liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 55
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Absorbed dose equations: The general solution of the absorbed dose equation and solutions under different kinds of radiation equilibrium1978Report (Other academic)
    Abstract [sv]

    This report is a logical continuation of two papers concerning basic concepts in dosimetry. The first paper (1) is u critical analysis of the concepts of ionizing radiation and energy imparted as defined by the ICRU (2). The second paper (3) gives a definition of the energy imparted, the fundamental quantity in radiation dosimetry, which is equivalent to that given by the ICRU but which has a different form. This alternative definition of the energy imparted is suitable in deriving a general expression, in terms of particle fluences and interaction cross sections, for the absorbed dose valid also in situations where no kind of radiation equilibrium is established. It is, however, today not possible to quantify this expression for the absorbed dose. All practical calculations of absorbed dose rely on the assumption of one or another type of radiation equilibrium. The aim of this work is to analyze different kinds of radiation equilibrium conditions and to find the corresponding exact expressions for the absorbed dose. The concept of radiation equilibrium is more carefully analyzed than has been done previously (4, 5, 6). Moreover, the definition of the mass energy absorption coefficient for indirectly (uncharged) ionizing particles is critically analyzed. A new definition is proposed relevant to calculations of the absorbed dose in cases when charged particle equilibrium exists within a homogeneous medium due to the uniform liberation of charged particles, by uncharged particles.

  • 2.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bragg-Gray Dosimetry: Theory of Burch2001Report (Other academic)
    Abstract [en]

    The theoretical approach to Bragg-Gray dosimetry is: a Bragg-Gray cavity is a cavity (detector) so small that, when inserted into a medium, it does not disturb the fluence of charged particles existing in the medium.

    This means that the ideal Bragg-Gray cavity (detector) is one of infinitesimal dimensions, a "point" detector. In practice, such detectors do not exist but many real detectors may, in a first approximation, be treated as Bragg-Gray detectors to a high degree of accuracy. Corrections needed (so called perturbation corrections) to account for the deviation of the signal from a practical detector from that of an ideal one has been treated by, e.g., ICRU 1984, Alm Carlsson, 1985, Svensson and Brahme 1986, Alm Carlsson 1987.

    Derivation of "perturbation corrections" needs careful consideration and under-standing of the ideal case, i.e., that from which deviations are to be corrected for. The ideal case of a Bragg-Gray detector has been treated by Bragg 1912, Gray 1936, Laurence 1937, Spencer and Attix 1955 and Burch 1955.

    The formulation of Bragg-Gray theory by Spencer and Attix has found wide practical application and has been treated in detail elsewhere. The theory of Burch treats the same problem as did Spencer and Attix, viz., the significance of generation and slowing down of delta-particles in both medium and detector. Burch treated the problem in considerable detail but didn't find a solution for practical calculations. From a physical point of view, however, there is much to learn from Burch's approach. Also, his treatment of so called track ends, evaluated in some detail by Burch 1957, has been adapted in later versions of the Spencer-Attix formulation of Bragg-Gray theory.

  • 3.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Burlins kavitetsteori1979Report (Other academic)
    Abstract [sv]

    Burlins kavitetsteori är en generell teori i den meningen att inga krav finns på detektorns dimensioner jämfört med sekundärelektronernas räckvidder. Detektorn måste dock vara "tunn" för fotonerna dvs inte ge någon nämnvärd attenuering av de mot detektorn infallande fotonerna

     

  • 4.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Effective use of Monte Carlo methods for simulating photon transport with special reference to slab penetration problems in X-raydiagnostics1981Report (Other academic)
    Abstract [sv]

    The analys is of Monte Carlo methods here has been made in connection with a particular problem concerning the transport of low energy photons (30-140 keV) through layers of water with thicknesses between 5 and 20 cm.

    While not claiming to be a complete exposition of available Monte Carlo techniques, the methodological analyses are not restricted to this particular problem. The report describes in a general manner a number of methods which can be used in order to obtain results of greater precision in a fixed computing time.

    Monte Carlo methods have been used for many years in reactor technology, particularly for solving problems associated with neutron transport, but also for studying photon transport through radiation shields. In connection with these particular problems, mathematically and statistically advanced methods have been worked out. The book by Spanier and Gelbard (1969) is a good illustration of this.

    In the present case, a more physical approach to Monte Carlo methods for solving photon transport problems is made (along the lines employed by Fano, Spencer and Berger (1959)) with the aim of encouraging even radiation physicists to use more sophisticated Monte Carlo methods. Today, radiation physicists perform Monte Carlo calculations with considerable physical significance but often with unnecessarily straightforward methods.

    As Monte Carlo calculations can be predicted to be of increasing importance in tackling problems in radiation physics, e.g., in X-ray diagnostics, it is worthwhile to study the Monte Carlo approach for its own sake.

  • 5.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Fanos Teorem2002Report (Other academic)
    Abstract [sv]

    I ett oändligt medium erhålles en fullt uppbyggd fluens i alla punkter av mediet. I ett ändligt medium erhålles inte full uppbyggnad av fluensen på avstånd mindre än en maximal "partikelräckvidd" från begränsningsytorna. Fanos teorem har visats gälla för alla punkter i ett oändligt medium men kan endast gälla i det inre av ett ändligt medium där förhållandena är ekvivalenta med dem i det oändliga mediet.

  • 6.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Fotonspridningsprocessen vid röntgendiagnostiska strålkvaliteter1981Report (Other academic)
    Abstract [sv]

    Spridd strålning utgör ett allvarligt problem inom röntgendiagnostiken. Kunskap om den spridda strålningen, dess uppträdande i patient och detektor, är en förutsättning för att finna effektiva metoder att reducera den och begränsa dess negativa inverkan på bildkvaliten. Denna kunskap kan vinnas genom transportberäkningar, t ex Monte Carlo simulering (ALM CARLSSON). Detaljerad kännedom om tvärsnitten för inkoherent och koherent spridning är därvid av stor betydelse. Vid utnyttjandet av datortomografi för bestämning av elektrontäthet eller benmineralhalt och annan s.k. tomokemi krävs också välbestämda totala attenueringstvärsnitt, varav Compton och koherent spridning utgör en icke försumbar andel av attenueringen i energiområdet 10-100 keV.

    Fotonspridningen kan också utnyttjas positivt för att ge information om den kropp i vilken spridningen ägt rum. En review över metoder att använda Comptonspridningen till att göra elektrontäthetsbestämningar, såväl i enskilda volymer som i tomografiska snitt har publicerats av CARLSSON och ALM CARLSSON (1979).

    En viktig applikation av Comptonspridningen (inkoherent spridning) i diagnostisk radiologi är metoden att ur mätningar av antalet och energifördelningen av de fotoner, som spridits en viss vinkel bestämma energispektret av den primära röntgenstrålningen. Även här är kännedom om spridningstvärsnitten av vital betydelse för noggrannheten i bestämningen.

    Jag skall här ge en redogörelse för vår aktuella kunskap om tvärsnitten för koherent och inkoherent spridning för fotoner av röntgendiagnostisk kvalitet (10-200 keV). För dessa är det inte tillräckligt att applicera Klein-Nishina tvärsnittet, som gäller för spridning mot fria elektroner i vila utan hänsyn måste tas till att de atomära elektronerna är bundna och i rörelse i kollisionsögonblicket. Speciellt kommer konsekvenserna för metoden att bestämma primärstrålningsspektrum ur uppmätta spektra av spridd strålning att belysas.

  • 7.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Kavitetsteori: allmänna grunder1981Report (Other academic)
    Abstract [sv]

    Kavitetsteori är av fundamental betydelse för dosimetrin. Dess uppgift är att relatera den absorberade dosen i en dosimeter till den absorberade dosen i en given punkt i det medium dosimetern är placerad. Idealt har dosimetern samma strålningsabsorberande egenskaper som mediet. Detta är emellertid nästan aldrig möjligt att uppnå.

  • 8.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Klassisk elektrodynamik: Växelverkan mellan laddade partiklar och elektromagnetiska fält1975Report (Other academic)
    Abstract [sv]

    Varifrån kommer det elektromagnetiska fältet? Elektromagnetiska fält genereras av laddningar i rörelse (en laddning i vila genererar ett elektrostatiskt fält). I definitionen av fältstorheterna ovan tänks i första hand att det elektromagnetiska fält i vilket den betraktade laddningen q rör sig härstammar från alla de övriga laddningarna och deras rörelser i rymden. (Laddningen q genererar även själv ett elektromagnetiskt fält, som under vissa omständigheter återverkar på dess egen rörelse. Denna effekt diskuteras i ett senare avsnitt).

  • 9.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Kvantelektrodynamik för elektroner: Feynmandiagram och strålningskorrektioner av tvärsnitt1975Report (Other academic)
    Abstract [sv]

    Utvecklingen av kvantelektrodynamiken startade strax efter det att den icke-relativistiska kvantmekaniken fullbordats och innebär en kombination av kvantmekaniska principer och klassisk elektrodynamik. Upphovsmän till kvantelektrodynamiken var Dirac, Heisenberg och Pauli. Diracs relativistiska, kvantmekaniska teori för elektroner ledde till den så kallade hålteorin för och förutsägelsen av en positivt laddad elektron = positronen. Väsentliga insatser inom kvantelektrodynamiken har gjorts av R.P. Feynman från vilken de så kallade Feynmandiagrammen härstammar. Genom en omtolkning av lösningarna till Diracs relativistiska, kvantmekaniska ekvation för elektronerna ersättes hålteorin för positroner med en beskrivning enligt vilken positronen representeras av vågor, som går bakåt i tiden. Denna tolkning av positronen möjliggör väsentliga förenklingar i beräkningen av tvärsnitt för växelverkansprocesser mellan elektroner och elektromagnetiska fält -förenklingar, som blir speciellt betydelsefulla vid behandlingen av mer komplicerade växelverkansprocesser inkluderande de så kallade strålningskorrektionerna till de enklare processerna. Feynmandiagram över även enklare växelverkansprocesser börjar dyka upp i moderna läroböcker (t ex Roy & Reed: "Interactions of photons and leptons with matter". Academic Press 1968) liksom tabellverk som ger strålningskorrektioner till olika elektrodynamiska växelverkansprocesser, (t ex Hubbell: "Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. NSRDS-NBS 29 (1969)). I det följande göres ett försök att kvalitativt redogöra för innebörden av Feynmandiagrammen och strålningskorrektionerna. (Analoga diagram kan användas vid beskrivningen av växelverkansprocesserna mellan nukleoner och mesonfält. För dessa redogöres dock inte här).

  • 10.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Kärnfysikaliska grunder för radioaktiva nuklider1974Report (Other academic)
    Abstract [sv]

    Förståelsen av den joniserande strålningen och dess växelverkan med materia förutsätter kännedom om atomens natur. Atomen (grekiska "atomos" = odelbar) är den minsta del av ett grundämne, som bibehåller ämnets identitet, dvs. uppvisar dess karakteristiska kemiska egenskaper. Individuella atomer är för små för att direkt kunna observeras. Man kan däremot observera vissa egenskaper hos atomen. Med hjälp av dessa försöker man bygga upp en enkel och åskådlig bild av atomen, en atommodell, med vars hjälp man kan förklara experimentellt gjorda observationer.

    Atomen består av en central, elektriskt positivt laddad kärna, till vilken den största delen av atomens massa är koncentrerad. Runt kärnan kretsar elektriskt negativt laddade elektroner, vilka neutraliserar kärnans positiva laddning, så att atomen utåt verkar elektriskt neutral.

    Atomkärnan är uppbyggd av två sorters elementarpartiklar, protoner och neutroner. En proton och en neutron har ungefär samma massa, men medan protonen är bärare av en positiv laddning lika stor som elektronens negativa laddning är neutronen elektriskt neutral. En elektriskt neutral atom innehåller alltså lika många protoner i kärnan som elektroner i det omgivande elektronskalet. Ett gemensamt namn på protoner och neutroner är nukleon.

  • 11.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Skalära och vektoriella fysikaliska storheter: Deras betydelse för förståelsen av röntgendetektorernas uppträdande i ett strålningsfält1981Report (Other academic)
    Abstract [sv]

    Joniserande strålning är ett fysikaliskt fenomen. Varje del av rymden där detta fenomen uppträder utgör ett strålningsfält. För att kunna ge ett mått på "mängden strålning" i fältet krävs att vi först definierar en storhet och därefter mäter eller beräknar storleken på denna uttryckt i antalet enheter av storheten i fråga. Det förekommer alltför ofta att man talar om att "mäta strålningen", vilket egentligen är en omöjlighet. Om man t.ex. anger att ett visst raster "reducerar den spridda strålningen med en faktor 2" så säger detta ingenting om man inte samtidigt anger vilken storhet man avser; fluensen, energifluensen, antalet fotoner som träffar en detektor, summaenergin hos fotonerna som träffar detektorn eller energin absorberad (energy imparted) i detektorn.

    Signalen från en detektor, som placeras i strålningsfältet beror i första hand av den i detektorn absorberade strålningsenergin även om modifikationer till följd av den aktuella fördelningen i tid och rum kan förekomma. Förståelsen aven detektors uppträdande i strålningsfältet är i första hand av dosimetrisk natur.

    Vi skall här närmare betrakta de storheter, som används för att beskriva strålningsfältet och hur dessa kan användas för att bestämma väntevärdet av den i en strålningsdetektor absorberade strålningsenergin. Samtidigt ges tillfälle att presentera de nya storheter och den nya terminologi, som infördes i senaste ICRU-rapporten över kvantiteter och enheter.

  • 12.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Spencer-Attix Cavity Theory2002Report (Other academic)
    Abstract [en]

    The cavity theory by Spencer and Attix treats the energy deposition in a Bragg-Gray (B-G) cavity (detector). Originally the theory was developed for the case of a B-G detector inside a medium irradiated with photons and assuming electronic equilibrium in the medium at the position of the cavity. The theory is also applicable in media irradiated with other types of uncharged ionizing particles (e.g., neutrons) and charged particles such as electrons and protons.

    The special case of photon irradiation under CPE (charged particle equilibrium) conditions was coupled to a model for calculating the energy spectrum of the equilibrium fluence of electrons in the undisturbed medium. For other situations, e.g., in a medium externally irradiated with electrons, the problem is to evaluate the energy spectrum of the electron fluence at the point considered in the medium. Today, this is mostly accomplished using Monte Carlo simulations.

    A Bragg-Gray cavity is regarded to be so small that:

    • the energy imparted to the cavity from electrons released by photons in the cavity is negligible compared to the energy imparted from electrons released by photons in the surrounding medium and passing through the cavity
    • the cavity should not disturb the fluence of electrons in the medium, i. e., the fluence of electrons traversing the cavity is assumed to be identical to that existing at the point of interest in the medium in the absence of the cavity.
  • 13.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Spencer-Attix kavitetsteori2001Report (Other academic)
    Abstract [en]

    Spencer-Attix kavitetsteori behandlar energideponeringen i en Bragg-Gray kavitet (detektor) inuti ett medium bestrålat med fotoner och med elektronjämvikt i mediet på kavitetens plats. Med en Bragg-Gray kavitet menas en kavitet så liten att

    • energideponeringen i kaviteten från elektroner frigjorda av fotoner i kaviteten är försumbar jämfört med energideponeringen från elektroner frigjorda av fotoner i omgivande mediet och som passerar in kaviteten
    • kaviteten skall inte nämnvärt störa fluensen av elektronerna i mediet, dvs kaviteten antas i varje punkt genomkorsad av samma fluens av elektroner, som finns i mediet i frånvaro av kaviteten
  • 14.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Carlsson, Carl A.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Statistisk precision vid radioaktivitetsmätning och Aktivitetsbestämning ur uppmätt räknehastighet1974Report (Other academic)
    Abstract [sv]

    Radioaktiva sönderfall sker slumpmässigt och det är omöjligt att i förväg veta exakt när en viss atom sönderfaller. Allt man kan säga är att under en halveringstid är sannolikheten 0.5 att en atom sönderfaller och 0.5 att den förblir i sitt ursprungliga radioaktiva tillstånd. Detta gäller en enstaka atom, är det ett stort antal atomer kan man förutsäga att hälften av dem kommer att sönderfalla inom en halveringstid.

    Antag att i ett experiment aktiviteten av ett prov bestäms under en minut. Räknaren anger 1000 cpm, counts per minute. Om man räknar en gång till kanske scalern anger 985 cpm, nästa gång 1023 cpm osv Skulle man utföra mätningen 1000 gånger skulle man få värdet 1000 12 - 13 gånger, 960 och faktiskt 1040 skulle man få 5-6 gångeroch 940 eller 1060 2 gånger. Detta beror inte på något experimentellt fel eller på någon speciell teknik som experimenttorn använder utan på de statistiska fluktuationerna. (Skulle man få värdet 1000 varje gång skall man kontrollera räknaren, någon kanske har ställt in pre-set counts 1000, dvs då är något fel).

    Vi skall i denna rapport se hur de statistiska fluktuationerna påverkar mätresultaten, hur osäkerheten presenteras och hur man gör en aktivitetsbestämning ur en uppmätt räknehastighet.

  • 15.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Carlsson, Carl A.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Pettersson, Håkan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Riskuppskattningar och strålskydds-rekommendationer: Vår strålningsmiljö1991Report (Other academic)
    Abstract [sv]

    Människan har i alla tider varit utsatt för joniserande strålning. Kosmiskstrålning och naturligt radioaktiva nuklider i vår omgivning och i vår kropp ger ett årligtbidrag till den absorberade dosen i hela kroppen, som i genomsnitt för människorna påjorden uppgår till 1 mGy/år (1Gy = 1 J/kg). Det finns områden på jorden där stråldosenfrån naturlig strålning är 10-100 ggr större, jfr avsnittet "Vår strålningsmiljö".

    I slutet av 1800-talet upptäckte Röntgen röntgenstrålningen och Becquerel den naturligaradioaktiviteten. Människan fick därmed för första gången tillgång till starka källor avjoniserande strålning. Dessa togs snabbt i bruk framförallt inom medicinsk röntgendiagnostikoch radioterapi. Man gjorde snart bittra erfarenheter av den joniserandestrålningens skadliga biologiska verkningar efter höga stråldoser. Fram till år 1922 hadec:a 100 radiologer dött av strålskador. Man insåg att något måste göras för att förbättraläget för personalen och år 1928 bildades ICRP (International Commission on RadiationProtection). ICRP ger ut rekommendationer för strålskydd, som ligger till grund förnationella lagar och förordningar över hela världen.

    Den förhållandevis långa erfarenhet människan har av joniserande strålning och denlätthet med vilken även små stråldoser kan mätas har gett oss stränga normer vad gällerhanteringen av producerade strålkällor. Många har därför uppfattningen att joniserandestrålning är en exklusiv miljökomponent. Så är knappast fallet. Förutom att vi alltid varitnaturligt bestrålade finns det idag anledning att förmoda att den kemiska nedsmutsningenav miljön är ett långt allvarligare hot mot vårt välbefinnande än den nuvarandeanvändningen av producerade strålkällor. En rättvis bedömning av olika miljökomponenterkan endast göras den gång alla mäts med samma mått. Arbete med dennainriktning pågår med strålskydds-verksamheten som förebild.

  • 16.
    Alm Carlsson, Gudrun
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Ekberg, Stefan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Helmrot, Ebba
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Lindström, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Lund, Eva
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Matscheko, Georg
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Nilsson, Håkan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Persliden, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Stenström, Mats
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Monte Carlo metoden: ett verktyg inom strålningsfysiken1995Report (Other academic)
    Abstract [sv]

    Detta kompendium är tänkt att användas som ett propedeutiskt kursmaterial för kursdeltagare i kursen "Monte Carlo simulering av foton- och elektrontransport vid diagnostiska och radioterapeutiska strålkvaliteter".

    Först följer en kort repetition av den grundläggande statistik som utnyt1jas i beräkningarna. Därefter följer en beskrivning av slumptal. det fundament som metoden bygger på. Vidare beskrivs val ur olika frekvensfunktioner. Valet kan även göras ur så kallade falska fördelningar för att reducera variansen i den skattade storheten. Metoderna belyses i ett avsnitt om problemlösningsmetodik. först i allmänna termer för att sen gå in på ett specifikt problem (Buffons nålproblem) där en analys och strukturering av problemet görs varefter flödesschema och kodning exemplifieras. Så följer två moment där en beskrivning görs av färderna av fotoner respektive elektroner genom materia. För elektronfärderna gör man en indelning i klass 1- och klass II-färder. Vad detta innebär och hur deltapartiklar tas om hand beskrivs i ett kapitel. Till sist kommer en kort introduktion till de tre laborationerna med laborationshandledningar. Speciell vikt har lagts vid att initiera laboranten att fundera på fysiken i de simulerade experimenten.

    Detta kompendium har tillkommit som examinationsarbete vid en kurs i "Monte Carlo simulering av foton- och elektrontransport vid diagnostiska och radioterapeutiska strålkvaliteter", med andra ord den kurs du själv nu ämnar studera. Författarna önskar dig lycka till med kursen och hoppas att du kommer att få glädje av den. Speciellt hoppas vi att denna skrift ska underlätta för dig att tillgodogöra dig informationen vid föreläsningarna och under laborationerna.

  • 17.
    Carlsson, Carl
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Spridd strålning vid röntgendiagnostik1973Report (Other academic)
    Abstract [sv]

    Då en röntgenstråle med försumbar tvärsnittsyta infaller mot ett objekt passerar en del strålning ostörd genom objektet, en annan del absorberas l detta, dessutom tillkommer sekundär röntgenstrålning som lämnar objektet i alla riktningar.

    Vid bestrålning av ett stort lågatomärt objekt, som t.ex. bålen, kan effekten av denna sekundära röntgenstrålning på detektorn vara upptill 5 gånger den från den primära, direkt informationsbärande strålningen. Den spridda strålningen är ett ovälkommet brus i bilden och den har karakteriserats som goda röntgenbilders fiende nr 1. Det är därför viktigt att begränsa dess effekt så mycket som möjligt.

  • 18.
    Carlsson, Carl
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Strålningsdosimetri med radioaktiva nuklider i människa1974Report (Other academic)
    Abstract [sv]

    Strålningsdosimetri motiveras i denna kurs främst därför att den absorberade strålningsenergin förorsakar biologiska effekter i kroppens vävnader. Risken för ogynnsamma biologiska effekter hos patienter och personal begränsar radionuklidernas användning inom medicinen. Eftersom alla strålningsdetekto~erfordrar absorption av $trålningsenergi för att ia~ne eh detekterbar signal är dosimetribegreppen·av värde också för att förstå strålningsdetektorerna.

  • 19.
    Carlsson, Carl A.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Differences in reported backscatter factors,BSF, for low energy X-rays: A literature study1991Report (Other academic)
    Abstract [en]

    This work was ini tia ted by the large discrepancy in published values of the backscatter factor (BSF) as function of the half value layer (HVL) that exists in a new code of practice (IAEA, 1987) compared to the earlier, general ly used code (BJR, 1983). Change to the IAEA-code changes reported values of absorbed dose with up to 10%. These deviations apply for X-rays with HVL < 8 mm Al.

  • 20.
    Carlsson, Carl A.
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun Alm
    Linköping University, Department of Medicine and Care, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Basic physics of X-ray imaging1973Report (Other academic)
    Abstract [en]

    In X-ray diagnostics, radiation that is partly transmitted through and partly absorbed in the irradiated object is utilised. An X-ray image shows the variations in transmission caused by structures in the object of varying thickness, density or atomic composition.

    After an introductory description of the nature of X-rays, the most important processes in the X-ray source, the object (patient) and radiation detector for the generation of an X-ray image will be described.

  • 21.
    Carlsson, Sten
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Liquid Scintillation Counting1993Report (Other academic)
    Abstract [en]

    In liquid scintillation counting (LSC) we use the process of luminescense to detect ionising radiation emit$ed from a radionuclide. Luminescense is emission of visible light of nonthermal origin. 1t was early found that certain organic molecules have luminescent properties and such molecules are used in LSC. Today LSC is the mostwidespread method to detect pure beta-ernitters like tritium and carbon-14. 1t has unique properties in its efficient counting geometry, deteetability and the lack of any window which the betaparticles have to penetrate. These properties are achieved by solving the sample to measure in a scintillation cocktail composed of an organic solvent and a solute (scintillator).

    Even if LSC is a weil established measurement technique, the user can run into problems and abasic knowledge of the deteetor and its different components is of fundamental importance in a correct use of the technique. The alm of this presentation is to provide the user with some of this fundamental knowledge.

  • 22.
    Dangtip, Somsak
    et al.
    Department of Neutron Research, Uppsala University, Sweden.
    Söderberg, Jonas
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Description of the Medley Code: Monte Carlo Simulation of the Medley Setup1998Report (Other academic)
    Abstract [en]

    Neutron-induced charged-particle production, i.e., reactions like (n,xp), (n,xd), (n,xt), (n,x3He) and (n,xa), yields a large - and relatively poorly known - contribution to the dose delivered in fast-neutron cancer therapy. At the The Svedberg Laboratory (TSL) in Uppsala, a project is underway to measure these cross sections with a precision required for clinical use.

    For this purpose, an experimental facility, MEDLEY, is under commissioning. It consists of eight detector telescopes, each being a Si-Si-CsI detector combination. This general design has been selected because it provides reasonable performance over the very wide dynamic range required to detect particles ranging from 5 MeV a particles to 100 MeV protons. A general problem in this kind of experiments is to characterize the response of the detection system. The MEDLEY code has been developed for this purpose.

    Experimental studies of these kinds of charged-particle reactions show specific features. Some of these need to be optimized by means of, for instance, computer codes, prior to the measurement if good data are to be achieved.

    Basically, charged particles loose energy along their paths by interactions with the electrons of the material. Particles with low energy or with high specific energy loss are easily absorbed. Systems, which use thick charged-particle production targets to gain desirable count rate, can then detect only charged particles with enough energy to escape the target. Thus, using a thick target results in a degraded energy resolution, and particle losses. Thin targets are required to provide better resolution, but at the cost of low count rates.

    Registration of the entire energy of the particles reaching the detection system is also an ultimate goal. However, charged particles can interact with detection materials via nuclear reactions, which could result in other species of particles. From the detection point of view, the primary particles are lost and replaced by new types of particles, which may behave differently from their predecessors.

    It is well known that charged particles traveling in a medium are deflected by many small-angle scatterings. This so-called multiple scattering can be described with a statistical distribution. The fluctuations in energy loss per step, called energy-loss straggling, are modeled in the same way, i.e., assuming a statistical behavior.

    To get an acceptable neutron beam intensity, a rather thick neutron production target (2-8 mm) is required. This causes an energy spread of the incident neutron beam. In our case, the spread after a 4 mm thick 7Li target for neutron production is of the order of about 2 MeV.

    To analyze the data and determine the true double-differential cross sections, the above mentioned effects have to be taken into consideration. We have therefore developed a Monte Carlo code, MEDLEY, in FORTRAN language, to simulate the experimental setup taking all relevant physical characteristics into account. In the MEDLEY code, particles, chosen from a given distribution, are followed through the detection system. The particle distribution is obtained by applying a stripping method to the measured spectrum supplied by a user. When the result from the MEDLEY code is in good agreement with the experimental data, the true double-differential cross sections is obtained. If needed, the correction procedure can be iterated. This iteration is performed until the above condition is satisfied.

    This report presents the features included in the code, and some results. We compare ourresults with those from others where available.

  • 23.
    Edholm, Paul
    Linköping University, Department of Medicine and Care, Radiology. Linköping University, Faculty of Health Sciences.
    Linograms1988Report (Other academic)
    Abstract [en]

    The several successful solutions to the problem of image reconstruction from projections have caused a rapid growth of a number of new techniques for the reconstruction of distributions and images in several scientific fields. The importance of these techniques, especially in medicine, can hardly be overestimated.

    In a new algorithm for image reconstruction from projections [l, 2], a special form of the projection data is employed providing some certain advantages. This new form or map of the projection data are called linograms.

    This is intended as an overview of linograms and the algorithm based on them. Thorough discussions of conventional techniques are to be found in [3, 4 and 5]. In conventional techniques for image reconstruction, a two dimensional distribution of some property is reconstructed. The property might be the x-ray attenuation in a cross-section of the body, the distribution of a radioactive substance or something else. The distribution is not directly accessible but it is possible to measure line integrals (rays) through i t. The problem now is to reconstruct the distribution (the image) from i ts line integrals (its projections).

    Let the property we are interested in be described by the function f(x, y). projection data are estimates of line integrals of f of known location. Incon~entional techniques each line is specified by two parameters s and e, where s is the (signed) distance from the origin and e its angle with the y-axis.

  • 24.
    Edholm, Paul
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Praktisk tomografi1981Report (Other academic)
    Abstract [sv]

    De basala principerna och geometrin för tomografi genomgås kortfattat, samt hur tomogrammet uppkommer. Avbildning av föremål i skiktet demonstreras och varför de avbildas med sämre skärpa och kontrast än vanliga bilder, men också hur tomogrammet kan visa mer av föremålen än vanliga bilder. Sedan redogörs för hur föremål utanför skiktet i olika. grad kan suddas ut genom den tomografiska rörelsoskärpan. För- och nackdelar med olika tomorörelser diskuteras liksom indikationer för när och hur man skall tomografera, samt hur man skall välja vinkel, rörelseform, rörelseriktning, bilder och snittval.

  • 25.
    Edholm, Paul R.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    The Linogram Algorithm and Direct Fourier Method with Linograms1991Report (Other academic)
    Abstract [en]

    The conventionai map of projection data will here be called the sinogram map. Among the algorithms used with this map of data there are two of main interest for this paper: the Filtered Back Projection (FBP) and the Direct Fourier Method (DFM). FBP is the most popular algorithm used in commercial eT machines although it is computationally expensive compared to the DFM. The reason for its popularity is that FBP gives better pictures than the DFM uniess the lat ter is used with very careful interpolations.

    In this paper another map of projection data will be presented, here called the linogram map. The FBP may be implemented with this map in a particularly simple way, here called the Linogram Algorithm (LA). In this the back projection, which is so computationally expensive with the sinogram map, can be reduced to a computationally inexpensive series of FFT's.

  • 26.
    Edholm, Paul R.
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Olander, Birger
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Rekonstruktion av saknade projektioneri datortomografi1991Report (Other academic)
    Abstract [sv]

    Vid datortomografi besväras de rekonstruerade bilderna ofta av störande artefakter, dvs strukturer i bilden som inte motsvarar strukturer i patienten. Det finns många olika orsaker till artefakter och en viktig orsak är att vissa projektioner saknas helt eller delvis eller är av otillräcklig kvalitet. Delar av projektioner kan exempelvis saknas när implantat av metallproteser eller plomber i tänderna skymmer anatomin för de projicerande strålarna. Saknade projektioner av ena eller andra slaget ger upphov till artefakter i form av raka linjer som störande breder ut sig över hela bilden, ofta på ett sådant sätt att bilden blir otjänlig för sitt ändamål.

    I detta projekt har vi valt att studera en möjlighet att rekonstruera så mycket av de projektioner som saknas i ett visst vinkelavsnitt, att de inte längre ger upphov till störande artefakter.

    Arbetet har utförts med simulerade modellförsök. Vi har antagit en skiva i anatomin som avbildats med datortomografi med användande av parallellprojektioner. Försök har gjorts där enstaka projektioner saknas, och där projektioner saknas inom ett större vinkelavsnitt. Vid beskrivningen av vår metod skall vi först ge en verbal beskrivning och därpå en matematisk.

  • 27.
    Lamm, Inger-Lena
    et al.
    Institutionen för radiofysik, Lunds Universitet.
    Persliden, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Modulationsöverföringsfunktionen (MTF): De matematiska grunderna med exempel1993Report (Other academic)
    Abstract [sv]

    Vid överföring av information kan man karakterisera ett överföringssystem på olika sätt. Man kan t.ex. ange hur en signal förstärks, hur den förvr~ngs (distorderas), hur mycket brus systemet innehåller etc.

    Ett bildgivande system kan i princip karakteriseras av ett objekt som ger en insignal till en detektor vars utsignal antagligen innehåller signal + brus. För att beskriva hur utsignalen ser ut i jämförelse med insignalen används flera begrepp som:

    • Punktspridningsfunktionen (PSF)
    • Linjespridningsfunktionen (LSF)
    • Halvvärdesbredden (FWHM)

    Inom bildöverförande system använder man sig av begreppet MTF (MTF= Modulation Transfer Eunction) .

    Vi skall i det följande gå igenom grunderna för MTF och även ge exempel på hur man beräknar MTF. Genom att införa Fourier-transformen kan man lättare beräkna MTF och vi kommer därför att beskriva denna. För mätning av MTF för olika system inom röntgendiagnostiken hänvisas-till litteraturen.

  • 28.
    Larsson, Peter
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Evaluation of the uncertainties in KAP-meter calibrations1996Report (Other academic)
    Abstract [en]

    This report was prepared in order to give more details to the uncertainty evaluation of the Kerma area product meter calibration procedure described in the paper:

    Larsson J P Persliden J Sandborg S and Alm Carlsson G 1996 Transmission ionization chambers for measurements of air collision kerma integrated over beam area. Factors limiting the accuracy of calibration. Phys. Med. Biol. 41 2381-2398.

    Figures and equations referred to in this report will be found in the paperabove.

    For convenience, however, the equations in the paper that are used in the uncertainty analysis are retyped on the next two sides, see text in section 2.7. in the paper for further details. The numbering of the equations are kept as in the paper.

  • 29.
    Lund, Eva
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Pernicka, Frantisek
    Institute of Radiation Dosimetry, Czeckoslovak Academy of Sciences, Prague, Czeck Republic.
    Carlsson, Carl A
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Experimental determination of the angular dependence of the directional dose equivalent, H’(d), for ISO “narrow” X ray fields and 137Cs γ-rays measured in a PMMA sphere and a PMMA slab phantom1993Report (Other academic)
    Abstract [en]

    For the purpose of calibrating individual dosimeters in X-ray fields conversion factors from air kerma free in air to dose equivalent at a specified depth in a phantom have been calculated among others by Grosswendt (1991, 1992). By means of Monte Carlo calculations the angular dependence factor for photon beams of oblique incidence is also studied for different phantom shapes and compositions as well as for different X-ray qualities. However, till now there has been a lack of experimental verification of the angular dependence factors.

    In this investigation the conversion factor from air kerma to Hp(10) has been determined for the following X-ray qualities: 40 kV, 80 kV, and 295 kV, ISO "narrow" spectra and for 137Cs γ-rays using thermoluminescent (TL) dosimeters. The angular dependence factor H'(10,α)/H'(10,0o) has also been experimentally determined for the same X-ray and γ -ray qualities and for different angles between 0o and 180o.

    The conversion factors are found to be in good agreement with the calculated ones for the PMMA sphere phantom, while some minor discrepancies are found between the experimental and calculated angular dependence factors for the 30x30x15cm3 PMMA slab phantom.

    The difference in angular dependence obtained for the slab and the sphere is discussed as well as the possibility to underestimate the personal dose equivalent, Hp(10), compared to effective dose, E.

  • 30.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calculation of the energy absorption efficiency function of selected detector arrays using the MCNP code2007Report (Other academic)
    Abstract [en]

    This report describes a method for the calculation of the energy absorption efficiency function. It gives a theoretical justification of the method and presents results obtained using the MCNP4C code for (i) an infinite slab, (ii) a detector array without a collimator, and (iii) a detector array with a collimator. Moreover, it discusses an alternative method of scoring of the energy imparted per unit surface area in CTmod. This report is a supplement to the article “CTmod—a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson.

  • 31.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    CTmod: Mathematical Foundations2007Report (Other academic)
    Abstract [en]

    CTmod is a set of C++ class libraries primarily designed for the simulation of energy imparted to a CT-scanner detector array using the Monte Carlo method. This report describes mathematical methods and formulas that are used in the code. It is a supplement to the article “CTmod - a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson.

    In this report, random variables are denoted by a hat. For instance ˆx is a random variable and x is its sample. Points in space are denoted by bold capital letters, e.g. P. Directions are denoted by bold small letters, e.g. u. Inconsistencies in the current notation will be corrected in the next update of this report.

  • 32.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Validation of the CTmod toolkit2007Report (Other academic)
    Abstract [en]

    This report is a supplement to the article “CTmod—a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson. It describes methods that were used to validate the CTmod toolkit. Here, we adopt the terminology used in and: Verification is a process of determining whether or not the software is coded correctly and conforms to the specified requirements. Validation is a process of evaluating software to ensure compliance with physical applicability to the process being modelled. Validation of a code would consist of comparing it with known analytical solutions or against an already validated computer code, or could include benchmarking the code against relevant experimental data.

    CTmod is a toolkit implemented as a C++ class libray. A user is supposed to write a main program which uses classes from the toolkit. The main program is then compiled to create an executable. In this report, we tested two executables (ctmod1 and ctmod2) created this way. In chapter 2, scatter-to-primary ratios of air collision kerma calculated using ctmod1 are compared to data published in literature. In chapter 3, primary and scatter projections calculated using ctmod2 are compared to data calculated using the MCNP5 code. Though not related to the validation, we also report speeds of ctmod1 and ctmod2 as these were often requested from us.

  • 33.
    Nielsen, Bengt
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Mätmetoder för att bestämma modulationsöverförningsfunktionen för radiologiska system1981Report (Other academic)
    Abstract [sv]

    Detta kompendium är avsett att ge en kort beskrivning av några olika metoder att bestämma modulationsöverföringsfunktionen, MTF, för ett radiologiskt system eller del av radiologiskt system. Vidare försöker kompendiet beskriva en del av de praktiska svårigheter som är förknippade med att mäta MTF. Den matematiska bakgrunden finns kortfattat redovisad i appendix.

  • 34.
    Nielsen, Bengt
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Resolution, unsharpness and MTF1980Report (Other academic)
    Abstract [en]

    Resolution: The ability of an imaging system to register separate images of two closelysituated objects.

    Unsharpness: The ability of an imaging system to reproduce a sharp edge.

    The resolving power of the radiological image depends on the combined effect of different kinds of unsharpness (see below), the number of X-ray photons to produce the image and the contrast. In other words, the resolving power depends on the MTF of the imaging system, the quantum noise and the contrast.

    The resolution of the imaging system is usually measured using a test object with alternating transparent and absorbing lines. The resolution power is then usually given in line pairs per millimeter (lp/mm), i.e., gives the number of "tops" and "valleys" that can be detected per millimeter.

  • 35.
    Olander, Birger
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Centre of Rotation Determination Using Projection Data in X-ray Micro Computed Tomography1994Report (Other academic)
    Abstract [en]

    There are several methods available to determine the Centre Of Rotation, COR, and align detectors and X-ray focus to COR in X-ray computed tomography. Some methods use narrow rods/needles or specially made alignment objects or phantoms. In X-ray Micro Computed Tomography (or Computerized Micro Tomography), μCT (CMT), methods using sample projection data for COR measurements are preferred since the replacement of alignment objects with samples often displace translation stages and make the alignment obsolete. To achieve an optimal image quality, precise positioning of COR to the detector and X-ray focus is essential. In μCT this can be accomplished in an alignment procedure using sample projection data prior to scanning. This alignment procedure will add examination time and increase the dose to the sample. Therefore the alignment procedure should incorporate as few projections as possible and be insensitive to noise. Some scanning equipment cannot be modified to implement such alignment procedure but actual COR can be determined from projection data and used in reconstruction. This report introduces a new Translated Opposite Projection, TOP, technique using a pair of opposite parallel projections (180° apart). Two TOP methods are developed: TOPlin using linear interpolation in the spatial domain and TOPfft in the frequency domain. The two TOP methods are compared to two Centre Of Gravity, COG, methods. The two COG methods are: COGsin, an enhancement of a method presented by Hogan et al [Hogan93] and COGopp, a simplification of this method possible with a fixed COR.

    In this report all projections in one scan are assumed to have a fixed, COR, as in third (or higher) generation tomography or first (and second generation) tomography if the translation stage errors is negligible. This also means that the rotation stage errors must be negligible. The COGsin is the only method presented here capable of determine a COR for each projection angle, thus allowing for a COR moving as a function of projection angle. The TOP methods normally give better precision with non-ideal projection data compared to the COG methods. Tests using both simulated and scanned projection data indicate that the TOP methods give higher precision in presence of stochastic errors (noise) and system errors like calibration errors. A μCT scan often takes a long time and detector calibration and X-ray intensity profiles might vary with time giving non-stationary system errors during a single scan. If the system errors can be approximated with simple polynomial functions, a new Baseline Restoration, BR, technique can be used together with the TOP methods to reduce COR errors.

  • 36.
    Olsson, Sara
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calibration of an alanine/agarose gel1998Report (Other academic)
    Abstract [en]

    In brachy therapy treatment, as well as in treatment with external beams, it is of crucial importance to thoroughly determine the absorbed dose in the tumour, in surrounding normal tissue and in risk organs.

    Several kinds of gel dosimeters have been, or are about to be, developed in order to get a three dimensional dosimeter, which would be very useful, especially in the context of brachy therapy. The need for high spatial resolution is raised by the fact that the absorbed dose decreases very fast with the distance from a brachy therapy source. The steep dose gradient also requires a dosimeter material with a wide dose range and no signal diffusion.

    Fe(II)/Fe(III) gel and polymer gels such as BANANA and BANG. These systems are analysed with magnetic resonance imaging (MRI) which gives a detailed picture with very high resolution (~0.5 mm) without the need to cut out samples and thereby destroy the geometry of the gel. One of the drawbacks for MRI-gels is that inhomogeneities in the magnetic field make it difficult to calibrate the gel in absolute values of absorbed dose.

    The Fe(II)/Fe(III) gel is the most well known of the gel dosimeters mentioned. The working principle is that it contains Fe(II)-ions that are oxidised to Fe(III)-ions when irradiated. The differences in paramagnetic properties between the ions can then be used to make an MRIimage of the dose distribution. The dose response is linear up to 40 Gy.

    The problem with this dosimeter type is the rapid diffusion of the Fe-ions which makes it necessary to image the gel immediately after irradiation to maintain the high resolution.

    In 1993 Maryanski et al. (Maryanski, 1993) reported a tissue-equivalent gel based on agarose, acrylamide and N,N´-methylene-bis-acrylamide (bis) in a de-aerated aqueous solution. The gel is called BANANA and works as a dosimeter due to the radiation induced polymerisation of the monomers acrylamide and bis. Later on, the agarose was replaced by gelatin because of its lower background signal. It is also more transparent which makes it easy to optically see the dose distribution since the polymerised gel volume changes to a white colour. This new gel is called BANG, and when further improved by substituting the acrylamide with acrylic acid it got the name BANG-2.

    The BANG-2 gel can measure doses down to 0.1 Gy which is much below the limit for both alanine gel and Fe(II/III) gel, but the dose response is only linear up to 6 Gy. Another drawback is the difficulties in preparing the gel. The preparation has to be made absolutely oxygen free since oxygen inhibits the polymerisation, and the gel must be stored in glass containers since most plastics are oxygen permeable. This puts great requirements on the preparation equipment, or the gel has to be bought, already cast in a predetermined shape. The glass container might also give some dosimetric effects since it has a higher atomic number than the gel itself.

    We have instead used a stiff agarose gel, heavily doped with alanine. The gel is heated and over saturated with alanine which recrystallizes when the gel is cooled down.

    When crystalline alanine is irradiated, radicals are formed which can be detected by means of electron spin resonance (ESR) spectroscopy. A signal proportional to the amount of radicals is then obtained. Since the amount of radicals is proportional to the absorbed dose, the substance may serve as a dosimeter material. The radicals in alanine are unusually stable because of the crystalline form, and in pure dry crystals the signal remains almost unchanged for several years.

    When the alanine is added to an agarose gel, the crystals are trapped in the gel which prevents signal diffusion. After irradiation, samples can be cut out at positions of interest. For the gel composition used in this work a sample weight of ~0.16 g is needed, which corresponds to a volume of ~0.12 cm3 (density: 1.28 g/ cm3). The shape of the sample can be chosen as convenient for the situation.

    The ESR analysis does not destroy the signal and thereby repeated read-outs of one sample are allowed.

    Alanine has a linear dose response from well below 1 Gy up to 104 Gy. The sensitivity when used in a gel allows doses down to ~3 Gy, as will be shown later on in this report.

    To make absolute dose measurements possible, as well as relative, the alanine/agarose gel requirescalibration.

    Absolute dose measurements are for example needed to verify Monte Carlo calculations experimentally. Dose planning systems used today do not take into account scattering effects at interfaces between materials of different atomic numbers, or scattering effects in a larger volume due to inserted shielding material. To verify that these simplifications do not set the outcome of the treatment at risk, and if possible to correct for the introduced errors, experimental measurements in such critical situations are needed.

    The aim of this report is to indicate a way of calibrating the alanine/agarose gel, and to examine the radical stability in the obtained calibration samples.

  • 37.
    Olsson, Sara
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bergstrand, Eva S.
    Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calibration of alanine dosimeters2001Report (Other academic)
    Abstract [en]

    In all kinds of radiation therapy it is of crucial importance to thoroughly determine the absorbed dose in the tumour, in surrounding normal tissue and in risk organs. This is done using various types of dosimeters, all with their advantages and disadvantages for different situations.

    Measurements of the dose distribution in a volume in terms of absolute absorbed dose are needed, for example to verify Monte Carlo calculations or clinical dose plans experimentally. To make such absolute dose measurements possible, the dosimeter requires calibration towards a dosimeter with a calibration factor that is traceable to a primary standard dosimetry laboratory. To not put the outcome of a radiation treatment at risk, the uncertainty in the absorbed dose determination at points of interest must not be higher than 5% (1 standard deviation) according to the ICRU (1976).

    The aim of this report is to indicate a way of calibrating two types of L-a-alanine dosimeters, an alanine/agarose gel and thin alanine films. The influence of some factors on the ESR signal from the alanine dosimeters is investigated, and suggestions are made on how to take these factors into account.

  • 38.
    Persliden, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Analys av filmkassation: Ett SSI-projekt1996Report (Other academic)
    Abstract [en]

    Reject analysis in a radiology department can play an important role in the quality assurance process. Reject analysis was performed in the Department of Radiology, University Hospital in Linköping, Sweden, during 22 weeks 1992 and 5 weeks 1994. Between the two occasions, an education and training program was carried through. The rejected films were classified acording to 6 criteria. The reject frequency was 9.9% before and 8.5% after. Faulty exposure and faulty positioning of the patient contributing with 53 % of all rejected films.

    It was shown that reject analysis can easily be carried through. Compared to reports from the literature, the level found here was neither high nor low. The decrease in reject frequency after the training program was low and probably not significant. Reducing the rejections results in reduced patient doses and lower costs for the films. However, too low frequencies may be an indication of accepting bad image quality and reduced diagnostic accuracy. In the future when digital equipment is more frequently introduced the rejection of films will decrease, but not necessarily the retakes. Here, measurements of mean absorbed doses to the patients may provide a better toal for quality assurance of the radiology department.

  • 39.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bildkvalitet vid projektionsradiografi2004Report (Other academic)
    Abstract [sv]

    En bild av god klinisk kvalitet har egenskaper som möjliggör att diagnostiskt viktiga detaljer och strukturer kan observeras av radiologen med tillräckligt stor säkerhet. Kvalitetsbegreppet bör relateras till hur väl (dvs. med vilken säkerhet) bilden ger svar på frågeställningen i remissen, eller hur väl bilden tillsammans med radiologens kunskap och erfarenhet löser uppgiften. Målet är att

    • att åstadkomma tillräckligt bra bilder för säker diagnostik,
    • att bildkvaliteten är reproducerbar och
    • att patienten utsätts för ett minimum av stråldos och andra undersökningsrelaterade biverkningar.

    För att säkerställa detta krävs mätningar av bildkvaliteten. Mätning av klinisk bildkvalitet kan omfatta en studie av en eller flera radiologers observationer eller bedömningar av bilderna som ett diagnostiskt redskap. Med fysikalisk bildkvalitet menas här objektiva mätningar av olika egenskaper i bilderna eller i bilddata som är relaterade till den kliniska bildkvaliteten.

  • 40.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calculation and analysis of DQE for some image detectors in mammography1998Report (Other academic)
    Abstract [en]

    The development and clinical testing of digital detector designs for mammography are making rapid progress and there is widespread interest in comparing the performance of these new detectors to that of analogue screen-film mammography systems. In this report, Monte Carlo calculations of the x-ray absorption characteristics (single-event distribution), the quantum absorption, Aq, and detective quantum, DQEq, efficiencies are made and compared to results from the literature. Detectors of CsI and Si of various thicknesses are compared to a state-ofthe art analogue, screen-film system (Gd2O2S) in the energy range 1-35 keV. The results show that 1.5 mm thick Si detectors will have the same DQEq as commonly used Gd2O2S fluorescent screens and that a CsI phosphor of 80 mm has similar DQEq as 1.0 mm Si. The total DQE (including added noise and inherent detector unsharpness) of fluorescent screen-film systems will be significantly reduced from this value due to the light scatter, film noise and the inherent limitations caused by the film characteristic curve. This indicates that also thinner Si detectors (0.3-0.5 mm), which do not suffer from these limitations but from a comparably low Aq may have a total performance DQE(f) comparable to that of traditional screen-film based, image detectors.

  • 41.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Computed Tomography: Physical principles and biohazards1995Report (Other academic)
    Abstract [en]

    In planar projected images of the patient, important details may be hidden by over-laying tissues. By using slice-imaging techniques (tomography), selective demonstration of morphologic properties, layer by layer, may be performed.

    Computerised tomography, CT, is an ideal form of tomography yielding sequence images of thin consecutive slices of the patient and providing the opportunity to localise in three dimensions. Unlike conventional, classical tomography, computerised tomography does not suffer from interference from structures in the patient outside the slice being imaged. This is achieved by irradiating only thin slices of the patient with a fan-shaped beam. Transaxial images (tomograms) of the patient’s anatomy can give more selective information than conventional planar projection radiographs. Compared to planar radiography, CT images have superior contrast resolution, i.e., they are capable of distinguishing very small differences in tissue-attenuation (contrasts), but have inferior spatial resolution. An attenuation difference of 0.4% can be visualised but the smallest details in the image that can be resolved must be separated at least 0.5 mm. In conventional planar radiography, the lowest detectable contrast is larger but details of smaller size can be separated.

  • 42.
    Sandborg, Michael
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Jämförelse mellan ett niobfilter (NIOBI-X) och konventionell filtrering vid skärmfilm radiografi: Inverkan på primärspektrum, kontrast, rörbelastning och strålrisk1990Report (Other academic)
    Abstract [sv]

    Optimering av information till strålrisk inom diagnostisk radiologi innebär att finna den.metod att framställa en bild, innehållande den nödvändiga informationen (bildkvaliteten), som ger lägsta strålrisk för patienten. Valet av fotonenergispektrum är en betydelsefull parameter vid optimeringen. Olika energispektrum kan erhållas då man varierar rörspänningen, tilläggsfiltermaterial och filtertjocklek. Av de fundamentala bildkvalitetsparamerarna kontrast, skärpa och brus är, vid konventionell skärm-film radiografi, kontrast och skärpa de viktigaste. De påverkas båda, men framförallt kontrasten, av energispektrum, dvs. rörspänningen och tilläggsfiltrets material och tjocklek.

  • 43.
    Sandborg, Michael
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Dance, David R
    Joint Department of Physics, The Royal Marsden NHS Trust, UK.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Implementation of unsharpness and noise into the model of the imaging system: Applications to chest and lumbar spine screen-film radiography1999Report (Other academic)
    Abstract [en]

    A model of the complete x-ray imaging system including the patient is a powerful tool for imaging system analysis and the optimisation of image quality and patient dose. It allows flexible variation of the system components (i.e. x-ray source, antiscatter device and image detector) and study of their effect on image quality and patient risk. Our group has developed, validated and calibrated a Monte Carlo model of the complete imaging system for chest and lumbar spine examination including voxalised human male anatomy. The Monte Carlo program calculates the contrast and signal-to-noise ratio (SNR) of various contrasting details within the voxel phantom. Important details in the images have been selected by consulting radiologist and the EU document of image quality criteria. The entrance surface dose without back-scatter and the effective dose are used as measures of patient radiation risk.

    The contrasts of the details are derived initially from Monte Carlo estimates of the energy imparted per unit area to the image detector beside and behind the detail. However, this ignores the effects of unsharpness in the imaging chain (such as screen-film, geometric and motion unsharpness) and the influence on contrast of the film characteristic curve. In the Monte Carlo program, SNR is calculated assuming that the noise arises from the random fluctuations in the energy imparted per unit area to the image detector only. However, other noise sources also contribute to the total noise, such as screen and film noise. Hence the model of the imaging system needs to be further developed to take these effects into account. The methods used to extend the model are described below together with illustrations of their effect on the difference in optical density, DOD, and SNR in chest and lumbar spine imaging.

  • 44.
    Sandborg, Michael
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Dance, David R.
    Department of Medical Physics, The Royal Marsden Hospital, Fulham Road, SW3 6JJ London, United Kingdom.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Persliden, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    The choice of anti-scatter grids in diagnostic radiology: the optimization of image quality and absorbed dose1993Report (Other academic)
    Abstract [sv]

    A Monte Carlo model is developed to study and optimise the design of antiscatter grids in diagnostic radiology. The imaging chain including X-ray energy spectra, phantom (representing the patient), grid and image receptor is simulated. Image quality is quantified in terms of contrast (conventionai screen-film imaging) and signal-to-noise ratio, SNR (digital imaging) and the radiation detriment to the patient (risk) by the mean absorbed dose in the phantom. The advantages of using fibre instead of aluminium for grid interspaces and covers are quantified. Compared to aluminium grids, the absorbed dose is reduced by 10-50%, contrast is improved by 0-10% and SNR by 10-40% (digital radiography). The advantages are larger at low tube potentials and for grids with high ratio and low strip density. Commercial grids, with different interspace materials, strip density, strip width and grid ratio, are compared in paediatric, lumbar spine and chest examinations. The differences in dose increase and contrast improvement factors obtained with these grids are mainly due to the use of different materials in the grid interspaces, but the strip design is also important. In a global optimisation of grid design and tube potential at fixed contrast, it is found that grids of different strip density and ratio all can have good performances provided that they are used with appropriate strip width and tube potential. In the paediatric examination, low ratio grids need thinner strips than used today to be optimal. A small air gap could alternatively be used. In examinations with more scatter (adult AP), present commercial grids are optimal (r=12-16, d=30-50µm). In the lateral view (even more scatter), grids with ratios larger than 16 are optimal provided the grid can be accurately aligned in the beam. The optimization is performed with grids with fibre interspaces and covers since low atomic number materials should preferably be used for materials between the patient and the receptor. Optimal grids with aluminium for these components have lower grid ratio and higher strip densities than optimal fibre grids.

  • 45.
    Sandborg, Michael
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    McVey, Graham
    Joint Department of Physics, The Royal Marsden NHS Trust and Institute of Cancer Research, London, UK.
    Dance, David R
    Joint Department of Physics, The Royal Marsden NHS Trust, UK.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Report on the study and optimisation of chestand lumbar spine X-ray imaging2000Report (Other academic)
    Abstract [en]

    The optimisation of radiological equipment and equipment parameters is a key stage in the optimisation of image quality and patient dose in diagnostic radiology. It is essential, however, to underpin such optimisation with theoretical modelling which can provide both the direct quantification of the effect on image quality and dose of changes in system parameters and the opportunity for optimisation of equipment selection and use.

    Our principal contribution to the joint CEC-project 'Predictivity and Optimisation in Diagnostic Radiology' is in modelling of planar chest and lumbar spine radiographic examinations. The results of this work for the chest PA, lumbar spine AP and lumbar spine lateral examinations are presented in this report. Prior to this, several development stages have been completed which include the calibration and validation of our methods by measurements in the clinical environment on patients and patient images. These important aspects are not dealt with in detail here, but are described in separate reports. This report focuses on three aspects from our results of using our Monte Carlo model of the patient and imaging equipment:

    1. (1) Study of the effects on image quality and patient dose when the imaging parameters are varied;
    2. Establishment of imaging parameters and systems that result in as least as good image quality as systems with good performance singled out from results of clinical trials (optimisations);
    3. Comparison of the results from the model with the results from clinical trials performed by partners in the joint CEC-project.

    An objective of the report is to present our results at a level of detail not usually possible in the refereed scientific literature. The report should therefore not be read all at once, but preferably used as a ‘reference library’ or documentation of all our efforts. There are many interesting results and findings from this collaborative work and these will be submitted for publication to the appropriate journals.

  • 46.
    Sandborg, Michael
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    McVey, Graham
    Department of Physics, The Royal Marsden NHS Trust, UK.
    Dance, David R
    Department of Physics, The Royal Marsden NHS Trust, UK.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Persliden, Jan
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Collection and analysis of patient and image data for calibration of a voxelphantombased Monte Carlo code and for the modelling of important structures1997Report (Other academic)
    Abstract [en]

    The contribution of the Medical Physics Departments at Linköping University (LKP) and The Royal Marsden NHS Trust (RMH) to the joint project ‘Predictivity and Optimisation in Medical Radiation Protection’ is in modelling of the chest and lumbar spine radiographic examinations. This involves:

    1. the development of quantitative imaging requirements;
    2. an investigation of the effect of imaging technique on image quality and patientdose, and
    3. an optimisation of system design.

    One of the objectives for this first reporting period (0-12 months) was to collect a set of chest and lumbar spine radiographs of patients for subsequent analysis in order to establish patient doses and important features in the images. The set of radiographs and the outcome of the image feature analysis will during this project’s second year be used to calibrate our Monte Carlo computational model of the conventional chest and lumbar spine screen-film X-ray imaging systems.

  • 47.
    Sandborg, Michael
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Önnerth, Magnus
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Comparison of human observer efficiency in pelvis radiographs in two different anatomical regions2004Report (Other academic)
    Abstract [en]

    The performance of an x-ray imaging system is often evaluated in terms of how well low-contrast details are visualised in the images. It is however difficult to obtain reliable results because a threshold for human visibility does not strictly exist. The degree of how well a low-contrast detail is ‘seen’ varies from ‘not seen’ to ‘clearly seen’ related to the certainty (or level of confidence) of detection. The visibility criterion is difficult to define, communicate and maintain which results in comparably large inter- and intraobserver variability.

    The detection probability depends not only on the imaging task, the technical performance of the imaging system and the observer´s skill and training but also on the projected anatomy in the region where the detail (i.e. lung nodule) is situated. This has been explored by Kundel et al (1985), Samei et al (1999), Håkansson et al (2004), and in Båth et al (2004) by ROC studies mainly in chest radiography.

    In this work, human observer detection efficiency was measured in a pelvis anthropomorphic phantom. Low-contrast lesions were constructed and positioned in two different regions, one region with a fairly homogeneous, the other region with a heterogeneous anatomical background. A group of human observers were asked to identify the lesion in a set of two-alternative forced choice (2-AFC) experiments.

  • 48.
    Sandborg, Mickael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Radiography and Flouroscopy: Physical principles and biohazards1995Report (Other academic)
    Abstract [en]

    Diagnostic radiology has come a long way since the discovery of ‘A New Kind of Rays’ in Würzburg by Professor Wilhelm Conrad Röntgen in November 1895. Professor Röntgen called the unknown rays ‘X rays’, but they are also, most appropriately and less mysteriously, referred to as Röntgen rays after their discoverer. In the last decades, imaging techniques using X rays has developed rapidly and play an important role in modern health care.

    The benefit of an X-ray examination for a patient could be assessed as how the patient’s risk situation is affected. The medical condition or illness leading to the examination may imply an increased risk of deteriorating health. Correct diagnosis and proper treatment, based on the information in the X-ray image, could lower the patient’s risk. For the individual the risks associated with the X-ray examination itself are small as is the radiation risk (patient absorbed dose) for well-designed imaging systems. Since the number of individuals undergoing X-ray examinations is very large, the collective absorbed dose to the whole population will be significant. Medical X-ray examinations are the manmade source giving the single largest radiation burden to the population, e.g., consisting 87% of the total radiation burden in the United Kingdom. Failure to diagnose is probably the largest single risk for the patient, but for some patients adverse effects of injected contrast media may be potentially hazardous.

  • 49.
    Söderberg, Jonas
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Fast Neutron Absorbed Dose Distribution Characteristics int he Energy Range 10–80 MeV1998Report (Other academic)
    Abstract [en]

    The most widely used non-conventional technique for radiation therapy today is fast neutron therapy. Because the neutrons are uncharged, they do not ionize themselves, but liberate secondary, densely ionizing charged particles like protons and a-particles by nuclear reactions in the tissue. In a typical modern neutron therapy facility, a proton beam of about 70 MeV is incident on a thick beryllium target which gives a penetration of the neutron beam which is similar to that obtained with modern megavoltage x-ray therapy facilities.

    In neutron dosimetry, the measurements are often difficult to assess due to the LET dependence of the detector response. In a neutron radiation field, the LET spans over 4 decades as seen in figure 1. The corrections necessary can therefore be large. For this reason, Monte Carlo calculations are a good complement to measurements and make it possible to evaluate the measurements to a higher degree of accuracy. Furthermore, in measurements the spatial resolution is determined by the detector size. Using Monte Carlo, however, it is possible to study high dose gradients as well.

    Due to lack of good cross-section data [1], the optimization possibilities and accuracy in fast neutron therapy are not satisfactory. Therefore, fast neutron therapy cannot compete fairly with other modalities of radiation therapy. In radiation therapy, the aim is to deliver absorbed doses to the tumour within 3.5%. At the same time the neutron kerma factors in carbon have an uncertainty of about 10-15%. Work is now underway in Uppsala, at the The Svedberg Laboratory, to get improved double differential cross-section data for fast neutrons on carbon, nitrogen and oxygen since these are the most common elements in the body. The accuracy in the hydrogen data is already at an acceptable level.

    In the AAPM report no. 7, TE-liquid is suggested as the reference phantom material while the European protocol uses water. Later, it was suggested that water should be the reference phantom material also for the AAPM protocol and in 1989 the ICRU issued a unified protocol. Since the objective of absorbed dose measurements is the absorbed dose to tissue, the following materials are used in this work; water, TE-liquid, standard soft tissue and adipose tissue. The energies presently used in fast neutron therapy are up to about 70 MeV. So in order to test the suitability of water as a reference material for fast neutrons, the energies used are 10, 15, 20, 40, 60 and 80 MeV.

    One problem with the neutron therapy beams is that large penumbra effects reduce the physical selectivity of the beam, i.e., it is more difficult, compared to in megavolt photon beams, to concentrate absorbed doses to the tumour volume while sparing healthy tissues. This is mainly due to the thermalization of the neutrons and the secondary gamma radiation released in neutron capture processes. One aim of this work is therefore to explore how the penumbra effects vary with neutron energy, testing the hypotheses that the penumbra decreases as the neutron energy increases.

    The main aim of this work is to use Monte Carlo techniques to evaluate the penumbra effect due to the transport of secondary particles released by the neutrons in the phantom. Pencil beam data are derived, i.e., the neutron source is assumed to be a point source and the SSD (Source-Skin-Distance) to be infinite. The pencil beam results are integrated to yield results for finite beam areas. Furthermore, the absorbed dose due to photons and their secondary particles will be derived separately and compared to the total absorbed dose as a function of depth. At the reference point, at 5-cm depth, the contribution to kerma rom the different neutron reaction channels will be evaluated by scoring values for the neutron fluence and applying partial cross-section data. Since the codes used are FLUKA and MCNP, a comparison of the results from the codes is made at the energies where both codes are valid, i.e., 10, 15 and 20 MeV.

  • 50.
    Ullman, Gustav
    et al.
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Care, Radio Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Validation of Voxman Monte Carlo code and calibration for digital systems2003Report (Other academic)
    Abstract [en]

    The objective of this work was to test the Monte Carlo model ‘Voxman’ against measurements on x-ray systems in the clinic. X-ray transmission experiments are performed to test of the accuracy of the Monte Carlo photon transport. Experiments were also performed with an image plate (CR) system in the clinic to compare the measured pixel values with calculated pixel values. Measurements were also performed with the automatic exposure control (AEC) chambers used in Linköping and Motala. The purpose for those measurements was to choose a normalisation of the entrance surface dose.

12 1 - 50 of 55
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf