liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 39 of 39
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbas, Malik Waseem
    et al.
    Natl Inst Biotechnol and Genet Engn, Pakistan.
    Soomro, Razium Ali
    Natl Inst Biotechnol and Genet Engn, Pakistan; Univ Sindh, Pakistan; Univ Bristol, England.
    Kalwar, Nazar Hussain
    Shah Abdul Latif Univ, Pakistan.
    Zahoor, Mehvish
    Natl Inst Biotechnol and Genet Engn, Pakistan.
    Avci, Ahmet
    Selcuk Univ, Turkey.
    Pehlivan, Erol
    Selcuk Univ, Turkey.
    Hallam, Keith Richard
    Univ Bristol, England.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid2019In: Microchemical journal (Print), ISSN 0026-265X, E-ISSN 1095-9149, Vol. 146, p. 517-524Article in journal (Refereed)
    Abstract [en]

    The study explores carbon quantum dots (C-dots) as potential candidates for enhancing the signal sensitivity of an electrochemical sensor devised for biologically important molecule, such as uric acid (UA). The C-dots were evaluated for their electrochemical characteristics in combination with Fe3O4 nanoparticles (Fe3O4 NPs), which were applied as the primary electro-catalytic promoter. The hybrid nanocomposite (C-dots/Fe3O4 HCs) formation was achieved by facilitating the adsorption of C-dots over Fe3O4 NPs using amine-carbonyl interactions. Unlike, one pot method, the proposed strategy enables aggregation-free coverage of Fe3O4 NPs with highly conductive layer of C-dots that can act as conduction centres to support ultra-fast electron transfer kinetics to satisfy the need of high signal sensitivity. The hybrid composite demonstrated remarkable signal improvement when tested against the electrochemical oxidation of UA. The heighten current response and lower over-potential values enabled development of a DC-amperometric (DC-AMP) sensor for UA with a linear working range of 0.01 to 0.145 mu M and signal sensitivity measurable up to 6.0 x 10(-9) M. The said improvement was manifested as a synergetic outcome of active redox couple (Fe (III/II)), larger surface area of Fe3O4 NPs engulfed with a layer of highly conductive C-dots acting as efficient charge sensitisers.

  • 2.
    Abbas, Zaheer
    et al.
    Beijing Univ Chem Technol, Peoples R China.
    Soomro, Razium Ali
    Beijing Univ Chem Technol, Peoples R China; Beijing Univ Chem Technol, Peoples R China.
    Kalwar, Nazar Hussain
    Shah Abdul Latif Univ Khairpur, Pakistan.
    Tunesi, Mawada
    Beijing Univ Chem Technol, Peoples R China.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Karakus, Selcan
    Istanbul Univ Cerrahpa Avcilar, Turkey.
    Kilislioglu, Ayben
    Istanbul Univ Cerrahpa Avcilar, Turkey.
    In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker2020In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, SENSORS, Vol. 20, no 1, article id 148Article in journal (Refereed)
    Abstract [en]

    Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pgmL(-1) to 50 ng.mL(-1) with signal sensitivity achievable up to 0.15 pgmL(-1). The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.

  • 3. Order onlineBuy this publication >>
    Adam, Rania Elhadi
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Synthesis and Characterization of Some Nanostructured Materials for Visible Light-driven Photo Processes2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Nanostructured materials for visible light driven photo-processes such as photodegradation of organic pollutants and photoelectrochemical (PEC) water oxidation for hydrogen production are very attractive because of the positive impact on the environment. Metal oxides-based nanostructures are widely used in these photoprocesses due to their unique properties. But single nanostructured metal oxide material might suffer from low efficiency and instability in aqueous solutions under visible light. These facts make it important to have an efficient and reliable nanocomposite for the photo-processes. The combination of different nanomaterials to form a composite configuration can produce a material with new properties. The new properties which are due to the synergetic effect, are a combination of the properties of all the counterparts of the nanocomposite. Zinc oxides (ZnO) have unique optical and electrical properties which grant it to be used in optoelectronics, sensors, solar cells, nanogenerators, and photocatalysis activities. Although ZnO absorbs visible light from the sun due to the deep level band, it mainly absorbs ultraviolet wavelengths which constitute a small portion of the whole solar spectrum range. Also, ZnO has a problem with the high recombination rate of the photogenerated electrons. These problems might reduce its applicability to the photo-process. Therefore, our aim is to develop and investigate different nanocomposites materials based on the ZnO nanostructures for the enhancement of photocatalysis processes using the visible solar light as a green source of energy. Two photo-processes were applied to examine the developed nanocomposites through photocatalysis: (1) the photodegradation of organic dyes, (2) PEC water splitting. In the first photo-process, we used the ZnO nanoparticles (NPs), Magnesium (Mg)-doped ZnO NPs, and plasmonic ZnO/graphene-based nanocomposite for the decomposition of some organic dyes that have been used in industries. For the second photo-process, ZnO photoelectrode composite with different silver-based semiconductors to enhance the performance of the ZnO photoelectrode was used for PEC reaction analysis to perform water splitting. The characterization and photocatalysis experiment results showed remarkable enhancement in the photocatalysis efficiency of the synthesized nanocomposites. The observed improved properties of the ZnO are due to the synergetic effects are caused by the addition of the other nanomaterials. Hence, the present thesis attends to the synthesis and characterization of some nanostructured materials composite with ZnO that are promising candidates for visible light-driven photo-processes.  

    List of papers
    1. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH
    Open this publication in new window or tab >>Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH
    2018 (English)In: PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, ISSN 1569-4410, Vol. 32, p. 11-18Article in journal (Refereed) Published
    Abstract [en]

    Solar driven photocatalytic processes to remove organic pollutants from wastewater and other aqueous solutions is very important and useful due to its environmental benefits regarding sustainability aspect. In this article, we report a study on the use of bare zinc oxide (ZnO) nanoparticles (NPs) prepared by the chemical low temperature co-precipitation method and used as a catalyst to degrade the Congo red dye from aqueous solution using solar radiation. We performed the photocatalytic experiments for degradation of Congo red dye under solar radiation at different pH values. The results showed that the ZnO NPs are effective under solar radiation for degradation of Congo red dye. Even when the pH was varied down to 4 or raised to 10, the degradation was observed to be slightly improved. This result is due to the excess of radicals species, which enhance the photocatalytic process. In general, the observed degradation efficiency of the ZnO NPs is due to the deep level defects within the band gap that were introduced during the growth process of the ZnO NPs, which enhance the absorption wavelength band towards the visible light region. Recycling of the ZnO NPs for 3 successive runs have indicated the feasibility of reusing the NPs for several times. This implies that by using bare ZnO NPs an efficient approach for degradation of toxic waste can be achieved. Radical scavengers were used to evaluate the role of the radicals in the reaction mechanism.

    Place, publisher, year, edition, pages
    ELSEVIER SCIENCE BV, 2018
    Keywords
    ZnO nanoparticles; Point defects; Photocatalytic
    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:liu:diva-153525 (URN)10.1016/j.photonics.2018.08.005 (DOI)000451653700003 ()
    Note

    Funding Agencies|department of Science and Technology, Linkoping University, Sweden

    Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2020-03-18
    2. Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light
    Open this publication in new window or tab >>Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light
    Show others...
    2020 (English)In: Solid State Sciences, ISSN 1293-2558, E-ISSN 1873-3085, Vol. 99, article id 106053Article in journal (Refereed) Published
    Abstract [en]

    Doped semiconductors nanostructures (NSs) have shown great interest as a potential for green and efficient photocatalysis activities. Magnesium (Mg)-doped zinc oxide (ZnO) nanoparticles (NPs) has been synthesized by a one-step chemical low temperature (60 °C) co-precipitation method without further calcination and their photocatalytic performance for photodegradation of Methylene blue (MB) dye under the illumination of solar light is investigated. The crystal structure of the synthesized NPs is examined by X-ray diffraction (XRD). XRD data indicates a slight shift towards higher 2θ angle in Mg-doped samples as compared to the pure ZnO NPs which suggest the incorporation of Mg2+ into ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometer and cathodoluminescence (CL) spectroscopy, were used to study electronics, and optical properties, respectively. The XPS analysis confirms the substitution of the Zn2+ by the Mg2+ into the ZnO crystal lattice in agreement with the XRD data. The photocatalytic activities showed a significant enhancement of the Mg-doped ZnO NPs in comparison with pure ZnO NPs. Hole/radical scavengers were used to reveal the mechanism of the photodegradation. It was found that the addition of the Mg to the ZnO lattices increases the absorption of the hydroxyl ions at the surface of the NPs and hence acts as a trap site leading to decrease the electron-hole pair and consequently enhancing the photodegradation.

    Place, publisher, year, edition, pages
    Elsevier, 2020
    Keywords
    ZnO nanoparticles, Mg-doped ZnO NPs, Photocatalytic, Photodegradation, Methylene blue, Congo red
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-164333 (URN)10.1016/j.solidstatesciences.2019.106053 (DOI)000516720100024 ()2-s2.0-85074706430 (Scopus ID)
    Available from: 2020-03-18 Created: 2020-03-18 Last updated: 2020-03-24Bibliographically approved
    3. Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
    Open this publication in new window or tab >>Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
    Show others...
    2019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 52, p. 30585-30598Article in journal (Refereed) Published
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.

    Place, publisher, year, edition, pages
    Royal Meteorological Society, 2019
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-160568 (URN)10.1039/C9RA06273D (DOI)000487989300064 ()
    Note

    Funding agencies: Department of Science and Technology (ITN) at Campus Norrkoping, Linkoping University, Sweden; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation

    Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2020-03-18Bibliographically approved
    4. n–n ZnO–Ag2CrO4 heterojunction photoelectrodes with enhanced visible-light photoelectrochemical properties
    Open this publication in new window or tab >>n–n ZnO–Ag2CrO4 heterojunction photoelectrodes with enhanced visible-light photoelectrochemical properties
    Show others...
    2019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 14, p. 7992-8001Article in journal (Refereed) Published
    Abstract [en]

    In this study, ZnO nanorods (NRs) were hydrothermally grown on an Au-coated glass substrate at a relatively low temperature (90 °C), followed by the deposition of Ag2CrO4 particles via a successive ionic layer adsorption and reaction (SILAR) route. The content of the Ag2CrO4 particles on ZnO NRs was controlled by changing the number of SILAR cycles. The fabricated ZnO–Ag2CrO4 heterojunction photoelectrodes were subjected to morphological, structural, compositional, and optical property analyses; their photoelectrochemical (PEC) properties were investigated under simulated solar light illumination. The photocurrent responses confirmed that the ability of the ZnO–Ag2CrO4 heterojunction photoelectrodes to separate the photo-generated electron–hole pairs is stronger than that of bare ZnO NRs. Impressively, the maximum photocurrent density of about 2.51 mA cm−2 at 1.23 V (vs. Ag/AgCl) was measured for the prepared ZnO–Ag2CrO4 photoelectrode with 8 SILAR cycles (denoted as ZnO–Ag2CrO4-8), which exhibited about 3-fold photo-enhancement in the current density as compared to bare ZnO NRs (0.87 mA cm−2) under similar conditions. The improvement in photoactivity was attributed to the ideal band gap and high absorption coefficient of the Ag2CrO4 particles, which resulted in improved solar light absorption properties. Furthermore, an appropriate annealing treatment was proven to be an efficient process to increase the crystallinity of Ag2CrO4 particles deposited on ZnO NRs, which improved the charge transport characteristics of the ZnO–Ag2CrO4-8 photoelectrode annealed at 200 °C and increased the performance of the photoelectrode. The results achieved in the present work present new insights for designing n–n heterojunction photoelectrodes for efficient and cost-effective PEC applications and solar-to-fuel energ

    Place, publisher, year, edition, pages
    Royal Society of Chemistry, 2019
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-155657 (URN)10.1039/C9RA00639G (DOI)000462646000051 ()2-s2.0-85062919263 (Scopus ID)
    Note

    Funding agencies: University of Mohaghegh Ardabili-Iran and Linkoping University-Sweden; AForsk [17-457

    Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2020-03-18Bibliographically approved
    5. ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation
    Open this publication in new window or tab >>ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation
    Show others...
    2019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 15, p. 8271-8279Article in journal (Refereed) Published
    Abstract [en]

    Ag-based compounds are excellent co-catalyst that can enhance harvesting visible light and increase photo-generated charge carrier separation owing to its surface plasmon resonance (SPR) effect in photoelectrochemical (PEC) applications. However, the PEC performance of a ZnO/Ag/Ag2WO4 heterostructure with SPR behavior has not been fully studied so far. Here we report the preparation of a ZnO/Ag/Ag2WO4 photo-electrode with SPR behavior by a low temperature hydrothermal chemical growth method followed by a successive ionic layer adsorption and reaction (SILAR) method. The properties of the prepared samples were investigated by different characterization techniques, which confirm that Ag/Ag2WO4 was deposited on the ZnO NRs. The Ag2WO4/Ag/ZnO photo-electrode showed an enhancement in PEC performance compared to bare ZnO NRs. The observed enhancement is attributed to the red shift of the optical absorption spectrum of the Ag2WO4/Ag/ZnO to the visible region (>400 nm) and to the SPR effect of surface metallic silver (Ag0) particles from the Ag/Ag2WO4 that could generate electron–hole pairs under illumination of low energy visible sun light. Finally, we proposed the PEC mechanism of the Ag2WO4/Ag/ZnO photo-electrode with an energy band structure and possible electron–hole separation and transportation in the ZnO/Ag/Ag2WO4 heterostructure with SPR effect for water oxidation. ER

    Place, publisher, year, edition, pages
    Royal Society of Chemistry, 2019
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-155655 (URN)10.1039/C8RA10141H (DOI)000461445300016 ()
    Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2020-03-18Bibliographically approved
  • 4.
    Adam, Rania Elhadi
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Alnoor, Hatim
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Nur, Omer
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light2020In: Solid State Sciences, ISSN 1293-2558, E-ISSN 1873-3085, Vol. 99, article id 106053Article in journal (Refereed)
    Abstract [en]

    Doped semiconductors nanostructures (NSs) have shown great interest as a potential for green and efficient photocatalysis activities. Magnesium (Mg)-doped zinc oxide (ZnO) nanoparticles (NPs) has been synthesized by a one-step chemical low temperature (60 °C) co-precipitation method without further calcination and their photocatalytic performance for photodegradation of Methylene blue (MB) dye under the illumination of solar light is investigated. The crystal structure of the synthesized NPs is examined by X-ray diffraction (XRD). XRD data indicates a slight shift towards higher 2θ angle in Mg-doped samples as compared to the pure ZnO NPs which suggest the incorporation of Mg2+ into ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS), UV–Vis spectrophotometer and cathodoluminescence (CL) spectroscopy, were used to study electronics, and optical properties, respectively. The XPS analysis confirms the substitution of the Zn2+ by the Mg2+ into the ZnO crystal lattice in agreement with the XRD data. The photocatalytic activities showed a significant enhancement of the Mg-doped ZnO NPs in comparison with pure ZnO NPs. Hole/radical scavengers were used to reveal the mechanism of the photodegradation. It was found that the addition of the Mg to the ZnO lattices increases the absorption of the hydroxyl ions at the surface of the NPs and hence acts as a trap site leading to decrease the electron-hole pair and consequently enhancing the photodegradation.

  • 5.
    Adam, Rania Elhadi
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chalangar, Ebrahim
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, Halmstad, Sweden.
    Pirhashemi, Mahsa
    Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pettersson, Håkan
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, Halmstad, Sweden; Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Willander, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 52, p. 30585-30598Article in journal (Refereed)
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.

  • 6.
    Aftab, Umair
    et al.
    Mehran Univ Engn and Technol, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Mazzaro, Raffaello
    Italian Natl Res Council, Italy.
    Abro, Muhammad Ishaq
    Mehran Univ Engn and Technol, Pakistan.
    Baloch, Muhammad Moazam
    Mehran Univ Engn and Technol, Pakistan.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Yu, Cong
    Chinese Acad Sci, Peoples R China.
    Ibupoto, Zafar Hussain
    Univ Sindh, Pakistan.
    The chemically reduced CuO-Co3O4 composite as a highly efficient electrocatalyst for oxygen evolution reaction in alkaline media2019In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 9, no 22, p. 6274-6284Article in journal (Refereed)
    Abstract [en]

    The fabrication of efficient, alkaline-stable and nonprecious electrocatalysts for the oxygen evolution reaction is highly needed; however, it is a challenging task. Herein, we report a noble metal-free advanced catalyst, i.e. the chemically reduced mixed transition metal oxide CuO-Co3O4 composite, with outstanding oxygen evolution reaction activity in alkaline media. Sodium borohydride (NaBH4) was used as a reducing agent for the mixed transition metal oxide CuO-Co3O4. The chemically reduced composite carried mixed valence states of Cu and Co, which played a dynamic role in driving an excellent oxygen evolution reaction process. The X-ray photo-electron spectroscopy (XPS) study confirmed high density of active sites in the treated sample with a large number of oxygen vacancies. The developed electrocatalyst showed the lowest overpotential of 144.5 mV vs. the reversible hydrogen electrode (RHE) to achieve the current density of 40 mA cm(-2) and remained stable for 40 hours throughout the chronoamperometry test at the constant potential of 1.39 V vs. RHE. Moreover, the chemically reduced composite was highly durable. Electrochemical impedance spectroscopy (EIS) confirmed the low charge transfer resistance of 13.53 ohms for the chemically reduced composite, which was 50 and 26 times smaller than that of Co3O4 and untreated CuO-Co3O4, respectively. The electrochemically active surface area for the chemically reduced composite was found to be greater than that for pristine CuO, Co3O4 and untreated pristine CuO-Co3O4. These findings reveal the possibility of a new gateway for the capitalization of a chemically reduced sample into diverse energy storage and conversion systems such as lithium-ion batteries and supercapacitors.

  • 7.
    Alvi, Naveed
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Soto Rodriguez, Paul E. D.
    Univ Complutense Madrid, Spain.
    ul Hassan, Waheed
    Bahauddin Zakariya Univ, Pakistan.
    Zhou, Guofu
    South China Normal Univ, Peoples R China.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Notzel, Richard
    South China Normal Univ, Peoples R China.
    Unassisted water splitting with 9.3% efficiency by a single quantum nanostructure photoelectrode2019In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 44, no 36, p. 19650-19657Article in journal (Refereed)
    Abstract [en]

    To split water and produce hydrogen by white light is an excellent solution for the storage and supply of clean and sustainable energy. Efficiency and stability are the key challenges for a successful exploitation. InGaN, evaluated against other semiconductors, metal oxides, carbon based - and organic materials has most suited intrinsic materials properties. Based on this optimum materials choice we report photoelectrochemical (PEC) hydrogen generation under white light illumination by an InGaN-based quantum nanostructure photoelectrode. No degradation occurs for operation over 10 h. Our novel concept, combining quantum nanostructure physics with electrochemistry and catalysis leads to almost 10% efficiency at zero external voltage. The efficiency rises above 25% at 0.2 V. This is unmatched for a single photoelectrode, representing the most advanced technology of low complexity. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

  • 8.
    Asghar, A. M.
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Malick, M.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, The Institute of Technology.
    Hussain, A.
    Chalmers University of Thechnology, Gothenburg, Sweden .
    A multiwideband planar monopole antenna for 4G devices2013In: Microwave and optical technology letters (Print), ISSN 0895-2477, E-ISSN 1098-2760, Vol. 55, no 3, p. 589-593Article in journal (Refereed)
    Abstract [en]

    This article presents a compact multiband planar antenna designed for mobile phone applications.The antenna performance is achieved by designing a planar monopole antenna into distributed radiating elements. The proposed antenna is comprised of a chopped circular radiator appended with a meander line and an L-strip coupled element, which is an extension of the ground plane. The combination of a chopped circular patch and L-shaped coupling strip residing on the top side generates lower band while upper band resonances are attained separately by chopped circular resonator and meander line elements. The antenna shows a planar structure which occupies an area of 56 x 17.6 mm and can be directly printed onto a circuit board at low cost making it especially suitable for mobile phone applications. The manufactured antenna is experimentally verified and covers several wireless communication bands, such as LTE 750, GSM 850, GSM 900, DCS, UMTS-2110, Bluetooth, WLAN, WiMAX, and UWB. The high frequency structure simulation is used to design and analyze the antenna performance, and a practical structure was fabricated and tested. The measured and simulated return loss show good agreement.

  • 9.
    Atif, M.
    et al.
    King Saud Univ, Saudi Arabia.
    Ait Ali, Abderrahman
    COMSATS Inst Informat Technol, Pakistan.
    AlSalhi, M. S.
    King Saud Univ, Saudi Arabia.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Effect of Urea on the Morphology of Fe3O4 Magnetic Nanoparticles and Their Application in Potentiometric Urea Biosensors2019In: Silicon, ISSN 1876-990X, E-ISSN 1876-9918, Vol. 11, no 3, p. 1371-1376Article in journal (Refereed)
    Abstract [en]

    The effect of different concentrations of urea on the morphology of iron oxide (Fe3O4) magnetic nanoparticles was studied. Fe3O4 magnetic nanoparticles were fabricated by the coprecipitation method. The morphology, crystallinity, compositional purity, and emission characteristics were tested by the techniques of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Raman characterization. The drop-casting technique was successfully used to fabricate a potentiometric urea biosensor producing initially isopropanol and chitosan solution, consisting of Fe3O4 nanoparticles, on a glass fiber filter. To measure the developed biosensors voltage signal from the functionalized nanoparticles, a copper wire was utilized. The Fe3O4 nanoparticle surface functionalization was performed through the electrostatic immobilization of urease with the Fe3O4-chitosan (CH) nanobiocomposite. The presented urea biosensor measured a wide logarithmic range of urea concentration of 0.1-80 mM with a sensitivity of 42 mV/decade, and indicated a fast response time of approximately 12 s. The developed urea biosensor showed enhanced sensitivity, stability, reusability, and specificity. All experimental results demonstrate the application potential of the developed urea sensor for the monitoring of urea concentrations in human serum, drugs, and food industry-related samples.

  • 10.
    Baravdish, George
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Svensson, Olof
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Gulliksson, M.
    Orebro Univ, Sweden.
    Zhang, Y.
    Shenzhen MSU BIT Univ, Peoples R China; Beijing Inst Technol, Peoples R China.
    Damped second order flow applied to image denoising2019In: IMA Journal of Applied Mathematics, ISSN 0272-4960, E-ISSN 1464-3634, Vol. 84, no 6, p. 1082-1111Article in journal (Refereed)
    Abstract [en]

    In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementation, based on the Stormer-Verlet method, a discrete DF, SV-DDF, is developed. The convergence of SV-DDF is studied as well. Several numerical experiments, as well as a comparison with other methods, are provided to demonstrate the efficiency of SV-DDF.

  • 11.
    Bernhard, Jonte
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Carstensen, Anna-Karin
    Högskolan i Jönköping.
    Learning of complex concepts: Engineering students’ developing epistemic fluency in an electric circuit theory course2019In: SEFI annual conference, 2019, Budapest, 2019Conference paper (Refereed)
    Abstract [en]

    An important aim in engineering education is that students should not only acquire knowledge, but they should be able to use this knowledge in action. I.e. they should develop professional capabilities for knowledgeable action and actionable knowledge. 

    According to Markauskaite and Goodyear professional knowledgeable action requires a holistic, fluent and co-ordinated use of semiotic and material tools, body and environment. Knowledgeable action requires the development of epistemic fluency that involves the ability to smoothly move between abstract, contextual and situated ways of knowing and the capacity to employ multiple epistemic tools. However, the epistemic complexity of knowledgeable action is often underestimated in engineering education. This epistemic complexity has been addressed by Carstensen and Bernhard who have developed the notion of “learning of complex concepts” (LCC-model) that models how students learn to master epistemic tools by “making links”. 

    In this study we have used the LCC-model as an investigatory tool to analyse video-recordings from electric circuit theory courses. The aim was to gain an increased understanding in how students develop epistemic fluency. We will discuss critical features in the design of labs and in the use of real experiments, computer simulations, modelling and other semiotic and material tools in labs for students’ development of epistemic fluency. The results of this study show that labs can be designed to facilitate students’ development of epistemic fluency by making links.

  • 12.
    Bernhard, Jonte
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Carstensen, Anna-Karin
    Jonkoping Univ, Sweden.
    Davidsen, Jacob
    Aalborg Univ, Denmark.
    Ryberg, Thomas
    Aalborg Univ, Denmark.
    Practical Epistemic Cognition in a Design Project-Engineering Students Developing Epistemic Fluency2019In: IEEE Transactions on Education, ISSN 0018-9359, E-ISSN 1557-9638, Vol. 62, no 3, p. 216-225Article in journal (Refereed)
    Abstract [en]

    Contribution: This paper reports engineering students practical epistemic cognition by studying their interactional work in situ. Studying "epistemologies in action" the study breaks away from mainstream approaches that describe this in terms of beliefs or of stage theories. Background: In epistemology, knowledge is traditionally seen as "justified true belief," neglecting knowledge related to action. Interest has increased in studying the epistemologies people use in situated action, and their development of epistemic fluency. How appropriate such approaches are in engineering and design education need further investigation. Research Questions: 1) How do students in the context of a design project use epistemic tools in their interactional work? and 2) What are the implications of the findings in terms of how students cognitive and epistemological development could be conceptualized? Methodology: A collaborative group of six students were video recorded on the 14th day of a fifth-semester design project, as they were preparing for a formal critique session. The entire, almost 6 h, session was recorded by four video cameras mounted in the design studio, with an additional fifth body-mounted camera. The video data collected was analyzed using video ethnographic, conversation analysis, and embodied interaction analysis methods. Findings: The results show that the students use a wealth of bodily material resources as an integral and seamless part of their interactions as epistemic tools, in their joint production of understanding and imagining. The analysis also suggests that students epistemological and cognitive development, individually and as a group, should be understood in terms of developing "epistemic fluency."

  • 13.
    Bhatti, Muhammad Ali
    et al.
    Univ Sindh Jamshoro, Pakistan.
    Shah, Aqeel Ahmed
    NED Univ Engn and Technol Karachi, Pakistan.
    Almani, Khalida Faryal
    Univ Sindh Jamshoro, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chalangar, Seyed Ebrahim
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chandio, Ali Dad
    NED Univ Engn and Technol Karachi, Pakistan.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Ibupoto, Zafar Hussain
    Univ Sindh Jamshoro, Pakistan.
    Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange2019In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 45, no 17, p. 23289-23297Article in journal (Refereed)
    Abstract [en]

    In this study, the doped ZnO nanorods with silver (Ag) as photosensitive material are prepared by the solvothermal method. The structural and optical characterization is carried out by the scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and UV-visible spectroscopy. The use of Ag as dopant did not alter the morphology of ZnO except sample 4 which has flower like morphology. The Ag, Zn and O are the main constituent of doped materials. The XRD revealed a hexagonal phase for ZnO and cubic phase for silver and confirmed the successful doping of Ag. The photocatalytic activity of Ag doped ZnO nanorods was investigated for the photo degradation of methyl orange. The photocatalytic measurements show that 88% degradation of methyl orange by the sample 4 within the 2 h of UV light treatment (365 nm) is significant advancement in the photocatalyst and provide the inexpensive and promising materials for the photochemical applications.

    The full text will be freely available from 2021-08-03 12:55
  • 14.
    Börjesson, Mandus
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Gerner, Håkan
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Design and implementation of a high-speed PCI-Express bridge2019Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This master thesis will cover the prestudy, hardware selection, design and implementation of a PCI Express bridge in the M.2 form factor. The thesis subject was proposed by WISI Norden who wished to extend the functionality of their hardware using an M.2 module. The bridge fits an M-Key M.2 slot and has the dimensions 80x22 mm. It is able to communicate at speeds up to 8 Gb/s over PCI Express and 200 Mbit/s on any of the 20 LVDS/CMOS pins. The prestudy determined that an FPGA should be used and a Xilinx Artix-7 device was chosen. A PCB was designed that hosts the FPGA as well as any power, debugging and other required systems. Associated proof-of-concept software was designed to verify that the bridge operated as expected. The software proves that the bridge works but requires improvement before the bridge can be used to translate sophisticated protocols. The bridge works, with minor hardware modifications, as expected. It fulfills all design requirements set in the master thesis and the FPGA firmware uses a well-established protocol, making further development easier.

  • 15. Order onlineBuy this publication >>
    Chalangar, Ebrahim
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Graphene-based nanocomposites for electronics and photocatalysis2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials.

    In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects.

    In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts.

    Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.

    List of papers
    1. Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites
    Open this publication in new window or tab >>Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites
    Show others...
    2018 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 29, no 41, article id 415201Article in journal (Refereed) Published
    Abstract [en]

    The development of future 3D-printed electronics relies on the access to highly conductive inexpensive materials that are printable at low temperatures (amp;lt;100 degrees C). The implementation of available materials for these applications are, however, still limited by issues related to cost and printing quality. Here, we report on the simple hydrothermal growth of novel nanocomposites that are well suited for conductive printing applications. The nanocomposites comprise highly Al-doped ZnO nanorods grown on graphene nanoplatelets (GNPs). The ZnO nanorods play the two major roles of (i) preventing GNPs from agglomerating and (ii) promoting electrical conduction paths between the graphene platelets. The effect of two different ZnO-nanorod morphologies with varying Al-doping concentration on the nanocomposite conductivity and the graphene dispersity are investigated. Time-dependent absorption, photoluminescence and photoconductivity measurements show that growth in high pH solutions promotes a better graphene dispersity, higher doping levels and enhanced bonding between the graphene and the ZnO nanorods. Growth in low pH solutions yields samples characterized by a higher conductivity and a reduced number of surface defects. These samples also exhibit a large persistent photoconductivity attributed to an effective charge separation and transfer from the nanorods to the graphene platelets. Our findings can be used to tailor the conductivity of novel printable composites, or for fabrication of large volumes of inexpensive porous conjugated graphene-semiconductor composites.

    Place, publisher, year, edition, pages
    Institute of Physics Publishing (IOPP), 2018
    Keywords
    graphene; zinc oxide; nanorods; nanocomposites; persistent photoconductivity; printing
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-150196 (URN)10.1088/1361-6528/aad3ec (DOI)000440632800001 ()30015332 (PubMedID)2-s2.0-85051665865 (Scopus ID)
    Note

    Funding Agencies|Knowledge Foundation; Linkoping University; Halmstad University

    Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2019-05-28Bibliographically approved
    2. Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
    Open this publication in new window or tab >>Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities
    Show others...
    2019 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 52, p. 30585-30598Article in journal (Refereed) Published
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.

    Place, publisher, year, edition, pages
    Royal Meteorological Society, 2019
    National Category
    Condensed Matter Physics
    Identifiers
    urn:nbn:se:liu:diva-160568 (URN)10.1039/C9RA06273D (DOI)000487989300064 ()
    Note

    Funding agencies: Department of Science and Technology (ITN) at Campus Norrkoping, Linkoping University, Sweden; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation

    Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2020-03-18Bibliographically approved
  • 16.
    Elhadi Adam, Rania Elhadi
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Alnoor, Hatim
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light2020In: Solid State Sciences, ISSN 1293-2558, E-ISSN 1873-3085, Vol. 99, article id 106053Article in journal (Refereed)
    Abstract [en]

    Doped semiconductors nanostructures (NSs) have shown great interest as a potential for green and efficient photocatalysis activities. Magnesium (Mg)-doped zinc oxide (ZnO) nanoparticles (NPs) has been synthesized by a one-step chemical low temperature (60 degrees C) co-precipitation method without further calcination and their photocatalytic performance for photodegradation of Methylene blue (MB) dye under the illumination of solar light is investigated. The crystal structure of the synthesized NPs is examined by X-ray diffraction (XRD). XRD data indicates a slight shift towards higher 2 theta angle in Mg-doped samples as compared to the pure ZnO NPs which suggest the incorporation of Mg2+ into ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and cathodoluminescence (CL) spectroscopy, were used to study electronics, and optical properties, respectively. The XPS analysis confirms the substitution of the Zn2+ by the Mg2+ into the ZnO crystal lattice in agreement with the XRD data. The photocatalytic activities showed a significant enhancement of the Mg-doped ZnO NPs in comparison with pure ZnO NPs. Hole/radical scavengers were used to reveal the mechanism of the photodegradation. It was found that the addition of the Mg to the ZnO lattices increases the absorption of the hydroxyl ions at the surface of the NPs and hence acts as a trap site leading to decrease the electron-hole pair and consequently enhancing the photodegradation.

  • 17.
    Fowler, Scott
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
    Baravdish, Gabriel
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Baravdish, George
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Compressed Sensing of Wireless Signals for Image Tensor Reconstruction2019In: IEEE Global Communications Conference: Signal Processing for Communications (Globecom2019 SPC), 2019Conference paper (Refereed)
    Abstract [en]

    Use of wireless signal for identification of unknown object, or technology to see-through a wall to form an image, is gaining growing interest from various fields including law enforcement and military sectors, disaster management, or even in civilian sectors such as construction sites. The great challenge in the implementation of such technology is the stochastic disturbances on wireless signal which will result in a signal with missing samples. Compressive Sensing (CS) is a powerful tool for estimating the missing samples since it can find accurate solution to largely underdetermined linear wireless signals. However, sparse models like CS can also suffer from information loss dues to stochastic lossy nature of wireless, making CS not to have accurate information for reconstruction of a signal. In this paper, we developed a theoretical and experimental framework for the mapping of obstacles by reconstructing the wireless signal based on a sparse signal. We apply tensor format to perform the computations along each mode by relaxing the tensor constraints to obtain accurate results. The proposed framework demonstrates how to take 2D signals, formulate estimate signals and produce a 3D image location in a completely unknown area inside of the obstacle (wall).

  • 18.
    Fowler, Scott
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
    Baravdish, George
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Rudberg, Martin
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
    Optimizing Compressed Sensing for seeing through walls based on Wireless Signals2019In: IEEE Symposium on Computers and Communications (ISCC), 2019, p. 1-6Conference paper (Refereed)
    Abstract [en]

    In this paper, we developed a theoretical and experimental framework for the mapping of obstacles using WiFi, based on a small number of wireless channel samples. This is very challenging due to the numerous channel coefficients to be estimated over the time-varying channel and the channel estimation of a wireless signal transmission to be considered for compressive sampling. In a typical communication system, the signal is sampled at least twice at the highest frequency contained in the signal. However, this limits efficient ways to compress the signal, as it places a huge burden on sampling the entire signal while only a small number of the transform coefficients are needed to represent the signal. To tackle this problem, we will focused on a mathematical optimization problem for the most efficient compressed sensing method called $\ell_1$-norm, known as Basis Pursuit. Before optimizing the problem, the noise was removed from the signal, namely, multipath fading. Our experimental results show the improved performance in the number of iterations for obtaining a framework for the mapping of obstacles.

  • 19.
    Gardner, Anne
    et al.
    Univ Technol, Australia.
    Bernhard, Jonte
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Male, Sally
    Univ Western Australia, Australia.
    Turns, Jennifer
    Univ Washington, WA 98195 USA.
    Editorial Material: EJEE Editorial for Special Issue: Research Methodologies that link theory and practice2019In: European Journal of Engineering Education, ISSN 0304-3797, E-ISSN 1469-5898, Vol. 44, no 1-2Article in journal (Other academic)
    Abstract [en]

    n/a

  • 20.
    Gong, Shaofang
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Xu, Xin
    Univ Elect Sci and Technol China, Peoples R China.
    Karlsson, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Broadside-Coupled Microstrip Lines as Low Loss Metamaterial for Microwave Circuit Design2019In: Wireless Communications & Mobile Computing, ISSN 1530-8669, E-ISSN 1530-8677, Vol. 2019, article id 9249352Article in journal (Refereed)
    Abstract [en]

    The entire microwave theory is based on Maxwells equations, whereas the entire electronic circuit theory is based on Kirchhoffs electrical current and voltage laws. In this paper, we show that the traditional microwave design methodology can be simplified based on a broadside-coupled microstrip line as a low loss metamaterial. That is, Kirchhoffs laws are still valid in the microwave spectrum for narrowband signals around various designated frequencies. The invented low loss metamaterial has been theoretically analyzed, simulated, and experimentally verified in both time and frequency domains. It is shown that the phase velocity of a sinusoidal wave propagating on the low loss metamaterial can approach infinity, resulting in time-space shrink to a singularity as seen from the propagating wave perspective.

  • 21.
    Hassan, Kahin Akram
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Liu, Yu
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Besançon, Lonni
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Johansson, Jimmy
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Centre for Climate Science and Policy Research, CSPR.
    Rönnberg, Niklas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    A Study on Visual Representations for Active Plant Wall Data Analysis2019In: DATA, E-ISSN 2306-5729, Vol. 4, no 2, article id 74Article in journal (Refereed)
    Abstract [en]

    The indoor climate is closely related to human health, well-being, and comfort. Thus, an understanding of the indoor climate is vital. One way to improve the indoor climates is to place an aesthetically pleasing active plant wall in the environment. By collecting data using sensors placed in and around the plant wall both the indoor climate and the status of the plant wall can be monitored and analyzed. This manuscript presents a user study with domain experts in this field with a focus on the representation of such data. The experts explored this data with a Line graph, a Horizon graph, and a Stacked area graph to better understand the status of the active plant wall and the indoor climate. Qualitative measures were collected with Think-aloud protocol and semi-structured interviews. The study resulted in four categories of analysis tasks: Overview, Detail, Perception, and Complexity. The Line graph was found to be preferred for use in providing an overview, and the Horizon graph for detailed analysis, revealing patterns and showing discernible trends, while the Stacked area graph was generally not preferred. Based on these findings, directions for future research are discussed and formulated. The results and future directions of this research can facilitate the analysis of multivariate temporal data, both for domain users and visualization researchers.

  • 22.
    Jaroudi, Rym
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering. Univ Tunis El Manar, Tunisia.
    Astroem, Freddie
    Heidelberg Univ, Germany.
    Johansson, Tomas
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. Aston Univ, England.
    Baravdish, George
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Numerical simulations in 3-dimensions of reaction-diffusion models for brain tumour growth2019In: International Journal of Computer Mathematics, ISSN 0020-7160, E-ISSN 1029-0265Article in journal (Refereed)
    Abstract [en]

    We work with a well-known model of reaction-diffusion type for brain tumour growth and accomplish full 3-dimensional (3d) simulations of the tumour in time on two types of imaging data, the 3d Shepp-Logan head phantom image and an MRI T1-weighted brain scan from the Internet Brain Segmentation Repository. The source term is such that we have logistic growth. These simulations are obtained using standard finite difference approximations with novel calculations to increase speed and accuracy. Moreover, biological background to the model, its well-posedness together with a variational formulation are given. The variational formulation enable the feasibility of different derivations and modifications of the model.

  • 23.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Carlsson, Hakan
    Combitech AB, Sweden.
    Idebro, Mats
    Combitech AB, Sweden.
    Eek, Christoffer
    Combitech AB, Sweden.
    Microwave Heating as a Method to Improve Sanitation of Sewage Sludge in Wastewater Plants2019In: IEEE Access, E-ISSN 2169-3536, Vol. 7, p. 142308-142316Article in journal (Refereed)
    Abstract [en]

    For long-term sustainable agriculture, it is critical that we recycle nutrition to the soil that it came from. One important source is sewage sludge, but it must be sanitized from undesired pathogens before it may be spread on arable land. One common method today is deposition in about six months or more. Not only is such a long deposition-time costly due to the required storage-space, in the future usage of the method is likely to be more restricted from a regulatory perspective. To heat up sewage-sludge is a known method to speed up the sanitation process. However, achieving an even guaranteed temperature is not easy with porous sewage sludge. This is mainly due to the limited heat conductivity of the sludge. Microwaves at a frequency of 2.45 GHz have a penetration depth of a few centimeters and therefore has an advantage compared to other heating methods which only heats the surface. In the proposed system, the sewage sludge is continuously processed through a series of microwave cavities. The pathogen removal effectiveness was studied for different exposure settings, e.g., conveyor speed and applied microwave power in each cavity.

  • 24.
    Liu, Yu
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    A Data-centric Internet of Things Framework Based on Public Cloud2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The pervasive application of Internet of Things (IoT) has been seen in many aspects in human daily life and industrial production. The concept of IoT originates from traditional machine-to-machine (M2M) communications which aimed at solving domain-specific and applicationspecific problems. Today, the rapid progress of communication technologies, the maturation of Internet infrastructures, the continuously reduced cost of sensors, and emergence of more open standards, have witnessed the approaching of the expected IoT era, which envisions full connectivity between the physical world and the digital world via the Internet protocol. The popularity of cloud computing technology has enhanced this IoT transform, benefiting from the superior computing capability and flexible data storage, let alone the security, reliability and scalability advantages.

    However, there are still a series of obstacles confronted by the industry in deployment of IoT services. First, due to the heterogeneity of hardware devices and application scenarios, the interoperability and compatibility between link-layer protocols, sub-systems and back-end services are significantly challenging. Second, the device management requires a uniform scheme to implement the commissioning, communication, authorization and identity management to guarantee security. Last, the heterogeneity of data format, speed and storage mechanism for different services pose a challenge to further data mining.

    This thesis aims to solve these aforementioned challenges by proposing a data-centric IoT framework based on public cloud platforms. It targets at providing a universal architecture to facilitate the deployment of IoT services in massive IoT and broadband IoT categories. The framework involves three representative communication protocols, namely WiFi, Thread and Lo-RaWAN, to enable support for local, personal, and wide area networks. A security assessment taxonomy for wireless communications in building automation networks is proposed as a tool to evaluate the security performance of adopted protocols, so as to mitigate potential network flaws and guarantee the security. Azure cloud platform is adopted in the framework to provide device management, data processing and storage, visualization, and intelligent services, thanks to the mature cloud infrastructure and the uniform device model and data model. We also exhibit the value of the study by applying the framework into the digitalization procedure of the green plant wall industry. Based on the framework, a remote monitoring and management system for green plant wall is developed as a showcase to validate the feasibility. Furthermore, three specialized visualization methods are proposed and a neuron network-based anomaly detection method is deployed in the project, showing the potential of the framework in terms of data analytics and intelligence.

    List of papers
    1. A Data-Centric Internet of Things Framework Based on Azure Cloud
    Open this publication in new window or tab >>A Data-Centric Internet of Things Framework Based on Azure Cloud
    Show others...
    2019 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 7, p. 53839-53858Article in journal (Refereed) Published
    Abstract [en]

    Internet of Things (IoT) has been found pervasive use cases and become a driving force to constitute a digital society. The ultimate goal of IoT is data and the intelligence generated from data. With the progress in public cloud computing technologies, more and more data can be stored, processed and analyzed in cloud to release the power of IoT. However, due to the heterogeneity of hardware and communication protocols in the IoT world, the interoperability and compatibility among different link layer protocols, sub-systems, and back-end services have become a significant challenge to IoT practices. This challenge cannot be addressed by public cloud suppliers since their efforts are mainly put into software and platform services but can hardly be extended to end devices. In this paper, we propose a data-centric IoT framework that incorporates three promising protocols with fundamental security schemes, i.e., WiFi, Thread, and LoRaWAN, to cater to massive IoT and broadband IoT use cases in local, personal, and wide area networks. By taking advantages of the Azure cloud infrastructure, the framework features a unified device management model and data model to conquer the interoperability challenge. We also provide implementation and a case study to validate the framework for practical applications.

    Place, publisher, year, edition, pages
    IEEE, 2019
    Keywords
    Internet of Things, Cloud computing, Protocols, Wireless fidelity, Broadband communication, Monitoring, Interoperability, framework, cloud, azure, IoT hub, thread, WiFi, lorawan
    National Category
    Computer and Information Sciences
    Identifiers
    urn:nbn:se:liu:diva-156704 (URN)10.1109/ACCESS.2019.2913224 (DOI)000467047300001 ()
    Note

    Funding agencies:  Swedish Environmental Protection Agency; Norrkoping Fund for Research and Development, Sweden

    Available from: 2019-05-10 Created: 2019-05-10 Last updated: 2019-08-21
    2. A Taxonomy for the Security Assessment of IP-based Building Automation Systems: The Case of Thread
    Open this publication in new window or tab >>A Taxonomy for the Security Assessment of IP-based Building Automation Systems: The Case of Thread
    2018 (English)In: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 14, no 9, p. 4113-4123Article in journal (Refereed) Published
    Abstract [en]

    Motivated by the proliferation of wireless building automation systems (BAS) and increasing security-awareness among BAS operators, in this paper we propose a taxonomy for the security assessment of BASs. We apply the proposed taxonomy to Thread, an emerging native IP-based protocol for BAS. Our analysis reveals a number of potential weaknesses in the design of Thread. We propose potential solutions for mitigating several identified weaknesses and discuss their efficacy. We also provide suggestions for improvements in future versions of the standard. Overall, our analysis shows that Thread has a well-designed security control for the targeted use case, making it a promising candidate for communication in next generation BASs.

    National Category
    Electrical Engineering, Electronic Engineering, Information Engineering
    Identifiers
    urn:nbn:se:liu:diva-148570 (URN)10.1109/TII.2018.2844955 (DOI)000443994500032 ()
    Note

    Funding agencies: Vinnova (Swedish Innovation Agency); Norrkoping Fund for Research and Development in Sweden; Swedish Civil Contingencies Agency (MSB) through the Cerces project

    Available from: 2018-06-13 Created: 2018-06-13 Last updated: 2019-08-21
    3. Active Plant Wall for Green Indoor Climate Based on Cloud and Internet of Things
    Open this publication in new window or tab >>Active Plant Wall for Green Indoor Climate Based on Cloud and Internet of Things
    Show others...
    2018 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 6, p. 33631-33644Article in journal (Refereed) Published
    Abstract [en]

    An indoor climate is closely related to human health, well-being and comfort. Thus, indoor climate monitoring and management are prevalent in many places, from public offices to residential houses. Our previous research has shown that an active plant wall system can effectively reduce the concentrations of particulate matter and volatile organic compounds and stabilize the carbon dioxide concentration in an indoor environment. However, regular plant care is restricted by geography and can be costly in terms of time and money, which poses a significant challenge to the widespread deployment of plant walls. In this article, we propose a remote monitoring and control system that is specific to the plant walls. The system utilizes the Internet of Things technology and the Azure public cloud platform to automate the management procedure, improve the scalability, enhance user experiences of plant walls, and contribute to a green indoor climate.

    Place, publisher, year, edition, pages
    IEEE, 2018
    National Category
    Computer and Information Sciences
    Identifiers
    urn:nbn:se:liu:diva-148850 (URN)10.1109/ACCESS.2018.2847440 (DOI)
    Available from: 2018-06-20 Created: 2018-06-20 Last updated: 2019-08-21
    4. A Study on Visual Representations for Active Plant Wall Data Analysis
    Open this publication in new window or tab >>A Study on Visual Representations for Active Plant Wall Data Analysis
    Show others...
    2019 (English)In: DATA, E-ISSN 2306-5729, Vol. 4, no 2, article id 74Article in journal (Refereed) Published
    Abstract [en]

    The indoor climate is closely related to human health, well-being, and comfort. Thus, an understanding of the indoor climate is vital. One way to improve the indoor climates is to place an aesthetically pleasing active plant wall in the environment. By collecting data using sensors placed in and around the plant wall both the indoor climate and the status of the plant wall can be monitored and analyzed. This manuscript presents a user study with domain experts in this field with a focus on the representation of such data. The experts explored this data with a Line graph, a Horizon graph, and a Stacked area graph to better understand the status of the active plant wall and the indoor climate. Qualitative measures were collected with Think-aloud protocol and semi-structured interviews. The study resulted in four categories of analysis tasks: Overview, Detail, Perception, and Complexity. The Line graph was found to be preferred for use in providing an overview, and the Horizon graph for detailed analysis, revealing patterns and showing discernible trends, while the Stacked area graph was generally not preferred. Based on these findings, directions for future research are discussed and formulated. The results and future directions of this research can facilitate the analysis of multivariate temporal data, both for domain users and visualization researchers.

    Place, publisher, year, edition, pages
    MDPI, 2019
    Keywords
    visualization; qualitative evaluation; temporal multivariate data; active plant walls, Visualisering; kvalitativ utvärdering; tidsvarierande multivariate data; active plant walls
    National Category
    Computer and Information Sciences
    Identifiers
    urn:nbn:se:liu:diva-157027 (URN)10.3390/data4020074 (DOI)000475303500028 ()
    Available from: 2019-05-23 Created: 2019-05-23 Last updated: 2019-08-21Bibliographically approved
  • 25.
    Liu, Yu
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Hassan, Kahin Akram
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Pang, Zhibo
    Corporate Research, ABB AB, Västerås, Sweden.
    Gong, Shaofang
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    A Data-Centric Internet of Things Framework Based on Azure Cloud2019In: IEEE Access, E-ISSN 2169-3536, Vol. 7, p. 53839-53858Article in journal (Refereed)
    Abstract [en]

    Internet of Things (IoT) has been found pervasive use cases and become a driving force to constitute a digital society. The ultimate goal of IoT is data and the intelligence generated from data. With the progress in public cloud computing technologies, more and more data can be stored, processed and analyzed in cloud to release the power of IoT. However, due to the heterogeneity of hardware and communication protocols in the IoT world, the interoperability and compatibility among different link layer protocols, sub-systems, and back-end services have become a significant challenge to IoT practices. This challenge cannot be addressed by public cloud suppliers since their efforts are mainly put into software and platform services but can hardly be extended to end devices. In this paper, we propose a data-centric IoT framework that incorporates three promising protocols with fundamental security schemes, i.e., WiFi, Thread, and LoRaWAN, to cater to massive IoT and broadband IoT use cases in local, personal, and wide area networks. By taking advantages of the Azure cloud infrastructure, the framework features a unified device management model and data model to conquer the interoperability challenge. We also provide implementation and a case study to validate the framework for practical applications.

  • 26.
    Liu, Yu
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Hassan, Kahin Akram
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Weister, Ola
    Vertical Plants System Sweden AB, Norrrköping, Sweden.
    Gong, Shaofang
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Active Plant Wall for Green Indoor Climate Based on Cloud and Internet of Things2018In: IEEE Access, E-ISSN 2169-3536, Vol. 6, p. 33631-33644Article in journal (Refereed)
    Abstract [en]

    An indoor climate is closely related to human health, well-being and comfort. Thus, indoor climate monitoring and management are prevalent in many places, from public offices to residential houses. Our previous research has shown that an active plant wall system can effectively reduce the concentrations of particulate matter and volatile organic compounds and stabilize the carbon dioxide concentration in an indoor environment. However, regular plant care is restricted by geography and can be costly in terms of time and money, which poses a significant challenge to the widespread deployment of plant walls. In this article, we propose a remote monitoring and control system that is specific to the plant walls. The system utilizes the Internet of Things technology and the Azure public cloud platform to automate the management procedure, improve the scalability, enhance user experiences of plant walls, and contribute to a green indoor climate.

  • 27.
    Mahmood, Faraz
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Kazim, Jalil-ur-Rehman
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Gong, Shaofang
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Ying, Zhinong
    CTO office Sony Ericsson Mobile Communications AB, Sweden.
    Decoupling techniques of compact and broadband MIMO antennas for handheld devices2012In: IEEE 6th European Conference on Antennas and propagation (EuCAP 2012), 2012, p. 1-5, article id 1569525515Conference paper (Refereed)
    Abstract [en]

    This paper presents an innovative MIMO antenna system consisting of two broadband antennas combined with a 90° or 180° hybrid coupler. The antenna system is suitable for future MIMO systems due to its wide decoupled bandwidth (from 698 to 2700 MHz) covering 23 frequency bands of LTE. Enhanced antenna performance is achieved by radiator slitting and ground plane modification. Moreover, supplemental meandered line ground structures are utilized to miniaturize the antenna size. The low profile antenna with its wide impedance bandwidth, high efficiency, low correlation and quasi-omni directional radiation pattern is attractive for the existing and future 4G mobile communication devices. Simulated and measured results including input reflection, mutual coupling, correlation, and antenna efficiency is presented and analyzed.

  • 28.
    Mugheri, Abdul Qayoom
    et al.
    Univ Sindh Jamshoro, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Aftab, Umair
    Mehran Univ Engn and Technol, Pakistan.
    Abro, Muhammad Ishaq
    Mehran Univ Engn and Technol, Pakistan.
    Mallah, Arfana Begum
    Univ Sindh Jamshoro, Pakistan.
    Memon, Gulam Zuhra
    Univ Sindh Jamshoro, Pakistan.
    Khan, Humaira
    Univ Sindh Jamshoro, Pakistan.
    Abbasi, Mazhar Ali
    Univ Sindh, Pakistan.
    Halepoto, Imran Ali
    Univ Sindh, Pakistan.
    Chaudhry, Saleem Raza
    Univ Engn and Technol, Pakistan.
    Ibupoto, Zafar Hussain
    Univ Sindh Jamshoro, Pakistan.
    An advanced and efficient Co3O4/C nanocomposite for the oxygen evolution reaction in alkaline media2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, RSC ADVANCES, Vol. 9, no 59, p. 34136-34143Article in journal (Refereed)
    Abstract [en]

    The design of efficient nonprecious catalysts for the hydrogen evolution reaction (HER) or the oxygen evolution reaction (OER) is a necessary, but very challenging task to uplift the water-based economy. In this study, we developed a facile approach to produce porous carbon from the dehydration of sucrose and use it for the preparation of nanocomposites with cobalt oxide (Co3O4). The nanocomposites were studied by the powder X-ray diffraction and scanning electron microscopy techniques, and they exhibited the cubic phase of cobalt oxide and porous structure of carbon. The nanocomposites showed significant OER activity in alkaline media, and the current densities of 10 and 20 mA cm(-2) could be obtained at 1.49 and 1.51 V versus reversible hydrogen electrode (RHE), respectively. The impedance study confirms favorable OER activity on the surface of the prepared nanocomposites. The nanocomposite is cost-effective and can be capitalized in various energy storage technologies.

  • 29.
    Mugheri, Abdul Qayoom
    et al.
    Univ Sindh, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Aftab, Umair
    Mehran Univ Engn and Technol, Pakistan.
    Bhatti, Adeel Liaquat
    Univ Sindh, Pakistan.
    Memon, Nusrat Naeem
    Univ Sindh, Pakistan.
    Memon, Jamil-ur-Rehman
    Univ Sindh, Pakistan.
    Abro, Muhammad Ishaque
    Mehran Univ Engn and Technol, Pakistan.
    Shah, Aqeel Ahmed
    NED Univ Engn Sci and Technol, Pakistan.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Hullio, Ahmed Ali
    Univ Sindh, Pakistan.
    Ibupoto, Zafar Hussain
    Univ Sindh, Pakistan.
    Efficient tri-metallic oxides NiCo2O4/CuO for the oxygen evolution reaction2019In: RSC ADVANCES, Vol. 9, no 72, p. 42387-42394Article in journal (Refereed)
    Abstract [en]

    In this study, a simple approach was used to produce nonprecious, earth abundant, stable and environmentally friendly NiCo2O4/CuO composites for the oxygen evolution reaction (OER) in alkaline media. The nanocomposites were prepared by a low temperature aqueous chemical growth method. The morphology of the nanostructures was changed from nanowires to porous structures with the addition of CuO. The NiCo2O4/CuO composite was loaded onto a glassy carbon electrode by the drop casting method. The addition of CuO into NiCo2O4 led to reduction in the onset potential of the OER. Among the composites, 0.5 grams of CuO anchored with NiCo2O4 (sample 2) demonstrated a low onset potential of 1.46 V vs. a reversible hydrogen electrode (RHE). A current density of 10 mA cm(-2) was achieved at an over-potential of 230 mV and sample 2 was found to be durable for 35 hours in alkaline media. Electrochemical impedance spectroscopy (EIS) indicated a small charge transfer resistance of 77.46 ohms for sample 2, which further strengthened the OER polarization curves and indicates the favorable OER kinetics. All of the obtained results could encourage the application of sample 2 in water splitting batteries and other energy related applications.

  • 30.
    Niyobuhungiro, Japhet
    et al.
    Univ Rwanda, Rwanda.
    Setterqvist, Eric
    Univ Vienna, Austria.
    Åström, Freddie
    Heidelberg Univ, Germany.
    Baravdish, George
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    ITERATIVE TV MINIMIZATION ON THE GRAPH2019In: Communications in Mathematical Sciences, ISSN 1539-6746, E-ISSN 1945-0796, Vol. 17, no 4, p. 941-968Article in journal (Refereed)
    Abstract [en]

    We define the space of functions of bounded variation (BV) on the graph. Using the notion of divergence of flows on graphs, we show that the unit ball of the dual space to BV in the graph setting can be described as the image of the unit ball of the space l(infinity) by the divergence operator. Based on this result, we propose a new iterative algorithm to find the exact minimizer for the total variation (TV) denoising problem on the graph. The proposed algorithm is provable convergent and its performance on image denoising examples is compared with the Split Bregman and Primal-Dual algorithms as benchmarks for iterative methods and with BM3D as a benchmark for other state-of-the-art denoising methods. The experimental results show highly competitive empirical convergence rate and visual quality for the proposed algorithm.

  • 31.
    Owais, Owais
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Gong, Shaofang
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Circular Monopole Antenna Stability with Regard to Ground Plane Size2008In: Proc. of the 2008 International Symposium on Antenna and Propagation (ISAP'08), Taiwan, Oct. 27-30, 2008., 2008, p. 1-4, article id 1645003Conference paper (Refereed)
    Abstract [en]

    Wireless communications for short range and high data rate require wideband operation that necessitates the demand for miniaturized, low cost and low profile antennas. Miniaturized planar monopole antennas provide wide impedance bandwidth for wireless personal area network applications [1]. Different monopole shapes have been considered and a lot of research has been made to improve the bandwidth and reduce the size by changing the antenna shape [2]-[4]. The radiator part has been the main focus of research to find a shape that provides wide bandwidth [3]-[4], as well on studying how the ground plane affects the bandwidth of antennas. Wide bandwidth has been obtained by bevelling the radiator [5] and use of a modified ground plane [6]. Planar monopoles with parasitic elements and slots give also a wideband [7]. It has been documented that the finite size of the ground plane is an important factor for the antenna performance [8]. Planar monopoles have a benefit of being low cost and compatible to printed circuit board (PCB) allowing compact design. Since the ground plane is coplanar with the antenna, it necessitates that its stability should not change when integrated in PCB with different ground plane size of adjoining circuits. To avoid pre-tuning and achieve cost effectiveness, system development requires a stable planar monopole antenna that can be integrated without depreciation of its performance. This paper studies in detail the effect of ground plane dimension, width and length, on the stability of the coplanar monopole antenna, by changing the ground plane size while keeping feedline and feedap constant. The parametric investigation supported by simulation and experimental results is conducted in this paper to give insights to the stability issue that have not been reported before.

  • 32.
    Qayoom Mugheri, Abdul
    et al.
    Univ Sindh Jamshoro, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Aftab, Umair
    Mehran Univ Engn and Technol, Pakistan.
    Ishaq Abro, Muhammad
    Mehran Univ Engn and Technol, Pakistan.
    Chaudhry, Saleem Raza
    Univ Engn and Technol, Pakistan.
    Amaral, Luis
    Univ Lisbon, Portugal.
    Ibupoto, Zafar Hussain
    Univ Sindh Jamshoro, Pakistan.
    Co3O4/ NiO bifunctional electrocatalyst for water splitting2019In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 306Article in journal (Refereed)
    Abstract [en]

    The development of noble metal free and active bifunctional catalysts for water splitting in alkaline media is highly demanded but very challenging. Herein, synergetic effects developed between two nonprecious metal oxides, Co3O4 and NiO, are reported, with the resulting composite showing promising properties as a catalyst for alkaline water electrolysis. The activity of the composite material towards both the HER and the OER was enhanced and the dynamic potential decreased, as compared with its counterparts. Importantly, low Tafel slopes of 101 and 61 mVdec(-1) are found for the composite catalyst for OER and HER respectively. EIS measurements revealed a decreased impedance response of the composite dominated by the intermediate frequency relaxation, related to the adsorption of intermediates. Moreover, based on the structural features the improved catalytic activity of the composite is also due to high electroactive surface area, swift electron transfer kinetics, and excellent electrical chemical coupling between Co3O4 and NiO. (c) 2019 Elsevier Ltd. All rights reserved.

  • 33.
    Ryberg, Thomas
    et al.
    Department of Communication and Psychology, Aalborg universitet, Denmark.
    Davidsen, Jacob
    Department of Communication and Psychology, Aalborg universitet, Denmark.
    Bernhard, Jonte
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Knowledge Forms in Students' Collaborative Work: PBL as a Design for Transfer work2019In: Designing for situated knowledge transformation / [ed] Dohn, Nina Bonderup Hansen, Stig Børsen Hansen, Jens Jørgen, Abingdon, Oxon, UK: Routledge, 2019, p. 127-144Chapter in book (Refereed)
    Abstract [en]

    This chapter analyses selected video data from a long-term, collaborative problem-based project work conducted by groups of Architecture and Design students within the frame of the Aalborg PBL model. This pedagogical model is discussed in relation to the analytic framework for transfer developed in Chapters 2 and 3. Following that, the chapter zooms in on selected extracts of video data of students’ actual group work, which is analysed from the perspective of embodied interaction analysis. Through the use of this analytical perspective, the chapter draws out two themes: “Embodiment – the intimacy of talk, gestures and artefacts” and “The material, collective history of the group and the production of shared artefacts and practices”. In relation to the first theme, it is discussed how e.g. the bodily-material handling of a styrofoam model can be viewed as an example of ‘practical knowledge’ that transgresses a merely ‘communicative’ or ‘illustrative’ purpose and can be seen as a way of ‘building an argument’ within a design process and as participating in an ‘epistemic design game’. In relation to the second theme, this argument is extended to include the physical surroundings the students work in and it is argued that the students develop ‘practical knowledge’ as patterns of practice for organising their work, organising the studio and working with models. In the conclusion, this is discussed in relation to the Aalborg PBL model.

  • 34.
    Savoyant, A.
    et al.
    Aix Marseille Univ, France.
    Rollo, M.
    Aix Marseille Univ, France.
    Texier, M.
    Aix Marseille Univ, France.
    Elhadi Adam, Rania Elhadi
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Bernardini, S.
    Aix Marseille Univ, France.
    Pilone, O.
    Aix Marseille Univ, France.
    Margeat, O.
    Aix Marseille Univ, France.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Bertaina, S.
    Aix Marseille Univ, France.
    Light-induced high-spin state in ZnO nanoparticles2020In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 31, no 9, article id 095707Article in journal (Refereed)
    Abstract [en]

    The effects of white-light irradiation on similar to 15.nm diameter ZnO nanoparticles are investigated by means of electron paramagnetic resonance, near liquid-nitrogen and liquid-helium temperatures. Under dark conditions, usual core- and surface-defects are detected, respectively, at g = 1.960 and g = 2.003. Under white-light illumination, the core-defect signal intensity is strongly increased, which is to be correlated to the light-induced conductivitys augmentation. Beside, a four-lines structure appears, with the same gravity center as that of the surface defects. Simulations and intensity power-dependence measurements show that this four-line-structure is very likely to arise from a localized high spin S = 2, induced by light irradiation, and subjected to a weak axial anisotropy. At 85K, this high-spin state can last several hours after the light-irradiation removal, probably due to highly spin-forbidden recombination process. The possible excited resonant complexes at the origin of this signal are discussed. Other light-induced S = 1/2-like centers are detected as well, which depend on the nanoparticles growth conditions.

  • 35.
    Shah, Aqeel Ahmed
    et al.
    NED University of Engineering and Technology Karachi, Pakistan.
    Bhatti, Muhammad Ali
    University of Sindh Jamshoro, Sindh, Pakistan.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chandio, Ali Dad
    NED University of Engineering and Technology Karachi, Pakistan.
    Channa, Iftikhar A.
    NED University of Engineering and Technology Karachi, Pakistan.
    Sahito, Ali Ghulam
    University of Sindh Jamshoro, Sindh, Pakistan.
    Chalangar, Ebrahim
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Nur, Omer
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Ibupoto, Zafar Hussain
    University of Sindh Jamshoro, Sindh, Pakistan.
    Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange2019In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956Article in journal (Refereed)
    Abstract [en]

    In this study, zinc oxide (ZnO) nanorods are doped with copper by low temperature aqueous chemical growth method using different concentrations of copper 5 mg, 10 mg, 15 mg and 20 mg and labeled as sample 1, 2, 3 and 4 respectively. The morphology and phase purity of nanostructures was investigated by scanning electron microscopy, and powder X-ray diffraction techniques. The optical characterization was carried out through UV–Vis spectrophotometer. The band gap of coper doped ZnO has brought reduction at 250–600 nm and it indicates the fewer time for the recombination of electron and hole pairs, thus enhanced photo degradation efficiency is found. ZnO exhibits nanorods like shape even after the doping of copper. The photo degradation efficiency for the two chronic dyes such as methyl orange MO and methylene blue MB was found to be 57.5% and 60% respectively for a time of 180 mints. This study suggests that the copper impurity in ZnO can tailor its photocatalytic activity at considerable rate. The proposed photo catalysts are promising and can be used for the waste water treatment and other environmental applications.

  • 36.
    Soomro, Razium Ali
    et al.
    Univ Sindh, Pakistan; Beijing Univ Chem Technol, Peoples R China; Univ Bristol, England.
    Kalwar, Nazar Hussain
    Shah Abdul Latif Univ Khairpur, Pakistan.
    Avci, Ahmet
    Selcuk Univ, Turkey.
    Pehlivan, Erol
    Selcuk Univ, Turkey.
    Hallam, Keith Richard
    Univ Bristol, England.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase2019In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 141, article id UNSP 111331Article in journal (Refereed)
    Abstract [en]

    This study describes the construction of highly-sensitive photo-electrochemical (PEC) immunosensor for the detection of neuron-specific enolase (NSE). The biosensing platform is comprised of photo-active NiWO4 nanostructures, in-situ-grown over a conductive substrate (indium tin oxide) using a low-temperature template-based co-precipitation approach. The discussed approach enables the formation of discrete, yet morphologically-analogous, nanostructures with complete coverage (pinhole-free) of the electrode surface. The in-situ-grown nanostructure possess dense population with sharp saw-blade like morphological features that can support substantial immobilisation of anti-NSE agent. The constructed platform demonstrated excellent photo-catalytic activity towards uric acid (UA) which served as the base for the Electrochemical -mechanism (EC) based PEC inhibition sensing. The detection of NSE, relied on its obstruction in analytical signal observed for the photo-oxidation of UA after binding to the electrode surface via protein-antibody interaction. The constructed PEC immunosensor exhibits signal sensitivity up to 0.12 ng mL(-1) of NSE with excellent signal reproducibility and electrode replicability. Moreover, the constructed platform was successfully used for NSE determination in human serum samples.

  • 37.
    Tahira, Aneela
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Ibupoto, Zafar Hussain
    Univ Sindh Jamshoro, Pakistan.
    Vagin, Mikhail
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Aftab, Umair
    Mehran Univ Engn and Technol, Pakistan.
    Abro, Muhammad Ishaq
    Mehran Univ Engn and Technol, Pakistan.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    An efficient bifunctional electrocatalyst based on a nickel iron layered double hydroxide functionalized Co3O4 core shell structure in alkaline media2019In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 9, no 11, p. 2879-2887Article in journal (Refereed)
    Abstract [en]

    Developing highly active nonprecious metal and binder free bifunctional electrocatalysts for water splitting is a challenging task. In this study, we used a simple strategy to deposit a nickel iron layered double hydroxide (NiFeLDH) onto cobalt oxide (Co3O4) nanowires. The cobalt oxide nanowires are covered with thin nanosheets of NiFeLDH forming a core shell structure. The Co3O4 nanowires contain the mixed oxidation states of Co2+ and Co3+, and the surface modification of Co3O4 nanowires has shown synergetic effects due to there being more oxygen defects, catalytic sites, and enhanced electronic conductivity. Further, the core shell structure of Co3O4 nanowires demonstrated a bifunctional activity for water splitting in 1 M KOH aqueous solution. From the hydrogen evolution reaction (HER), a current density of 10 mA cm - 2 is achieved at a potential of - 0.303 V vs. reversible hydrogen electrode (RHE). Meanwhile for the case of the oxygen evolution reaction (OER), a current density of 40 mA cm - 2 is measured at a potential of 1.49 V vs. RHE. Also, this electrocatalyst has shown a considerable long- term stability of 15 h for both the HER and the OER. Importantly, electrochemical impedance spectroscopy has shown that the NiFeLDH integration onto cobalt oxide exhibited around 3 fold decrease of charge transfer resistance for both the HER and the OER in comparison with pristine cobalt oxide films, which reveals an excellent electrocatalytic activity for both faradaic processes. All these results confirm that the proposed electrocatalyst can be integrated into an efficient water splitting system.

    The full text will be freely available from 2020-05-09 08:15
  • 38.
    Tahira, Aneela
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Ibupoto, Zafar Hussain
    Univ Sindh, Pakistan.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Advanced Co3O4-CuO nano-composite based electrocatalyst for efficient hydrogen evolution reaction in alkaline media2019In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 44, no 48, p. 26148-26157Article in journal (Refereed)
    Abstract [en]

    In this study, we incorporate a copper impurity into (Co3O4) nanowires precursor that turn them into an active catalyst for the hydrogen evolution reaction in 1M KOH. The XRD and XPS results are in good agreement and confirmed the formation of Co3O4-CuO nano composite by wet chemical method. To date, the performance of hydrogen evolution reaction in alkaline for the composite catalyst is comparable or superior to cobalt oxide based HER electro-catalysts. The HER catalyst exhibits the lowest Tafel slope of 65 mVdec(-1) for the cobalt-based catalysts in alkaline media. A current density of 10 mA/cm(2) is achieved at a potential of 0.288 V vs reversible hydrogen electrode (RHE). The mixed transition metal oxide Co3O4-CuO based HER electro-catalyst is highly stable and durable. The EIS results demonstrates that HER is highly favorable on the Co3O4-CuO due to the relatively small charge transfer resistance (173.20 Ohm) and higher capacitance values (1.97 mF). (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2021-09-18 11:09
  • 39.
    Xu, Xin
    et al.
    Univ Elect Sci and Technol China, Peoples R China.
    Karlsson, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Gong, Shaofang
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Broadband and low-loss composite right/left-handed transmission line based on broadside-coupled lines2019In: International Journal of RF and Microwave Computer-Aided Engineering, ISSN 1096-4290, E-ISSN 1099-047X, Vol. 29, no 8, article id e21763Article in journal (Refereed)
    Abstract [en]

    A novel composite right/left-handed (CRLH) transmission line (TL) structure is proposed and investigated. This structure consists of a pair of broadside-coupled lines and a shorted stub. First, its fundamental characteristics and the relation between its electrical parameters and bandwidth are studied utilizing the TL theory. Then, closed-form design equations with flexible parameter selection are given. Finally, several microstrip implementations of the proposed structure are developed to verify our theoretical results. It is shown that the proposed structure can achieve a very wide left-handed (LH) and right-handed (RH) bandwidth with low insertion loss and low return loss.

1 - 39 of 39
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf