC-FET) gas sensor for detecting ethylene produced from fruits. The characteristics of the sensor was evaluated regarding several parameters. The selectivity and sensitivity of SiC-FET sensors can be controlled toward a few target gases by changing the operating temperature, gate material and material structure. We studied an iridium and a platinum gated SiC-FET sensors and characterized the sensing of these for different ethylene concentrations as the target gas at different operating temperatures. The results showed that the iridium gated SiC-FET sensor has high sensitivity to ethylene, and the highest response is achieved at 200 degrees C.

  • 13.
    Ievtushenko, A.
    et al.
    NASU, Ukraine.
    Karpyna, V.
    NASU, Ukraine.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Tsiaoussis, I.
    Aristotle Univ Thessaloniki, Greece.
    Shtepliuk, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. NASU, Ukraine.
    Lashkarev, G.
    NASU, Ukraine.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures2018In: Superlattices and Microstructures, ISSN 0749-6036, E-ISSN 1096-3677, Vol. 117, p. 121-131Article in journal (Refereed)
    Abstract [en]

    ZnO films and nanostructures were deposited on Si substrates by MOCVD using single source solid state zinc acetylacetonate (Zn(AA)) precursor. Doping by silver was realized in-situ via adding 1 and 10 wt. % of Ag acetylacetonate (Ag(AA)) to zinc precursor. Influence of Ag on the microstructure, electrical and optical properties of ZnO at temperature range 220-550 degrees C was studied by scanning, transmission electron and Kelvin probe force microscopy, photoluminescence and four-point probe electrical measurements. Ag doping affects the ZnO microstructure via changing the nucleation mode into heterogeneous and thus transforming the polycrystalline films into a matrix of highly c-axis textured hexagonally faceted nanorods. Increase of the work function value from 4.45 to 4.75 eV was observed with Ag content increase, which is attributed to Ag behaviour as a donor impurity. It was observed, that near-band edge emission of ZnO NS was enhanced with Ag doping as a result of quenching deep-level emission. Upon high doping of ZnO by Ag it tends to promote the formation of basal plane stacking faults defect, as it was observed by HR TEM and PL study in the case of 10 wt.% of Ag. Based on the results obtained, it is suggested that NS deposition at lower temperatures (220-300 degrees C) is more favorable for p-type doping of ZnO. (C) 2018 Elsevier Ltd. All rights reserved.

  • 14.
    Jager, Edwin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Ladegaard-Skov, Anne
    Technical University of Denmark (DTU), Denmark.
    Otero, Toribio
    Technical University of Cartagena, Spain.
    Jean-Mistral, Claire
    National Institute of Applied Science—INSA de Lyon, France,.
    Progress in electromechanically active polymers: selected papers from EuroEAP 20172018In: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, no 7, article id 070201Article in journal (Other academic)
    Abstract [en]

    n/a

    The full text will be freely available from 2019-06-05 10:14
  • 15.
    Jager, Edwin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Maziz, Ali
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems.
    Khaldi, Alexandre
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems.
    Conducting Polymers as EAPs: Microfabrication2016In: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, p. 293-318Chapter in book (Other academic)
    Abstract [en]

    In this chapter, first some basic principles of photolithography and general microfabrication are introduced. These methods have been adapted to fit the microfabrication of conducting polymer actuators, resulting in a toolbox of techniques to engineer microsystems comprising CP microactuators, which will be explained in more detail. CP layers can be patterned using both subtractive and additive techniques to form CP microactuators in a variety of configurations including bulk expansion, bilayer, and trilayer actuators. Methods to integrate CP microactuators into complex microsystems and interfaces to connect them to the outside world are also described. Finally, some specifications, performance, and a short introduction to various applications are presented.

  • 16.
    Kaneto, Keiichi
    et al.
    Osaka Institute of Technology, Eamex Co. Ltd., Osaka, Japan.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Alici, Gursel
    School of Mechanical, Materials, and Mechatronic Engineering, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia.
    Okuzaki, Hidenori
    Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan.
    Conducting Polymers as EAPs: Applications2016In: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, p. 385-412Chapter in book (Other academic)
    Abstract [en]

    Artificial muscles are the longtime dream of human being to replace the existing engines, motors, and piezoelectric actuators because of the low-noise, environment-friendly, and energy-saving actuators (or power force generators). This chapter describes applications of conducting polymers (CPs) to EAPs such as bending actuators, microactuators, and linear actuators. The bending actuators were applied to diaphragm pumps, swimming devices, and flexural-jointed grippers with the trilayer configurations. On the other hand, the microactuators have the advantage of short diffusion times and thus fast actuation. Since the CP actuators operate in any salt solutions, such as a saline solution, cell culture media, and biological liquid, the PPy microactuators have potential applications in microfluidics and drug delivery, cell biology, and medical devices. Furthermore, the linear actuators were developed for the applications to the Braille cells, artificial muscles for soft robots.

  • 17.
    Khaldi, Alexandre
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Falk, Daniel
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Bengtsson, Katarina
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Maziz, Ali
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Robinson, Nathaniel D
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin W. H.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Patterning highly conducting conjugated polymer electrodes for soft and flexible microelectrochemical devices2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 17, p. 14978-14985Article in journal (Refereed)
    Abstract [en]

    There is a need for soft actuators in various biomedical applications in order to manipulate delicate objects such as cells and tissues. Soft actuators are able to adapt to any shape and limit the stress applied to delicate objects. Conjugated polymer actuators, especially in the so-called trilayer configuration, are interesting candidates for driving such micromanipulators. However, challenges involved in patterning the electrodes in a trilayer with individual contact have prevented further development of soft micromanipulators based on conjugated polymer actuators. To allow such patterning, two printing-based patterning techniques have been developed. First an oxidant layer is printed using either syringe-based printing or micro-contact printing, followed by vapor phase polymerization of the conjugated polymer. Sub-millimeter patterns with electronic conductivities of 800 Scm-1 are obtained. Next, laser ablation is used to cleanly cut the final device structures including the printed patterns, resulting in fingers with individually controllable digits and miniaturized hands. The methods presented in this paper will enable integration of patterned electrically active conjugated polymer layers in many types of complex 3-D structures.

    The full text will be freely available from 2019-03-20 15:16
  • 18.
    Kilpijarvi, Joni
    et al.
    Univ Oulu, Finland.
    Halonen, Niina
    Univ Oulu, Finland.
    Sobocinski, Maciej
    Univ Oulu, Finland.
    Hassinen, Antti
    Univ Oulu, Finland.
    Senevirathna, Bathiya
    Univ Maryland, MD 20742 USA.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Abshire, Pamela
    Univ Maryland, MD 20742 USA.
    Smela, Elisabeth
    Univ Maryland, MD 20742 USA.
    Kellokumpu, Sakari
    Univ Oulu, Finland.
    Juuti, Jari
    Univ Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation2018In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, no 10, article id 3346Article in journal (Refereed)
    Abstract [en]

    A complementary metal-oxide-semiconductor (CMOS) chip biosensor was developed for cell viability monitoring based on an array of capacitance sensors utilizing a ring oscillator. The chip was packaged in a low temperature co-fired ceramic (LTCC) module with a flip chip bonding technique. A microcontroller operates the chip, while the whole measurement system was controlled by PC. The developed biosensor was applied for measurement of the proliferation stage of adherent cells where the sensor response depends on the ratio between healthy, viable and multiplying cells, which adhere onto the chip surface, and necrotic or apoptotic cells, which detach from the chip surface. This change in cellular adhesion caused a change in the effective permittivity in the vicinity of the sensor element, which was sensed as a change in oscillation frequency of the ring oscillator. The sensor was tested with human lung epithelial cells (BEAS-2B) during cell addition, proliferation and migration, and finally detachment induced by trypsin protease treatment. The difference in sensor response with and without cells was measured as a frequency shift in the scale of 1.1 MHz from the base frequency of 57.2 MHz. Moreover, the number of cells in the sensor vicinity was directly proportional to the frequency shift.

  • 19.
    Liu, Yu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Sichuan Agriculture University, Peoples R China.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Zhao, Maojun
    Sichuan Agriculture University, Peoples R China.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing2018In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 100, p. 374-381Article in journal (Refereed)
    Abstract [en]

    A new approach for the facile fabrication of electrochemical biosensors using a biohybrid conducting polymer was demonstrated using glucose oxidase (GOx) and poly (3, 4-ethylenedioxythiophene) (PEDOT) as a model. The biohybrid conducting polymer was prepared based on a template-assisted chemical polymerisation leading to the formation of PEDOT microspheres (PEDOT-MSs), followed by in-situ deposition of platinum nanoparticles (PtNPs) and electrostatic immobilisation of glucose oxidase (GOx) to form water processable GOx-PtNPs-PEDOT-MSs. The morphology, chemical composition and electrochemical performance of the GOx-PtNPs-PEDOT-MS-based glucose biosensor were characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared (FTIR) spectroscopy, zeta potential and electrochemical measurements, respectively. The biosensor delivered a linear response for glucose over the range 0.1-10 mM (R-2 = 0.9855) with a sensitivity of 116.25 mu A mM(-1) cm(-2), and limit of detection of 1.55 mu M (3 x SD/sensitivity). The sensitivity of the developed PEDOT-MS based biosensor is significantly higher (2.7 times) than the best reported PEDOT-based glucose biosensor in the literature. The apparent Michaelis Menten constant (K-m(app)) of the GOx-PtNPs-PEDOT-MS-based biosensors was calculated as 7.3 mM. Moreover, the biosensor exhibited good storage stability, retaining 97% of its sensitivity after 12 days storage. This new bio-hybrid conducting polymer combines the advantages of micro-structured morphology, compatibility with large-scale manufacturing processes, and intrinsic biocatalytic activity and conductivity, thus demonstrating its potential as a convenient material for printed bioelectronics and sensors.

  • 20.
    Liu, Yu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Sichuan Agr Univ, Peoples R China.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Zhao, Maojun
    Sichuan Agr Univ, Peoples R China.
    Wing Cheung, Mak
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Facile synthesis of highly processable and water dispersible polypyrrole and poly(3,4-ethylenedioxythiophene) microspheres for enhanced supercapacitive performance2018In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 99, p. 332-339Article in journal (Refereed)
    Abstract [en]

    Much recent work has focused on improving the processibility and electrocapacitive performance of conducting polymer-based materials for energy related applications. The key mechanism of conducting polymers as supercapacitor materials is driven by the rapid charging and discharging processes that involve mass transport of the counter ions insertion/ejection within the polymer structure, where ion diffusion is usually the limiting step on the efficiency of the conducting polymer capacitor. Here, we report a facile method for the green fabrication of polypyrrole microspheres (PPy-MSs) and poly (3, 4-ethylenedioxythiophene) microspheres (PEDOT-MSs) with good processability, intact morphology and large active surface for enhanced ion interchange processes, without using surfactant and highly irritant or toxic organic solvents during the synthetic process. The structure and morphology of the PPy-MSs and PEDOT-MSs were characterized by means of SEM, EDX, TEM and FTIR. Both PPy-MSs and PEDOT-MSs showed intact microsphere structures with greatly improved water dispersity and processability. More importantly, facilated by the large active surface and inter-microsphere space for ions diffusion, both the PPy-MSs and PEDOT-MSs showed a signiciantly enhanced electrical capacitive performance of 242 F g(-1) and 91.2 F g(-1), repsectively (i.e. 10 and 1.51 times in specific capacitance than the randomly structured PPy and PEDOT). This innovative approach not only addresses fundamental issues in fabrication of high performance processable microstructured conducting polymers, but also makes progress in delivering water processable conducting polymers that could be potentially used for fabrication of printed electronic devices.

  • 21.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Biosensor technologies for agriculture and environment - opportunities and challenges2017In: Proceedings of the 8th Nordic Feed Science Conference, Uppsala, Sweden, 13-14 June 2017 / [ed] Udén, P.; Eriksson, T.; Spörndly, R.; Rustas, B. O.; Kasmaei, K. M.; Liljeholm, M., Uppsala: Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management , 2017, p. 38-41Conference paper (Refereed)
    Abstract [en]

    This paper presents the general principles of various biosensor systems, reviews current biosensor technologies for agricultural and environmental monitoring, and discusses their opportunities and challenges. Advances in biosensor technologies could provide a useful analytical tools for agricultural monitoring, particularly due to their rapid response, relatively low operational cost and portability for field/farm application. The promise, demonstrated by various examples of biosensor technologies, is very appealing. However, there are still many hurdles to bring commercial agricultural biosensors into real practice.

  • 22.
    Mak, Wing Cheung
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Magne, B.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Cheung, Kitt
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Atanasova, D.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Griffith, May
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. University of Montreal, Canada.
    Thermo-rheological responsive microcapsules for time-dependent controlled release of human mesenchymal stromal cells2017In: Biomaterials Science, ISSN 2047-4830, E-ISSN 2047-4849, Vol. 5, no 11, p. 2241-2250Article in journal (Refereed)
    Abstract [en]

    Human mesenchymal stromal cells (hMSCs) are adult-source cells that have been extensively evaluated for cell-based therapies. hMSCs delivered by intravascular injection have been reported to accumulate at the sites of injury to promote tissue repair and can also be employed as vectors for the delivery of therapeutic genes. However, the full potential of hMSCs remains limited as the cells are lost after injection due to anoikis and the adverse pathologic environment. Encapsulation of cells has been proposed as a means of increasing cell viability. However, controlling the release of therapeutic cells over time to target tissue still remains a challenge today. Here, we report the design and development of thermo-rheological responsive hydrogels that allow for precise, time dependent controlled-release of hMSCs. The encapsulated hMSCs retained good viability from 76% to 87% dependent upon the hydrogel compositions. We demonstrated the design of different blended hydrogel composites with modulated strength (S parameter) and looseness of hydrogel networks (N parameter) to control the release of hMSCs from thermoresponsive hydrogel capsules. We further showed the feasibility for controlled-release of encapsulated hMSCs within 3D matrix scaffolds. We reported for the first time by a systematic analysis that there is a direct correlation between the thermo-rheological properties associated with the degradation of the hydrogel composite and the cell release kinetics. This work therefore provides new insights into the further development of smart carrier systems for stem cell therapy.

  • 23.
    Martinez, Jose Gabriel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Artificial muscles: Reducing the gap with natural muscles2018Conference paper (Other academic)
  • 24.
    Martinez, Jose Gabriel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Conducting polymer actuators: from basic concepts to proprioceptive systems2017Conference paper (Other academic)
  • 25.
    Martinez, Jose Gabriel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Maziz, Ali
    Laboratoire d'analyse et d'architecture des systèmes.
    Stålhand, Jonas
    Linköping University, Department of Management and Engineering, Solid Mechanics.
    Persson, Nils-Krister
    Hogskolan i Borås.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    ELECTROACTIVE TEXTILES FOR EXOSKELETON LIKE SUITS2017Conference paper (Other academic)
    Abstract [en]

    There is a need for soft assistive robotic devices such as prosthetics, exoskeletons and robot assistants. One particular area of interest is robotic exoskeletons to support the movement of body parts, e.g. assisting or enhancing walking and rehabilitation. Although technologically advanced, current exoskeletons are rigid and driven by electric motors or pneumatic actuators making them noisy, heavy, stiff and non-compliant. Ideally, assistive devices would be shaped as an exoskeleton suit worn under clothing and well-hidden. By merging one of humankind oldest technology with one of the latest, that is by combining knitting and weaving with novel electroactive polymers, we have developed soft textile actuators ("Knitted Muscles"). In this paper we will present the textile actuators in more detail as well as share the latest progress in the development of textile actuators for soft robotics.

  • 26.
    Martinez, Jose Gabriel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Technical University of Cartagena. Spain.
    Otero, Toribio F.
    Technical University of Cartagena. Spain.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.
    Effect of the Electrolyte Concentration and Substrate on Conducting Polymer Actuators2014In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, no 13, p. 3894-3904Article in journal (Refereed)
    Abstract [en]

    The effect of the electrolyte concentration (NaCl aqueous electrolyte) on the dimensional variations of films of polypyrrole doped with dodecylbenzenesulfonate PPy(DBS) on Pt and Au wires was studied. Any parallel reaction that occurs during the redox polymeric reaction that drives the mechanical actuation, as detected from the coulovoltammetric responses, was avoided by using Pt wires as substrate and controlling the potential limits, thus significantly increasing the actuator lifetime. The NaCl concentration of the electrolyte, when studied by cyclic voltammetry or chronoamperometry, has a strong effect on the performance as well. A maximum expansion was achieved in 0.3 M aqueous solution. The consumed oxidation and reduction charges control the fully reversible dimensional variations: PPy(DBS) films are faradaic polymeric motors. Parallel to the faradaic exchange of the cations, osmotic, electrophoretic, and structural changes play an important role for the water exchange and volume change of PPy(DBS).

  • 27.
    Martinez, Jose Gabriel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Richter, Klaus
    ITP GmbH Gesellschaft für Intelligente Produkte (ITP), Weimar, Germany.
    Persson, Nils-Krister
    Smart Textiles, Swedish School of Textiles (THS) , University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Investigation of electrically conducting yarns for use in textile actuators2018In: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, no 7, article id 074004Article in journal (Refereed)
    Abstract [en]

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 x INOX 50µm, polyester + 2 x Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

  • 28.
    Martinez, Jose Gabriel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Stålhand, Jonas
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Persson, Nils-Krister
    Högskolan i Borås.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Textile actuators for wearable devices2017Conference paper (Other academic)
  • 29.
    Maziz, Ali
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems.
    Guan, Na
    Karolinska Insitutet.
    Sharma, Nimish
    Karolinska Institutet.
    Svennersten, Karl
    Karolinska Institutet.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Second generation micromechanical stimulation chips to study mechanotransduction in the urinary tract2017Conference paper (Other academic)
  • 30.
    Melling, Daniel
    et al.
    Institute for Medical Science and Technology, University of Dundee, Dundee, UK.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Conducting Polymers as EAPs: Characterization Methods and Metrics2016In: Electromechanically Active Polymers: A Concise Reference / [ed] Federico Carpi, Cham: Springer, 2016, p. 319-352Chapter in book (Other academic)
    Abstract [en]

    This chapter outlines the various methods that have been developed in the past three decades to characterize the electroactive performance of conducting polymers (CP) to provide fundamental metrics such as strain, strain rate, stress, force, modulus of elasticity, and work capacity. In addition to providing metrics, these characterization techniques have served as valuable tools for studying CPs, providing a greater understanding of the actuation process, optimizing synthesis conditions, and geometric parameters for optimal device performance. The issues associated with the determination of metrics and the need for standardization are discussed.

  • 31.
    Meng, Lingyin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Positively-charged hierarchical PEDOT interface with enhanced electrode kinetics for NADH-based biosensors2018In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 120, p. 115-121Article in journal (Refereed)
    Abstract [en]

    Poly(ethylenedioxythiophene) (PEDOT) has attracted considerable attention as an advanced electrode material for electrochemical sensors and biosensors, due to its unique electrical and physicochemical properties. Here, we demonstrate the facile preparation of a positively-charged and hierarchical micro-structured PEDOT electrochemical interface with enhanced electrode kinetics for the electrooxidation of NADH. Processable PEDOT colloidal microparticles (PEDOT CMs) were synthesised by template-assisted polymerisation and were then utilised as building blocks for the fabrication of hierarchically-structured electrodes with a larger accessible electroactive surface (2.8 times larger than that of the benchmark PEDOT:PSS) and inter-particle space, thus improving electrode kinetics. The intrinsic positive charge of the PEDOT CMs further facilitated the detection of negatively-charged molecules by electrostatic accumulation. Due to the synergistic effect, these hierarchically-structured PEDOT CMs electrodes exhibited improved NADH electrooxidation at lower potentials and enhanced electrocatalytic activity compared to the compact structure of conventional PEDOT:PSS electrodes. The PEDOT CMs electrodes detected NADH over the range of 20–240 μM, with a sensitivity of 0.0156 μA/μM and a limit of detection of 5.3 μM. Moreover, the PEDOT CMs electrode exhibited a larger peak separation from the interferent ascorbic acid, and improved stability. This enhanced analytical performance for NADH provides a sound basis for further work coupling to a range of NAD-dependent dehydrogenases for applications in biosensing, bio-fuel cells and biocatalysis.

  • 32.
    Mousavisani, Seyedeh Zeinab
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
    Raoof, Jahan-Bakhsh
    Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Ojani, Reza
    Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Label-free DNA sensor based on diazonium immobilisation for detection of DNA damage in breast cancer 1 gene2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 264, p. 59-66Article in journal (Refereed)
    Abstract [en]

    Electrochemical DNA biosensors offer simple and rapid tools for detection of DNA sequences or damaged genes associated with human disease. The performance of electrochemical DNA sensors is critically dependent on the quality of the DNA immobilisation. Many DNA biosensors have been focused on studying DNA hybridisation preformed under relatively mild assay conditions, while the development of stable DNA biosensors to study DNA damage under a much harsher condition typically in the presence of reactive oxygen species is more challenging. In this article, we developed an electrochemical DNA biosensor based on a stable diazonium-modified screen-printed carbon electrode (SPCE) for the detection of damage in DNA sequences related to the BRCA1 gene by using electrochemical impedance spectroscopy (EIS). The successful preparation of the DNA sensor was confirmed by FTIR-ATR, contact angle and electrochemical measurements. The DNA sensor exhibited good reproducibility and high stability and could also have potential for investigation of the glutathione antioxidant effect. (C) 2018 Elsevier B.V. All rights reserved.

  • 33.
    Nordin, Anis Nurashikin
    et al.
    Int Islamic Univ, Malaysia.
    Zainuddin, Ahmad Anwar
    Int Islamic Univ, Malaysia.
    Ab Rahim, Rosminazuin
    Int Islamic Univ, Malaysia.
    Voiculescu, Ioana
    CUNY City Coll, NY 10052 USA.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Screen Printed Electromechanical Micro-Total Analysis System (mu tas) For Sensitive and Rapid Detection of Infectious Diseases2017In: BIOSENSORS 2016, ELSEVIER SCIENCE BV , 2017, Vol. 27, p. 100-101Conference paper (Refereed)
    Abstract [en]

    n/a

  • 34.
    Penza, Michele
    et al.
    ENEA, Italy.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Romano-Rodriguez, Albert
    University of Barcelona, Spain.
    Meyyappan, Meyya
    NASA, CA 94035 USA.
    Functional materials for environmental sensors and energy systems2017In: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 8, p. 2015-2016Article in journal (Other academic)
    Abstract [en]

    n/a

  • 35.
    Persson, Nils-Krister
    et al.
    Univ Boras, Sweden.
    Martinez Gil, Jose Gabriel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Zhong, Yong
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Maziz, Ali
    Univ Toulouse, France.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Actuating Textiles: Next Generation of Smart Textiles2018In: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, Vol. 3, no 10, article id 1700397Article in journal (Refereed)
    Abstract [en]

    Smart textiles have been around for some decades. Even if interactivity is central to most definitions, the emphasis so far has been on the stimuli/input side, comparatively little has been reported on the responsive/output part. This study discusses the actuating, mechanical, output side in what could be called a second generation of smart textiles-this in contrast to a first generation of smart textiles devoted to sensorics. This mini review looks at recent progress within the area of soft actuators and what from there that is of relevance for smart textiles. It is found that typically still forces exerted are small, so are strains for many of the actuators types (such as electroactive polymers) that could be considered for textile integration. On the other side, it is argued that for many classes of soft actuators-and, in the extension, soft robotics-textiles could play an important role. The potential of weaving for stress and knitting for strain amplification is shown. Textile processing enables effective production, as is analyzed. Textile systems are made showing automatic actuation asked for in stand-alone solutions. It is envisioned that soft exoskeletons could be an achievable goal for this second generation of smart textiles.

  • 36.
    Pranzo, Daniela
    et al.
    Masmec Biomed, Italy.
    Larizza, Piero
    Masmec Biomed, Italy.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Percoco, Gianluca
    Polytech Univ Bari, Italy.
    Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review2018In: Micromachines, ISSN 2072-666X, E-ISSN 2072-666X, Vol. 9, no 8, article id 374Article, review/survey (Refereed)
    Abstract [en]

    One of the most widespread additive manufacturing (AM) technologies is fused deposition modelling (FDM), also known as fused filament fabrication (FFF) or extrusion-based AM. The main reasons for its success are low costs, very simple machine structure, and a wide variety of available materials. However, one of the main limitations of the process is its accuracy and finishing. In spite of this, FDM is finding more and more applications, including in the world of micro-components. In this world, one of the most interesting topics is represented by microfluidic reactors for chemical and biomedical applications. The present review focusses on this research topic from a process point of view, describing at first the platforms and materials and then deepening the most relevant applications.

  • 37.
    Ravichandran, Ranjithkumar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Martinez Gil, Jose Gabriel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Phopase, Jaywant
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Type I Collagen-Derived Injectable Conductive Hydrogel Scaffolds as Glucose Sensors2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 19, p. 16244-16249Article in journal (Refereed)
    Abstract [en]

    The advent of home blood glucose monitoring revolutionized diabetes management, and the recent introduction of both wearable devices and closed-loop continuous systems has enormously impacted the lives of people with diabetes. We describe the first fully injectable soft electrochemical glucose sensor for in situ monitoring. Collagen, the main component of a native extracellular matrix in humans and animals, was used to fabricate an in situ gellable self-supporting electroconductive hydrogel that can be injected onto an electrode surface or into porcine meat to detect glucose amperometrically. The study provides a proof-of-principle of an injectable electrochemical sensor suitable for monitoring tissue glucose levels that may, with further development, prove clinically useful in the future.

    The full text will be freely available from 2019-04-27 15:11
  • 38.
    Rezaei, Babak
    et al.
    Amirkabir Univ Technol, Iran.
    Shoushtari, Ahmad Mousavi
    Amirkabir Univ Technol, Iran.
    Rabiee, Mohammad
    Amirkabir Univ Technol, Iran.
    Uzun, Lokman
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Hacettepe Univ, Turkey.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Electrochemical performance of nanofibrous highly flexible electrodes enhanced by different structural configurations2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 155, p. 81-90Article in journal (Refereed)
    Abstract [en]

    Due to their unique physicomechanical properties, one dimensional (1D) nanostructured conductive materials offer remarkable potential as a flexible electroactive medium for developing miniaturized electronic devices such as supercapacitors, sensors and actuators. In this work, thin films composed of nanocomposite nanofibers with two different architectures, i.e. whiskered nanofibers (WNFs) and hierarchical-structured nanofibers (H-SNFs), were fabricated and their capability to serve as flexible and bendable electrodes were evaluated. The main difference of these two architectures is how the distributions of the nano-fillers (carboxylated multiwalled carbon nanotubes, CMWCNTs) through the nanofibers, i.e. the isotropic and anisotropic arrangements, lead to WNFs and H-SNFs, respectively. The percolation threshold of conduction for the H-SNFs (composed of 0.5 wt% CMWCNTs) and the WNFs (composed of 5 wt% CMWCNTs) were 0.13 S cm(-1) and 0.07 S cm(-1), respectively. Moreover, according to the electrochemical characterizations, although the WNFs had ten orders of magnitude higher nanotube content, the electroactivity and electron transfer rate of H-SNFs was considerably higher than those of WNFs, so that the cyclic voltammetric peak currents of H-SNFs was approximately 1.6 times higher than that of WNFs. As a proof-of-concept, our results indicate that the structural configuration is a major determinative factor, which can largely dictate the final electrical and electrochemical properties of the nanocomposite nanofibers. The bending durability results showed good electrochemical performance even upon 100 bending cycles with 120 bending angles (retained 93.4% and 83.3% of the initial peak currents for H-SNFs and WNFs, respectively). These two flexible nanocomposite nanofibrous structures could be promising materials for the development of flexible electrodes for biosensing to energy storage applications. (C) 2017 Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2019-12-02 15:53
  • 39.
    Rezaei, Babak
    et al.
    Nanotechnology Institute, Amirkabir University of Technology, Tehran, Iran.
    Shoushtari, Ahmad Mousavi
    Textile Engineering Department, AmirKabir University of Technology, Tehran, Iran.
    Rabiee, Mohammad
    Biomaterials Group, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
    Uzun, Lokman
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers2018In: Advances in Polymer Technology, ISSN 0730-6679, E-ISSN 1098-2329, p. 1-13Article in journal (Refereed)
    Abstract [en]

    This study was conducted to provide a quantitative understanding of the influence of the different solution and electrospinning variables on the morphology and the mean diameter of electrospun polystyrene nanofibers. In this regard, the effect of different solvents and ionic additives on the electrical conductivity, viscosity, and surface tension of the electrospinning solutions and thereby the morphology of nanofibers were examined. The results indicated that the morphology of the fibers is extremely dependent on the solvent’s properties, especially volatility and electrical conductivity, and the ionic characteristics of additives. Finally, to estimate the optimal electrospinning conditions for production of nanofibers with minimum possible diameter, modeling of the process was undertaken using the response surface methodology. Experimentally, nanofibers with the finest diameter of 169 ï¿œ 21 nm were obtained under the optimized conditions, and these could be considered promising candidates for a wide practical range of applications ranging from biosensors to filtration.

  • 40.
    Rezaei, Babak
    et al.
    Nanotechnology Institute, Amirkabir University of Technology, Tehran, Iran.
    Shoushtari, Ahmad Mousavi
    Textile Engineering Department, AmirKabir University of Technology, Tehran, Iran.
    Rabiee, Mohammad
    Biomaterials Group, Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
    Uzun, Lokman
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Wing Cheung, Mak
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    TURNER, APF
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    An electrochemical immunosensor for cardiac Troponin I using electrospun carboxylated multi-walled carbon nanotube-whiskered nanofibres2018In: Talanta: The International Journal of Pure and Applied Analytical Chemistry, ISSN 0039-9140, E-ISSN 1873-3573, Vol. 182, p. 178-186Article in journal (Refereed)
    Abstract [en]

    A sandwich-type nanostructured immunosensor based on carboxylated multi-walled carbon nanotube (CMWCNT)-embedded whiskered nanofibres (WNFs) was developed for detection of cardiac Troponin I (cTnI). WNFs were directly fabricated on glassy carbon electrodes (GCE) by removing the sacrificial component (polyethylene glycol, PEG) after electrospinning of polystyrene/CMWCNT/PEG nanocomposite nanofibres, and utilised as a transducer layer for enzyme-labeled amperometric immunoassay of cTnI. The whiskered segments of CMWCNTs were activated and utilised to immobilise anti-cTnT antibodies. It was observed that the anchored CMWCNTs within the nanofibres were suitably stabilised with excellent electrochemical repeatability. A sandwich-type immuno-complex was formed between cTnI and horseradish peroxidase-conjugated anti-cTnI (HRP-anti-cTnI). The amperometric responses of the immunosensor were studied using cyclic voltammetry (CV) through an enzymatic reaction between hydrogen peroxide and HRP conjugated to the secondary antibody. The nanostructured immunosensor delivered a wide detection range for cTnI from the clinical borderline for a normal person (0.5-2 ng mL(-1)) to the concentration present in myocardial infarction patients (amp;gt; 20 ng mL(-1)), with a detection limit of similar to 0.04 ng mL(-1). It also showed good reproducibility and repeatability for three different cTnI concentration (1, 10 and 25 ng mL(-1)) with satisfactory relative standard deviations (RSD). Hence, the proposed nanostructured immunosensor shows potential for point-of-care testing.

    The full text will be freely available from 2020-01-31 16:17
  • 41.
    Rodner, Marius
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Bahonjic, Jasna
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Mathisen, Marcus
    Not Found:Linkoping Univ, IFM, Appl Sensor Sci Unit, Linkoping, Sweden.
    Gunnarsson, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Ekeroth, Sebastian
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Performance tuning of gas sensors based on epitaxial graphene on silicon carbide2018In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 153, p. 153-158Article in journal (Refereed)
    Abstract [en]

    In this study, we investigated means of performance enhancement in sensors based on epitaxial graphene on silicon carbide (SiC). Epitaxially grown graphene on SiC substrates were successfully decorated with metal oxide nanoparticles such as TiO2 and Fe3O4 using hollow cathode pulsed plasma sputtering. Atomic Force Microscopy and Raman data verified that no damage was added to the graphene surface. It could be shown that it was easily possible to detect benzene, which is one of the most dangerous volatile organic compounds, with the Fe3O4 decorated graphene sensor down to an ultra-low concentration of 5 ppb with a signal to noise ratio of 35 dB. Moreover, upon illumination with a UV light LED (265 nm) of the TiO2 decorated graphene sensor, the sensitivity towards a change of oxygen could be enhanced such that a clear sensor response could be seen which is a significant improvement over dark conditions, where almost no response occurred. As the last enhancement, the time derivative sensor signal was introduced for the sensor data evaluation, testing the response towards a change of oxygen. This sensor signal evaluation approach can be used to decrease the response time of the sensor by at least one order of magnitude. (C) 2018 Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2020-05-04 09:55
  • 42.
    Santangelo, M. F.
    et al.
    CNR, Italy.
    Libertino, S.
    CNR, Italy.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Filippini, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection2018In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 99, p. 464-470Article in journal (Refereed)
    Abstract [en]

    Bioluminescence has been widely used for important biosensing applications such as the measurement of adenosine triphosphate (ATP), the energy unit in biological systems and an indicator of vital processes. The current technology for detection is mainly based on large equipment such as readers and imaging systems, which require intensive and time-consuming procedures. A miniaturised bioluminescence sensing system, which would allow sensitive and continuous monitoring of ATP, with an integrated and low-cost disposable microfluidic chamber for handling of biological samples, is highly desirable. Here, we report the design, fabrication and testing of 3D printed microfluidics chips coupled with silicon photomultipliers (SiPMs) for high sensitive real-time ATP detection. The 3D microfluidic chip reduces reactant consumption and facilitates solution delivery close to the SiPM to increase the detection efficiency. Our system detects ATP with a limit of detection (LoD) of 8 nM and an analytical dynamic range between 15 nM and 1 mu M, showing a stability error of 3%, and a reproducibility error below of 20%. We demonstrate the dynamic monitoring of ATP in a continuous flow system exhibiting a fast response time, similar to 4 s, and a full recovery to the baseline level within 17 s. Moreover, the SiPM-based bioluminescence sensing system shows a similar analytical dynamic range for ATP detection to that of a full-size PerkinElmer laboratory luminescence reader.

    The full text will be freely available from 2019-07-27 14:51
  • 43.
    Shtepliuk, Ivan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. NASU, Ukraine.
    Santangelo, Maria Francesca
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Iakimov, Tihomir
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Understanding Graphene Response to Neutral and Charged Lead Species: Theory and Experiment2018In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 11, no 10, article id 2059Article in journal (Refereed)
    Abstract [en]

    Deep understanding of binding of toxic Lead (Pb) species on the surface of two-dimensional materials is a required prerequisite for the development of next-generation sensors that can provide fast and real-time detection of critically low concentrations. Here we report atomistic insights into the Lead behavior on epitaxial graphene (Gr) on silicon carbide substrates by thorough complementary study of voltammetry, electrical characterization, Raman spectroscopy, and Density Functional Theory (DFT). It is verified that the epitaxial graphene exhibits quasi-reversible anode reactions in aqueous solutions, providing a well-defined redox peak for Pb species and good linearity over a concentration range from 1 nM to 1 mu M. The conductometric approach offers another way to investigate Lead adsorption, which is based on the formations of stable charge-transfer complexes affecting the p-type conductivity of epitaxial graphene. Our results suggest the adsorption ability of the epitaxial graphene towards divalent Lead ions is concentration-dependent and tends to saturate at higher concentrations. To elucidate the mechanisms responsible for Pb adsorption, we performed DFT calculations and estimated the solvent-mediated interaction between Lead species in different oxidative forms and graphene. Our results provide central information regarding the energetics and structure of Pb-graphene interacting complexes that underlay the adsorption mechanisms of neutral and divalent Lead species. Such a holistic understanding favors design and synthesis of new sensitive materials for water quality monitoring.

  • 44.
    Silverå Ejneby, Malin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Ottosson, Nina
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Münger, E Peter
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Elinder, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Atom-by-atom tuning of the electrostatic potassium-channel modulator dehydroabietic acid2018In: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 150, no 5, p. 731-750Article in journal (Refereed)
    Abstract [en]

    Dehydroabietic acid (DHAA) is a naturally occurring component of pine resin that was recently shown to open voltage-gated potassium (KV) channels. The hydrophobic part of DHAA anchors the compound near the channel’s positively charged voltage sensor in a pocket between the channel and the lipid membrane. The negatively charged carboxyl group exerts an electrostatic effect on the channel’s voltage sensor, leading to the channel opening. In this study, we show that the channel-opening effect increases as the length of the carboxyl-group stalk is extended until a critical length of three atoms is reached. Longer stalks render the compounds noneffective. This critical distance is consistent with a simple electrostatic model in which the charge location depends on the stalk length. By combining an effective anchor with the optimal stalk length, we create a compound that opens the human KV7.2/7.3 (M type) potassium channel at a concentration of 1 µM. These results suggest that a stalk between the anchor and the effector group is a powerful way of increasing the potency of a channel-opening drug.

  • 45.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Enabling mobile health2017In: BIOSENSORS 2016, ELSEVIER SCIENCE BV , 2017, Vol. 27, p. 4-5Conference paper (Refereed)
    Abstract [en]

    The need for new, easy-to-use, home and decentralised diagnostics is now greater than ever and it is rapidly becoming apparent that biosensors can contribute substantially to reducing healthcare costs. New thinking is crucial to finding effective solutions that deliver the high quality of life rightly demanded by our ever ageing population while leveraging technology to deliver this in a cost-effective manner. Several key drivers are catalysing change. Personalised medicine recognises that every individual is different and needs a tailor-made health package; these differences can only be identified with an appropriate suite of diagnostics. Individuals are increasing recognising that data about their bodies should be owned by them and that they should have the choice to use and supplement this information. This generates consumer choice and drives evidence-based payment, where the success of outcomes needs to be measured. Focus on the individual and their needs drives decentralisation and the possible radical restructuring of how we deliver health management. We already see “health rooms” in pharmacies, but the next step will be health rooms in your home, in your pocket or on your wrist. These advances are underpinned by technologies facilitating mobility and data processing, but at the core are rapid, convenient and easy ways to measure our body chemistries at the genomic, proteomic and metabolomic levels. This presentation will focus on meeting these challenges using paper-based electronics, polymers and integrated electrochemical systems to deliver inexpensive instruments for a wide range of bioanalytical applications. Approaches will be illustrated by multi-parametric monitoring for the management of diabetes, chronic kidney disease and stress, reversible and label-free affinity sensors for cancer markers and heart disease, aptasensors for pathogens and cancer cells, and robust microbial-differentiation arrays. Further development will result in cost reduction and a diversity of formats such as point-of-care tests, smart packaging, telemetric strips and print-on-demand analytical devices.

  • 46.
    Vagin, Mikhail Yu.
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemical and Optical Sensor Systems.
    Jeerapan, Itthipon
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Hat Yai, Songkla, Thailand.
    Wannapob, Rodtichoti
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Hat Yai, Songkla, Thailand.
    Thavarungkul, Panote
    Hat Yai, Songkla, Thailand.
    Kanatharana, Proespichaya
    Hat Yai, Songkla, Thailand.
    Anwar, Nargis
    Dublin Road, Dundalk, County Louth, Ireland.
    McCormac, Timothy
    Dublin Road, Dundalk, County Louth, Ireland.
    Eriksson, Mats
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemical and Optical Sensor Systems.
    Turner, Anthony P.F
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin W.H.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Wing Cheung, Mak
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Water-processable polypyrrole microparticle modules for direct fabrication of hierarchical structured electrochemical interfaces2016In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 190, p. 495-503Article in journal (Refereed)
    Abstract [en]

    Hierarchically structured materials (HSMs) are becoming increasingly important in catalysis, separation and energy applications due to their advantageous diffusion and flux properties. Here, we introduce a facile modular approach to fabricate HSMs with tailored functional conducting polypyrrole microparticles (PPyMP). The PPyMPs were fabricated with a calcium carbonate (CaCO3) template-assisted polymerization technique in aqueous media at room temperature, thus providing a new green chemistry for producing water-processable functional polymers. The sacrificial CaCO3 template guided the polymerization process to yield homogenous PPyMPs with a narrow size distribution. The porous nature of the CaCO3 further allows the incorporation of various organic and inorganic dopants such as an electrocatalyst and redox mediator for the fabrication of functional PPyMPs. Dawson-type polyoxometalate (POM) and methylene blue (MB) were chosen as the model electrocatalyst and electron mediator dopant, respectively. Hierarchically structured electrochemical interfaces were created simply by self-assembly of the functional PPyMPs. We demonstrate the versatility of this technique by creating two different hierarchical structured electrochemical interfaces: POM-PPyMPs for hydrogen peroxide electrocatalysis and MB-PPyMPs for mediated bioelectrocatalysis. We envision that the presented design concept could be extended to different conducting polymers doped with other functional organic and inorganic dopants to develop advanced electrochemical interfaces and to create high surface area electrodes for energy storage.

  • 47.
    Wang, Yangyang
    et al.
    Chongqing Med Univ, Peoples R China.
    Yan, Xinke
    Chongqing Med Univ, Peoples R China.
    Zeng, Shengyuan
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Zhang, Ting
    Chongqing Med Univ, Peoples R China.
    Cheng, Fengjuan
    Chongqing Med Univ, Peoples R China.
    Chen, Rongjuan
    Chongqing Med Univ, Peoples R China.
    Duan, Changzhu
    Chongqing Med Univ, Peoples R China.
    UHRF2 promotes DNA damage response by decreasing p21 via RING finger domain2018In: Biotechnology letters, ISSN 0141-5492, E-ISSN 1573-6776, Vol. 40, no 8, p. 1181-1188Article in journal (Refereed)
    Abstract [en]

    To investigate the interaction of E3 ubiquitin ligase UHRF2 with p21 and the mechanism of UHRF2 in repairing DNA damage caused by hydroxyurea (HU) in HEK293 cells. Western blotting indicated that the overexpression of UHRF2 reduced the level of p21, particularly in HEK293 cells. Immunoprecipitation and immunofluorescence staining reveled that UHRF2 combined with p21 in the nucleus. In addition, UHRF2 degraded p21 through ubiquitination and shortened the half-life of p21. UHRF2 could repair DNA damage caused by HU treatment, which was impaired by the inhibition of p21 in HEK293 cells. UHRF2 may negatively modulate p21 to regulate DNA damage response, suggesting a novel pathway of UHRF2 repairing DNA damage through the partial regulation of p21.

  • 48.
    Wannapob, Rodtichoti
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Prince Songkla University, Thailand.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Liu, Yu
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering. Sichuan Agriculture University, Peoples R China.
    Thavarungkul, Panote
    Prince Songkla University, Thailand.
    Kanatharana, Proespichaya
    Prince Songkla University, Thailand.
    Turner, Anthony
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 38, p. 33368-33376Article in journal (Refereed)
    Abstract [en]

    Printable organic bioelectronics provide a fast and cost-effective approach for the fabrication of novel biodevices, while the general challenge is to achieve optimized reaction kinetics at multiphase boundaries between biomolecules and electrodes. Here, we present an entirely new concept based on a modular approach for the construction of heterostructured bioelectronic interfaces by using tailored functional "biological microparticles" combined with "transducer micro particles" as modular building blocks. This approach offers high versatility for the design and fabrication of bioelectrodes with a variety of forms of interparticle spatial organization, from layered structures to more advance bulk heterostructured architectures. The heterostructured biocatalytic electrodes delivered twice the reaction rate and a six-fold increase in the effective diffusion kinetics in response to a catalytic model using glucose as the substrate, together with the advantage of shortened diffusion paths for reactants between multiple interparticle junctions and large active particle surface. The consequent benefits of this improved performance combined with the simple means of mass production are of major significance for the emerging printed electronics industry.

  • 49.
    Zaidon, Nuradawiyah
    et al.
    Int Islamic Univ, Malaysia.
    Mansor, Ahmad Fairuzabadi Mohd
    Int Islamic Univ, Malaysia.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Ismail, Ahmad Faris
    Int Islamic Univ, Malaysia.
    Nordin, Anis Nurashikin
    Int Islamic Univ, Malaysia.
    Microfluidic Concentration Gradient for Toxicity Studies of Lung Carcinoma Cells2017In: BIOSENSORS 2016, ELSEVIER SCIENCE BV , 2017, Vol. 27, p. 153-154Conference paper (Refereed)
    Abstract [en]

    n/a

  • 50.
    Zhong, Yong
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Lundemo, Staffan
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Development of polypyrrole based solid state on-chip microactuators using photolithography2018In: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, no 7, article id 074006Article in journal (Refereed)
    Abstract [en]

    There is a need for soft microactuators, especially for biomedical applications. We have developed a microfabrication process to create such soft, on-chip polymer-based microactuators that can operate in air. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special designed process to micropattern the electroactive polymer polypyrrole that drives the microactuators. By immobilizing a UV-patternable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air was achieved although with reduced movement. Further optimization of the processing is currently on-going. The result shows the possibility to batch fabricate complex microsystems such as microrobotics and micromanipulators based on these solid state on-chip microactuators using microfabrication methods including standard photolithographic processes.

12 1 - 50 of 56
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf