liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Baer, Katharina
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Simulation-Based Optimization of a Series Hydraulic Hybrid Vehicle2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Hybrid transmissions are characterized by their utilization of more than one form of energy storage. They have the potential to help reduce overall fuel consumption and vehicle emissions by providing the possibility of brake energy recuperation and prime mover operation management. Electric hybrids and electric vehicle drives are nowadays ubiquitous, and mechanical energy storage in flywheel has been investigated in the past. The use of fluid power technology with a combustion engine has also been investigated since the late 1970s, and is frequently revisited.

    Hydraulic hybridization is especially attractive for heavy vehicles with frequent braking and acceleration which benefit most from fluid power components’ high power density, typically busses, delivery or refuse vehicles, and vehicles with existing hydraulic circuits and transmissions, such as forest and construction machinery, but have been considered for smaller vehicles as well.

    Due to the characteristic discharge profile of hydraulic energy storage, special attention needs to be paid to control aspects in the design process to guarantee drivability of the vehicle. In this respect, simulation models can be of use in early design process stages for cheaper and faster evaluation of concepts and designs than physical experiments and prototyping, and to generate better understanding of the system studied. Engineering optimization aids in the systematic exploration of a given design space, to determine limits and potentials, evaluate trade-offs and potentially find unexpected solutions. In the optimization of a hydraulic hybrid transmission, the integration of component and controller design is of importance, and different strategies (sequential, iterative, bi-level and simultaneous approaches) are conceivable, with varying consequences for the implementation.

    This thesis establishes a simulation-based optimization framework for a hydraulic hybrid transmission with series architecture. Component and control parameter optimization are addressed simultaneously, using a rule-based supervisory control strategy. The forward-facing dynamic simulation model at the centre of the framework is built in Hopsan, a multi-disciplinary open-source tool developed at Linköping University. The optimization is set up and conducted for an example application of an on-road light-duty truck over standard drive cycles. Both results from these experiments as well as the framework itself are studied and evaluated. Relevant design aspects, such as explicit design relations to be considered and performance requirements for more robust design, are identified and addressed, and the optimization problem is analysed with regard to algorithm performance and problem formulation. The final result is an optimization framework that can be adjusted for further in-depth studies, for example through the inclusion of additional components or optimization objectives, and extendable for comparative analysis of different topologies, applications and problem formulations.  

    List of papers
    1. System Parameter Study for a Light-Weight Series Hydraulic Hybrid Vehicle
    Open this publication in new window or tab >>System Parameter Study for a Light-Weight Series Hydraulic Hybrid Vehicle
    2014 (English)In: PROCEEDINGS OF THE 8TH FPNI PH.D SYMPOSIUM ON FLUID POWER, 2014, ASME Press, 2014, p. V001T03A004-Conference paper, Published paper (Refereed)
    Abstract [en]

    Amongst the hybrid vehicle propulsion solutions aiming to improve fuel efficiency, hybrid electric solutions currently receive most attention, especially on the market. However, hydraulic hybrids are an interesting alternative, especially for heavier vehicles due to higher power density which is beneficial if higher masses are moved. As a step towards a comprehensive design framework to compare several possible hydraulic hybrid architectures for a specified application and usage profile, the model of a series hydraulic hybrid vehicle was previously introduced and initially studied concerning component sizing for an exemplary light-duty vehicle in urban traffic. The vehicle is modeled in the Hopsan simulation tool. A comparably straight-forward engine management is used for the vehicle control; both pump and engine controls are based on the hydraulic accumulator’s state-of-charge. The model is developed further with respect to the accumulator component model. Based on that, the influence of several system and component parameters, such as maximum system pressure and engine characteristics, as well as controller parameters on the vehicle’s performance is analyzed. The goal is to allow for more understanding of the system’s characteristics to facilitate future optimization of the system.

    Place, publisher, year, edition, pages
    ASME Press, 2014
    National Category
    Mechanical Engineering
    Identifiers
    urn:nbn:se:liu:diva-114212 (URN)10.1115/FPNI2014-7840 (DOI)000359389400029 ()978-0-7918-4582-0 (ISBN)
    Conference
    8th FPNI Ph.D Symposium on Fluid Power, Lappeenranta, Finland, June 11–13, 2014
    Available from: 2015-02-13 Created: 2015-02-13 Last updated: 2018-03-09
    2. Design Study and Parameter Optimization for a Light-Weight Series Hydraulic Hybrid Vehicle
    Open this publication in new window or tab >>Design Study and Parameter Optimization for a Light-Weight Series Hydraulic Hybrid Vehicle
    2015 (English)Conference paper, Published paper (Refereed)
    Abstract [en]

    Hydraulic hybrid drives are one potential way of improving the fuel efficiency of vehicles, including the possi-bility of recuperating braking energy in a hydraulic accumulator. The high power density of fluid power is mainly advantageous for heavy vehicles, or duty cycles characterized with frequent braking and acceleration. For smaller vehicles, hydraulic hybrid drives are thus most interesting under urban and suburban driving conditions. Amongst the existing architectures, the series hydraulic hybrid offers the advantage of operating the internal combustion engine independently of the vehicle speed, at the cost of a less efficient transmission path than a purely mechanical one. Previously, a series hydraulics hybrid light-duty vehicle was modelled in the transmission-line modelling (TLM)-based simulation software Hopsan from the division of Fluid and Mechatronic Systems (Flumes) at Linköping University. This paper studies through simulation-based optimi-zation how the fuel-optimal vehicle design is affected by various mixes of urban and suburban driving requirements. Both the system’s hardware and the parameters of a basic control strategy are considered. The results show quite similar designs for most performance requirements combinations, and can be the base for further studies addressing additional requirements, conditions and objectives.

    Series
    Scandinavian International Conference on Fluid Power (SICFP), ISSN 2342-2726
    National Category
    Vehicle Engineering
    Identifiers
    urn:nbn:se:liu:diva-122004 (URN)
    Conference
    14th Scandinavian International Conference on Fluid Power (SICFP'15), Tampere, Finland
    Available from: 2015-10-14 Created: 2015-10-14 Last updated: 2018-03-09
    3. Aspects of Parameter Sensitivity for Series Hydraulic Hybrid Light-Weight Duty Vehicle Design
    Open this publication in new window or tab >>Aspects of Parameter Sensitivity for Series Hydraulic Hybrid Light-Weight Duty Vehicle Design
    2016 (English)In: Proceedings of the 9th FPNI Ph.D. Symposium on Fluid Power (FPNI2016), American Society of Mechanical Engineers , 2016, article id V001T01A041Conference paper, Published paper (Refereed)
    Abstract [en]

    Hybridization of a vehicle’s drivetrain can in principle help to improve its energy efficiency by allowing for recuperation of kinetic energy and modulating the engine’s load. How well this can be realized depends on appropriate sizing and control of the additional components. The system is typically designed sequentially, with the hardware setup preceding the development and tuning of advanced controller architectures. Taking an alternative approach, component sizing and controller tuning can be addressed simultaneously through simulation-based optimization.

    The results of such optimizations, especially with standard algorithms with continuous design variable ranges, can however be difficult to realize, considering for example limitations in available components. Furthermore, drive-cycle based optimizations are prone to cycle-beating. This paper examines the results of such simulation-based optimization for a series hydraulic hybrid vehicle in terms of sensitivity to variations in design parameters, system parameters and drive cycle variations. Additional relevant aspects concerning the definition of the optimization problem are pointed out.

    Place, publisher, year, edition, pages
    American Society of Mechanical Engineers, 2016
    Keywords
    Weight (Mass), Automotive design, Cycles, Optimization, Control equipment, Simulation, Design, Hybrid electric vehicles, Hardware, Stress
    National Category
    Mechanical Engineering
    Identifiers
    urn:nbn:se:liu:diva-135737 (URN)10.1115/FPNI2016-1567 (DOI)978-0-7918-5047-3 (ISBN)
    Conference
    9th FPNI Ph.D. Symposium on Fluid Power, Florianópolis, SC, Brazil, October 26–28, 2016
    Available from: 2017-03-17 Created: 2017-03-17 Last updated: 2018-03-09
    4. Framework for simulation-based simultaneous system optimization for a series hydraulic hybrid vehicle
    Open this publication in new window or tab >>Framework for simulation-based simultaneous system optimization for a series hydraulic hybrid vehicle
    2018 (English)In: International Journal of Fluid Power, ISSN 1439-9776Article in journal (Refereed) Epub ahead of print
    Abstract [en]

    Hybridisation of hydraulic drivetrains offers the potential of efficiency improvement for on – and off-road applications. To realise the advantages, a carefully designed system and corresponding control strategy are required, which are commonly obtained through a sequential design process. Addressing component selection and control parameterisation simultaneously through simulation-based optimisation allows for exploration of a large design space as well as design relations and trade-offs, and their evaluation in dynamic conditions which exist in real driving scenarios. In this paper, the optimisation framework for a hydraulic hybrid vehicle is introduced, including the simulation model for a series hybrid architecture and component scaling considerations impacting the system’s performance. A number of optimisation experiments for an on-road light-duty vehicle, focused on standard-drive-cycle-performance, illustrate the impact of the problem formulation on the final design and thus the complexity of the design problem. The designs found demonstrate both the potential of energy storage in series hybrids, via an energy balance diagram, as well as some challenges. The framework presented here provides a base for systematic evaluation of design alternatives and problem formulation aspects.

    Place, publisher, year, edition, pages
    Taylor & Francis, 2018
    Keywords
    Simulation-based optimization, hydraulic hybrid vehicle, series hybrid, simultaneous design and control optimization, Hopsan
    National Category
    Computer Systems
    Identifiers
    urn:nbn:se:liu:diva-152353 (URN)10.1080/14399776.2018.1527122 (DOI)2-s2.0-85055674140 (Scopus ID)
    Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2018-11-23Bibliographically approved
    5. Robustness and performance evaluations for simulation-based control and component parameter optimization for a series hydraulic hybrid vehicle
    Open this publication in new window or tab >>Robustness and performance evaluations for simulation-based control and component parameter optimization for a series hydraulic hybrid vehicle
    2019 (English)In: Engineering optimization (Print), ISSN 0305-215X, E-ISSN 1029-0273, p. 1-19Article in journal (Refereed) Epub ahead of print
    Abstract [en]

    Simulation-based optimization is a useful tool in the design of complex engineering products. Simulation models are used to capture numerous aspects of the design problem for the objective function. Optimization results obtained can be assessed from various perspectives. In this study, component and control optimization of a series hydraulic hybrid vehicle is used as an application, and different robustness and performance aspects are evaluated. Owing to relatively high computational loads, efficient optimization algorithms are important to provide sufficient quality of results at reasonable computational costs. To estimate problem complexity and evaluate optimization algorithm performance, the definitions for information entropy and the related performance index are extended. The insights gained from various simulation-based optimization experiments and their subsequent analysis help characterize the efficiency of the optimization problem formulation and parameterization, as well as optimization algorithm selection with respect to parallel computation capabilities for further development of the model and optimization framework.

    Place, publisher, year, edition, pages
    Taylor & Francis, 2019
    Keywords
    Simulation-based optimization, information entropy-rate-based performance index, robustness analysis, direct search optimization, hydraulic hybrid vehicle
    National Category
    Vehicle Engineering
    Identifiers
    urn:nbn:se:liu:diva-156185 (URN)10.1080/0305215X.2019.1590566 (DOI)
    Available from: 2019-04-08 Created: 2019-04-08 Last updated: 2019-04-15Bibliographically approved
  • 2.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Aspects of Parameter Sensitivity for Series Hydraulic Hybrid Light-Weight Duty Vehicle Design2016In: Proceedings of the 9th FPNI Ph.D. Symposium on Fluid Power (FPNI2016), American Society of Mechanical Engineers , 2016, article id V001T01A041Conference paper (Refereed)
    Abstract [en]

    Hybridization of a vehicle’s drivetrain can in principle help to improve its energy efficiency by allowing for recuperation of kinetic energy and modulating the engine’s load. How well this can be realized depends on appropriate sizing and control of the additional components. The system is typically designed sequentially, with the hardware setup preceding the development and tuning of advanced controller architectures. Taking an alternative approach, component sizing and controller tuning can be addressed simultaneously through simulation-based optimization.

    The results of such optimizations, especially with standard algorithms with continuous design variable ranges, can however be difficult to realize, considering for example limitations in available components. Furthermore, drive-cycle based optimizations are prone to cycle-beating. This paper examines the results of such simulation-based optimization for a series hydraulic hybrid vehicle in terms of sensitivity to variations in design parameters, system parameters and drive cycle variations. Additional relevant aspects concerning the definition of the optimization problem are pointed out.

  • 3.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Component Sizing Study for a Light-Duty Series Hydraulic Hybrid Vehicle in Urban Drive Cycles2013Conference paper (Refereed)
    Abstract [en]

    With the focus on energy efficiency for many different kinds of vehicle applications,hybridization is considered a possible solution to reduce fuel consumption. While hybrid electric concepts are already available for passenger vehicles, and also considered for heavier applications, hybrid hydraulic alternatives have been mainly limited to the latter, which benefit most from the higher power density available. To study the different hybrid architectures and applications, a modeling framework for the system design is developed using the simulation tool Hopsan from Linköping University.  Previously,  the  model  of  a  series  hydraulic  hybrid  vehicle  was introduced, a light-duty vehicle simulated over two standard urban drive cycles, and its potential for further work established. In this paper, the model is extended by including a simple combustion engine power management to provide for more realistic propulsion of the hydraulic drivetrain, showing the potential to operate a series hydraulic hybrid vehicle’s engine in more efficient regions. Additionally, the design is studied concerning the effects of a variation of key component sizes on the accuracy and energy efficiency objectives. Instead of subjecting the system to (multi- objective) optimization, at this stage the individual component’s influence is studied, and the objectives are dealt with separately from each other to eliminate the need for compromise   between   them,   both   to   gain a better understanding of the interdependencies.

  • 4.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Design Study and Parameter Optimization for a Light-Weight Series Hydraulic Hybrid Vehicle2015Conference paper (Refereed)
    Abstract [en]

    Hydraulic hybrid drives are one potential way of improving the fuel efficiency of vehicles, including the possi-bility of recuperating braking energy in a hydraulic accumulator. The high power density of fluid power is mainly advantageous for heavy vehicles, or duty cycles characterized with frequent braking and acceleration. For smaller vehicles, hydraulic hybrid drives are thus most interesting under urban and suburban driving conditions. Amongst the existing architectures, the series hydraulic hybrid offers the advantage of operating the internal combustion engine independently of the vehicle speed, at the cost of a less efficient transmission path than a purely mechanical one. Previously, a series hydraulics hybrid light-duty vehicle was modelled in the transmission-line modelling (TLM)-based simulation software Hopsan from the division of Fluid and Mechatronic Systems (Flumes) at Linköping University. This paper studies through simulation-based optimi-zation how the fuel-optimal vehicle design is affected by various mixes of urban and suburban driving requirements. Both the system’s hardware and the parameters of a basic control strategy are considered. The results show quite similar designs for most performance requirements combinations, and can be the base for further studies addressing additional requirements, conditions and objectives.

  • 5.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Framework for simulation-based simultaneous system optimization for a series hydraulic hybrid vehicle2018In: International Journal of Fluid Power, ISSN 1439-9776Article in journal (Refereed)
    Abstract [en]

    Hybridisation of hydraulic drivetrains offers the potential of efficiency improvement for on – and off-road applications. To realise the advantages, a carefully designed system and corresponding control strategy are required, which are commonly obtained through a sequential design process. Addressing component selection and control parameterisation simultaneously through simulation-based optimisation allows for exploration of a large design space as well as design relations and trade-offs, and their evaluation in dynamic conditions which exist in real driving scenarios. In this paper, the optimisation framework for a hydraulic hybrid vehicle is introduced, including the simulation model for a series hybrid architecture and component scaling considerations impacting the system’s performance. A number of optimisation experiments for an on-road light-duty vehicle, focused on standard-drive-cycle-performance, illustrate the impact of the problem formulation on the final design and thus the complexity of the design problem. The designs found demonstrate both the potential of energy storage in series hybrids, via an energy balance diagram, as well as some challenges. The framework presented here provides a base for systematic evaluation of design alternatives and problem formulation aspects.

  • 6.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Modeling of a Series Hybrid Hydraulic Drivetrain for a Light-Duty Vehicle in Hopsan2013In: Conference proceedings: 13th Scandinavian International Conference on Fluid Power / [ed] Petter Krus, Magnus Sethson, Liselott Ericson, Linköping, Sweden: Linköping University Electronic Press, 2013, p. 107-112Conference paper (Refereed)
    Abstract [en]

    Hydraulic hybrids continue to receive attention as a possible solution in the search for improved fuel economy for different vehicle types. This paper presents a model for a series hydraulic hybrid light-duty vehicle, developed in the Hopsan simulation tool of Linköping University’s Division of Fluid and Mechatronic Systems (Flumes). Focusing on the hydraulic transmission which employs a pump control based on the hydraulic accumulator’s state-of-charge (SoC), several simplifications were made, especially concerning mechanical components. Simulation over two urban standard cycles shows promising results concerning dynamic performance and energy recuperation potential, provided sufficient component sizing to compensate for the mechanical limitations. This paper lays the foundation for both a further refined model - suitable for optimizing the full drivetrain, including component sizing and controller parameterization - and the development of comparable models for parallel and power-split hybrid architectures.

  • 7.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Robustness and performance evaluations for simulation-based control and component parameter optimization for a series hydraulic hybrid vehicle2019In: Engineering optimization (Print), ISSN 0305-215X, E-ISSN 1029-0273, p. 1-19Article in journal (Refereed)
    Abstract [en]

    Simulation-based optimization is a useful tool in the design of complex engineering products. Simulation models are used to capture numerous aspects of the design problem for the objective function. Optimization results obtained can be assessed from various perspectives. In this study, component and control optimization of a series hydraulic hybrid vehicle is used as an application, and different robustness and performance aspects are evaluated. Owing to relatively high computational loads, efficient optimization algorithms are important to provide sufficient quality of results at reasonable computational costs. To estimate problem complexity and evaluate optimization algorithm performance, the definitions for information entropy and the related performance index are extended. The insights gained from various simulation-based optimization experiments and their subsequent analysis help characterize the efficiency of the optimization problem formulation and parameterization, as well as optimization algorithm selection with respect to parallel computation capabilities for further development of the model and optimization framework.

  • 8.
    Baer, Katharina
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Ericson, Liselott
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    System Parameter Study for a Light-Weight Series Hydraulic Hybrid Vehicle2014In: PROCEEDINGS OF THE 8TH FPNI PH.D SYMPOSIUM ON FLUID POWER, 2014, ASME Press, 2014, p. V001T03A004-Conference paper (Refereed)
    Abstract [en]

    Amongst the hybrid vehicle propulsion solutions aiming to improve fuel efficiency, hybrid electric solutions currently receive most attention, especially on the market. However, hydraulic hybrids are an interesting alternative, especially for heavier vehicles due to higher power density which is beneficial if higher masses are moved. As a step towards a comprehensive design framework to compare several possible hydraulic hybrid architectures for a specified application and usage profile, the model of a series hydraulic hybrid vehicle was previously introduced and initially studied concerning component sizing for an exemplary light-duty vehicle in urban traffic. The vehicle is modeled in the Hopsan simulation tool. A comparably straight-forward engine management is used for the vehicle control; both pump and engine controls are based on the hydraulic accumulator’s state-of-charge. The model is developed further with respect to the accumulator component model. Based on that, the influence of several system and component parameters, such as maximum system pressure and engine characteristics, as well as controller parameters on the vehicle’s performance is analyzed. The goal is to allow for more understanding of the system’s characteristics to facilitate future optimization of the system.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf