liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Gu, Xuan
    et al.
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Sidén, Per
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
    Wegmann, Bertil
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
    Eklund, Anders
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Villani, Mattias
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Tekniska fakulteten.
    Knutsson, Hans
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Bayesian Diffusion Tensor Estimation with Spatial Priors2017Ingår i: CAIP 2017: Computer Analysis of Images and Patterns, 2017, Vol. 10424, s. 372-383Konferensbidrag (Refereegranskat)
    Abstract [en]

    Spatial regularization is a technique that exploits the dependence between nearby regions to locally pool data, with the effect of reducing noise and implicitly smoothing the data. Most of the currently proposed methods are focused on minimizing a cost function, during which the regularization parameter must be tuned in order to find the optimal solution. We propose a fast Markov chain Monte Carlo (MCMC) method for diffusion tensor estimation, for both 2D and 3D priors data. The regularization parameter is jointly with the tensor using MCMC. We compare FA (fractional anisotropy) maps for various b-values using three diffusion tensor estimation methods: least-squares and MCMC with and without spatial priors. Coefficient of variation (CV) is calculated to measure the uncertainty of the FA maps calculated from the MCMC samples, and our results show that the MCMC algorithm with spatial priors provides a denoising effect and reduces the uncertainty of the MCMC samples.

  • 2.
    Wegmann, Bertil
    Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Filosofiska fakulteten.
    Bayesian comparison of private and common values in structural second-price auctions2015Ingår i: Journal of Applied Statistics, ISSN 0266-4763, E-ISSN 1360-0532, Vol. 42, nr 2, s. 380-397Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Private and common values (CVs) are the two main competing valuation models in auction theory and empirical work. In the framework of second-price auctions, we compare the empirical performance of the independent private value (IPV) model to the CV model on a number of different dimensions, both on real data from eBay coin auctions and on simulated data. Both models fit the eBay data well with a slight edge for the CV model. However, the differences between the fit of the models seem to depend to some extent on the complexity of the models. According to log predictive score the IPV model predicts auction prices slightly better in most auctions, while the more robust CV model is much better at predicting auction prices in more unusual auctions. In terms of posterior odds, the CV model is clearly more supported by the eBay data.

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf