liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Emma
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    An Economic Evaluation of the Swedish Prioritisation Rule for Conflict Resolution in Train Traffic Management2014In: Procedia - Social and Behavioral Sciences: Transportation: Can we do more with less resources?, Elsevier, 2014, p. 634-644Conference paper (Refereed)
    Abstract [en]

    An increase in train traffic is a politically welcomed trend, which on the other hand has led to too high capacity utilisation at times and a railway network sensitive to disturbances. Delays are easily spread, causing high cost. A mean of controlling the secondary delays is to use efficient operational prioritisation rules for trains in conflict. This paper presents an evaluation of the current Swedish prioritisation rule. For two frequent conflict situations the associated cost related to applying the rule is calculated. The result indicates a poor economic efficiency and show that significant savings can be achieved by changing strategy.

  • 2.
    Andersson, Emma
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Peterson, Anders
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Törnquist Krasemann, Johanna
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Improved Railway Timetable Robustness for Reduced Traffic Delays – a MILP approach2015In: 6th International Conference on Railway Operations Modelling and Analysis, Tokyo, Mars 23-26, 2015., 2015Conference paper (Refereed)
    Abstract [en]

    Maintaining high on-time performance and at the same time having high capacity utilization is a challenge for several railway traffic systems. The system becomes sensitive to disturbances and delays are easily propagating in the network. One way to handle this problem is to create more robust timetables; timetables that can absorb delays and prevent them from propagating. This paper presents an optimization approach to reduce the propagating of delays with a more efficient margin allocation in the timetable. A Mixed Integer Linear Programming (MILP) model is proposed in which the existing margin time is re-allocated to increase the robustness for an existing timetable. The model re-allocates both runtime margin time and headway margin time to increase the robustness at specific delay sensitive points in a timetable. We illustrate the model’s applicability for a real-world case where an initial, feasible timetable is modified to create new timetables with increased robustness. These new timetables are then evaluated and compared to the initial timetable. We evaluate how the MILP approach affects the initial timetable structure and its capability to handle disturbances by exposing the initial and the modified timetables to some minor initial disturbances of the range 1 up to 7 minutes. The results show that it is possible to reduce the delays by re-allocating margin time, for example, the total delay at end station decreases with 28 % in our real-world example.

  • 3.
    Andersson, Emma
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Peterson, Anders
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Törnquist Krasemann, Johanna
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Introducing a New Quantitative Measure of Railway Timetable Robustness Based on Critical Points2013In: 5th International Seminar on Railway Operations Modelling and Analysis - RailCopenhagen 2013, 2013Conference paper (Refereed)
    Abstract [en]

    The growing demand for railway capacity has led to high capacity consumption at times and a delay-sensitive network with insufficient robustness. The fundamental challenge is therefore to decide how to increase the robustness. To do so there is a need for accurate measures that return whether the timetable is robust or not and indicate where improvements should be made. Previously presented measures are useful when comparing different timetable candidates with respect to robustness, but less useful to decide where and how robustness should be inserted. In this paper, we focus on points where trains enter a line, or where trains are being overtaken, since we have observed that these points are critical for the robustness. The concept of critical points can be used in the practical timetabling process to identify weaknesses in a timetable and to provide suggestions for improvements. In order to quantitatively assess how crucial a critical point may be, we have defined the measure RCP (Robustness in Critical Points). A high RCP value is preferred, and it reflects a situation at which train dispatchers will have higher prospects of handling a conflict effectively. The number of critical points, the location pattern and the RCP values constitute an absolute value for the robustness of a certain train slot, as well as of a complete timetable. The concept of critical points and RCP can be seen as a contribution to the already defined robustness measures which combined can be used as guidelines for timetable constructors.

  • 4.
    Andersson, Emma
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Peterson, Anders
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Törnquist Krasemann, Johanna
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Robustness in Swedish Railway Traffic Timetables2011In: Railrome 2011: Book of Abstracts 4th International Seminar on Railway Operations Modelling and Analysis / [ed] S. Ricci, I.A. Hansen, G. Longo, D. Pacciarelli, J. Rodriguez, E. Wendler, 2011Conference paper (Other academic)
    Abstract [en]

    A tendency seen for quite some time in the Swedish railway network is a growing demand for capacity which no longer can be accommodated. This causes congestion and delays, and the relationships between the trains and how they affect eachother are significantly harder to overview and analyse. Railway traffic timetables normally contain margins to make them robust, and enable trains to recover from certain delays. How effective these margins are, depends on their size and location as well as the frequency and magnitude of the disturbances that occur. Hence, it is important to include marigns so, that they can be used operationally to recover from a variety of disturbances and not restricted to a specific part of the line and/or the timetable. In a case study we compare the performance of a selection of passenger train services to the different prerequisites given by the timetable (e.g. available margins and their location, critical train dependencies). The study focuses on the Swedish Southern mainline between Stockholm and Malmö on which a wide variety of train services operate, e.g. freight trains, local and regional commuter train services as well as long-distance trains with different speed profiles. The analysis shows a clear mismatch between where margins are placed and where delays occur. We also believe that the most widely used performance measure, which is related to the delay when arriving at the final destination, might give rise to an unnecessarily high delay rate at intermediate stations.

  • 5.
    Andersson, Emma V.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Assessment of Robustness in Railway Traffic Timetables2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    A tendency seen for the last decades in many European railway networks is a growing demand for capacity. An increased number of operating trains has led to a delay sensitive system where it is hard to recover from delays, where even relatively small delays are easily propagating to other traffic.

    The overall aim of this thesis is to analyse the robustness of railway traffic timetables; why delays are propagating in the network and how the timetable design and dispatching strategies influence the delays. In this context we want to establish quantitative measures of timetable robustness. There is a need for measures that can be used by the timetable constructors. Measures that identify where and how to improve the robustness and thereby indicating how and where margin time should be inserted. It is also important that the measures can capture interdependencies between different trains.

    In this thesis we introduce the concept of critical points, which is a practical approach to identify robustness weaknesses in a timetable. In contrast to other measures, critical points can be used to identify specific locations in both time and space. The corresponding measure, Robustness in Critical Points (RCP) provides the timetable constructors with concrete suggestions for which trains that should be given more runtime or headway margin. The measure also identifies where the margin time should be allocated to achieve a higher robustness.

    In a case study we show that the delay propagation is highly related to the operational train dispatching. This study shows that the current prioritisation rule used in Sweden results in an economic inefficiency and therefore should be revised. This statement is further supported by RCP and the importance of giving the train dispatchers more flexibility to efficiently solve conflict situations.

  • 6.
    Andersson, Emma V.
    et al.
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Peterson, Anders
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology.
    Törnquist Krasemann, Johanna
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, The Institute of Technology. Blekinge Institute of Technology, Department of Computer Science and Engineering, Karlskrona, Sweden .
    Quantifying railway timetable robustness in critical points2013In: Journal of Rail Transport Planning & Management, ISSN 2210-9706, E-ISSN 2210-9714, Vol. 3, no 3, p. 95-110Article in journal (Refereed)
    Abstract [en]

    Several European railway traffic networks experience high capacity consumption during large parts of the day resulting in delay-sensitive traffic system with insufficient robustness. One fundamental challenge is therefore to assess the robustness and find strategies to decrease the sensitivity to disruptions. Accurate robustness measures are needed to determine if a timetable is sufficiently robust and suggest where improvements should be made.

    Existing robustness measures are useful when comparing different timetables with respect to robustness. They are, however, not as useful for suggesting precisely where and how robustness should be increased. In this paper, we propose a new robustness measure that incorporates the concept of critical points. This concept can be used in the practical timetabling process to find weaknesses in a timetable and to provide suggestions for improvements. In order to quantitatively assess how crucial a critical point may be, we have defined the measure Robustness in Critical Points (RCP). In this paper, we present results from an experimental study where a benchmark of several measures as well as RCP has been done. The results demonstrate the relevance of the concept of critical points and RCP, and how it contributes to the set of already defined robustness measures.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf