liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Forskningssyntes för konsortiet Byggnader i energisystem2016Report (Other academic)
    Abstract [sv]

    Denna rapport ger en kortfattad översikt och syntes av tvärvetenskapliga forskningsresultat från verksamheten i konsortiet Byggnader i energisystem inom forskarskolan Program Energisystem. Tonvikten ligger på tiden från forskarskolans start 1997 till dess 15-årsjubileum 2012, men hänvisningar görs även till forskning publicerad därefter. Utgångspunkten har varit att lyfta fram det tvärvetenskapliga inom forskningen för att visa hur forskarskolan har bidragit till tvärvetenskaplig kunskaps- och metodutveckling.

    I rapporten ges en översikt över fallstudier och avhandlingar inom konsortiet och de tvärvetenskapliga forskningsresultaten sammanfattas inom tre huvudsakliga tematiska områden: (1) Passivhus: boende och energieffektiva byggnadstekniker,

    (2) Energieffektivisering: processer och aktörer, samt (3) Energianvändning, vardagsaktiviteter och småskalig solenergi i hushåll. Tvärvetenskapliga metoder och resultat sammanfattas och utvecklingen av samarbeten och angreppssätt beskrivs. Rapporten avslutas med några sammanfattande reflektioner kring hur framgångsrik tvärvetenskaplig forskning bör bedrivas.

  • 2.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Forskningssyntes för konsortiet Industriella energisystem2016Report (Other academic)
    Abstract [sv]

    Denna syntesrapport är en sammanfattning och analys av den forskning som bedrivits inom ramen för det Industriella konsortiet från år 1997 (konsortiets verksamhet startade 1999) inom ramen för forskarskolan Program Energisystem. Under denna tid har 25 doktorsavhandlingar och en licentiatavhandling producerats inom det Industriella konsortiet. Avhandlingarna sammanfattas och analyseras i denna syntesrapport och arbetet avgränsas då till att studera avhandlingarnas Problemområde, Verktyg/Metod/Teori, Systemgräns, studerad Sektor och Övergripande resultat. Vidare ges, med utgångspunkt från dessa forskningsresultat, förslag på fortsatt forskning för hållbara och effektiva energisystem.

    Många viktiga problemområden har studerats inom ramen för forskarskolans Industrikonsortium. Ett flertal avhandlingar behandlar möjligheter att minska utsläppen av växthusgaser från industrin och här har flera sektorer studerats, bland annat massa- och pappersindustrin, järn- och stålindustrin, kemiindustrin och oljeraffinaderiindustrin. Ett centralt tema i avhandlingarna är potentialer för energieffektivisering i industrisektorn, inte minst vid införande av bioraffinaderikoncept i framtiden. Här analyseras t.ex. tekniska potentialer, kostnadseffektivitet för energieffektiviseringsåtgärder, samt betydelsen av energiledning och styrmedel.

    I avhandlingarna har en mängd olika metoder och verktyg använts. Den i särklass mest använda vetenskapliga metoden är intervjuer (15) följt av scenarioanalys (10), dokumentstudier (9), simuleringsberäkningar (9), pinchanalys (9) och optimering (8). Fallstudiemetodik där mer än en metod används för att studera ett specifikt fall, t.ex. ett företag, förekommer i flera avhandlingar. En grundtanke i forskarskolan Program Energisystem har varit att forskaren måste vara medveten om att resultat från energisystemanalyser kan påverkas av vilka systemgränser som valts. I flertalet av Industrikonsortiets avhandlingar har Europas elsystem utgjort systemgräns då effekter av förändrad elanvändning eller elproduktion analyserats.

    Industrikonsortiets forskningsresultat visar på många intressanta slutsatser. Det påvisas att det finns energieffektiviseringspotentialer både i nya investeringar och i energiledningsåtgärder, som att justera driftsbetingelser för befintlig teknisk utrustning och ändra beteenden. Det konstateras också att energisamarbeten mellan industri och energibolag med syfte att öka användningen av industriell överskottsvärme i många fall är en hållbar lösning som minskar regioners behov av primärenergi och reducerar utsläppen av växthusgaser. Hinder mot sådana samarbeten kan vara att detta inte är en del av industrins kärnverksamhet. Det konstateras även att energisamarbeten mellan närliggande anläggningar i ett industrikluster kan leda till avsevärt större energieffektiviseringspotentialer än om var och en av de ingående industrierna arbetar enbart med interna åtgärder. Hinder mot denna typ av samarbete är brist på etablerade affärsmodeller. Forskningen visar på ett behov av fortsatta studier kring begreppet kärnverksamhet och dess påverkan på energifrågan i svensk industrin. Avskiljning och lagring av koldioxid (CCS) från industrin har studerats och här konstateras att denna lösning inte är ekonomiskt lönsam med dagens förutsättningar. Det rekommenderas därför att framtida forskning bedrivs för att studera vilka styrmedel som skulle behövas för att CCS ska bli ekonomiskt intressant för industrin. En annan viktig fråga är hur energitjänsteföretag ska formulera affärsmodeller och strategier kring CCS, samt hur de kan samarbeta med industrin för att på affärsmässiga grunder få till stånd CO2– avskiljning, transport och lagring. Även framtida forskning kring styrmedel, t.ex. energitjänster, för ökad energieffektivitet i industrisektorn förordas. Resultat från Industrikonsortiets avhandlingar visar att processintegrationsverktyget pinchanalys kan kombineras med optimeringsverktyg (i detta fall MIND) vid analys av industriella energisystem. Denna metodkombination ger intressanta resultat varför fortsatt forskning förordas kring kombinationer av olika processintegrationsmetoder. I flertalet avhandlingar har företagsdata använts som indata vid exempelvis modellering och processintegrationsstudier. Detta har accentuerat behovet av ett standardiserat protokoll vid insamling av företagsdata. Ett sådant protokoll kan öka reliabiliteten på indata och förslagsvis användas vid fallstudier.

    Avslutningsvis kan konstateras att trots närmare 20 års tvärvetenskaplig forskning mellan samhällsvetare och teknikvetenskaperna finns det fortfarande mycket mer att beforska och utveckla.

  • 3.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Forskningssyntes för konsortiet Lokala och regionala energisystem2016Report (Other academic)
    Abstract [sv]

    Forskarskolan Program Energisystem har med sina fem deltagande forskningsavdelningar från Chalmers tekniska högskola, Linköpings universitet, KTH och Uppsala universitet varit banbrytande inom tvärvetenskaplig energisystemforskning och dess tre konsortier har spelat en viktig roll för forskarskolans utveckling. Konsortierna är inriktade på byggnader i energisystem, industriella energisystem samt lokala och regionala energisystem. I varje konsortium har doktorander och seniorer från minst två av de deltagande avdelningarna bedrivit tvärvetenskaplig forskning.

    I det lokala och regionala konsortiet har forskningsfrågorna kretsat kring aktörer och processer av betydelse för energisystemen i svenska kommuner, län och regioner. Inom konsortiet har frågeställningar om miljömässigt, socialt och ekonomiskt hållbara lokala och regionala energisystem bland annat studerats genom att analysera aktörers agerande och politiska processer inom de tekniska, ekonomiska och institutionella villkor som utgör begränsningar och möjligheter för energisystemen. En tydlig trend inom konsortiets forskning under forskarskolans arton år är att inriktningen gått i riktning från lokal till regional och från stationära till mobila energisystem. Den förskjutningen följer också den ökande betydelse som regioner i form av länsstyrelser har fått för samordningen av energi- och klimatplaneringen i Sverige under det senaste decenniet. Kommunerna har fortfarande en dominerande position genom den energirelaterade infrastruktur som de förfogar över men en förskjutning mot ett mer regionalt inflytande är tydlig.

    Totalt har 26 doktors- och en licentiatexamen avlagts av konsortiets doktorander och dessa alumner är nu verksamma inom energirelaterade verksamheter Sverige. Den främsta representationen finns inom myndigheter och akademier.

  • 4.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Huvudrapport2016Report (Other academic)
    Abstract [sv]

    Idén att samhällsvetenskaplig och teknisk energisystemforskning måste vävas samman för att utveckla ny kunskap och få ökad samhällsnytta var utgångspunkt när Program Energisystem startade år 1997.

    Program Energisystem identifierade tidigt kärnvärden som visades vara viktiga framgångsfaktorer:

    • Energisystem med tyngdpunkt på användarsidan
    • Tvärvetenskaplig, universitets- och fakultetsöverskridande
    • forskning och forskarutbildning
    • Sammanhållen forskarskola
    • Finansiering av hela doktorandprojekt
    • Samarbeten i tematiska forskningsområden
    • Kontinuerlig tvärvetenskaplig utveckling
    • Långsiktig finansiering av samordningsstruktur

    Program Energisystems arbete har kännetecknats av:

    • Val av samhällsrelevanta projekt av hög vetenskaplig kvalitet
    • Gemensamma tvärvetenskapliga kurser och projektarbeten
    • Tvärvetenskaplig handledning
    • Kontinuerligt arbetande fora för diskussion
    • och kontakter över ämnesgränser
    • Forskningssamarbeten mellan seniorer i olika ämnen
    • Aktivt doktorand- och alumninätverk

    Forskarutbildningens målsättning har varit att utbilda bättre samhällsvetare

    och bättre ingenjörer, inte att göra samhällsvetare av ingenjörerna eller ingenjörer

    av samhällsvetarna.

    I den kontinuerliga utvecklingen av Program Energisystem har ett förtroendefullt samarbete utvecklats som möjliggjort kontinuerliga förbättringar av forskningen och forskarutbildningen.

    Arvet från Program Energisystem har förts vidare i den nya Forskarskola Energisystem. Forskarskola Energisystem har en delvis annan struktur men bygger innehållsmässigt vidare på centrala idéer från Program Energisystem. Det finns ett fortsatt stort behov av tvärvetenskaplig kunskapsutveckling på energiområdet som främst handlar om att förstå komplicerade samband och processer och hur dessa kan påverkas.

  • 5.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Publikationer från Program Energisystem2016Report (Other academic)
    Abstract [sv]

    Det finns en omfattande publicering från Program Energisystem. Förutom 78 doktorsavhandlingar och 16 licentiatavhandlingar så har forskarstuderande och seniorer publicerat ytterligare minst 500 publikationer inom ramen för Program Energisystem.

    I denna rapport förtecknas dessa publikationer.

  • 6.
    Anshelm, Jonas
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Att ersätta kärnkraften med bioenergi: Om en omstridd idé i den offentliga energipolitiska debatten i Sverige 1979-20002009Report (Other (popular science, discussion, etc.))
  • 7.
    Backlund, Sandra
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Eidenskog, Maria
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Energy services in Swedish industrial firms: A multidisciplinary analysis of an emerging market2011Report (Other academic)
    Abstract [en]

    The European commission highlight the energy service market as an important means to improve energy efficiency. Both the Energy service directive and the new suggested Energy Efficiency Directive urge member states to facilitate market development for energy services. The industrial sector is estimated to have large energy efficiency potential. The aim of this multidisciplinary report is to investigate the state of the Swedish energy service market 2011, both from the supply side and from the industrial demand side in order to contribute with knowledge to the discussion of energy services as a way to improve industrial energy efficiency. Economic market theory and Socio-technical theory (the theory of economization presented by Caliskan and Callon) is used to analyse different aspects of the emerging market. The results show that the market for industrial energy services in Sweden is more extensive than previous reports have assessed. Our study describes how energy service collaborations can be complex and how calculations and measurements of expected energy savings lead to controversies and power imbalances.

  • 8.
    Bengtsson, C
    et al.
    Chalmers.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Co-operation of the MIND-method and the Pinch Technology: Energy Efficient Pre-evaporation of Bleach Plant Filtrate Using Waste Heat1999Book (Other academic)
    Abstract [en]

    In order to decrease the environmental impacts caused by the pulp- and paper industry it is nowadays more or less common to perform a closure of the mill. The closure of the bleach plant will result in a minimal intake of fresh water and thereby the effluent will be contaminated to a greater extent. The bleach plant filtrate can be mixed with the black liquor and combusted in the soda recovery boilers. The necessity of pre-evaporating the bleach plant filtrate will thereby arise. In this study some alternatives have been investigated how to process integrate a pre-evaporation plant. Three alternatives have been investigated where the pre-evaporation can be fulfilled by using live steam only or live steam combined with waste heat. It can also be achieved by using a mechanical vapour recompression unit, which uses low temperature waste heat to accomplish the pre-evaporation.

     

    Due to the complexity of the mill two different methods have been used to evaluate the alternatives for pre-evaporation. The pinch-method is used on a lower aggregation level where the different components for pre-evaporation is considered, while the MIND-method is used on the higher aggregation level to take into account the whole mill.

     

    Two different scenarios have been studied, one with the existing electricity prices and one with an increase of the electricity prices with 50%. In both scenarios it is shown preferable to use the live steam/waste heat alternative compared to the ”worst case”, using mere live steam. The investment costs for the live steam/waste heat case will imply that the payback period will be approximately 3.5 years. The mechanical vapour recompression alternative is shown profitable with the existing electricity prices, compared to the live steam case. But due to the high investment costs it gives an unacceptable payback period. When the electricity price is increased by 50% it shows not profitable. In case of an increase of the fuel prices the mechanical vapour recompression alternative will be more profitable due to the usage of less fuel compared to the other cases.

  • 9.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Andersson, Vikor
    Institutionen för energi och miljö, Värmeteknik och maskinlära, Chalmers tekniska högskola.
    Hackl, Roman
    Institutionen för energi och miljö, Värmeteknik och maskinlära, Chalmers tekniska högskola.
    Integrated Algae Cultivation for Biofuels Production in Industrial Clusters2011Report (Other academic)
    Abstract [en]

    Declining fossil resources and the issue of climate change caused by anthropogenic emissions of greenhouse gases make global action towards a more sustainable society inevitable. The EU decided in 2007 that 20 % of the union´s energy use should origin from renewable resources by the year 2020. One way of achieving this goal is to increase the utilisation of biofuels.

    Today 2nd generation biofuels are being developed. They are seen as a more sustainable solution than 1st generation biofuels since they have a higher area efficiency (more fuel produced per area) and the biomass can be cultivated at land which is not suitable for food crops. One of these 2nd generation biofuels are fuels derived from microalgae.

    In this study a thorough literature survey has been conducted in order to assess the State-of-the-Art in algae biofuels production. The literature review showed the importance of a supplementary function in conjunction with algae cultivation and therefore algae cultivation for municipal wastewater treatment and capturing CO2 emissions from industry was included in the study. It was assumed that all the wastewater of the city of Gothenburg, Sweden, was treated by algae cultivation.

    A computer model of the whole production process has been developed, covering; algae cultivation in conjunction with wastewater treatment, algae harvesting and biofuels production. Two different cases are modelled; a first case including combined biodiesel and biogas production, and a second case investigating only biogas production. Both cases have been evaluated in terms of product outputs, CO2 emissions savings and compared to each other in an economic sense.

    Utilising the nutrients in the wastewater of Gothenburg it is possible to cultivate 29 ktalgae/year. In the biogas case it is possible to produce 205 GWhbiogas/year. The biogas/biodiesel case showed a production potential of 63 GWhbiodiesel/year and 182 GWhbiogas/year. There is a deficit of carbon in the wastewater, hence CO2 is injected as flue gases from industrial sources. The biodiesel/biogas case showed an industrial CO2 sequestration capacity of 24 ktCO2/year while in the biogas case 22.6 ktCO2/year, could be captured. Estimating the total CO2 emissions savings showed 46 ktCO2/year in the biodiesel/biogas case and 38 ktCO2/year for the biogas case. The importance of including wastewater treatment in the process was confirmed, as it contributes with 13.7 ktCO2/year to the total CO2 emissions savings.

    Economic comparison of the two cases showed that biodiesel in conjunction with biogas production is advantageous compared to only biogas production. This is mainly due to the higher overall fuel yield and the high willingness to pay for biodiesel. The total incomes from biodiesel/biogas sales were calculated to 221 million SEK/year and 193 million SEK/year for biogas. It was found that the higher incomes from biodiesel/biogas sales repay the increased investment for the biodiesel process in approximately 3 years.

  • 10.
    Bryngelsson, Mårten
    et al.
    KTH, Energiprocesser.
    Hansson, Anders
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Hektor, Erik
    Chalmers, VoM.
    Holmberg, Rurik
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Med fokus på koldioxidproblematiken –Tre systemperspektiv på koldioxidavskiljning och flexibla mekanismer2005Report (Other academic)
    Abstract [en]

    Focusing on carbon dioxide – Three system approaches on carbon dioxide capture and storage and flexible mechanisms

    This work is based on the assumption that solutions to the present day problem with carbon dioxide and climate change can be either major changes in behavioral patterns or technical and economical methods. We have decided to analyze the possibilities and weaknesses in the two latter options. The work is divided into three major parts. Part 1 deals with the issue how carbon dioxide capture and storage (CCS) – a technology being developed at present – is perceived by various actors in the Swedish society. CCS can be seen as a continuation of the present path-dependence. A common view is that the market mechanism should be left to make the final decision on the future of CCS. Part 2 is a study on possibilities of CCS in the pulp industry in Sweden. At present there is no powerful enough mechanism in place to reward such drastic carbon dioxide reducing measures. With relatively small overall emissions in Sweden, further reduction potential could however be found in the pulp industry. The question is who will foot the bill. Part 3 is focused on an economic means of addressing carbon dioxide emissions, Joint Implementation (JI), and how it might encounter transaction costs of a discouraging magnitude. To a large extent, transaction costs tend to be country specific, with the highest costs where JI otherwise would have most impact on reductions.

  • 11.
    Djuric Ilic, Danica
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Henriksson, Malin
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Magnusson, Dick
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Stockholms fjärrvärmenät idag och imorgon: en tvärvetenskaplig studie av ett regionalt energisystem2009Report (Other academic)
    Abstract [en]

    District heating (DH) plays an important role when aiming for a sustainable society. Due to this the focus in this study is on the Stockholm region district heating systems and the actors who influence the shaping of it. The aim of the study is to explore driving forces and obstacles in order to develop the district heating systems in Stockholm. Moreover we investigate energy collaborations on the regional and municipal level.

    Method used for the study includes modelling and qualitative semi-structured interviewing. The district heating systems has been modelled from sex different scenarios in the optimization program MODEST. We have been able to test the present network with better level of connections, with the building of new combined heat and power plants and with natural gas and bio fuels as fuels. Interviews with municipalities, energy companies and interest groups have been performed.

    The result of the study indicates that the central heating systems in Stockholm today are well connected and the gains of further connections are relatively small. The optimizations imply that the establishment of new combined heat and power plants, with either natural gas or bio fuels, has an immense economic potential. Another positive effect is lower emissions of greenhouse gases. The gains of collaborations and further connections of the nets from the view of the energy companies are above all an increased dependability and optimizing of the operation as a whole. Also the possibility to co-operate with company revisions is regarded as an advantage. In order to get well functioning co-operations between the companies economical profit for all parties, as well as equal conditions, is required. Worth mentioning is the fact that it’s not technical difficulties that restrains further connections of the DH-systems. The need of extended management and planning are a more plausible obstruction for increased co-operation between companies.

    An existing gap between the companies and the municipalities due to how they co-operate is visualized through the interviews. Whether the companies are owned by the municipalities or not is in this regard not important. That the energy companies are to be managed under businesslike conditions could explain this. Municipal planning has from the view of the municipalities come to be synonymous with environmental work. This trend has increased the status of energy planning, and has also moved within the organisation closer to the municipal executive board. At the same time energy planning is carried out at many different levels, within and between the municipalities but also on the region level. A consequence of this is that energy planning is hard to get a grip off. The companies also have different approaches to the regional perspectives, which point to the conclusion that a working regional body for coordination of the joint interest of the municipalities and the energy companies is needed.

    Even though both the energy companies and the municipalities are positive towards the technology of district heating the future for the district heating business is somewhat uncertain. Decreasing heath loads due to increasing energy efficiency and climate change is contributing to the uncertainness. Also the upcoming commission of what is called “Third Part Access” (TPA) could change the business at a large extend. Changing business orientation is an alternative that the energy companies may have to consider. The current trend of new establishment of combined power and heating plants makes it’s possible for the companies to start producing and selling electricity. The Third Part Access can also be an advantage for the businesses in the Stockholm region since it opens up the possibility for customers to choose which district heating provider they want.

  • 12.
    Eriksson, Marcus
    et al.
    Chalmers, Göteborg.
    Hrelja, Robert
    Linköping University, The Tema Institute. Linköping University, Faculty of Arts and Sciences.
    Lindmark, Susanne
    Kungliga tekniska högskolan, Stockholm.
    Trygg, Louise
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Förändrade randvillkor för kommunala energisystem: påverkan och effekter2003Report (Other academic)
  • 13.
    Gyberg, Per
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Karlsson, MagnusLinköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.Ingelstam, LarsLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    System i fokus - uppsatser med teori- och metodexempel från energiområdet: uppsatser från doktorandkursen Systemanalys med metodexempel från energiområdet2005Collection (editor) (Other academic)
  • 14.
    Harvey, Simon
    Chalmers, VoM.
    Scenarios for evaluating energy efficiency measures in industrial energy systems2004Report (Other academic)
  • 15.
    Hjalmarsson, Linnea
    et al.
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Mårten, Larsson
    Royal Institute of Technology.
    Olsson, Linda
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Wikström, Martina
    Royal Institute of Technology.
    Pathways to a renewable road transport system in Stockholm 20302011Report (Other academic)
    Abstract [en]

    In order to mitigate global climate change, anthropogenic emissions of fossil carbon dioxide (CO2) need to be cut drastically. Road transport is a major source of CO2 emissions, and in urban areas road transport also involves problems such as congestion, noise and particle emissions. Stockholm, the Swedish capital and one of the busiest regions in Sweden, has the ambition to be a pioneer in addressing environmental problems; CO2 emissions in particular. One of the political visions incorporated in Stockholm’s environmental work is to achieve a practically renewable transport system by 2030.

    This study investigates if there are favourable conditions to achieve a renewable road transport system in Stockholm by 2030. Three aspects are considered; technology, private economy and regional planning policy. The study is based on three sub-studies, one for each aspect, and conclusions are drawn from the integration of the sub-studies. A scenario assessment implies that the technology to transit to a completely renewable road transport system could exist, and that a mix of technologies would be preferable. Cost optimisations show that renewable fuels and electric vehicles are cost-competitive given certain incentives. Hence, private persons could shift their transportation choices towards alternative vehicles and fuels. Interviews with regional institutional actors and analysis of regional planning documents reveal that integrating energy and transport systems in planning policy could enable the transition to a renewable road transport system in Stockholm. The work has been carried out under the auspices of The Energy Systems Programme (primarily financed by The Swedish Energy Agency).

    The study concludes that favourable conditions for a renewable road transport system do exist. However, the main challenge is to coordinate the simultaneous implementation of necessary measures and the study shows that this is best organised at a regional level.

  • 16.
    Hultman, Martin
    et al.
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Saxe, Maria
    KTH, Energiprocesser.
    Full gas mot en renare miljö? – om hur bränsleceller framställs av media och experter i Sverige2005Report (Other academic)
  • 17.
    Johansson, Daniella
    et al.
    Värmeteknik och maskinlära, Chalmers tekniska högskola, Göteborg.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karltorp, Kersti
    Miljösystemanalys ,Chalmers tekniska högskola, Göteborg.
    Ljungstedt, Hanna
    Värmeteknik och maskinlära, Chalmers tekniska högskola, Göteborg.
    Schwabecker, Julia
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Pathways for Increased Use and Refining of Biomass in Swedish Energy-intensive Industry: Changes in a socio-technical system2009Report (Other academic)
    Abstract [en]

    Events in recent decades have placed climate change at the top of the political agenda. The European Union has assumed a vanguard role in global climate negotiations, pushing for ambitious international commitments. Furthermore, Sweden is positioning itself as a leader within the EU when it comes to setting the agenda for climate change. In Sweden, energy-intensive industries are responsible for a large proportion of greenhouse gas emissions and their ability to switch to a renewable energy source could contribute significantly to the transition to a decarbonised economy.

     

    This study analyses the role of three energy-intensive industries with regard to increased refining and use of biomass and will also take a glimpse into the future in an attempt to gain further insight into what will affect future developments in this area. The study is limited to the pulp and paper industry, the iron and steel industry and the oil refining industry as well as the EU legislation that affects these industries. For each industry the operations of the following case companies, Södra, SSAB and Preem AB, are analysed specifically and for each company one or two selected plants exemplify the outcome of the implementation of different technologies. This interdisciplinary study combines a range of methods taken from engineering and social sciences.

     

    The industries studied all have different preconditions for transformations and the technological options available diverge to a large extent. There are many options for the pulp and paper industry compared to the iron and steel industry and the oil refining industry. The most likely technological option for this sector is to utilise internal resources for conversion to energy or material products and export of excess energy. Options for the steel producer SSAB include the substitution of part of the coke in the blast furnace with biomass or refined biomass products such as syngas and biomethane and forming an industrial symbiotic partnership. There are several options for the oil refining industry to substitute fossil feedstocks without the need to modify the existing infrastructure. One option is hydrotreatment of bio-oil into green diesel, which will be implemented at the Preem refinery in Gothenburg. However, green production of transportation fuels and substitution of coke in the blast furnace require large amounts of biomass and since biomass is a limited resource this is likely to act as a barrier to the development of these technologies.

     

    Furthermore, it can be concluded that the companies studied could contribute significantly to the development of technologies that are in line with their core capabilities, while the development of technological options that require a change in their core capabilities is more limited. This discovery is further supported by the finding that the EU directives relevant to this report do not push industrial operators beyond efficiency measures along established technological lines. On the one hand, these legislative instruments, which are designed in the spirit of ecological modernisation, encourage the most cost-effective technologies and processes for the abatement of greenhouse gases relevant to each industry. On the other, they do not appear to be sufficient to raise the cost of carbon emissions and this contributes to a situation where incentives to make different biomass-based technologies economic are not present on the market. Over a longer time perspective none of the case companies believes that biomass will have increased significantly in the Swedish energy system by 2050. These case companies claim that biomass is too limited a resource and can only contribute in part to the necessary substitution of fossil fuels.

  • 18.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    reMIND - an energy systems modeling tool for decision support2011In: Interdisciplinary energy system methodology - A compilation of research methods used in the Energy Systems Programme, Program Energisystem , 2011Chapter in book (Other academic)
    Abstract [en]

    The purpose of this volume is to present the basics of our methods used within the Energy Systems Programme and to introduce how we have combined methods in earlier research. A research-oriented learning experience includes a formal and informal process of gaining and utilizing knowledge in an area of interest. In our short description of the methods,  e end up with a rather formal description of the essence of each method; however, this should be seen as an introduction to methods as a whole, where the reader can deepen their understanding of a method by looking at the reference literature given. We also hope that our book will contribute to vibrant discussions within your research environment concerning the pros and cons of different methods, and the possibilities and limitations when combining different methods. We also encourage the reader to contact people familiar with a method to discuss their experiences and understand that there are lessons to be learned from them.

    In this chapter, we will introduce the methods presented here. However, we will start by introducing the system perspective and explain how to do a system analysis.

  • 19.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, Jenny
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Metoder för tvärvetenskaplig analys av energisystem - några exempel: Essäer från doktorandkursen : Systemanalys med metodexempel från energiområdet2011Report (Other academic)
    Abstract [sv]

    Program Energisystem är ett forskningsprogram och en forskarskola som startades 1997 och består av fem olika avdelningar vid fyra universitet i Sverige. De deltagande forskarna tillhör inte bara olika ämnen utan också helt olika fakulteter. Inom ramarna för Program Energisystem arbetar tekniker och samhällsvetare tillsammans för att studera energifrågorna ur olika infallsvinklar. Det är inte bara tekniken i sig, utan även hur den påverkas av bland annat samhällets regelsystem, politiska beslutsprocesser och olika aktörers intressen som studeras. Följande avdelningar deltar i Program Energisystem:

    Energiprocesser, KTHEnergisystem, Linköpings universitetFasta Tillståndets Fysik, Uppsala universitetTema Teknik och social förändring, Linköpings universitetVärmeteknik och maskinlära, Chalmers

    Nya doktorander har antagits vartannat år, med början 1997 vilket lett till att 7 doktorandgrupper har antagits till programmet. Den senaste antagningen genomfördes under hösten 2010. Varje årskull läser ett gemensamt kurspaket om 45 högskolepoäng. Kurspaketet har förändrats något under årens lopp, men huvudlinjerna är kvar. För doktoranderna som antogs 2010 ingår följande kurser i detta kurspaket:

    Vetenskapsteori, 6hpPerspectives on Energy Systems, 7,5hpSystemanalys med metodexempel från energiområdet, 12hpTvärprojekt i energisystem, 15hpPraktisk tvärvetenskap inom energiområdet, 4,5hp

    Kurserna är öppna för andra doktorander i mån av plats och denna bok är ett resultat av de uppsatser som doktoranderna skrev under ”Systemanalys med metodexempel från energiområdet” och utgör en del i examinationen.

  • 20.
    Karlsson, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Palm, JennyLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Omställning för uthållighet - essäer om energisystem i utveckling2007Collection (editor) (Other academic)
    Abstract [sv]

      

  • 21.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, JennyLinköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    På spaning efter systemteori och tvärvetenskaplig metod2009Collection (editor) (Other academic)
  • 22.
    Karlsson, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Palm, JennyLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.Ingelstam, Lars
    Att analysera system -reflektion och perspektiv,2007Collection (editor) (Other academic)
    Abstract [sv]

       

  • 23.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, Jenny
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Widén, Joakim
    Teknikvetenskaper, Uppsala universitet, Sweden.
    Interdisciplinary energy system methodology: A compilation of research methods used in the Energy Systems Programme2011Report (Other academic)
    Abstract [en]

    The purpose of this volume is to present the basics of our methods used within the Energy Systems Programme and to introduce how we have combined methods in earlier research. A research-oriented learning experience includes a formal and informal process of gaining and utilizing knowledge in an area of interest. In our short description of the methods,  e end up with a rather formal description of the essence of each method; however, this should be seen as an introduction to methods as a whole, where the reader can deepen their understanding of a method by looking at the reference literature given. We also hope that our book will contribute to vibrant discussions within your research environment concerning the pros and cons of different methods, and the possibilities and limitations when combining different methods. We also encourage the reader to contact people familiar with a method to discuss their experiences and understand that there are lessons to be learned from them.

    In this chapter, we will introduce the methods presented here. However, we will start by introducing the system perspective and explain how to do a system analysis.

  • 24.
    Karresand, Helena
    et al.
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Molin, Andreas
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Persson, Johannes
    Kungliga Tekniska Högskolan, KTH, Stockholm.
    Åberg, Magnus
    Uppsala universitet.
    How passive are your activities?: An interdisciplinary comparative energy analysis of passive and conventional houses in Linköping2009Report (Other academic)
    Abstract [en]

    In this study a number of new built passive and conventional houses in the residential area of Lambohov, Linköping, are studied. The effect of household activities on the building’s energy balance is investigated along with an investigation of the effects of an extensive adaptation to passive houses in the energy system of Linköping. The study compares how the heating system affects the thermal indoor climate for the tenants. Further on, the study also contains in-depth interviews on the expectations on the passive houses of the recently moved in tenants. Also the expectations from the housing company on the tenants and the factors that motivated the actual building of the passive houses are investigated, both out of the housing company’s perspective and the perspective of the City of Linköping.

  • 25.
    Küller, Anna
    et al.
    Linköping University, The Tema Institute. Linköping University, Faculty of Arts and Sciences.
    Liu, Linn
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thoresson, Josefin
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    När sannering blir energieffektivisering2011Report (Other academic)
    Abstract [sv]

    Byggnaders energianvändning spelar en stor roll för om Sverige ska kunna minska sin energianvändning eftersom de står för hela 39 % av Sveriges totala energianvändning. I den siffran är både byggnadernas uppvärmning, varmvatten samt fastighetselen och de boendes hushållsel inkluderad. där både energi för att värma upp byggnaden, vattenanvändning och fastigheternas samt hushållens elanvändning ingår. Den största potentialen för att minska byggnaders energianvändning finns i redan existerande byggnader som ofta har en relativt hög energianvändning. Vi har därför studerat redan existerade byggnader i denna rapport med syfte att undersöka drivkrafter och hinder för att genom renovering minska energianvändningen för hyreshus i bostadsområdet Stolplyckan-Magistratshagen. Bostadshusen är belägna i Linköping och ägs av det allmännyttiga fastighetsbolaget Stångåstaden. Vi studerar förändringar i byggnadernas energisystem i Stolplyckan-Magistratshagen i och med renoveringarna från tre perspektiv som alla är relaterade till varandra. Det handlar om byggnaderna som renoveras i området, hushållen som bor i byggnaderna och de professionella aktörerna relaterade till byggnaderna och renoveringarna.

    Det här är en studie som syftar till att vara tvärvetenskaplig i den meningen att gemensamma analyser är baserade på insamlad data med hjälp av metoder från flera olika discipliner. För att förstå de sociala aktörernas syn på förändringen av byggnadernas energisystem har vi använt oss av kvalitativa intervjuer med professionella aktörer och hushåll i bostadsområdet. Vi har även använt oss av en enkätundersökning för att undersöka hur de boende ser på byggnadernas inomhusklimat. Vi har dessutom genomfört simuleringar i IDA ICE av en byggnad för att beräkna lägenheternas el- och värmebehov.

    Studien visar att renoveringen genomfördes på grund av mikrobiell tillväxt i byggnadernas fasader, och kom efterhand att också fokusera på energieffektiviseringar eftersom en sådan satsning ansågs innebära en liten del av den totala renoveringskostnaden. Arbete med energifrågor hade ett stort stöd i Stångåstaden och stöddes även principiellt av hushållen, men i praktiken var det få hushåll som var villiga att premiera energieffektiviseringar framför andra värden i sin vardag, och det fick inte gå ut över exempelvis bekvämlighet.

    Renoveringen innebär inga tekniska nymodigheter utan Stångåstaden satsade efter egna erfarenheter och efter inspiration från tidigare renoveringar på vad de ansåg vara säker och tillförlitlig teknik. Renoveringen skulle inte innebära något nytt eller krångligt utan handla om energisparande åtgärder som skulle vara osynliga för hushållen. Enligt enkätresultatet och simuleringarna har renoveringen varit lyckosam i fråga om att både förbättra byggnadernas inomhusklimat och för att minska byggnadernas uppvärmningsbehov. För hushållen var detta dock inget som de primärt värdesatte vid val av bostad. För de boende var energi i huvudsak el, och renoveringen hade också som ambition att sänka elanvändningen genom energisnåla vitvaror. Samtidigt utrustades alla lägenheter med egna tvättmaskiner och torktumlare och den gemensamma tvättstugan togs bort. Det gjorde att hushållens elanvändning ökade och enligt våra beräkningar ökar hushållens elkostnader med mellan 700 – 1 000 kr per år. De enskilda tvättstugorna i varje lägenhet installerades med tanken att framtida hyresgäster kommer efterfråga det. Få av de nuvarande hyresgästerna värdesatte att ha en egen tvättmaskin.

    Slutsatsen för vår studie är att det råder en obalans mellan de inblandade aktörernas mål med renoveringen. Stångåstaden såg att de har ett ansvar för att reducera energianvändningen för byggnaderna men inkluderade inte hushållen i arbetet med att spara energi. De boende förstod inte energiåtgärderna och betraktade renoveringen i första hand som ett saneringsprojekt

  • 26.
    Palm, Jenny
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Gyberg, Per
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Sjödin, Jörgen
    Linköping University, Department of Mechanical Engineering.
    Wahlund, Bertil
    Borlänges energisystem - påverkan och förändring1999Report (Other academic)
  • 27.
    Palm, Jenny
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Karlsson, MagnusLinköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Att forska på tvären- Erfarenheter från 10 år av tvärvetenskap inom forskarskolan Program Energisystem2007Collection (editor) (Other academic)
    Abstract [sv]

      

  • 28.
    Palm, Jenny
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Karlsson, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Energy Systems.
    Inledning - att forska på tvären2007In: Att forska på tvären- Erfarenheter från 10 år av tvärvetenskap inom forskarskolan Program Energisystem / [ed] Jenny Palm, Magnus Karlsson, Linköping: Program Energisystem , 2007, p. -58Chapter in book (Other academic)
  • 29.
    Palm, Jenny
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Karlsson, MagnusLinköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.Gyberg, PerLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Drivkrafter till förändring: essäer om energisystem i utveckling2005Collection (editor) (Other academic)
    Abstract [sv]

        

  • 30.
    Rohdin, Patrik
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energy and indoor environment audits2011Report (Other academic)
    Abstract [en]

    The purpose of this volume is to present the basics of our methods used within the Energy Systems Programme and to introduce how we have combined methods in earlier research. A research-oriented learning experience includes a formal and informal process of gaining and utilizing knowledge in an area of interest. In our short description of the methods, we end up with a rather formal description of the essence of each method; however, this should be seen as an introduction to methods as a whole, where the reader can deepen their understanding of a method by looking at the reference literature given. We also hope that our book will contribute to vibrant discussions within your research environment concerning the pros and cons of different methods, and the possibilities and limitations when combining different methods. We also encourage the reader to contact people familiar with a method to discuss their experiences and understand that there are lessons to be learned from them.

    In this chapter, we will introduce the methods presented here. However, we will start by introducing the system perspective and explain how to do a system analysis.

  • 31.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energy program evaluation2011In: Interdisciplinary energy system methodology: A compilation of research methods used in the Energy Systems Programme / [ed] Magnus Karlsson & Jenny Palm & Joakim Widén, Linköping: Linköpings universitet , 2011Chapter in book (Other academic)
  • 32.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Questionnaires2011In: Interdisciplinary energy system methodology: A compilation of research methods used in the Energy Systems Programme / [ed] Magnus Karlsson & Jenny Palm & Joakim Widén, Linköping: Linköpings universitet , 2011Chapter in book (Other academic)
  • 33.
    Thollander, Patrik
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Rohdin, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Case study research2011In: Interdisciplinary energy system methodology: A compilation of research methods used in the Energy Systems Programme / [ed] Magnus Karlsson & Jenny Palm, Linköping: Linköpings universitet , 2011, p. 12-15Chapter in book (Other academic)
    Abstract [en]

    A case study is a frequently used concept, but depending on tradition the term may have different meanings. In the design of a case study, one of the most important determinants, apart from the choice of studying multiple or single cases, is the maximization of construct validity, internal validity, external validity, and reliability. The preparation for doing a case study include, for example, the prior skills of the investigator, the training and preparation for the specific case study, the development of a case study protocol, and the screening of candidate case studies. Six main sources of information could be used when conducting case study research: documentation, archival records, interviews (including questionnaires), direct observations, participant observations, and physical artifacts. Case study research is particularly advantageous when “how” or “why” questions are asked about a current set of events over which the researcher has minor or no control. The method is particularly beneficial when studying a complex phenomenon involving one or both of these two questions. If the studied system or case is complex but does not involve the aforementioned questions, or if the study involves a lower degree of complexity, other methods may be more advantageous. Case study research has been a widely used approach when studying energy systems from various perspectives, including Swedish research studying efficient district heating supply, industrial energy efficiency and ventilation, energy systems analysis, and industrial symbiosis.

1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf