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Sammanfattning

För att få använda kraftiga strålkastare på lastbilar krävs att nivån på strålkas-
tarna regleras automatiskt. Detta görs för att undvika att lastbilens strålkastare
bländar andra trafikanter samtidigt som god sikt upprätthålls. För strålkastare
med en ljusstyrka över 2000 lumen måste denna reglering ske automatiskt. Den
huvudsakliga anledningen till att strålkastarna ändrar riktning är att lastbilens
fjädring trycks ihop då lastbilen lastas. Detta resulterar i att stålkastarna pekas
antingen uppåt eller nedåt beroende på hur bilen lastas.

På grund av inneboende begränsningar hos Scanias lastbilar är de vanligaste
metoderna för att uppskatta hur fordonet lutar inte möjliga att implementera.
Därför undersöks och presenteras en uppsättning metoder för att skatta lastbi-
lens lutning relativt vägbanan. Tre metoder som alla innefattar användandet av
sensorer som känner av acceleration väljs ut för ytterliggare utveckling. Slutligen
presenteras en metod som använder sig av en kombination av en accelerationssen-
sor och på förhand uppmätt information om väglutning för att skatta lastbilens
lutning relativt vägbanan. Denna metod visas även kapabel till att producera en
lutningsskattning av hög kvalitet.
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Abstract

In order to use high power headlights on heavy duty vehicles, an automatic mech-
anism for adjusting the level of the headlights must be used. This is in order to
avoid glare while still maintaining good visibility. For headlights exceeding 2000
lumen, this control must be done automatically. The main reason for a change
in the headlight level is when the truck is being loaded, and the suspension is
compressed causing the headlights to point slightly up or down.

Due to inherent limitations of the Scania trucks, the most commonly used
approach of estimating the vehicle pitch angle is not possible to implement. Thus,
a set of pitch estimation methods largely using sensors detecting acceleration are
investigated and presented. Further, three methods are chosen for further study
and evaluation. One method using previously recorded data about road slope as
well as an on board acceleration sensor is shown to produce a high quality vehicle
pitch estimate.

v





Contents

Notation ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Basis in literature and possible solutions . . . . . . . . . . . . . . . 2

1.3.1 Two accelerometer method . . . . . . . . . . . . . . . . . . . 2
1.3.2 One accelerometer method . . . . . . . . . . . . . . . . . . . 2
1.3.3 Range sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.4 GPS based road grade estimation . . . . . . . . . . . . . . . 3
1.3.5 Map Based road grade estimation . . . . . . . . . . . . . . . 3
1.3.6 Camera based methods . . . . . . . . . . . . . . . . . . . . . 3
1.3.7 Longitudinal vehicle model . . . . . . . . . . . . . . . . . . 4

2 Method and Modelling 5
2.1 Evaluation of methods and sensors . . . . . . . . . . . . . . . . . . 5

2.1.1 Accelerometer and gyroscope . . . . . . . . . . . . . . . . . 6
2.1.2 Level sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 GPS-based solutions . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Longitudinal vehicle model . . . . . . . . . . . . . . . . . . 8

2.2 Methods chosen for further development . . . . . . . . . . . . . . . 10
2.2.1 One accelerometer method . . . . . . . . . . . . . . . . . . . 10
2.2.2 Two accelerometer method . . . . . . . . . . . . . . . . . . . 10
2.2.3 Map data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Estimation 11
3.1 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 One accelerometer method . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Derivation of measurement equations . . . . . . . . . . . . 14
3.3 Two accelerometer method . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Derivation of measurement equations . . . . . . . . . . . . 16
3.3.2 Linearisation of measurement equations . . . . . . . . . . . 18
3.3.3 Aligning coordinate systems of accelerometers . . . . . . . 18

vii



viii Contents

3.4 Map data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Simulation and results 21
4.1 Accelerometer noise analysis . . . . . . . . . . . . . . . . . . . . . . 21
4.2 One accelerometer method . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Simulation without noise . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Simulation with accelerometer noise . . . . . . . . . . . . . 24
4.2.3 Simulation with noise in accelerometer and vehicular accel-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Two accelerometer method . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Simulation without measurement noise . . . . . . . . . . . 28
4.3.2 Simulation with noise . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Map data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 Simulation without noise . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Simulation with noise . . . . . . . . . . . . . . . . . . . . . . 32

5 Implementation and results 35
5.1 Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 One accelerometer method . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Filter tuning and parameters . . . . . . . . . . . . . . . . . 36
5.2.2 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Two accelerometer method . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Filter tuning and parameters . . . . . . . . . . . . . . . . . 39
5.3.2 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Map data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.3 Filter tuning and parameters . . . . . . . . . . . . . . . . . 41
5.4.4 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusions 45
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47



Notation

Notation Meaning

θ Pitch angle of vehicle relative to road surface
θg Pitch angle of vehicle relative to an earth fixed coordi-
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1
Introduction

There is an ever increasing demand by customers for more powerful headlights
for trucks. These headlights improve traffic safety as they will allow the driver
better visibility when driving in adverse light conditions. Problems arise when
there is oncoming traffic, as a powerful set of headlights are capable of distracting
or blinding drivers in the oncoming traffic. To avoid glare, it is important that
the headlights are pointed slightly downwards. By doing this, the headlights will
illuminate the road ahead of the vehicle, which is their desired function, while
also avoiding the problem of glare.

1.1 Background

The problem occurs when the truck is being loaded. Loading the truck will cause
the vehicle pitch to change as the front and rear suspensions are not compressed
to an equal amount. As a result of this, the direction of the headlight will change
as well. Headlight level control is thus important in order to control the vertical
direction in which the headlights are pointed. On a vehicle with active suspen-
sion this is automatically achieved, as the active suspension will keep the vehicle
parallel to the ground. Therefore, the headlights will be controlled implicitly by
the suspension. On vehicles not using an active suspension system, such as vehi-
cles using leaf springs, there is a need for headlight level control. According to
[16] the headlight level control system must be automatic, as opposed to being
controlled by the driver, for headlights that exceed 2000 lumen.

On Scania trucks using leaf spring suspension the headlight level is controlled
by using a level sensor measuring the distance between the rear axis and the
chassis. From this, the pitch of the vehicle is estimated, and the headlight level
controlled accordingly. This solution provides sufficient accuracy for controlling
the headlight level to within the legal limits. Further improvement of the vehi-
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2 1 Introduction

cle pitch estimation would however increase performance of the headlight level
control, which in turn would improve safety and visibility while driving.

1.2 Purpose and limitations

The scope of this master thesis is limited to only using sensor data available on
a truck using leaf spring suspension. Further, only the pitch angle variations
caused by loading the truck are considered while other sources of pitch variations
such as accelerations or road bumps are not. The purpose of this project is to
investigate different methods for improving the level control that is currently
used by using additional sensor- or modelling data. Further, a solution that could
increase precision of the headlight level control with regard to load and load
distribution is developed and evaluated.

1.3 Basis in literature and possible solutions

The main purpose of studying existing literature in this project is to collect differ-
ent possibilities of controlling headlight level. The list below contains a number
of different approaches to the problem. Further, information about modelling
can be found in [7] for modelling in general. Moreover, information about vehi-
cle specific modelling can be found in [11] and [12]. Information about sensor
fusion can be found in [6].

1.3.1 Two accelerometer method

Using two accelerometers, one placed on one of the wheel axles of the vehicle
and one on the chassis is a possibility. In this case, the two accelerometers are
treated as being placed on two separate planes. The inclination of each plane is
determined relative to the gravitational acceleration. The inclination of the vehi-
cle relative to the road will be the difference between these two. This approach
will experience problems with measurement errors due to acceleration other than
the gravitational acceleration. These effects could be compensated for, for exam-
ple by using sensor signals such as current vehicle speed in combination with an
appropriate model. Idea from [3].

1.3.2 One accelerometer method

Modelling of the vehicle pitch is theoretically possible through usage of accelera-
tion in the vertical and longitudinal axis combined with vehicle speed. A model
of the vehicle inclination relative to gravity as well as a model with the inclination
of the roadway is needed. A least squares approach can then be used to estimate
the unknown model parameters, road inclination and vehicle pitch. The basic
modelling principle is the assumption that vehicle speed measured at the wheels
is always parallel to the road surface. Further, the accelerometer signals will re-
late to the vehicle pitch relative to the gravitational field. It is also possible to
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analytically solve the model equations for the vehicle attitude. This yields a solu-
tion where vehicle pitch is a function of acceleration in along three axes. Firstly, it
is a function of the acceleration parallel to the vehicle chassis and secondly of the
acceleration perpendicular to the vehicle chassis, towards the ground. Thirdly,
the vehicle speed along the road surface is also needed for this solution. Idea
from [10], [2], [5] and [14].

1.3.3 Range sensors

Range sensors of different types, for instance ultrasonic or laser-based, could be
mounted in the front and rear of the vehicle in order to find the pitch angle of
the vehicle relative to the ground. The main advantage of these types of sensors
are that they will measure the distance from the ground and thus circumventing
problems related to, for instance, modelling of suspension or tires. The main
problem is however the robustness of these sensors. They would be mounted
and operated in a heavy-duty environment where they would be susceptible to
different types of blockages etc. A clear line of sight, which in general is required,
can therefore not be guaranteed in all possible operating circumstances. Idea
from [3].

1.3.4 GPS based road grade estimation

GPS could be used in order to find the inclination of the road profile. The idea
would be to use the assumption that the vehicle mounted GPS will always move
parallel to the road surface. The vehicle speed along the road surface will be given
by the GPS as a vector in three dimensions relative to an earth-fixed coordinate
system. Using this fact, an estimate of the road slope can be generated. Idea from
[1] and [15].

1.3.5 Map Based road grade estimation

Any of the above proposed solutions could possibly be improved by additional
knowledge about road inclination. Especially in the case of only estimating the
angle between chassis and gravitational acceleration, knowledge of road incli-
nation would immediately give the angle between road surface and chassis. Two
main problems using this additional information exist. Firstly, how to control the
headlight level on roads where the road slope is not known. Secondly, whether
or not the road inclination database contains data with high enough resolution to
be used in this application. Idea from [11].

1.3.6 Camera based methods

A forward facing camera could be used to evaluate the current headlight level.
This information could then be used for controlling the headlight level up or
down in a feedback loop. The main problem using this approach is the estimation
of the headlight level from the camera footage. Other obstacles such as cars, trees
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or road signs will significantly affect how the camera sees the headlight level.
Idea from [13].

1.3.7 Longitudinal vehicle model

The role of dynamic modelling in pitch estimation is for usage in the Kalman
filters as described in chapter 3. A dynamic model capable of predicting one or
more states in the Kalman filter will improve filter performance. The longitudi-
nal vehicle model is meant to predict the vehicular acceleration state within the
Kalman filter in order to provide a better estimate of the vehicular acceleration.
Idea from [11].



2
Method and Modelling

2.1 Evaluation of methods and sensors

In this section, the different options for which sensors to be used are evaluated.
Table 2.1 gives a short overview of the different vehicle pitch and road slope
estimation methods. Further, table 2.2 contains a summary of the advantages
and disadvantages of using different types of sensors.

Estimated angle Methods
1. Chassis - Gravity 1.1 Accelerometer as angle sensor using

gravitational acceleration
1.2 Integrate Gyroscope

2. Road - Gravity 2.1 GPS, using speed-vector along
road in earth-fixed coordinate system.
2.2 Database of road slope

3. Chassis - Road 3.1 Mechanical level sensor
3.2 Optical level sensor
3.3 Acoustic level sensor
3.4 Two accelerometers, one chassis mounted,
one axis-mounted
3.5 One accelerometer combined with vehicle speed, using
the fact that the vehicle travels parallel to road
3.6 Any combination of (1) and (2)

Table 2.1: Table showing the different approaches to estimate the road grade
and vehicle pitch.
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6 2 Method and Modelling

Sensor type and method Advantages and disadvantages
Accelerometer in two
accelerometer method + Already existing sensor, robust solution.

- Dependent on sensor quality.
Gyroscope Integration + Possible to use in tandem with other

solutions for improving accuracy.
- Subject to errors accumulating over time.

GPS + Possible to get accurate road slope readings.
- Sensitive to disturbances and noise.

Database of road slope + Already implemented.
- Not suitable as single solution, as not
all roads are mapped.

Mechanical level sensor + Already implemented, solution accurate
enough for legal requirements.
- Complicated mounting and calibration,
robustness issues.

Optical level sensors + High precision.
- Not robust in the environment of a hdv,
untested solution.

Acoustic level sensors + High precision.
-Not robust, untested solution.

Single accelerometer + Already existing sensor, robust solution.
- Heavily dependent on sensor quality.

Table 2.2: Table showing the different initial advantages and disadvantages
of using different methods for estimating pitch and road slope.

2.1.1 Accelerometer and gyroscope

Accelerometers and gyroscopes used in integrated circuits like those used for
automotive applications are part of a family of components known as MEMS cir-
cuits. MEMS stands for Micro-electro-mechanical System. A MEMS-accelerometer
will measure the force that acts on a small mass inside of the device. This force is
then used to determine the magnitude of acceleration that the device is subjected
to.

The fundamental quantity being measured is the force acting on the mass,
which is equal to the reaction force from the mass. Thus, it is not possible to
distinguish between the force caused by gravity, and the force which stems from
dynamic accelerations. Therefore, an accelerometer of this type will measure
both the dynamic acceleration caused by changes in velocity and the gravitational
pull of earth. Measuring the force exerted by the mass in three orthogonal axes
makes it possible to determine the orientation of the sensor with respect to the
earths gravitational field.

MEMS gyroscopes can be made using a number of different physical phenom-
ena, among other the Coriolis force. The signal generated by the gyroscope will
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be the angular velocity around one or more axes. Typically, the accelerometer
and gyroscope are built in to the same circuit and gives acceleration and angular
velocity around the same axes.

Accelerometer and gyroscope as angle sensor

The basic idea of using one or more accelerometers for sensing the angle of the
accelerometer itself has the distinct advantage of not suffering from drift. The
gyroscope however, gives the angular speed about one or more axes. Integrating
angular speed will yield an absolute angle. The integration will however also
include any noise and bias present in the angular speed signal. Thus, the angle
estimate will be subject to drift.

Using an accelerometer to sense the effects of the gravitational acceleration
will not be subject to drift since what is measured is the contribution from gravity
in one or more axes of the sensor. The angle estimate may contain noise, but will
over time converge to the true mean of the measured quantity, not including bias.
In practice, automotive grade accelerometers will have a significant bias that may
drift over time as a function of, for instance, temperature and age.

Combining the readings from a gyroscope and and accelerometer, for instance
by using a Kalman filter, will result in an accurate angle estimate. The disadvan-
tage of doing this in an automotive context is the additional cost that a gyroscope
will add. For this reason, an approach using only an accelerometer may be more
desirable than a more costly and accurate solution using two different sensors.

Accelerometer combined with vehicle speed

Rather than using an accelerometer as an angle sensor, it can be used to directly
estimate the pitch angle between the road and vehicle as described in 1.3.

The advantages of this solution are that it would be both reliable and inexpen-
sive. The robustness would stem from the fact that the sensor is well protected
and has no moving parts. It is therefore not affected by the harsh environment
surrounding a heavy duty vehicle. Further, both the acceleration sensor and vehi-
cle speed sensor are already parts of the current hardware, thus not adding any
additional cost to the vehicle.

A clear disadvantage is the theoretical complexity of the solution. While it
theoretically is fully viable, there is a clear risk of the solution being very sensitive
to noisy and biased measurement signals.

2.1.2 Level sensors

Any selection of level sensors will have to operate in the environment between the
vehicle chassis and roadway. The consequence of this is a need for very reliable
sensors that are not easily affected by snow, mud or water. Within the choice
of level sensors, the only option that fulfils this criterion is the mechanical level
sensor.

The mechanical level sensors are however affected by other difficulties. Mainly,
it has not been possible to find a way of mounting a level sensor on the front axis
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of a vehicle. It is thus necessary to use only a level sensor on the rear axis, and
from this model the compression of the front suspension in order to achieve a
pitch estimate. This modelling has been shown to not be trivial as there are a
number of variables that are unknown.

2.1.3 GPS-based solutions

There are two main applications of GPS data for estimating the vehicle pitch
angle. First, it is theoretically possible to extract the road slope by using the in-
clination of the speed vector derived through GPS measurements. Secondly, a
possible solution would be to use a database containing the road slope for differ-
ent roads. This kind of database could then be accessed in much the same way
that a traditional GPS tracks position on a map, but rather than position, use it
for tracking the current road slope.

2.1.4 Longitudinal vehicle model

The model is made up of 4 different parts as shown in equations (2.2) to (2.6).
The net longitudinal force driving the vehicle is according to Newtonian physics
described by

Fnet = mv̇. (2.1)

This means that the Kalman filter will use the variable v̇ which represents the
vehicular acceleration in the time update step.

The vehicular acceleration is derived through summing the different resistive
and propelling forces affecting the vehicle in motion:

mv̇ = Fpropulsion − Fairdrag − Froll − Fgravity − Fbrake. (2.2)

In order to accurately model the propulsion force, Fpropulsion, the entire driveline
needs to be modelled. As the main focus of interest in this thesis is the static pitch
angle resulting from the loading of the vehicle, components such as the torsion
of shafts and axles are neglected as they represent a high frequency behaviour, as
described in [11].

The modelling of engine, clutch and transmission is already done internally
at Scania. As the end goal of this thesis is to estimate the pitch angle of a hdv,
this thorough modelling is judged to be out of scope for this paper. Therefore,
the existing in-house estimate of the torque at the output shaft of the gearbox,
T qtransmission, from Scania is used directly. This combined with the radius of the
driving wheels and the rear axle gear ratio, RAGR, will give the force propelling
the hdv forward according to

Fpropulsion =
Ttransmission
rwheel

·RAGR. (2.3)

The resistive contributions of the longitudinal vehicle model can be mathe-



2.1 Evaluation of methods and sensors 9

RAGR Rear Axle Gear Ratio [-]
rwheel Radius of driving wheels [m]

Ttransmission Torque at output shaft of transmission [Nm]
Cd Air resistance coefficient [-]

Af ront Frontal area of vehicle [m2]
ρa Air density [kg/m3]
v Vehicle speed [m/s]
m Vehicle mass [kg]
cr Rolling resistance coefficient [-]
α Road slope [rad]

Table 2.3: Explanation of variables in equations (2.2) to (2.6).

matically described by

Fairdrag =
1
2
CdAf rontρav

2, (2.4)

Froll = mgcr cosα, (2.5)

Fgravity = mg sinα. (2.6)

This section aims to evaluate the plausibility of the previously described ve-
hicle model with respect to their potential usability in vehicle pitch estimation.
In order to evaluate the longitudinal vehicle model two signals from the vehicle
control units were examined. Firstly, there is a signal which contains the torque
applied to the output shaft of the transmission. Secondly, there is a signal with
the estimated driving resistances as described in section 1.3.7. The equation

Fprop =
T qtransmission

rwheel
·RAGR (2.7)

and table 2.3 shows how the total propulsion force is generated from the trans-
mission output torque.

Further,

m · a = Fprop − Fres (2.8)

shows the composition of the complete longitudinal vehicle model. In order to
use this model for estimating the vehicular acceleration the mass needs to be
estimated. On HDV:s the weight is conventionally estimated either by the air
suspension system or through modelling such as the longitudinal vehicle model
described in this paper or other similar methods [4].

This means that modelling the longitudinal acceleration of an hdv requires
a way of estimating the vehicle mass which does not already rely on using a lon-
gitudinal acceleration model. Thus, the longitudinal vehicle acceleration model
might be of use for designing an automatic headlight levelling system on a vehi-
cle equipped with an air suspension system. This would however be outside of
the scope of this thesis.
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2.2 Methods chosen for further development

The following methods are the ones chosen for further development. The choices
are motivated and explained using the previously mentioned advantages and dis-
advantages.

2.2.1 One accelerometer method

The method of estimating vehicle pitch using a single accelerometer mounted
on the frame of the vehicle was chosen for further development. Assuming the
method to be practically viable the advantages of only using sensors already
mounted on vehicles are significant. This fact in combination with previous work
suggesting it might be a viable solution motivates the further development of this
method.

2.2.2 Two accelerometer method

The two accelerometer method described in 1.3 was also chosen for further devel-
opment. This was in large due to the theoretical simplicity of the solution. The
method based on one accelerometer is as previously discussed a rather complex
method theoretically. Using an additional accelerometer adds hardware complex-
ity, but is not as complex with respect to measurement equations or dynamics.

2.2.3 Map data

Using map data for estimating pitch has the distinct advantage of only using stan-
dard sensors already available on Scania trucks. The road slope estimate is also
a reliable signal with high precision when driving on previously mapped roads.
This in combination with the potential possibility of augmenting the previously
mentioned methods with the information contained in the road slope data means
that this method is to be investigated further.



3
Estimation

This chapter aims to give the theory used for the estimation of vehicle pitch for
the different methods that have been investigated. The vehicle coordinate system
is shown in figure 3.1, with the x-axis pointing in the direction of travel. The
y-axis is directed to the left of the vehicle and the z-axis is directed straight up.

Further, the road slope angle is denoted α and the vehicle pitch angle relative
to the road is denoted θ. In situations where the angle of interest is the pitch
angle relative to an earth fixed coordinate system, the pitch angle will include an
extra subscript, θg .

x

z

y

Figure 3.1: Figure describing the vehicle fixed coordinate system.
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12 3 Estimation

3.1 Kalman Filtering

The Kalman filter is an algorithm that uses both measured and modelled infor-
mation about a system in order to produce a state estimate. [6] gives a thorough
explanation of Kalman filters and their use. Normally, a Kalman filter is a linear
state estimator described by its measurement and time update equations. Since
the models described in this thesis are to a large extent non-linear, the extended
Kalman filter, abbreviated ekf, will be used.

The extended Kalman filter has the advantage of being able to use non linear
time update and measurement equations, according to

xk = f (xk−1, uk) + wk (3.1)

zk = h(xk) + ek . (3.2)

Here, x are the states estimated by the filter, z the measurements and u any con-
trol signal or input to the filter. In each time step, these equations are linearised
as described in [6]. wk and ek are the process and observation noise respectively
both assumed to be zero mean Gaussian noise distributions. At each time step,
the future states are predicted by the use of the function f . The function h is then
used to estimate the predicted measurements based on the predicted states.

As the extended Kalman filter linearises the non-linear measurement equa-
tions in each time step, the optimality of the linear Kalman filter is lost. For a
non linear system that is approximately linear on the scale of the time steps used,
the first order ekf as described in this thesis will work [6]. The first order ex-
tended Kalman filter will ,however, start producing results that are increasingly
poor as the non-linearity of the states estimated increase. In this case, alterna-
tive methods such as a higher order or unscented Kalman filter could be better
options [6].

3.2 One accelerometer method

Figure 3.2 shows the relevant quantities used in the one accelerometer pitch esti-
mation method. The relevant quantities are also listed in table 3.1.

θg Pitch angle relative to gravity
θ Pitch angle relative to road surface
α Road slope angle
v̇ Vehicular acceleration

Table 3.1: Essential variables for the one accelerometer pitch estimation
method.
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α+  = g

α

g

az

v

ax

ay

Figure 3.2: Figure describing the quantities involved in the vehicle pitch
estimation.

The states present in the ekf for the one accelerometer method are the vehic-
ular acceleration, road slope and vehicle pitch angle as given by

x1 = v̇, (3.3)

x2 = α, (3.4)

x3 = θ. (3.5)

The measurement equations used for pitch estimation for the one accelerom-
eter method can be written as

z1 = ax = v̇ cos (θ) + g sin (α + θ) + eax , (3.6)

z2 = az = −v̇ sin (θ) + g cos (α + θ) + eaz , (3.7)

z3 = v̇ + ev̇ (3.8)

where eax , eaz and ev̇ represent the noise present in the measured signals.
The equations are comprised of two contributions, one from the vehicular

acceleration and one from the gravitational acceleration. As can be seen in the
measurement equations, this approach is dependent on the presence of the ve-
hicular acceleration v̇. This can be found partly when the vehicle is accelerating
or decelerating as a response to changing driving circumstances such as speed
limitations or traffic. Further, v̇ will vary around the desired speed during sta-
tionary driving. These changes in speed are what makes it theoretically possible
to estimate the vehicle pitch.

All states are in the time update modelled as random walks

v̇k = v̇k−1 + wv̇,k , (3.9)

αk = αk−1 + wα,k , (3.10)

θk = θk−1 + wθ,k (3.11)

where the addition of noise wk allows the estimates to change over time. This is
done because of the assumption that both the pitch and road slope angles will
change very slowly, if at all. The effect of fast variations in pitch caused by things
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such as road irregularities and hard braking can thus mitigated through this ap-
proach with an appropriate choice of covariance matrices in the Kalman filter.

3.2.1 Derivation of measurement equations

Measurement equation for acceleration in the x-axis

The accelerometer will in the vehicular x-axis sense an acceleration according to

z1 = ax = ax,vehicle + ax,gravity . (3.12)

In this equation, two contributions together form the acceleration in the vehicu-
lar x-axis. Firstly, there is the acceleration component stemming from the vehic-
ular acceleration. Assuming a pitch angle of zero degrees, all of the vehicular
acceleration would be sensed by the accelerometer in the x-axis. Introducing a
nonzero pitch angle, θ , 0, will mean that the vehicular acceleration is increas-
ingly sensed by the accelerometer in the z-axis. Therefore, the x-axis contribution
of the vehicular acceleration is estimated as

ax,vehicle = v̇ cos θ. (3.13)

Secondly, there is the contribution from the gravitational pull on the accelerom-
eter. If both the road slope and pitch angles are zero, the full gravitational pull
will be detected in the z-axis of the accelerometer, with the component in the x-
axis being zero. As the pitch angle relative to gravity becomes non-zero, θg , 0,
the x-axis of the accelerometer will increasingly be affected by gravity. Thus, the
x-axis contribution from gravity is estimated as

ax,gravity = g sin θg . (3.14)

Combining equations (3.12) to (3.14) gives the measurement equation in the
x-axis as in equation (3.6).

Measurement equation for acceleration in the z-axis

Acceleration as perceived by the accelerometer in the z-axis can be described as

z2 = az = az,vehicle + az,gravity . (3.15)

Much like in the x-axis, the acceleration sensed by the accelerometer in the z-axis
consists of two parts, one stemming from gravitational and one stemming from
vehicular acceleration.

The vehicular acceleration, v̇, as sensed by the accelerometer in the z-axis will
be scaled by − sin θ. This is because an increase in the pitch angle will result in a
negative acceleration with a coordinate system such as in figure 3.1 and 3.2. This
gives the component az,vehicle according to

az,vehicle = −v̇ sin θ. (3.16)

Further, the gravitational component of the acceleration in the z-axis will be
scaled by a factor of cos θg , giving az,gravity according to

az,gravity = g cos θg . (3.17)
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Measurement equation for the vehicular acceleration

The vehicular acceleration is a directly measured quantity in the Kalman filter,
therefore the last of the measurement equations is written as

z3 = v̇. (3.18)

3.3 Two accelerometer method

This method relies upon two sets of measurement equations, one set for each
accelerometer. The accelerometer orientation can either be estimated in two or
three dimensions. In the two dimensional case, only the x and z-axes of the ac-
celerometer are used whereas the three-dimensional case will use data from all
three axes.

For the two dimensional case, only one state which represents the pitch angle
relative to gravity,

x = θg (3.19)

is used. In the three dimensional case however, two states need be used according
to

x1 = θg , (3.20)

x2 = φg (3.21)

where φg represents the roll angle around the x-axis relative to gravity.
The advantage of using the two dimensional approach is that the measure-

ment equations become simpler than in the three dimensional case. Further, the
three dimensional approach will experience noise from the lateral accelerometer
axis. This may or may not decrease estimation performance, depending on the
signal to noise ratio for the specific driving scenario.

In the two dimensional case, the lateral component of the acceleration is ne-
glected. This gives the measurement equations described by

z1 = ax = − sin θg + eax (3.22)

z2 = az = cos θg + eaz . (3.23)

These measurement equations allows for estimation of the orientation of each of
the individual accelerometers through the use of the extended Kalman filter.

In the three dimensional case however, the lateral component of the accelera-
tion is used. This means estimating not only the pitch, but also the roll angle of
the vehicle, as can be seen in the measurement equations described by

z1 = ax = − sin θg + eax , (3.24)

z2 = ay = cos θg sinφg + eay , (3.25)

z3 = az = cos θg cosφg + eaz . (3.26)
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The dynamics are modelled to be constant with time update equations accord-
ing to

θg,k = θg,k−1 + wθg ,k , (3.27)

φg,k = φg,k−1 + wφg ,k (3.28)

for the three dimensional method, or

θg,k = θg,k−1 + wθg ,k (3.29)

for the two dimensional method. In the same way as for the one accelerometer
method, the noise term wk will allow the pitch estimate to vary and can thus be
used as a tuning parameter in the ekf.

3.3.1 Derivation of measurement equations

The measurement equations for the two accelerometer method are the result of a
series of rotations about the x and y-axis of the vehicle. The amount of rotation
around the different axes will represent the pitch and roll angles of the vehicle.

Two dimensions

In order to obtain an orientation estimate using the gravitational pull on a three
axis-accelerometer, the gravitational acceleration indicated by the accelerometer
is treated as a three-dimensional vector. Assuming no dynamic acceleration is
applied to the accelerometer, the vector will be pointing straight towards the
earth according to

g =

 0
0
g

 . (3.30)

The gravitational vector is measured upwards along the positive z-axis due to the
physical construction of the accelerometer, as explained in chapter 2.

Would the accelerometer be subject to accelerating motion, the accelerometer
readings would contain this acceleration as well thus making the accelerometer
assume a different gravitational vector as

gmotion =


0 + ax,dyn
0 + ay,dyn
g + az,dyn

 . (3.31)

Normalising the gravitational vector in equation (3.30) to unit length will
yield

gnormalised =

 0
0
1

 . (3.32)

This is done because of the inherent bias that is present on automotive grade
accelerometers. The actual size of the measured acceleration is not what is sought,
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but rather the direction of acceleration. There will still be some bias affecting
the normalised accelerometer readings. Such bias stems from the fact that all
accelerometer axes are not perfectly orthogonal to each other, but will pick up on
some acceleration in axes other than their own.

The accelerometer detects acceleration in its own three axes, rather than in an
earth fixed coordinate system. Thus, the measurement equations (3.6) to (3.8) are
a result of a series of rotations, which aims to rotate the perceived acceleration
vector in line with the earth fixed one, (3.30). Since the pitch angle is represented
by a rotation around the y-axis of the vehicle, the rotation of the gravitational
vector can be written as per

Ry =


cos(θg ) 0 −sin(θg )

0 1 0
sin(θg ) 0 cos(θg )

 . (3.33)

Here, the angle θg represents the pitch angle of the accelerometer relative a earth
fixed coordinate system. Performing the multiplication of the rotational matrix
Ry with the gravitational vector gives the measurement equations as

Ry · g =


−sin(θg )

0
cos(θg )

 . (3.34)

Three dimensions

In the three dimensional case, the pitch and roll angles will have an interdepen-
dence in the y and z-axes. Thus, information from the y-axis can in theory con-
tribute to an increase in estimation performance. In order to expand the two
dimensional case into three dimensions, the rotational matrix Rx is multiplied
onto the measurement equations of the two dimensional case. Rx is the rotational
matrix about the x-axis of the vehicle as described by

Rx =


1 0 0
0 cos(φg ) sin(φg )
0 −sin(φg ) cos(φg )

 (3.35)

corresponding to a rotation matrix for the roll angle φ.
The rotations described by

Rx ·Ry · g =


−sin(θg )

cos(θg )sin(φg )
cos(θg )cos(φg )

 (3.36)

shows the measurement equations for the three dimensional case of the two ac-
celerometer method for estimating the accelerometer pitch and roll angles.

The gain of using the three dimensional measurement equations is however
very limited since θg is small, thus rendering the cosine approximately equal to
one:

cos θg ≈ 1. (3.37)
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3.3.2 Linearisation of measurement equations

An implementation on an actual truck will require the Kalman filter to be operat-
ing in real time on a control unit in the truck. Resource efficiency would in this
case be essential and one way of achieving an increase in efficiency is to linearise
the measurement equations of the Kalman filters. This means a normal, linear,
Kalman filter can be used rather than the ekf described in section 3.1.

Equations (3.38) to (3.39) shows the commonly used small angle approxima-
tion of the cosine and sine functions when measuring the angles in radians. As
a vehicle pitch angle of only a few degrees is considered as significant, this small
angle approximation is used:

cos x = 1, (3.38)

sin x = x. (3.39)

The linearised measurement equations for the two accelerometer method in 3
dimensions are described by

ax = −θg , (3.40)

ay = 1 ·φg , (3.41)

az = 1 · 1. (3.42)

By looking at these equations, it becomes clear that the measurement equa-
tions for the two accelerometer method in the linear case could be reduced to a
single equation as per

z = ax = −θg . (3.43)

3.3.3 Aligning coordinate systems of accelerometers

When mounting an accelerometer to the rear axle of an hdv, the options for the
physical mount are limited. This means that it is not possible to reliably mount
the accelerometer in a way where it is parallel to the ground. Because of this,
a method for aligning the coordinate systems of the frame and axle mounted
accelerometer is needed. This is called Wahba’s problem and solutions were pre-
sented in [8] and [9].

The idea in this case is to rotate the measurements from the axle mounted
accelerometer to express them in the coordinate system of the frame mounted
accelerometer. For this, the vehicle is positioned in a zero pitch attitude on a hori-
zontal surface. The acceleration vector will then be pointing straight down, in the
direction of the gravitational acceleration. In the two coordinate systems of the
accelerometers, the gravitational acceleration vector will be expressed differently.
Thus, what is needed is the rotational matrix A that rotates the axle mounted
accelerometer readings to align them with the readings of the frame mounted
accelerometer. A multiplication of each measured vector āmeasured,i from the axle
mounted accelerometer such as

A · āmeasured,i = ārotated,i (3.44)
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will yield rotated measurements ārotated,i . The rotated measurements are then
expressed in the coordinate system of the frame mounted accelerometer.

3.4 Map data

As described in chapter 1, a database containing the road slope angles can be
used in order to augment the one and two accelerometer methods. Primarily, it
can be used as one more measured value in the one accelerometer method. Thus,
the states for the map based pitch estimation method are again chosen according
to equations (3.3) to (3.5). Adding the extra information about road slope to
the measurement equations of the one accelerometer method yields a new set of
measurement equations given by

z1 = ax = v̇ cos (θ) + g sin (α + θ) + eax , (3.45)

z2 = az = −v̇ sin (θ) + g cos (α + θ) + eaz , (3.46)

z3 = v̇ + ev̇ , (3.47)

z4 = α + eα . (3.48)

Further, the dynamics of the map based pitch estimation method are again
modelled as constants, as for the one accelerometer method in equation (3.9) to
(3.9). The added information in the measurement equations does however re-
quire a different approach to tuning the covariance matrices in the ekf. Because
of the high quality expected of the road slope data in the fourth measurement, the
measurement noise can be assumed to be very low for this measurement equa-
tion. This will result in the Kalman filter not filtering the road slope angle as
much as the other measurement signals. Thus, an increase in pitch estimation
performance is expected.

The road slope acquired from the map database could also be used in order to
eliminate one of the accelerometers in the two accelerometer method. In this case,
only one set of measurement equations for pitch estimation would be needed in
order to estimate the pitch angle of the vehicle relative to gravity. The road slope
data can then be subtracted from the vehicle pitch angle relative to gravity, which
will yield an estimate of the pitch angle between the vehicle and the road surface.





4
Simulation and results

In order to validate the theoretical reasoning from chapter 3, a short simulation
study has been carried out. The main goal is to validate the measurement models
and the filters designed from theoretical reasoning. Further, a deepened insight
into the plausibility of the different methods is to be gained.

In the cases where there is an option of estimating the vehicle pitch angle in
two or three dimensions, only the two dimensional cases are simulated. Simulat-
ing the lateral acceleration of the vehicle would require modelling of yet another
type and is thus deemed as being out of the scope of this thesis.

4.1 Accelerometer noise analysis

In order to assess the plausibility of different methods of vehicle pitch estimation,
noise will be introduced to the simulations. Therefore, an analysis of the noise
present in the accelerometer readings has been carried out. Figure 4.1 shows a
normal probability plot of the acceleration output from a vehicle mounted ac-
celerometer. The data is collected from a truck at standstill with the engine run-
ning. This was done in order to get a realistic amount of noise consisting both of
vehicle vibrations and the inherent noise of the accelerometer.

In a normal probability plot such as 4.1, the data points will be plotted along a
straight line if the data is normally distributed. As can be seen, the data is mostly
normally distributed. Thus, an addition of noise that is normally distributed will
approximate the actual noise that an accelerometer is subjected to.

Further, the standard deviation and variance of the accelerometer signal in
the different axes can be seen in table 4.1.

21
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Figure 4.1: Normal probability plot of accelerometer data collected from a
truck at standstill with the engine running at idle.

Axis σ σ2

X 0.1088 0.0118
Y 0.1066 0.0114
Z 0.1046 0.0109

Table 4.1: Standard deviation and variance of accelerometer signals when
mounted on a truck at standstill with engine running.

4.2 One accelerometer method

The first step in simulating the one accelerometer method was to do so without
the presence of noise in order to illustrate that the vehicle pitch angle is in fact
identifiable. Noise was then added, first in the accelerometer readings, and lastly
in the vehicular acceleration signal. The acceleration in the x and z-axes was
simulated through the measurement equations described in chapter 3 by using
constant road slope and vehicle pitch angles as input signals. Table 4.2 shows
the constant reference values used when generating the simulated accelerometer
data.

Pitch [◦] Road Slope [◦]
1 4

Table 4.2: Simulation input values for vehicle pitch and road slope.
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4.2.1 Simulation without noise

A signal representing the vehicle acceleration was generated as a sine function.
Figure 4.2 shows the vehicular acceleration as well as the road slope and vehicle
pitch angles for the noiseless case. As can be seen, both the road slope and pitch
angles converge towards the correct values given an excitation of the vehicular
acceleration. In the noiseless case, the speed of which the estimates converge is
heavily dependent on how the ekf is tuned with respect to process and measure-
ment noise.
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Figure 4.2: Simulation results for the one accelerometer method without
added noise.

Filter parameters

In order to produce the simulation results as shown in figure 4.2 the ekf was
tuned to be relatively fast. This was done as the simulation did not contain any
noise which might need to be filtered. The observation and process covariance
matrices were

R = Q =

1 0 0
0 1 0
0 0 1

 . (4.1)
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The initial states were

x0 =

 v̇0
α0
θ0

 =

0
0
0

 (4.2)

as there in a realistic driving situation is no way of knowing the initial states
before start of driving using this pitch estimation method. Further, the initial
covariance matrix was chosen as

P0 = 0.5 ·

1 0 0
0 1 0
0 0 1

 (4.3)

since this will correspond to a standard deviation of approximately 10 degrees.

4.2.2 Simulation with accelerometer noise

Adding noise of a realistic size in the x and z-axes gives the results as described
by figure 4.3. The simulation results are further quantified in table 4.3. As is ev-
ident by figure 4.3 and table 4.3, the one accelerometer method has an inherent
sensitivity to noise. Further, the simulation carried out did not contain noise in
the vehicular acceleration signal. Adding noise in the measurements of the ve-
hicular acceleration would likely make the accuracy of the vehicle pitch estimate
deteriorate even more.

Mean estimate [◦] Ground truth [◦]
Road slope 3.29 4

Pitch 1.71 1
Table 4.3: Mean values of pitch and road slope estimates from simulation
of the one accelerometer method using noisy accelerometer measurements.
Mean values taken from the 10 last seconds of simulation.

Filter parameters

For the simulation of the one accelerometer method using measurement noise in
the accelerometer axes, the ekf was tuned to rely heavily on the vehicular accel-
eration signal. This was done in order to get a pitch estimate that is as accurate
as possible, as the vehicular acceleration signal is generated without noise. The
measurement covariance matrix was

R = 104 ·

1 0 0
0 1 0
0 0 10−4

 (4.4)

and the process noise covariance matrix was

Q =

1 0 0
0 10−3 0
0 0 10−3

 . (4.5)
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Figure 4.3: Simulation results after adding noise in both the x and z-axes.

Further, the initial states x0 and covariance matrix P0 were again chosen as in
equations (4.2) and (4.3).

4.2.3 Simulation with noise in accelerometer and vehicular
acceleration

In order to investigate the effect of a noisy acceleration signal, a simulation with
parameters according to table 4.4 was carried out. The noise applied to the ac-
celerometer readings remained the same size as in previous simulations, since it
was deemed to be of a realistic size. Further, the noise added to the vehicular ac-
celeration signal was also of the same character and size. This was done because
of a lack of information regarding the noise in the vehicular acceleration. Further,
the vehicular acceleration can be expected to display different noise characteris-
tics depending on the driving scenario that is currently being investigated.

The results of the simulation can be seen in figure 4.4 and table 4.5. The figure
clearly shows the effect of the noise on the vehicle pitch estimate.

Figure 4.5 shows the pitch estimate together with a confidence interval gen-
erated from the covariance matrix P of the extended Kalman filter. As can be
seen, the confidence interval gets wider rather than more narrow as more mea-
surements come in. This further indicates that the one accelerometer method is
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State σ σ2

Acceleration x-axis 0.1 0.01
Acceleration z-axis 0.1 0.01

Vehicular acceleration 0.1 0.01
Table 4.4: Noise quantities for simulation of the one accelerometer method
with noise in both accelerometer axes and vehicular acceleration.

Mean estimate [◦] Ground truth [◦]
Road Slope 3.04 4

Pitch 1.96 1
Table 4.5: Mean of pitch and road slope estimates from a simulation of the
one accelerometer method with noise in both accelerometer axes and vehic-
ular acceleration.
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Figure 4.4: Results from simulation of the one accelerometer method with
noise in both accelerometer and vehicular acceleration measurements.

extremely sensitive to noise as the estimate becomes increasingly unreliable.
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Figure 4.5: Pitch angle estimate with a 90 % confidence interval from the
simulation of the one accelerometer method with noise in all measurements.

Filter parameters

When simulating the one accelerometer method with noise in all measurements
the observation covariance matrix was

R = 103 ·

1 0 0
0 1 0
0 0 1

 . (4.6)

The process covariance matrix was

Q = 10−3 ·

1 0 0
0 1 0
0 0 1

 . (4.7)

The initial values for the states x0 and covariance matrix P0 were again chosen
according to equations (4.2) and (4.3). These design choices were made as all
signals are equally contaminated by noise.

4.3 Two accelerometer method

In order to evaluate the two accelerometer method, one set of the measurement
equations has been simulated. This was done as a way of showing the possible
accuracy of the pitch estimate from the accelerometer readings. An actual imple-
mentation of the two accelerometer method would include two sets of measure-
ment equations, as well as a comparison between the two estimates.
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4.3.1 Simulation without measurement noise

The two accelerometer measurement equations were used in order to simulate
the orientation of an accelerometer. Figure 4.6 together with table 4.6 shows the
simulation results without measurement noise present. As can be seen in the
figure, the pitch estimate converge towards the actual pitch angle.

Mean pitch estimate [◦] Ground truth [◦]
1 1

Table 4.6: Simulation results for the two accelerometer method without
measurement noise added.
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Figure 4.6: Simulation results for the two accelerometer method without
measurement noise added.

Filter parameters

For simulation of the two accelerometer method, the initial states for the filter
were chosen as x0 = θg,0 = 0 and P0 = 0.5. The observation noise covariance was
chosen as

R = 103 ·
(
1 0
0 1

)
(4.8)

and the process noise covariance as Q = 10−10. This gives, as can be seen in
figure 4.6, a relatively slow filter which should be able to filter out fast variations
in pitch.
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4.3.2 Simulation with noise

When simulating the measurement equations from the two accelerometer method
with noise added to the measurements, the same type and size of noise was used
as when simulating the one accelerometer method. Table 4.7 shows the standard
deviation and variance of the noise which is added both in the x and z-axes of the
simulated accelerometer readings.

σ σ2

x-axis 0.1 0.01
z-axis 0.1 0.01

Table 4.7: Noise added to the measurement readings when simulating the
measurement equations of the two accelerometer method

Figure 4.7 and table 4.8 shows the results of the simulation when noise was
applied to the accelerometer measurements. As can be seen from both the figure
and the mean of the pitch estimate presented in the table, the pitch estimate will
over time converge to the true pitch of the accelerometer. The time it takes for
the pitch estimate to converge, as well as the variance of the pitch estimate can
be affected through tuning of the ekf. Tuning the filter to a shorter rise time will
result in a pitch estimate with larger variations around the actual pitch angle.
In the same way, tuning the filter for smaller variations around the actual pitch
angle will result in an increase in the rise time of the filter.
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Figure 4.7: Results from simulating measurement equations from the two
accelerometer method with noise in accelerometer readings.

Figure 4.8 shows a confidence interval around the pitch estimate. As can
be seen, the confidence interval starts out relatively wide and gets increasingly
narrow as more measurements are gathered.
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Mean pitch estimate [◦] Ground truth [◦]
1.01 1

Table 4.8: Mean of pitch estimate from simulated results of the two ac-
celerometer method with noise applied in the accelerometer measurements.
Mean calculated from the last 10 seconds of measurement.

Time [s]

0 10 20 30 40 50 60 70 80 90

A
n
g
le

 [
d
e
g
]

-40

-30

-20

-10

0

10

20

30

40

Estimated

90% Conf interval

Figure 4.8: Pitch estimate with a 90% confidence interval for the simulation
of the two accelerometer method using measurements with noise.

Filter parameters

The observation covariance for the simulation of the two accelerometer method
was chosen to be

R = 103 ·
(
1 0
0 1

)
(4.9)

and the process noise covariance as Q = 10−10. This choice was made in order
to make the filter produce a pitch estimate characterised by low variance. The
initial state of the pitch angle was x0 = θg,0 = 0 and the initial covariance was
chosen as P0 = 0.5.

4.4 Map data

The method where map data is used to augment the one accelerometer method
has been simulated. The simulated data was, as previously described, generated
through the measurement equations described in chapter 3.
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4.4.1 Simulation without noise

Figure 4.9 and table 4.9 shows the results of simulating the one accelerome-
ter method augmented with map data without measurement noise. The figure
clearly shows that both the road slope and pitch angles quickly converge to the
correct values.
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Figure 4.9: Simulation results when simulating map based pitch estimation
without noise.

Mean estimate [◦] Ground truth [◦]
Pitch 1.00 1

Road slope 4.00 4
Table 4.9: Mean of pitch estimate and ground truth from simulation of map
based pitch estimation metod.
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Filter parameters

The observation and process covariance matrices were chosen as

R = 106 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.10)

and

Q =

1 0 0
0 1 0
0 0 1

 . (4.11)

The initial states and covariance was chosen, as in previous simulations, to be

x0 =

 v̇0
α0
θ0

 =

0
0
0

 (4.12)

and

P0 = 0.5 ·

1 0 0
0 1 0
0 0 1

 . (4.13)

The resulting ekf is a relatively slow filter, that does not put weight on different
measurements but rather filters all signals mildly.

4.4.2 Simulation with noise

Figure 4.10 and table 4.10 shows the simulation results with noise added in both
the acceleromter and vehicular acceleration signals. The Kalman filter produces
a pitch estimate that in average over 100 seconds of simulation time is accurate
to within two decimals of the actual pitch angle, measured in degrees.

Mean estimate [◦] Ground truth [◦]
Pitch 1.00 1

Road slope 4.00 4
Table 4.10: Results from simulation of map based pitch estimation method
with noise in accelerometer and vehicular acceleration measurements. Mean
estimate calculated from 4 seconds and onward during a 100 second simu-
lation.

Figure 4.11 shows the pitch estimate with a confidence interval of 90%. As
can be seen in the figure, the confidence interval is much closer around the pitch
estimate for the map based pitch estimation method than for the one accelerom-
eter method.
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Figure 4.10: Simulation results for the map based pitch estimation method
with noise in both accelerometer axes and vehicular acceleration.
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Figure 4.11: The pitch estimate of the simulation of the map based pitch
estimation method together with a 90% confidence interval
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Filter parameters

The observation and process covariance matrices were chosen as

R = 106 ·


1 0 0 0
0 1 0 0
0 0 10−4 0
0 0 0 10−7

 (4.14)

and

Q =

1 0 0
0 1 0
0 0 10−4

 . (4.15)

The initial states and covariance was chosen, as in previous simulations, to be

x0 =

 v̇0
α0
θ0

 =

0
0
0

 (4.16)

and

P0 = 0.5 ·

1 0 0
0 1 0
0 0 1

 . (4.17)

These parameters results in a filter that will rely heavily on the measurement
signal from the external road slope signal. Further, it assumes the vehicular ac-
celeration signal to contain less noise than the accelerometer signals. Finally, the
assumption of a constant vehicle pitch angle θ in the dynamic update of θ is as-
sumed to be reliable, thus suppressing swift shifts in the vehicle pitch estimate.



5
Implementation and results

In order to implement the estimation theory described in chapter 3, the software
used was MATLAB. This choice was made due to the power of the MATLAB lan-
guage in signal processing. The implementation was done in two steps. Firstly,
the data was collected from an actual truck while performing tests, secondly, the
data was analysed offline. The results of the offline analysis for each of the three
methods of pitch estimation are presented in this chapter.

5.1 Evaluation methods

Tests that are performed on the different pitch estimation methods were con-
ducted using a truck that had an air suspension system. This came with two
major advantages. Firstly, the air spring suspension system allows for a pitch
angle to be determined by the driver. Secondly, a truck with an air spring sus-
pension also has two level sensors measuring the distance between the axle and
chassis for the front and rear axles respectively.

These design features allows for tests to be easily performed. Rather than
using a truck with leaf spring suspension that would have to be loaded in order
to achieve the desired pitch angle, the angle can be set and changed with ease
between tests. Further, the level sensors can be used for deriving the actual pitch
angle of the vehicle. This can then be used as a reference for comparison with the
developed methods.

Figure 5.1 shows an hdv using two level sensors. The figure shows the dis-
tances a and b respectively as being measured from the ground to the chassis. In
actuality the distances measured are between the wheel axle and the chassis. The
geometry for obtaining the pitch angle is however the same. Equation (5.1) shows
how to extract the vehicle pitch angle from the level sensor measurements.
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θ = arctan
a − b
L

(5.1)

α+

αb

a

L

Figure 5.1: Truck equipped with two level sensors.

5.2 One accelerometer method

The Kalman filter used for the implementation of the one accelerometer method
bears great resemblance to that used for simulation in chapter 4.

5.2.1 Filter tuning and parameters

The filter is tuned in such a way as to rely heavily on the vehicular acceleration
while still filtering it in order to avoid the unwanted high frequency noise present.
Further, the filter is tuned in such a way that it assumes changes in road slope and
vehicle pitch are low frequency events. This method of filter tuning was chosen
due to its success in simulation.

The observation and process covariance matrices were chosen as

R = 104 ·

1 0 0
0 1 0
0 0 10−4

 (5.2)

and

Q =

1 0 0
0 1 0
0 0 10−4

 . (5.3)

The initial states and covariance was chosen, as previously in simulation, to
be

x0 =

 v̇0
α0
θ0

 =

0
0
0

 (5.4)

and

P0 = 0.5 ·

1 0 0
0 1 0
0 0 1

 . (5.5)
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5.2.2 Test results

In order to evaluate the one accelerometer method, data was collected while driv-
ing on the Scania test track. Figure 5.2 shows the vehicular acceleration as well
as the road slope and pitch angle estimates from the one accelerometer method
during one such test. As can be seen, the vehicle acceleration is heavily filtered.
Further, it is apparent that both the road slope and vehicle pitch angle estimates
does not converge to ground truth. This is particularly obvious in the case of the
vehicle pitch angle, as there is an actual reference for this variable.
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Figure 5.2: Results from implementation of the one accelerometer method

Figure 5.3 shows the pitch angle estimate of the one accelerometer method
from the implementation on an actual truck together with a 90% confidence in-
terval. The confidence interval is, as it was in simulation, rather wide around the
diverging pitch estimate.



38 5 Implementation and results

Time [s]

0 50 100 150 200 250

A
n
g
le

 [
d
e
g
]

-300

-250

-200

-150

-100

-50

0

50

100
Theta

Estimated

90% Conf interval

Figure 5.3: The pitch estimate of the one accelerometer method with a 90%
confidence interval
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5.3 Two accelerometer method

The two accelerometer method was evaluated using data collected while the ve-
hicle was at standstill. In order to obtain accelerometer data from the rear axle
of the vehicle, an electronic control unit, denoted ecu, was mounted to the rear
axle. The ecu is of the same type as one that is mounted on the frame of all
Scania vehicles. It contains an accelerometer and provides an interface through
which data can easily be recorded.

5.3.1 Filter tuning and parameters

The filters for the frame and axle mounted accelerometer of the two accelerome-
ter method were tuned to be relatively slow. Since the test carried out was done
with the vehicle at standstill, the filter is tuned to be faster than in simulation.
This was done as to more clearly demonstrate results from the test, which could
otherwise be filtered out by a slower filter.

The observation noise covariance was chosen as

R = 10 ·
(
1 0
0 1

)
(5.6)

and the process noise covariance as Q = 10−6. Further, the initial state was x0 =
θg,0 = 0 and the initial covariance was P0 = 0.5.

5.3.2 Test results

Figure 5.4 shows the results from the pitch estimates for the two accelerometer
method with the vehicle at standstill with the engine idling. As can be seen, both
the rear axle mounted and the frame mounted accelerometers show a significant
change in pitch angle. This was upon closer inspection found to be due to the
inherent design of the suspension system of the Scania trucks. As the suspension
height is changed, the rear axle will rotate.

Figure 5.5 shows the frame pitch estimate from the two accelerometer method
together with a 90% confidence interval.

5.4 Map data

The one accelerometer method augmented with road slope data from a map
database has been evaluated through tests performed on public roads rather than
on the Scania test track. This was done due to the fact that there is, at the time of
writing, no road slope data available for the test track at Scania.

5.4.1 Calibration

An imperfect mounting of the accelerometer to the frame of the vehicle would
result in the pitch estimate being biased by an angle corresponding to the angle



40 5 Implementation and results

Time [s]

0 20 40 60 80 100 120 140

A
n
g
le

 [
d
e
g
]

-4

-2

0

2

4

6

8

10

Rear Axle

Frame

Level sensors

Figure 5.4: Results from the two accelerometer method with the vehicle at
standstill
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Figure 5.5: The pitch estimate of the frame mounted accelerometer from the
two accelerometer method with a 90% confidence interval

at which the accelerometer is mounted on the frame. In order to find any such
mounting errors, data was for a brief period of time recorded with the vehicle
at standstill. The difference between the actual pitch angle and the pitch angle
estimate will in this case correspond to the mounting error of the accelerometer.
This is due to the fact that there is no dynamic acceleration to affect the estimate.
Figure 5.6 shows the mounting error as the vehicle is at stand still on a road
with a known road inclination. As can be seen in the figure, the pitch estimate
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converges toward a mounting error of 0.78◦.
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Figure 5.6: Calibration results for accelerometer mounting errors using the
map based pitch estimation method

5.4.2 Data selection

The first plot in figure 5.7 shows the speed profile of one of the tests. In order to
get the best data possible, only parts of the recorded data containing a minimum
of accelerations was used in the pitch estimation. This data selection was done in
order to minimise the effect of dynamic accelerations on the pitch estimate. The
second plot in figure 5.7 shows the speed profile of the data selection used for
pitch estimation. As can be seen, the speed is mainly kept constant, as would be
expected when driving on larger roads and highways.

5.4.3 Filter tuning and parameters

In order to estimate the vehicle pitch angle, a slow filter which does not rely to
heavily on the accelerometer measurements. The observation covariance noise
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Figure 5.7: Speed profile of a complete test compared with the speed profile
of the data selected for pitch estimation using the map based pitch estima-
tion method

matrix was tuned to be the diagonal matrix

R = 105 ·


1 0 0 0
0 1 0 0
0 0 10−3 0
0 0 0 10−5

 . (5.7)

This will make the filter rely on the road slope measurements from the map
data whereas the accelerometer data is assumed to contain significant amounts of
noise. Further, the vehicular acceleration measurements are considered as more
reliable than the accelerometer readings. Using a diagonal matrix R also means
that an assumption is made that there is no cross-correlation between the differ-
ent measurements.

The process covariance noise matrix Q was

Q =

1 0 0
0 1 0
0 0 10−8

 (5.8)

which assumes a very low amount of process noise on the pitch angle θ. Since θ
is assumed to be constant in the time update of the ekf, this will make the filter
unresponsive to the fast pitch dynamics involved in events such as road bumps
and hard braking. The initial covariance matrix was initialised as

P0 = 0.5 ·

1 0 0
0 1 0
0 0 1

 (5.9)
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in order to set a reasonable uncertainty on the initial states allowing the states
to drift from the initial states x0 without diverging. Further, the states were ini-
tialised as per

x0 =

 v̇0
α0
θ0

 =

0
0
0

 (5.10)

since both pitch and road slope angles are initially unknown, but close to zero.

5.4.4 Test results

Table 5.1 and figure 5.8 shows the resulting vehicle pitch estimate when using the
map based pitch estimation method. As can be seen, the vehicle pitch estimate
contains noise, but is unbiased around the actual pitch angle of the vehicle. The
main deviations from the actual pitch angle occurs during periods of vehicular
acceleration that is nonzero.

Mean estimate from 500 seconds [◦] Mean ground truth [◦]
Pitch 0.772 0.707

Road slope 0.003 0.003
Mean estimate from 100 seconds [◦] Mean ground truth [◦]

Pitch 0.821 0.709
Road slope -0.054 -0.016
Table 5.1: Mean values of state estimates from the ekf and mean of ground
truth values for the implementation results of the map based pitch estima-
tion method. Mean values are calculated from 100 and from 500 seconds
into the measurement and forward.

Figure 5.9 shows the pitch estimate of the map based pitch estimation method
together with a 90% confidence interval. Similarly to the simulated result, it can
be seen that the confidence interval of the pitch estimate is more narrow than
when implementing the one accelerometer method.
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Figure 5.8: Results from the offline implementation of the map based pitch
estimation method
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Figure 5.9: The vehicle pitch estimate from the map based estimation
method with a 90% confidence interval



6
Conclusions

Three main methods for estimating the vehicle pitch of heavy duty trucks have
been developed and evaluated. A method using only an accelerometer mounted
on the frame of the hdv in combination with the vehicle acceleration has been
presented. This method would have been a standalone solution only using ex-
isting vehicle sensors for estimating the vehicle pitch. It is however not feasible
to implement this method due to the quality and noise sensitivity of automotive
grade accelerometers as used in this thesis. This becomes clear when comparing
the results from the simulation with the results from the implementation of the
one accelerometer method. In simulation, it was shown that the method is vi-
able in an ideal situation without noise. When increasing the noise present in the
measurements to realistic levels, the vehicle pitch estimate deteriorated rapidly.
Results from the implementation of the one accelerometer again validates the
conclusion that the one accelerometer method is too sensitive to measurement
noise to be viable as a pitch estimation method.

Further, a method for estimating the vehicle pitch using two accelerometers
has also been presented. The accelerometers would be mounted in such a way
that one accelerometer would measure the pitch of the vehicle frame relative to
gravity. The second accelerometer would then be mounted on the wheel axle,
thus providing an estimate of the road slope. This method showed great promise
in precision and simplicity but was shown to not be possible to implement in
practice as the rear axle of the vehicle rotates when the suspension is compressed.
Mounting an accelerometer in such a way as to find the road slope is thus not
possible due to the construction of the suspension system on Scania trucks.

Finally, a method for vehicle pitch estimation has been presented based on a
combination of vehicular acceleration, accelerometer measurements and a map
based database of road slope. This method has the advantage of not needing any
non-standard truck sensors while displaying a high degree if accuracy as shown
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in the test results. It is however not a standalone solution as the map based road
slope is not available on all roads. Further, the global positioning system needs
to be able to acquire a signal for the method to work.

Thus, the map based vehicle pitch estimation method could be combined with
other pitch estimation methods in order to augment the vehicle pitch estimate in
the situations where the map based method is capable of providing a pitch esti-
mate. A combination of methods could for instance include a pitch estimation
based on only one level sensor on the rear axis as described in chapter 1. This
method will give an acceptable pitch estimate in all possible conditions and the
map based vehicle pitch estimation could then step in and provide a high accu-
racy estimate when possible.

The pitch estimation could theoretically be improved upon further with the
use of a longitudinal vehicle model as described in section 1.3.7. A model such
as this could if used correctly allow the Kalman filters to estimate the vehicular
acceleration with better precision than when just using it as a measured value.
The problems described pertaining to unknown variables such as vehicle weight
however makes this solution impossible to implement with the information at
hand in this thesis.

6.1 Future work

Future work include continued testing and validation of the map based pitch es-
timation method. It is possible that a more aggressively selective approach when
selecting the data to be used in the map based pitch estimation algorithm would
further increase the pitch estimate accuracy. For the future development of the
automatic headlight levelling, the map based vehicle pitch estimation method
needs to be implemented on line on a truck.

Further, a thorough investigation into the limitations of the map based pitch
estimation method is an essential next step in the development of this method.
The limitations would most likely include both the performance of the accelerom-
eter and the reliability and availability of GPS measurements. Accelerometer per-
formance most likely changes with different conditions such as temperature and
age of the accelerometer.

Other sensors, such as radar distance sensors are also becoming increasingly
cheap and accurate. Future work could therefore include an investigation into the
new possibilities these and other sensors might offer for the purpose of vehicle
pitch estimation.
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