liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ariyawong, Kanaparin
    et al.
    Laboratoire des Matériaux et du Génie Physique, Grenoble INP – CNRS, France.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Step Instability in Sublimation Epitaxy on Low Off-Axis 6H-SiC2013Conference paper (Refereed)
  • 2.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wagner, G
    Leibniz Institute for Crystal Growth, Max-Born-Strasse 2, D-12489 Berlin, Germany.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, P
    Materials for Electronics and Energy Technology, University Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds2012In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 67, no 1, p. 300-302Article in journal (Refereed)
    Abstract [en]

    Cubic silicon carbide is a promising material for medium power electronics operating at high frequencies and for the subsequent growth of gallium nitride for more efficient light emitting diodes. We present a new approach to produce freestanding cubic silicon carbide (3C-SiC) with the ability to obtain good crystalline quality regarding increased domain size and reduced defect density. This would pave the way to achieve substrates of 3C-SiC so that the applications of cubic silicon carbide material having selectively (111) or (001) oriented surfaces can be explored. Our method is based on the combination of the chemical vapor deposition method and the fast sublimation growth process. Thin layers of cubic silicon carbide grown heteroepitaxially on silicon substrates are for the first time used for a subsequent sublimation growth step to increase layer thicknesses. We have been able to realize growth of freestanding (001) oriented 3C-SiC substrates using growth rates around 120 μm/h and diameters of more than 10 mm. The structural quality from XRD rocking curve measurements of (001) oriented layers shows good FWHM values down to 78 arcsec measured over an area of 1 × 2 mm2, which is a quality improvement of 2–3 times compared with other methods like CVD.

    Download full text (pdf)
    fulltext
  • 3.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, J.
    University of Erlangen-Nürnberg, Germany.
    Wagner, G.
    Leibniz Institute for Crystal Growth, Berlin, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Spiecker, E.
    University of Erlangen-Nürnberg, Germany.
    Wellmann, P.
    University of Erlangen-Nuremberg, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Freestanding 3C-SiC grown by sublimation epitaxy using 3C-SiC templates on silicon2012In: Materials Science Forum Vols 717 - 720, Trans Tech Publications Inc., 2012, Vol. 717-720, p. 177-180Conference paper (Refereed)
    Abstract [en]

    In this work a new approach for the production of freestanding cubic silicon carbide (3C-SiC) in (001) orientation is presented which is based on the combination of chemical vapor deposition (CVD) and the fast sublimation growth process (FSGP). Fast homoepitaxial growth of 3C-SiC using sublimation epitaxy on a template created by CVD growth on silicon substrates allows to obtain thick freestanding material with low defect densities. Using standard silicon wafers as substrate material permits a cost efficient process and the applying of wafers with different orientations. The (001) orientation used in this work will potentially allow further heteroepitaxial growth of other cubic semiconductors, like e.g. gallium nitride (GaN).

  • 4.
    Hens, Philip
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, Julian
    University of Erlangen-Nuremberg, Erlangen, Germany.
    Wagner, Günter
    Leibniz Institute for Crystal Growth, Berlin, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Spiecker, Erdman
    University of Erlangen-Nuremberg, Erlangen, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Defect generation and annihilation in 3C-SiC-(001) homoepitaxial growth by sublimation2013In: Silicon Carbide and Related Materials 2012 / [ed] Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein, Trans Tech Publications , 2013, Vol. 740-742, p. 283-286Conference paper (Refereed)
    Abstract [en]

    In this paper we present an investigation on the defect generation and annihilation during the homoepitaxial growth step of cubic silicon carbide by sublimation epitaxy on templates grown by chemical vapor deposition on silicon substrates. Several structural defects like stacking faults, twins and star-defects show opposite evolution from the template layer into the sublimation grown material. While single planar defects tend to annihilate with increasing layer thickness, the defect clusters assigned to the star-defects are enlarging. These issues contribute to a balance of how to achieve the best possible quality on thick layers.

  • 5.
    Ivanov, Ivan Gueorguiev
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yazdanfar, Milan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lundqvist, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Chen, Jr-Tai
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    ul-Hassan, Jawad
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Stenberg, Pontus
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Son, Nguyen Tien
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ager, Joel W. III
    Lawrence Berkeley National Laboratory, Berkeley, California, USA.
    Kordina, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    High-Resolution Raman and Luminescence Spectroscopy of Isotope-Pure (SiC)-Si-28-C-12, Natural and C-13 - Enriched 4H-SIC2014In: Silicon Carbide and Related Materials 2013, PTS 1 AND 2, Trans Tech Publications Inc., 2014, Vol. 778-780, p. 471-474Conference paper (Refereed)
    Abstract [en]

    The optical properties of isotope-pure (SiC)-Si-28-C-12, natural SiC and enriched with C-13 isotope samples of the 4H polytype are studied by means of Raman and photoluminescence spectroscopies. The phonon energies of the Raman active phonons at the Gamma point and the phonons at the M point of the Brillouin zone are experimentally determined. The excitonic bandgaps of the samples are accurately derived using tunable laser excitation and the phonon energies obtained from the photoluminescence spectra. Qualitative comparison with previously reported results on isotope-controlled Si is presented.

    Download full text (pdf)
    Fulltext
  • 6.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hens, P.
    University of Erlangen-Nuremberg.
    Liljedahl, Richard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, M.
    University of Erlangen-Nuremberg.
    Wellmann, P.
    University of Erlangen-Nuremberg.
    Sano, S.
    ADMAP INC. 16-2, Tamahara 3-chome, Tamano, Okayama.
    Yakimova, Rositza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kamiyama, S.
    Meijo University, Nagoya .
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Effects of source material on epitaxial growth of fluorescent SiC2012In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 522, p. 7-10Article in journal (Refereed)
    Abstract [en]

    The growth of fluorescent SiC using Fast Sublimation Growth Process was demonstrated using different types of SiC source materials. These were prepared by (i) high-temperature hot pressing, (ii) chemical vapor deposition and (iii) physical vapor transport. The optimized growth rates of 50 μm/h, 170 μm/h and 200 μm/h were achieved using the three types of sources, respectively. The best results in respect to growth rates are obtained using higher density sources. Fluorescent SiC layers with mirror-like morphology, very good crystal quality and yellowish or warm white light photoluminescence at room temperature were grown using all three types of the source materials.

  • 7.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Huang, Ho Hsuan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Schimmel, Saskia
    University of Erlangen-Nuremberg, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Towards Bulk-Like 3C-SiC Growth Using Low Off-Axis Substrates2013Conference paper (Other academic)
  • 8.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Huang, Ho-Hsuan
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Schimmel, Saskia
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Towards bulk-like 3C-SiC growth using low off-axis substrates2013In: SILICON CARBIDE AND RELATED MATERIALS 2012, Trans Tech Publications , 2013, Vol. 740-742, p. 275-278Conference paper (Refereed)
    Abstract [en]

    Bulk-like 3C-SiC was grown on 1.2 degrees low off-axis 6H-SiC substrates using a sublimation epitaxy technique. The effects of temperature ramp-up and increase in layer thickness on the 3C-SiC domain formation were explored. The temperature ramp-up had no significant effect on the domain size. The domain size was considerably increased and the crystal quality was significantly improved by increasing the thickness of the layer towards bulk-like material. Average full width at half maximum values of 149 arcsec and 65 arcsec were measured in samples with thicknesses of 305 mu m and 1080 mu m, respectively, at a footprint of 1x3 mm(2). This result implies that heteropeitaxial growth of 3C-SiC on low off-axis 6H-SiC substrates by a sublimation method can be used to prepare 3C-SiC seeds or can be further developed for growth of bulk 3C-SiC material.

  • 9.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, Michl
    University of Erlangen-Nuremberg, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Morphological and Optical Stability in Growth of Fluorescent SiC on Low Off-Axis Substrates2013In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 740-742, p. 19-22Article in journal (Refereed)
    Abstract [en]

    Fluorescent silicon carbide was grown using the fast sublimation growth process on low off-axis 6H-SiC substrates. In this case, the morphology of the epilayer and the incorporation of dopants are influenced by the Si/C ratio. Differently converted tantalum foils were introduced into the growth cell in order to change vapor phase stochiometry during the growth. Fluorescent SiC grown using fresh and fully converted tantalum foils contained morphological instabilities leading to lower room temperature photoluminescence intensity while an improved morphology and optical stability was achieved with partly converted tantalum foil. This work reflects the importance of considering the use of Ta foil in sublimation epitaxy regarding the morphological and optical stability in fluorescent silicon carbide.

  • 10.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaiser, Michl
    University of Erlangen-Nuremberg, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Morphological and optical stability in growth of fluorescent SiCon low off-axis substrates2013Conference paper (Other academic)
  • 11.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Richard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Yiyu
    Technical University of Denmark, Lyngby.
    Ou, Haiyan
    Technical University of Denmark, Lyngby.
    Kamiyama, Satoshi
    Meijo University, Nagoya.
    Yakimova, Rositza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Geometrical Control of 3C and 6H-SiC Nucleation on Low Off-Axis Substrates2011In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 679-680, p. 103-106Article in journal (Refereed)
    Abstract [en]

    Growth of 3C or 6H-SiC epilayers on low off-axis 6H-SiC substrates can be mastered by changing the size of the on axis plane formed by long terraces in the epilayer using geometrical control. The desired polytype can be selected in thick (~200 µm) layers of both 6H-SiC and 3C-SiC polytypes on substrates with off-orientation as low as 1.4 and 2 degrees. The resultant crystal quality of the 3C and the 6H-SiC epilayers, grown under the same process parameters, deteriorates when lowering the off-orientation of the substrate.

    Download full text (pdf)
    fulltext
  • 12.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Stability in growth of 6H-SiC and 3C-SiC for LEDs and solar cells2012In: 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE , 2012Conference paper (Refereed)
    Abstract [en]

    6H- and 3C-SiC layers were grown using a sublimation based process. The polytype balance is mainly given by the substrate orientation and growth temperature. This paves the way to use 6H- and 3C-SiC in optoelectronic applications.

  • 13.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lundqvist, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kamiyama, Satoshi
    Meijo University, Nagoya, Japan.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    On stabilization of 3C-SiC using low off-axis 6H-SiC substrates2012Conference paper (Refereed)
    Abstract [en]

    Heteroepitaxial growth of 3C-SiC on 0.8 and 1.2 degree off-oriented 6H-SiC substrates was studied using a sublimation growth process. The 3C-SiC layers were grown at high growth rates with layer thickness up to 300 µm. The formation and the quality of 3C-SiC are influenced by the off-orientation of the substrate, the growth temperature (studied temperature range from 1750 oC to 1850oC), and the growth ambient (vacuum at 5*10-5 mbar and nitrogen at 5*10-1 mbar). The largest domains of 3C-SiC and the lowest number of double positioning boundaries were grown using nitrogen ambient and the highest growth temperature. The combined use of low off-axis substrate and high growth rate is a potential method to obtain material with bulk properties.

  • 14.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yazdi, G. Reza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lateral Enlargement Growth Mechanism of 3C-SiC on Off-Oriented 4H-SiC Substrates2014In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 14, no 12, p. 6514-6520Article in journal (Refereed)
    Abstract [en]

    We introduce a 3C-SiC growth concept on off-oriented 4H-SiC substrates using a sublimation epitaxial method. A growth model of 3C-SiC layer development via a controlled cubic polytype nucleation on in situ formed on-axis area followed by a lateral enlargement of 3C-SiC domains along the step-flow direction is outlined. Growth process stability and reproducibility of high crystalline quality material are demonstrated in a series of 3C-SiC samples with a thickness of about 1 mm. The average values of full width at half-maximum of ω rocking curves on these samples vary from 34 to 48 arcsec indicating high crystalline quality compared to values found in the literature. The low temperature photoluminescence measurements also confirm a high crystalline quality of 3C-SiC and indicate that the residual nitrogen concentration is about 1–2 × 1016 cm–3. Such a 3C-SiC growth concept may be applied to produce substrates for homoepitaxial 3C-SiC growth or seeds which could be explored in bulk growth of 3C-SiC.

    Download full text (pdf)
    fulltext
  • 15.
    Jokubavicius, Valdas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yazdi, Gholam Reza
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Liu, Xinyu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Philipp, Schuh
    University of Erlangen, Erlangen, Germany.
    Wilhelm, Martin
    University of Erlangen, Erlangen, Germany.
    Wellmann, Peter
    University of Erlangen, Erlangen, Germany.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Single Domain 3C-SiC Growth on Off-Oriented 4H-SiC Substrates2015In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 15, no 6, p. 2940-2947Article in journal (Refereed)
    Abstract [en]

    We investigated the formation of structural defects in thick (∼1 mm) cubic silicon carbide (3C-SiC) layers grown on off-oriented 4H-SiC substrates via a lateral enlargement mechanism using different growth conditions. A two-step growth process based on this technique was developed, which provides a trade-off between the growth rate and the number of defects in the 3C-SiC layers. Moreover, we demonstrated that the two-step growth process combined with a geometrically controlled lateral enlargement mechanism allows the formation of a single 3C-SiC domain which enlarges and completely covers the substrate surface. High crystalline quality of the grown 3C-SiC layers is confirmed using high resolution X-ray diffraction and low temperature photoluminescence measurements.

    Download full text (pdf)
    fulltext
  • 16.
    Linnarsson, Margareta
    et al.
    KTH Royal Institute of Technology, Kista, Sweden.
    Kaiser, Michl
    University of Erlangen-Nuremberg, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Yiyu
    Technical University of Denmark, Lyngby.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Germany.
    Ou, Haiyan
    Technical University of Denmark, Lyngby.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lateral Boron Distribution in Polycrystalline SiC Source Materials2013Conference paper (Refereed)
    Abstract [en]

    Polycrystalline SiC containing boron and nitrogen are used in growth of fluorescent SiC for white LEDs. Two types of doped polycrystalline SiC have been studied in detail with secondary ion mass spectrometry: sintered SiC and poly-SiC prepared by sublimation in a physical vapor transport setup. The materials are co-doped materials with nitrogen and boron to a concentration of 1x1018 cm-3 and 1x1019 cm-3, respectively. Depth profiles as well as ion images have been recorded. According to ocular inspection, the analyzed poly-SiC consists mainly of 4H-SiC and 6H-SiC grains. In these grains, the boron concentration is higher and the nitrogen concentration is lower in the 6H-SiC compared to the 4H-SiC polytype. No inter-diffusion between grains is observed.

  • 17.
    Lundqvist, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Raad, Peter
    Department of Mechanical Engineering, Southern Methodist University, Dallas, Texas, USA.
    Yazdanfar, Milan
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Stenberg, Pontus
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Komarov, Pavel
    TMX Scientific, Dallas, Texas, USA.
    Rorsman, Niklas
    Chalmers University of Technology, Gothenburg, Sweden.
    Ager III, J.
    Lawrence Berkeley National Laboratory, Berkeley, California, USA.
    Kordina, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Janzén, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Thermal Conductivity of Isotopically Enriched Silicon Carbide2013In: Thermal Investigations of ICs and Systems (THERMINIC), 2013, IEEE , 2013, p. 58-61Conference paper (Refereed)
    Abstract [en]

    Since the semiconductor silicon carbide presents attractive opportunities for the fabrication of novel electronic devices, there is significant interest in improving its material quality. Shrinking component sizes and high demands for efficiency and reliability make the capability to release excess heat an important factor for further development. Experience from Si and Diamond tells us that isotopic enrichment is a possible way to increase the thermal conductivity. We have produced samples of 4H-SiC that contain Si-28 and C-12 to a purity of 99.5%. The thermal conductivity in the c-direction of these samples has been measured by a transient thermoreflectance method. An improvement due to enrichment of at least 18% was found. The result is valid for a temperature of 45K above room temperature. A preliminary study of the temperature dependence of the thermal conductivity demonstrates a strong temperature dependence in agreement with earlier reports for 4H.

  • 18.
    Ou, Haiyan
    et al.
    Technical University of Denmark, Lyngby, Denmark .
    Ou, Yiyu
    Technical University of Denmark, Lyngby, Denmark .
    Argyraki, Aikaterini
    Technical University of Denmark, Lyngby, Denmark .
    Schimmel, Saskia
    University of Erlangen-Nuremberg, Erlangen, Germany .
    Kaiser, Michl
    University of Erlangen-Nuremberg, Erlangen, Germany .
    Wellmann, Peter
    University of Erlangen-Nuremberg, Erlangen, Germany .
    Linnarsson, Margareta
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Advances in wide bandgap SiC for optoelectronics2014In: European Physical Journal B: Condensed Matter Physics, ISSN 1434-6028, E-ISSN 1434-6036, Vol. 87, p. 58-Article in journal (Refereed)
    Abstract [en]

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication. This paper will review the advances in fluorescent SiC for white light-emitting diodes, covering the poly-crystalline doped SiC source material growth, single crystalline epitaxy growth of fluorescent SiC, and nanofabrication of SiC to enhance the extraction efficiency for fluorescent SiC based white LEDs.

  • 19.
    Schimmel, Saskia
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology. University of Erlangen, Germany.
    Kaiser, Michl
    University of Erlangen, Germany.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Yi Yu
    Technical University of Denmark, Lyngby.
    Ou, Hai Yan
    Technical University of Denmark, Lyngby.
    Linnarsson, Margareta K.
    KTH Royal Institute of Technology, Sweden.
    Wellmann, Peter
    University of Erlangen, Germany.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Step-flow growth of fluorescent 4H-SiC layers on 4 degree off-axis substrates2013In: Silicon Carbide and Related Materials 2012 / [ed] Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein, Trans Tech Publications , 2013, Vol. 740-742, p. 185-188Conference paper (Refereed)
    Abstract [en]

    Homoepitaxial layers of fluorescent 4H-SiC were grown on 4 degree off-axis substrates by sublimation epitaxy. Luminescence in the green spectral range was obtained by co-doping with nitrogen and boron utilizing donor-acceptor pair luminescence. This concept opens possibilities to explore green light emitting diodes using a new materials platform.

  • 20.
    Schimmel, Saskia
    et al.
    University of Erlangen, Germany .
    Kaiser, Michl
    University of Erlangen, Germany .
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Yiyu
    Technical University of Denmark, Lyngby.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Linnarsson, Margareta K.
    School of Information and Communication Technology, KTH Royal Institute of Technology, Kista, Sweden.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ou, Haiyan
    Technical University of Denmark, Lyngby.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen, Germany .
    The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy2014In: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 56, no 1, p. 012002-Article in journal (Refereed)
    Abstract [en]

    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account dislocation density and distribution. Different doping concentrations and variations in gas phase composition and pressure are investigated.

    Download full text (pdf)
    fulltext
  • 21.
    Sun, Jianwu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ivanov, Ivan Gueorguiev
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Considerably long carrier lifetimes in high-quality 3C-SiC(111)2012In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, no 25, p. 252101-Article in journal (Refereed)
    Abstract [en]

    As a challenge and consequence due to its metastable nature, cubic silicon carbide (3C-SiC) has only shown inferior material quality compared with the established hexagonal polytypes. We report on growth of 3C-SiC(111) having a state of the art semiconductor quality in the SiC polytype family. The x-ray diffraction and low temperature photoluminescence measurements show that the cubic structure can indeed reach a very high crystal quality. As an ultimate device property, this material demonstrates a measured carrier lifetime of 8.2 mu s which is comparable with the best carrier lifetime in 4 H-SiC layers. In a 760-mu m thick layer, we show that the interface recombination can be neglected since almost all excess carriers recombines before reaching the interface while the surface recombination significantly reduces the carrier lifetime. In fact, a comparison of experimental lifetimes with numerical simulations indicates that the real bulk lifetime in such high quality 3C-SiC is in the range of 10-15 mu s.

    Download full text (pdf)
    fulltext
  • 22.
    Sun, Jianwu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Juillaguet, S.
    Université Montpellier 2, France.
    Camassel, J.
    CNRS, Montpellier, France.
    Kamiyama, S.
    Meijo University, Nagoya, Japan.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Room temperature luminescence properties of fluorescent SiC as white light emitting diode medium2012In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 522, p. 33-35Article in journal (Refereed)
    Abstract [en]

    The high quantum efficiency of donor–acceptor-pair emission in N and B co-doped 6H–SiC opens the way for SiC to constitute as an efficient light-emitting medium for white light-emitting diodes. In this work, we evidence room temperature luminescence in N and B co-doped 6H–SiC fluorescent material grown by the Fast Sublimation Growth Process. Three series of samples, with eight different N and B doping levels, were investigated. In most samples, from photoluminescence measurements a strong N–B donor–acceptor-pair emission band was observed at room temperature, with intensity dependent on the nitrogen pressure in the growth chamber and boron doping level in the source. Low temperature photoluminescence spectra showed that N bound exciton peaks exhibited a continuous broadening with increasing N2 pressure during the growth, unambiguously indicating an opportunity to control the N doping in the epilayer by conveniently changing the N2 pressure. Finally, the crystal quality of the N and B doped 6H–SiC was evaluated by X-ray diffraction measurements. The ω rocking curves of (0006) Bragg diffractions from the samples grown with lower and higher N2 pressure show almost the same value of the full width at half maximum as that collected from the substrate. This suggests that the N and B doping, which is expected to give rise to an efficient donor–acceptor-pair emission at room temperature, does not degrade the crystal quality.

  • 23.
    Sun, Jianwu
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kamiyama, Satoshi
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Wellmann, Peter
    University of Erlangen-Nuremberg, Erlangen, Germany.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Microsecond carrier lifetimes in bulk-like 3C-SiC grown by sublimation epitaxy2013In: Silicon Carbide and Related Materials 2012 / [ed] Alexander A. Lebedev, Sergey Yu. Davydov, Pavel A. Ivanov and Mikhail E. Levinshtein, Trans Tech Publications , 2013, Vol. 740-742, p. 315-318Conference paper (Refereed)
    Abstract [en]

    High quality bulk-like 3C-SiC were grown on on-axis (0001) 6H-SiC substrate by sublimation epitaxy. The microwave photoconductivity decay mapping measurements revealed that this material shows considerable long carrier lifetimes varied from 3.519 to 7.834 mu s under the injection level of 3.5x10(12) cm(-2), which are comparable with the best carrier lifetimes in 4H-SiC layers. The mapping of high resolution x-ray diffraction obtained from the same region shows that smaller carrier lifetimes seem to correspond to the larger FWHM values and vice versa. This shows that long carrier lifetime obtained in 3C-SiC is due to the improvement of the crystal quality.

  • 24.
    Syväjärvi, Mikael
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Müller, J.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Grivickas, Vytautas
    Vilnius University, Lithuania.
    Ou, Yiyu
    Jokubavicius, Valdas
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hens, Philip
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Kaisr, M.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Ariyawong, Kanaparin
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Gulbinas, K.
    Vilnius University, Lithuania.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Linnarsson, M. K.
    Royal Institute of Technology, Kista-Stockholm .
    Kamiyama, S.
    Meijo University, Nagoya, Japan .
    Wellmann, P.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Spiecker, E.
    University of Erlangen-Nürnberg, Erlangen, Germany .
    Ou, H.
    Technical University of Denmark, Lyngby.
    Fluorescent SiC as a new material for white LEDs2012In: Physica scripta. T, ISSN 0281-1847, Vol. T148, p. 014002-Article in journal (Refereed)
    Abstract [en]

    Current III–V-based white light-emitting diodes (LEDs) are available. However, their yellow phosphor converter is not efficient at high currents and includes rare-earth metals, which are becoming scarce. In this paper, we present the growth of a fluorescent silicon carbide material that is obtained by nitrogen and boron doping and that acts as a converter using a semiconductor. The luminescence is obtained at room temperature, and shows a broad luminescence band characteristic of donor-to-acceptor pair recombination. Photoluminescence intensities and carrier lifetimes reflect a sensitivity to nitrogen and boron concentrations. For an LED device, the growth needs to apply low-off-axis substrates. We show by ultra-high-resolution analytical transmission electron microscopy using aberration-corrected electrons that the growth mechanism can be stable and that there is a perfect epitaxial relation from the low-off-axis substrate and the doped layer even when there is step-bunching.

  • 25.
    Vasiliauskas, Remigijus
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Marinova, M.
    Aristotle University Thessaloniki.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Liljedahl, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Zoulis, G.
    CNRS.
    Lorenzzi, J.
    UCB Lyon 1.
    Ferro, G.
    UCB Lyon 1.
    Juillaguet, S.
    CNRS.
    Camassel, J.
    CNRS.
    K. Polychroniadis, E.
    Aristotle University Thessaloniki.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Effect of initial substrate conditions on growth of cubic silicon carbide2011In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 324, no 1, p. 7-14Article in journal (Refereed)
    Abstract [en]

    In order to analyze the epitaxial growth of cubic silicon carbide by sublimation epitaxy on different substrates, four different 6H-SiC substrate preparations were used: (i) as-received, (ii) re-polished, (iii) annealed and covered by silicon layer and (iv) with (1 1 1) 3C-SiC buffer layer. Almost 100% coverage and low twin density was achieved when grown on the buffer layer. The XRD and TEM characterizations show better material quality when the layer is grown directly on 6H-SiC substrates. Background doping evaluated by LTPL is in the range of 10(16) cm(-3) for N and 10(16) cm(-3) for Al in all grown layers.

    Download full text (pdf)
    fulltext
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf