
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2017

Semantic Segmentation of
Point Clouds using Deep
Learning

Patrik Tosteberg

Master of Science Thesis in Electrical Engineering

Semantic Segmentation of Point Clouds using Deep Learning

Patrik Tosteberg

LiTH-ISY-EX--17/5029--SE

Supervisor: Doktorand Martin Danelljan
isy, Linköpings universitet

Doktorand Felix Järemo-Lawin
isy, Linköpings universitet

Examiner: Fahad Khan
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2017 Patrik Tosteberg

Abstract

In computer vision, it has in recent years become more popular to use point
clouds to represent 3D data. To understand what a point cloud contains, meth-
ods like semantic segmentation can be used. Semantic segmentation is the prob-
lem of segmenting images or point clouds and understanding what the different
segments are. An application for semantic segmentation of point clouds are e.g.
autonomous driving, where the car needs information about objects in its sur-
rounding.

Our approach to the problem, is to project the point clouds into 2D virtual im-
ages using the Katz projection. Then we use pre-trained convolutional neural
networks to semantically segment the images. To get the semantically segmented
point clouds, we project back the scores from the segmentation into the point
cloud. Our approach is evaluated on the semantic3D dataset. We find our method
is comparable to state-of-the-art, without any fine-tuning on the Semantic3D
dataset.

iii

Contents

Notation vii

1 Introduction 1
1.1 Problem . 3
1.2 Motivation . 3
1.3 Contributions . 4
1.4 Outline . 4

2 Related Work 5
2.1 Convolutional Neural Networks . 5
2.2 Semantic Segmentation in 2D . 6
2.3 Semantic Segmentation in 3D . 7

3 Method 9
3.1 Outline . 9
3.2 Projection of Point Clouds into 2D 10

3.2.1 Defining Camera . 10
3.2.2 Katz Projection . 11
3.2.3 Mean Shift Clustering . 12
3.2.4 Generating Label Images . 13

3.3 2D Semantic Segmentation . 16
3.4 Back projection of scores . 17

4 Implementation 21
4.1 Libraries . 21

4.1.1 PCL . 21
4.1.2 Matconvnet . 21
4.1.3 Caffe . 21

4.2 Implementation of Semantic Segmentation of Point Clouds 22

5 Experiments 23
5.1 Datasets . 23
5.2 Performance Measures . 28

v

vi Contents

5.2.1 Measures for Semantically Segmented Images 28
5.2.2 Measures for Semantically Segmented Point Clouds 29

5.3 Results . 30
5.3.1 Semantic Segmentation of Images 30
5.3.2 Semantic Segmentation of Point Clouds 36
5.3.3 Evaluation of Semantic Segmentation of Images 38
5.3.4 Evaluation of Semantic Segmentation of Point Clouds . . . 39

6 Discussion and Future Work 45

7 Conclusion 47

A Tables 51

Bibliography 57

Notation

Variables

Notation

P Point Cloud
p Points
C Camera

vii

1
Introduction

In computer vision, it has become more important to represent data in 3D. In re-
cent years point clouds have become popular to represent 3D data. A point cloud
is a set of 3D points pi ∈ R, which can be created by different kinds of sensors,
such as a lidar scanner. A point cloud can also have a RGB value for each point,
which gives us a colored point cloud. Today point clouds are commonly used for
visualization of 3D objects, 3D maps and for robotics. To distinguish objects in a
point cloud, a common method is semantic segmentation.

In computer vision, semantic segmentation is the task of segmenting images or
point clouds and to understand what the different segments are. When using se-
mantic segmentation it divides an image or point cloud into semantically mean-
ingful parts and then it semantically label each of the parts into one of the pre-
defined classes. This is very useful in many applications to know what different
objects inside a point cloud or image are. In 2D semantic segmentation, it has
been shown that convolutional neural network gives good results[4] [20] [21]. In
the 3D case it has instead been popular to use a random forest classifier for se-
mantic segmentation of point clouds [19] [8]. Figure 1.1 shows a point cloud and
the same point cloud semantically segmented. In this thesis, we want to investi-
gate the use of convolutional neural networks for semantic segmentation of point
clouds.

1

2 1 Introduction

Figure 1.1: The upper image shows a point cloud with colour, taken with a li-
dar scanner. The lower image shows the semantic segmentation of the point
cloud, run through our pipeline. Red: man-made terrain, green: natural-
terrain, blue: high vegetation, purple: buildings, cyan: hard scapes and
black: unlabeled/void.

1.1 Problem 3

Semantic segmentation of images or point clouds, is used in different applications
today. In robotics, semantic segmentation is for example used to label objects in
a robots surroundings. If a robot needs to find a specific object, some kind of
object recognition is required. Then semantic labeling is very useful because the
robot can then classify and identify the objects in its surrounding. Autonomous
driving is also a field where semantic labeling is used. For a vehicle to drive by
itself it needs to know what different objects in its surrounding are. One of the
most important things for the vehicle to know is where the road is so it can follow
it. Another important thing to know is where other vehicles are so it for exam-
ple can adapt its speed to them or break if necessary. Also in 3D maps semantic
labeling is used to visualize objects e.g. buildings, terrain and roads. The seman-
tic labels then gives us a 3D map that is easier to interpret. Another application
where semantic segmentation of point clouds is useful, is registration of 3D point
clouds. In registration, a rigid transform between two sets of point is calculated
to align the two point sets [2].

When performing semantic segmentation on point clouds there will be some
more difficulties than in the 2D case. One large difficulty is that there is not
as much training data in the 3D case. This is because it is much harder to an-
notate the datasets in 3D than in 2D. Another challenge is that the point clouds
have sparseness between its points, which make it possible to see through objects.
This makes it harder to see the structures in the point cloud and to distinguish
which structure a point belongs to.

1.1 Problem

The purpose of this thesis is to investigate semantic segmentation of point clouds
using pre-trained 2D convolutional neural networks. This is performed by pro-
jecting synthetic 2D images from the point clouds and segment them using the
convolutional neural networks.

1.2 Motivation

To semantically segment point clouds we choose to project the point clouds into
2D images. This is because in 2D the problem of semantic segmentation has been
more explored than in 3D, which means that there are more choices of classifiers
to segment the images. Another reason for doing the projection into 2D is that
there is abundance of training data in 2D than in 3D. This makes it easier to test
on different data and also there are more variety of training data. The choice of
using a convolution neural networks (CNN) was done because they have proven
to be a good tool for semantic segmentation of images.

4 1 Introduction

1.3 Contributions

In this thesis, we propose a method for semantic segmentation of point clouds.
The first step of the method is to project point clouds into virtual 2D RGB im-
ages. Then, a pretrained convolution neural networks is used to semantic classify
the images. This gives us scores for each class in each pixel in the semantically
images. The scores are then projected into the point cloud, which gives us a
semantically labeled point cloud. Lastly the labeled point clouds are evaluated
using ground truth from the dataset Semantic3D [3].

1.4 Outline

The outline of the report is first a related work chapter with background theory
(see chapter 2). Then the proposed method for semantic segmentation of point
clouds is described in chapter 3. A brief overview of the implementation is then
presented in chapter 4. After this the experiments in the thesis are described and
the results is presented in chapter 5. In chapter 6 the discussion and future work
are presented. In chapter 7 the conclusion of the thesis is presented.

2
Related Work

This chapter describes related work of the thesis. Section 2.1 is about convolu-
tional neural networks, section 2.2 is about semantic segmentation in 2D and
section 2.3 is about semantic segmentation in 3D.

2.1 Convolutional Neural Networks

A CNN [9] [11] is a powerful machine learning method, widely used in computer
vision for e.g. classifying images. CNNs are a type of feed forward networks,
which means that the information only moves in one direction. A CNN takes in-
put images which are passed through the network and it outputs e.g. a classified
image or a pixel-wise classified image. There are different types of layers in a
CNN and one of the most important is the convolution layer. This layer consists
of multiple learnable filters which can be updated during training. The input
of the layer is convoluted with several filters, resulting in a 2D activation. The
activation map is then the input to the next layer.

Another important layer is the pooling layer [13]. This layer downsample the in-
put. The most common type of pooling layer is the max pooling layer. The max
pooling layers divide the input into small non-overlapping rectangular regions
and pick out the maximum value from each region. This layer reduces the spa-
tial size of the image and it also reduces the number of parameters needed to be
calculated. This makes it easier to prevent overfitting when training a network.
Even though the spatial size is reduced the strong activation remains when a fea-
ture has been found. Another common layer is the ReLU layer which uses the
activation function f (x) = max(0, x). This layer is used to increase the nonlinear
properties of the decision function.

5

6 2 Related Work

To train the filters in a CNN, a loss-function is used. The loss-function can for
example measure the number of wrongly labeled pixels in an image. The loss-
function then penalizes all the wrongly predicted pixels with a loss. In the most
simple case all wrongly predicted labels are penalized the same. There are differ-
ent kinds of loss-functions and one of the simplest is the square error seen in the
equation below:

V (f (~x), y) = (y − f (~x))2 (2.1)

y is the true value and f (~x) is the predicted value of an input sample ~x. The
problem with the square error loss-function is that it tends to penalize outliers
more and therefore it takes longer times to converge. Another loss-function more
commonly used in deep learning, is the cross entropy loss-function. This function
does not penalize outliers too much. For the two-class problem y = 0, 1, the cross
entropy loss-function is given by:

V (f (~x), y) = −y(ln(f (~x)) − (1 − y)ln(1 − f (~x)) (2.2)

During training the loss function is calculated by measuring the error of the out-
put. The network then decides how it will penalize the differences between the
predicted labels and the true labels. A common method to train a CNN is back
propagation with stochastic gradient decent. This method calculates the gradient
of the loss-function and uses this error to recalculate the weights in the filter to
minimize the loss-function.[11]

2.2 Semantic Segmentation in 2D

Semantic segmentation [17] in 2D is the problem of finding different objects in
images and classify each object into a pre-defined class. In semantic segmenta-
tion of images, an image is divided into regions that are classified into one of the
pre-defined classes. A common method for semantic segmentation of images in
2D is using convolution neural networks to pixel-wise label images [4] [20] [21].
An example of a semantically segmented image can be seen in figure 2.1.

2.3 Semantic Segmentation in 3D 7

Figure 2.1: The figure shows an image on the left and on the right, the se-
mantic segmentation of the image.

2.3 Semantic Segmentation in 3D

In the 3D case of semantic segmentation, the task is to semantically segment
point clouds instead of images. There are different approaches to solve the prob-
lem and it is popular to use a random forest classifier [19] [8]. A random forest
[1] consists of multiple predictions trees. Each tree outputs a predicted class and
together all trees vote for the most popular class. In [19] the authors semantically
segment point clouds of indoor scenes, by using conditional random fields (CRF).
The unary potentials of the CRF is initialized by using the result from a random
forest classifier and then the pairwise potentials are learned from training data.
Another method [8] use a random forest classifier to semantically segment 3D
models of cities. The random forest classifier is trained on light-weight 3D fea-
tures and is used for an initial labeling of the scene. Then the scene is separated
into individual facades by detecting differences in their semantic structures. Fi-
nally the authors propose architectural rules that express preferences like align-
ment and co-occurrence of facades, which helps to improve the results. Another
approach is used in [5] where they down-sample the point cloud stepwise to gen-
erate a multi-scale neighbourhood. A search structure is then computed for each
scale level to fast and easy extract features from neighbourhoods. To semantically
segment the point clouds they extract a feature vector and then uses a random for-
est classifier.

3
Method

In this chapter the proposed method for semantic segmentation of point clouds
is described.

3.1 Outline

This section gives a brief overview of the proposed pipeline. The pipeline con-
sist of three parts. The first part is a projection of the point clouds into 2D RGB
images, depth images and label images. The second part is using a CNN for se-
mantic segmentation of the projected RGB images. The third part of the pipeline
is projecting back the segmented images into the point cloud. An overview of the
pipeline can be seen in the figure 3.1.

9

10 3 Method

Figure 3.1: The figure shows an overview of the proposed pipeline for se-
mantic segmentation of point clouds. The first part project the point clouds
into virtual 2D images. The second part perform the semantic segmenta-
tion of the images. The last part, back projects the semantically segmented
images into the point cloud, creating a semantically segmented point cloud.

3.2 Projection of Point Clouds into 2D

This section describes the projection of the point clouds into virtual 2D images.
The projection step outputs an RGB image, a depth image and a label image for
each projection.

3.2.1 Defining Camera

The first step in the pipeline was to project the point clouds into virtual 2D im-
ages. In our case this step is necessary because we use unorganized point clouds
as input and the initial camera is unknown. Because of this we project the point
cloud into 2D images. To generate the 2D images we choose to define a camera.
Other methods are also possible, such as meshing, but it was too time consuming
on the large point clouds. The camera used was defined by an intrinsic and an
extrinsic camera matrix. The extrinsic camera matrix is a transformation from
world coordinates to camera coordinates. The intrinsic camera matrix instead
defines geometric properties of the camera. The pinhole camera is defined by:

C = K[R T] (3.1)

were R is a 3×3 matrix which defines the rotation of the camera. T is a 3×1 matrix
which defines the translation of the camera. K is the intrinsic camera matrix
which has the following parameters:

3.2 Projection of Point Clouds into 2D 11

K =

αx γ u0
0 αy v0
0 0 1

 (3.2)

where αx = f ·mx and αy = f ·my is the focal length in terms of pixels. These two
parameters decide the zoom of the camera. mx and my are scalars that represent
the relation between the pixels and the distance and f is the focal length of the
camera. γ is the skew coefficient between the x and y-axis. u0 and v0 is the prin-
ciple point of the camera which ideally should be in the center of the image. In
our case γ was set to zero and u0 and v0 was set to be in the center of the image.
This is because we wanted an ideal camera with no skewing factor between the
axes.

The camera could be placed anywhere inside the point cloud. In our case the cam-
era was placed in the origin of the point cloud. This is because the point clouds
used was taken with a single Lidar scan. The camera would then only project on
the areas visible during the scan of the point cloud. In our case the camera was
rotated around so it captured most parts of the point cloud. For each rotation, a
projection was made. In figure 3.2 projections from two views are shown.

3.2.2 Katz Projection

During the projection, it was important to determine which points were visible
from the camera. To solve this, an algorithm called Katz projection [7] was used.
The reason for using the Katz projection is that it is a fast method to determine
which points in a point cloud are visible. The algorithm uses a hidden point oper-
ator that removes all the point that are not visible from the camera. For example
if the camera projects a tree inside a point cloud, all points behind it was re-
moved by the Katz projections. The algorithm also removes points that are close
to each other to speed up the algorithm. The Katz projection is performed in two
steps, inversion and convex hull construction. The method used for the inversion
is called spherical flipping. It is performed by defining a sphere with radius R
around all the points in the point cloud and a camera C is placed in the origin.
The spherical flipping of the points are calculated using following formula:

p̂i = f (pi) = pi + 2(R − ||pi ||)
pi
||pi ||

(3.3)

where R is the radius of the circle, pi is a point in the point cloud and ||pi || is the
norm. This operator will then reflect the points inside the sphere, along a ray
from C to pi , to the image outside the sphere. The points nearest the camera will
then be furthest away from the camera after the spherical flipping. The next step

12 3 Method

of the Katz algorithm is the construction of the convex hull to determine which
points are visible. This is because a point p is said to be visible when its trans-
formed point p̂ resides in the convex hull.

When it had been determined which points were visible the projection of the 3D
points into the pixels was performed. This was done by following formula:

p̂i = Cpi (3.4)

where C is the camera matrix, pi is the visible points and p̂i is the projected
points. As the points do not always project right onto a pixel, nearest neighbour
is used to project the points into the pixels. After this each visible point had its
depth from the camera and a weight calculated. This weight determined how
much the point contribute in its corresponding pixels. The weights for the points
were calculated using splatting [16], which is a method that splat the point into
the surrounding pixels. Following Gaussian function was used to calculate the
weights:

w =
1

2π · 0.25
e−0.5 dist

2
0.25 (3.5)

where dist is the distance between the pixel and the position of the point.

3.2.3 Mean Shift Clustering

The next problem was to calculate the depth and the RGB values of the pixels.
Because it can be more than one point in a pixel, we had to calculated how much
each point contributes to the depth and RGB values of a pixel. This was solved
by using a mean shift clustering algorithm that calculates a weighted mean of
the depth and the RGB, depending on the density of the points. The mean shift
clustering algorithm [14] is a non-parametric algorithm that is used for finding
the maximum of a density. To get the depth using the mean shift clustering algo-
rithm, following formula is calculated:

m(d) =
∑
K(di − d)di∑
K(di − d)

(3.6)

where K(di − d) is a kernel function, d is the current depth estimate and di is the
depth of the current point being calculated. To calculate the RGB value using the
mean shift algorithm, following formula is used:

m(rgb) =
∑
K(di − d)rgbi∑
K(di − d)

(3.7)

3.2 Projection of Point Clouds into 2D 13

where rgb is the RGB value for the current point being calculated. In our case is
the kernel function defined by:

K(di − d) = wk = w · e
−0.5dist

σ (3.8)

where w is the weight for the point calculated in equation 3.5, dist is the dif-
ference in depth between a point and current estimate and σ is a variable that
defines the width of the kernel.

The last step of the mean shift algorithm is to update the estimate d and this is
done by:

d ← m(d) (3.9)

The estimate d is updated iteratively until the gradient of the mean shift has con-
verged. When the gradient has converged, the RGB and the depth of the pixel
is set to the final estimates m(rgb) and m(d) of the cluster with largest cluster
value. Pixels containing no points had the RGB set to black and the depth to zero.
An overview for the mean shift clustering and the final calculation of color and
depth can be seen in algorithm 1.

3.2.4 Generating Label Images

To evaluate the semantically segmented images, a label image was created for
each pose. The Semantic3D dataset (see section 5.1) has labels for each point in
the point cloud and we used this dataset for the evaluation. To generate the label
images a simple max algorithm was used. Each pixel was labeled to the most fre-
quently occurring label, excluding the label unlabeled, among the points in the
pixel. This is because the most frequent occurring label in the point clouds was
unlabeled. A pixel was labeled into unlabeled, if unlabeled was the only occur-
ring label among its points. Pixels with no points was labeled to void.

14 3 Method

Figure 3.2: Shows the RGB, the depth image and the label images for two
different poses of the bildstein3 point cloud.

3.2 Projection of Point Clouds into 2D 15

Algorithm 1 : Mean shift clustering

Input:
Vector of points { p1...pi} . each point contains a depth d, a rgb and a weight w

Output:
Depth value: d
RGB value: rgb

Initialize:
lim=val . set a limit were the gradient is close to zero
start_point . Vector that store if a point is a start point for the mean shift.
current_clustermax=0

for u=1:i do

If start_point(u) == 1
md = pu,d . start depth for mean shift algorithm for each point

while dif f > lim do . Mean Shift

mdold = md . save old md for calculation off diff
Calculate md using equation 3.6
Calculate mrgb using equation 3.7
cluster_val =

∑
K(di − d) . calculate current cluster value

Update md using equation 3.9
dif f = mdold −md . Calculate diff to check lim next iteration

end while

end If

Set d and rgb for the cluster with largest cluster_val
If cluster_val > current_clustermax

current_clustermax = cluster_val
d = md
rgb = mrgb

end If

end for

16 3 Method

3.3 2D Semantic Segmentation

The next step of the pipeline was to semantically segment the projected RGB
images of the point clouds. The semantic segmentation of the images, was per-
formed by a pre-trained CNN. In this thesis two different CNNs were used for the
task. This because we wanted to compare how different CNNs affect the result
of our method. One of the CNN used was the Laplacian pyramid Reconstruction
network [4], which performs pixel wise labeling and is trained on the Cityscapes
dataset [12]. The Cityscapes dataset contains sequences of street scenes collected
from 50 different cities, with high quality pixel-level annotations. The dataset
contains 19 semantic classes, which belongs to 7 different categories of ground,
construction, object, nature, sky, human, and vehicle.

Figure 3.3: On the left a sample from the Cityscapes dataset is shown. To
the right the pixel-wise annotation of the image is shown.

The Laplacian Pyramid Reconstruction and Refinement (LRR) network defines
an architecture of a Laplacian reconstruction pyramid to fuse predictions from
high resolution layers with low resolution layers. The LRR-net decomposes the
images into disjoint frequency bands, which produces down sampled sub bands.
Each sub band is classified and the scores from the sub bands are merged us-
ing the LRR architecture. During the reconstruction of the sub bands the CNN
uses learned basis-functions. The basis-functions were initialized using PCA and
it was trained which basis-functions was most relevant for the task. The CNN
finally outputs a score for each pixel when all sub bands has been reconstructed.

The other CNN used was from the paper [21] trained on the ADE20K dataset
and performs pixel-wise classification. The ADE20K dataset has 150 classes with
a diverse set of scenes. All images in the dataset is fully annotated and many
objects are also annotated with their parts.

3.4 Back projection of scores 17

Figure 3.4: On the left a sample from the ADE20K data set is shown. To the
right the images corresponding labels are shown.

The ADE20K-net are using a design called cascade segmentation module. First
are the objects categorized in three large macro classes, stuff (e.g. road, sky, build-
ing), foreground (e.g. tree, car, chair) and parts (e.g. car wheel, car door). To rec-
ognize the different macro classes, different streams of high-level layers are used.
The final segmentation result by fusing all the segmentation from the different
streams, which finally outputs scores for each class for each pixel in the image.

The LLR-net and the ADE20K-net were chosen for the semantic segmentation
of the images, because these networks had classes suited for Semantic3D and
VPS (see section 5.1). Semantic3D and VPS are the two datasets used for evalua-
tion and testing. Both networks were new during the thesis and it had also been
proven that the networks had good performance.

3.4 Back projection of scores

The last step of the pipeline is the back projection of the scores from the seg-
mentation into the point cloud. This step outputs two semantically segmented
point clouds. One down-sampled to approximately 100000 points, used for ex-
periments, and one full sized point cloud used for evaluation. In the final point
clouds the coordinates, the RGB value and the scores for each class were stored
for each point. A problem during the projection of the scores into the point cloud,
was that a point in the point cloud occurs more than one time in the projected
2D images. To solve this problem, we implemented two different methods, max-
pooling of the scores and summation of the scores. An overview for the methods
can be seen in algorithm 2 and 3. The max-pooling was chosen because a better
score for a class means the network is more confident that it is correct and there-
fore it chooses the point in the images with the highest score. The summation of
the scores was used because it is the most intuitive method to merge the scores
from a point.

18 3 Method

Algorithm 2 : Max-pooling of scores

Input:
Sequence of classified images: { I1...Ij }
Point Cloud: P
Point index: i
Class index: c

Output:
Point cloud with scores: P̂

Initialization:
ˆpi,c = −99999999 . set all scores in point cloud to -∞

for k=1:j do . loop through all images

Run Katz algorithm to acquire the points p that the image Ik contains.

Store the points p in vectors {v1...vx } corresponding to which pixel they
belongs to.

for q=1:x do . loop through all pixels

Get the scores S for pixel q in Ik

for c=1:num_classes do . loop through classes

if Sc > ˆpl,c . if the scores is larger in the pixel than for the points in P
. pl is a point in vector vq and p̂l is the corresponding point in the point cloud

ˆpl,c = Sc . max-pooling of scores

end if

end for

end for

end for

3.4 Back projection of scores 19

Algorithm 3 : Sum of scores

Input:
Sequence of classified images: { I1...Ij } . each pixel contains as score for each
class
Point Cloud: P
Point index: i
Class index: c

Output:
Point cloud with scores: P̂

Initialization:
ˆpi,c = 0 . set all scores in point cloud to 0

for k=1:j do . loop through all images

Run Katz algorithm to acquire the points p that the image Ik contains.

Store the points p in vectors {v1...vx } corresponding to which pixel they
belongs to.

for q=1:x do . loop through all pixels

Get the scores S for pixel q in Ik

for c=1:num_classes do . loop through classes

. pl is a point in vector vq and p̂l is the corresponding point in the point cloud
ˆpl,c = ˆpl,c + Sc . summation of scores

end for

end for

end for

4
Implementation

This chapter describes the libraries and the implementation of the method.

4.1 Libraries

This section describes important libraries used in this thesis.

4.1.1 PCL

PCL [15] is a library for processing 2D/3D images and point clouds. In this thesis
it has been used to process point clouds and doing operation on them.

4.1.2 Matconvnet

Matconvnet[18] is a deep learning library for Matlab that has been used in this
thesis. This library has been used for both training networks and semantic seg-
mentation of images in this thesis.

4.1.3 Caffe

Caffe [6] is a deep learning library in C++. This library also has two wrappers,
one in python and one in matlab. In this thesis, the wrapper in matlab called
matcaffe has been used for semantic segmentation of images.

21

22 4 Implementation

4.2 Implementation of Semantic Segmentation of
Point Clouds

The first part of the pipeline, projection of point clouds into 2D images, was im-
plemented in C++. Also, the PCL library was used to store point clouds and to
perform operations on them. First were the point clouds read and stored in PCL
point clouds. Then the Katz projection was performed and all visible points were
stored in different point-structs with its index, depth value, RGB values, label
and weight. All points that were in the same pixel had their point-structs stored
in the same vector. Then the mean shift clustering algorithm was performed for
each pixel and a depth and RGB images were created. Lastly the label images
were created.

The semantic segmentation part used both matconvnet and the matlab wrapper
of the caffe library, depending on which network was used. The LRR- net was
based on matconvnet. The ADE20K-net was based on the caffe library and there-
fore the matcaffe was used to segment the images. The scores were saved into bin
files so we easily could read them in C++

The back projection of the scores into the point cloud was also implemented in
C++ with the help of the PCL library. The first step was to read the point cloud
into the PCL point cloud class. Then two new point clouds were created with
only the coordinates of the points. One fully sized point cloud and one point
cloud down sampled to approximate 100 000 points. Then the Katz algorithm
was performed for each camera angle, because we needed to know which point
was in which projection. Lastly the scores from the bin-files were read and either
the max pooling algorithm or the summation algorithm were used to store the
scores into the point clouds.

5
Experiments

This chapter describes the datasets used for the experiments, the performed ex-
periments and the results.

5.1 Datasets

In this thesis two datasets have been used for the experiments, Semantic3D and
VPS. Semantic3D [3] is a dataset containing labeled point clouds of urban scenes.
All points in the point clouds has a RGB value and a XYZ coordinate. The dataset
have 8 different classes and one unlabeled class as is shown in table 5.1. In this
thesis the Semantic3D dataset has been used for evaluation of classification for
both images and point clouds.

Class Class number
man-made terrain 1

natural terrain 2
high vegetation 3
low vegetation 4

buildings 5
hard scapes 6

scanning artefacts 7
cars 8

unlabeled 0
Table 5.1: Shows the classes for Semantic3D dataset.

23

24 5 Experiments

The Semantic3D dataset consist of 30 labeled point clouds. We used six of them
for evaluation. These six were Bildstein3, Bildstein5, Domfountain1, Domfoun-
tain2, Untermaederbrunnen1 and Untermaederbrunnen3. These point clouds
were chosen because they are relatively small and well labeled. In figure 5.1, the
six point clouds used are shown. Figure 5.2 and 5.3, shows the bildstein3 and
domfountain3 point clouds and an image inside of them.

Figure 5.1: The images shows the six point clouds used for evaluation. Top
left: Bildstein3. Top right: Bildstein5. Middle left: Domfountain1. Middle
right: Domfountain2. Bottom left: Untermaederbrunnen1. Bottom right:
Untermaederbrunnen3.

5.1 Datasets 25

Figure 5.2: The upper image shows the bildstein3 point cloud from above.
The lower image shows a view inside the point cloud.

26 5 Experiments

Figure 5.3: The upper image shows the domfountain1 point cloud from
above. The lower image shows a view inside the point cloud.

5.1 Datasets 27

The VPS dataset [10] is a dataset made by Linköpings University and contains
RGB point clouds acquired using a lidar scanner. There are point clouds from a
courtyard and from an indoor scene. This dataset has no labels, hence it is only
used for qualitative testing. In this thesis, only the courtyard point clouds are
used as we investigate semantic segmentation on outdoor scenes and the CNNs
used only has fitting classes for the courtyard.

Figure 5.4: The upper image shows the courtyard from the VPS1 point cloud
from above. The lower image shows a view inside the point cloud.

28 5 Experiments

5.2 Performance Measures

This section describes the experiments and their measures.

5.2.1 Measures for Semantically Segmented Images

To evaluate the performance of the CNNs, we measured the pixel accuracy (see
equation 5.1), the mean accuracy (see equation 5.2), the mean intersection over
union and the intersection over union for each class (see equation 5.3). To calcu-
late the pixel accuracy following formula was used:

P A =
T P
N

(5.1)

where the TP is the true positives, or the correctly labeled pixels. N is the number
of all valid pixels in the image.

The mean accuracy over all classes was calculated using the following formula:

MPA =

∑k
i=1

T Pi
FPi+T Pi
k

(5.2)

where T Pi is the true positives and FPi is the sum of the false positives for class
i. A false positive is a pixel that were labeled wrongly with a certain class. For
example, in our case all pixels that were labeled wrongly with the label car, or all
pixels that were wrongly labeled with building.

To calculate the intersection over union for a class, the following formula was
used:

IoUi =
T Pi

FPi + FNi + T Pi
(5.3)

where TP is the true positives FP is the false positives and FN is the false negative
or all the pixels that should have been labeled with a certain class but was not.
For example all pixels that was labeled in the ground truth with car, but were
labeled with another class. To calculate the mean intersection over union (mIoU)
the mean of all IoUs were calculated.

For ground truth the projected label images was used. Because the LRR-net and
the ADE20K-net had different classes from Semantic3D, we had to map the clas-
sified classes into the 8 classes of Semantic3D. For example, all buildings, walls,
roofs were mapped into the buildings class in Semantic3D. Traffic lights, signs,

5.2 Performance Measures 29

fences and poles were mapped into the hard scapes class. We first decided which
class had the highest score and then the mapping was performed. The full map-
ping table for the ADE20K dataset into Semantic3D can be seen in table A.1 in
the appendix. Table A.2 in the appendix shows the mapping from Cityscapes to
Semantic3D. To calculate the pixel accuracy, mean accuracy and the mean inter-
section over union, the confusion matrix for all classified images was calculated.
Pixels for which the ground truth was labeled with either void, unlabeled or scan-
ning artefacts was excluded from the calculations.

Because the Semantic3D dataset had 3 different classes for vegetation and the
LRR-net only had two, we made two different evaluations of the dataset. One
where we merged all the vegetation classes into one class and one where we did
not merge them.

5.2.2 Measures for Semantically Segmented Point Clouds

To evaluate the semantically segmented point clouds, we used the same measures
as for the images, point accuracy, mean point accuracy, mean intersection over
union and intersection over union for each class. For ground truth, the Seman-
tic3D labels were used. Points labeled to unlabeled or scanning artefacts in the
ground truth were excluded from the evaluation. Also points without labels from
the pipeline were excluded. The confusion matrix was calculated for all the valid
points and the point accuracy, mean accuracy and mean intersection union was
calculated using the same formulas as for evaluating the projected images.

30 5 Experiments

5.3 Results

This section shows the results of the experiments.

5.3.1 Semantic Segmentation of Images

This section shows semantically segmented images projected from the point clouds,
from our pipeline. In the figures 5.5-5.8 we can see that the ADE20K network per-
forms better than the LRR-net. This can be seen by comparing the ground truth
images with the mapped semantically segmented images. Especially in figure 5.6
we can see that the LRR-net performs much worse than the ADE20K network.
This may be because the LRR-net is trained on street scenes and is therefore not
fit to classify images with so much vegetation. The ADE20K network is trained
on a more varied data and can therefore perform better. The brown stripes that
can be seen in the ground truth of e.g. figure 5.8, are pixels that have been labeled
with the class scanning artefacts and are excluded from the evaluation.

5.3 Results 31

Figure 5.5: Shows a view for Bildstein3 and the semantic segmentation of
the view. Top right: Our projected ground truth for the view. Middle left:
The semantically segmented image from the ADE20K-net. Middle right:
The semantically segmented image mapped into semantic3D classes for the
ADE20K net. Bottom left: Semantic segmentation of the image from LRR-
net. Bottom right: The semantically segmented image mapped into seman-
tic3D classes for the LRR-net.

32 5 Experiments

Figure 5.6: Shows a view for Bildstein5 and the semantic segmentation of
the view. Top right: Our projected ground truth for the view. Middle left:
The semantically segmented image from the ADE20K-net. Middle right:
The semantically segmented image mapped into semantic3D classes for the
ADE20K net. Bottom left: Semantic segmentation of the image from LRR-
net. Bottom right: The semantically segmented image mapped into seman-
tic3D classes for the LRR-net.

5.3 Results 33

Figure 5.7: Shows a view for Domfountain1 and the semantic segmenta-
tion of the view. Top right: Our projected ground truth for the view. Mid-
dle left: The semantically segmented image from the ADE20K-net. Middle
right: The semantically segmented image mapped into semantic3D classes
for the ADE20K net. Bottom left: Semantic segmentation of the image from
LRR-net. Bottom right: The semantically segmented image mapped into se-
mantic3D classes for the LRR-net.

34 5 Experiments

Figure 5.8: Shows a view for Untermaederbrunnen1 and the semantic seg-
mentation of the view. Top right: Our projected ground truth for the
view. Middle left: The semantically segmented image from the ADE20K-
net. Middle right: The semantically segmented image mapped into seman-
tic3D classes for the ADE20K net. Bottom left: Semantic segmentation of
the image from LRR-net. Bottom right: The semantically segmented image
mapped into semantic3D classes for the LRR-net.

5.3 Results 35

Figure 5.9: Shows a view from VPS1 and the semantic segmentation for the
view. Top right: The view semantically segmented with ADE20K net. Bot-
tom: The mapped semantically segmented view for the ADE20K net.

36 5 Experiments

5.3.2 Semantic Segmentation of Point Clouds

This section shows semantically segmented point clouds, from our pipeline. As
seen in both figure 5.10 and 5.11 the buildings are easy for our pipeline to label
correctly for both networks. We also see that the vegetation is not as good clas-
sified. This may be because it is hard to distinguish the different objects in the
projected images and therefore they are labeled wrongly. We also see that our
pipeline labels some of the man-made terrain into buildings. This may be be-
cause in some images the ground and the buildings looks alike. The black points
in our semantically segmented point clouds are the points set to void. The dark
areas in the point clouds, is the points that we did not cover with our projections.
Because of this these points did not get a label.

Figure 5.10: Top left: Bildstein3 point cloud. Top right: Ground truth for
Bildstein3. Bottom left: Semantically segmented Bildstein3 using ADE20K
net. Bottom right: Semantically segmented Bildstein3 using LRR-net.

5.3 Results 37

Figure 5.11: Top left: Domfountain1 point cloud. Top right: Ground truth
for Domfountain1. Bottom left: Semantically segmented Domfountain1 us-
ing ADE20K net. Bottom right: Semantically segmented Domfountain1 us-
ing LRR-net.

38 5 Experiments

5.3.3 Evaluation of Semantic Segmentation of Images

This section shows the results for the classified images. The measures used are de-
scribed in section 5.2 and in table 5.2 the pixel accuracy (PA), mean pixel accuracy
(mPA) and the mean intersection of union (mIoU) are shown for the ADE20K-net
and the LRR-net. In table 5.3 the intersection of union (IoU) for each class is
shown.

Network PA mPA mIoU
ADE20K 0.6965 0.5730 0.3980
LRR-net 0.6629 0.4365 0.2801

Table 5.2: Pixel Accuracy, mean pixel accuracy and mean intersection over
union for the semantically segmented images.

Network IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU8
ADE20K 0.3746 0.3408 0.3790 0.1839 0.7558 0.2433 0.5086
LRR-net 0.4028 0 0.4202 0.0264 0.7254 0.1293 0.2565
Table 5.3: Intersection over union for each class for the semantically seg-
mented images.

As seen in table 5.2 the ADE20K-net performed better than the LRR-net. Some
reasons for this can be that the ADE20K-net was trained on a more variety of
data than the LRR-net that had training data mostly from street scenes of cities.
The point clouds from the semantic3D dataset contains both street scenes and
areas with more vegetation, which is why the ADE20K-net where more suitable
for the task. Another reason for the less performance of the LRR-net is that it
only has two classes for vegetation where the semantic3D had 3 classes. For this
we map the two vegetation from the LRR-net classes into the two best fitting in
vegetation classes in Semantic3D, which lead to one of the classes always getting
a 0 percent accuracy as seen in table 5.3. To get a better representation of the
measures we merged vegetation classes (class 2-4) into one during the mapping
and the PA, mPA and mIou can be seen in table 5.4. In table 5.5 the IoU for
merged vegetation and the other evaluated classes can be seen.

Network PA mPA mIoU
ADE20K 0.7409 0.6224 0.4796
LRR-net 0.6907 0.5292 0.3752

Table 5.4: Pixel Accuracy, mean pixel accuracy and mean intersection
over union for the semantically segmented images with merged vegetation
classes.

5.3 Results 39

Network IoU1 IoU2-4 IoU5 IoU6 IoU8
ADE20K 0.3746 0.5155 0.7558 0.2433 0.5086
LRR-net 0.4028 0.3618 0.7254 0.1293 0.2565

Table 5.5: Intersection over union for each class for the semantically seg-
mented images with merged vegetation classes.

Comparing the measures from table 5.2 and 5.4 we can see that all measures got
slightly better for both networks when the vegetation was merged. This because
some vegetation looks alike in the images and the networks classify them with
the wrong vegetation labels. Therefore, when merging the vegetation classes, the
accuracy improves as there is only one vegetation class. For the LRR-net the zero
accuracy on class 2 also is gone, which improves the accuracy further. In table
5.5 you can also see that the IoU for the merge classes. Comparing the IoU from
this merged class with the IoU for the vegetation classes (2,3 and 4) in table 5.3
we see the IoU for the merge class is better. Especially for the ADE20K-net were
the IoU of the merge vegetation class was better than for any of the vegetation
classes. This indicates that the network had classified many vegetation pixels
into the wrong vegetation class.

5.3.4 Evaluation of Semantic Segmentation of Point Clouds

This section shows the result of the semantically segmented point clouds. In table
5.6 the point accuracy (PA) mean point accuracy (mPA) and the mean intersection
of union (mIoU) are presented for the point clouds. As seen in the table both
networks were evaluated for both projecting methods. Also in table 5.7 the IoU
for each class is presented for both projecting methods.

Network Method PA mPA mIoU
ADE20K max 0.7114 0.5909 0.4051
LRR-net max 0.6900 0.4364 0.2859
ADE20K sum 0.7243 0.5958 0.4167
LRR-net sum 0.7005 0.4398 0.2923

Table 5.6: Point Accuracy, mean point accuracy and mean intersection over
union for the semantically segmented point clouds.

Network Method IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU8
ADE20K max 0.3868 0.2875 0.3639 0.2012 0.7680 0.3010 0.5274
LRR-net max 0.4648 0 0.3992 0.0376 0.7396 0.1094 0.2504
ADE20K sum 0.3965 0.3029 0.3815 0.1925 0.7813 0.2979 0.5644
LRR-net sum 0.4749 0 0.4036 0.0293 0.7515 0.1091 0.2776
Table 5.7: Intersection over union for each class for the semantically seg-
mented point clouds.

40 5 Experiments

As seen in table 5.6 the method that performed best for both networks was the
projection using summation of the scores. A reason for this may be that the max
pooling only takes out the maximum score for a point. If this label is not correct
the point is labeled wrongly. The summation instead takes the largest summation
of a score for the point, which necessarily won’t pick the label with the highest
individual score.

The problem for the LRR-net with the mapping of 2 vegetation classes into the 3
vegetation classes of semantic3D, also occurs for the point clouds. The same solu-
tion as for the semantically segmented images of merging the vegetation classes
was used to solve the problem. The PA, mPA and mIoU can be seen for the merged
vegetation in table 5.8. Also the IoU for each class can be seen in table 5.9.

Network Method PA mPA mIoU
ADE20K max 0.7432 0.6490 0.4886
LRR-net max 0.7097 0.5324 0.3814
ADE20K sum 0.7557 0.6526 0.5025
LRR-net sum 0.7217 0.5385 0.3936

Table 5.8: Point Accuracy, mean point accuracy and mean intersection over
union for the semantically segmented point clouds with merged vegetation
classes.

Network Method IoU1 IoU2-4 IoU5 IoU6 IoU8
ADE20K max 0.3868 0.4595 0.7680 0.3010 0.5274
LRR-net max 0.4648 0.3429 0.7396 0.1094 0.2504
ADE20K sum 0.3965 0.4723 0.7813 0.2979 0.5644
LRR-net sum 0.4749 0.3551 0.7515 0.1091 0.2776

Table 5.9: Intersection over union for each class for the semantically seg-
mented point clouds with merged vegetation classes.

Comparing table 5.6 and 5.8 we see like for the images that the measures got bet-
ter with the merging of the vegetation classes. This is because, like for the images
there was a mix up between the vegetation classes and also for the LRR-net we do
not get the zero accuracy on class 2. In table 5.9 we can see that the IoU for the
merge vegetation was better than the vegetation classes in table 5.7.

We also compared our result with four existing results from [3], which are Harris-
Net, DeepSegNet, TMLC-MS [5] and TML-PC. An overview for the methods can
be seen in table 5.10. HarrisNet is an unpublished method using a 3D convolu-
tional network to semantically segment the point clouds. DeepSegNet is also an
unpublished approach which is very similar to our approach. In this method they
pick suitable views in the point clouds and generate a RGB image and an image

5.3 Results 41

containing geometric features for each view. When the images have been gener-
ated, pixel-wise labeling is performed using convolutional networks. Finally they
back project the labels into the point cloud. TMLC-MS [5] is a published method
that is described in related work, section 2.3. The last method TML-PC is also an
unpublished approach. This method uses pure colour information with context
aware features and TextonBoost.

In figure 5.12 the intersection of union for each class can be seen for HarrisNet,
DeepSegNet, TMLC-MS and TML-PC. In figure 5.13 the point accuracy is pre-
sented and in figure 5.14 the mean Intersection of union.

Method Description Published
HarrisNet Deep 3D Convolutional Network No

DeepSegNet Unstructured point cloud labeling using deep seg No
TMLC-MS ML with Covariance Features (Multi-Scale) Yes
TML-PC Pure color: context aware features and TextonBoost No

Table 5.10: Shows the methods that we compare our results with.

42 5 Experiments

Figure 5.12: Shows the IoU for each class for each method. Dark blue: Shows
the IoU for ADE20K-net with max pooling of the scores. Blue: Shows the IoU
for LRR-net with max pooling of the scores. Light blue: Shows the IoU for
ADE20K-net with summation of the scores. Turquoise: Shows the IoU for
LRR-net with summation of the scores. Green: Shows the IoU for HarrisNet.
Brown: Shows the IoU for DeepSegNet. Orange: Shows the IoU for TMLC-
MS. Yellow: Shows the IoU for TML-PC.

5.3 Results 43

Figure 5.13: Shows the pixel accuracy for our methods and the methods we
compared with.

Figure 5.14: Show the mIoU for our methods and for the methods we com-
pared with.

44 5 Experiments

As seen in figure 5.12 the IoU for each class for our methods was worse for almost
every class. A reason for this is that we did not use a network that was trained on
the semantic3D dataset and therefore had to map the classes into the semantic3D
classes, which will give us an error. If we instead compare the point accuracy in
5.13 we see that our method had about 10 percent worse accuracy than for the
best method but almost the same accuracy as for the worse method. We also see
that merging the vegetation gives us more comparable result. The same pattern
can be seen in figure 5.14 were the mIoU i shown. Here the merging of vegetation
boost the mIoU which gives us results who are second best for the ADE20K-net.

6
Discussion and Future Work

As described in section 3.3 we choose to use two pre-trained networks for the
classification. This is because it saved us time to not having to train a CNN and
also the focus of the thesis was not to perform the best segmentation. Our main
focus was to find a method to project 3D point clouds into 2D images and then
project the semantically segmented images back into the point cloud. A better
result for the evaluation could be achieved if we instead had trained our own
CNN, so it matched the semantic3D data better. The semantic segmentation of
the point clouds, could also be better if a depth channel was added into the CNN,
as we generate depth images in the projection of the point clouds. To train and
integrate the depth images for the semantic segmentation of the images could be
future work to improve the results.

In the evaluation of the segmentation many errors were introduced. As discussed
in 5.3 the mapping of the classes was necessary to evaluate the segmentation
as the labels were for the semantic3D dataset. The mapping introduces errors
in the evaluation. The networks could for example predict the class ground for
both grass and roads, which is two different classes in the Semantic3D dataset.
This will then introduce an error in the mapping. In the evaluation of the images
we had to create our own ground truth from the point cloud for each image. As
there could be more than one point in a pixel and we set the pixel in the ground
truth to the most occurring label, it introduced an error. This could be a reason
why the final measures of the point clouds improved a bit comparing with the
measures for the images.

From chapter 5 we see that the ADE20K network overall performed better than
the LRR network. A reason for this may be that the ADE20K network was trained
on a more variety of data. As the LRR-net mostly was trained on street scenes the

45

46 6 Discussion and Future Work

LRR-net performance was worse on areas with more vegetation. Another reason
for the better performance for the ADE20K network may be that it also had more
classes than the LRR-net. This makes it easier for the network to find a fitting
class for the objects.

As seen in section 5.3.4 the merging of the vegetation classes improved our re-
sults. As discussed this may be because the CNN used confuses the vegetation
classes and label the points with wrong vegetation class. We also see that our re-
sults are comparable to earlier results, especially when we merge the vegetation
classes.

7
Conclusion

In this this thesis, we have proposed a method to semantically segment point
clouds using deep learning. The proposed method is to project the point clouds
into 2D using the Katz projection and mean shift clustering. Then we semanti-
cally segment the projected 2D images using CNNs. Finally, we project back the
scores from the semantically segmentated images into the point clouds, using ei-
ther summation of scores or max pooling of the scores.

We find that our method performs well on the Semantic3D dataset. Our results
could be further improved by using CNNs trained on the semantic3D dataset. As
our CNNs were either trained on the Cityscapes dataset or the ADE20K dataset
we had to map our classes into the classes of Semantic3D for evaluation. Our
results could also be improved by integrating the depth images in the semantic
segmentation of the image. We also find that our results are comparable to state-
of-the-art without any fine-tuning on the Semantic3D dataset.

47

Appendix

A
Tables

51

52 A Tables

ADE20K Class ADE20K Class-num Sem3D Class Sem3D Class-num
void 0 void 0
wall 1 buildings 5

building 2 buildings 5
sky 3 void 0

floor 4 buildings 5
tree 5 high vegetation 3

ceiling 6 buildings 5
road 7 man-made terrain 1
bed 8 void 0

windowpane 9 buildings 5
grass 10 natural terrain 2

cabinet 11 void 0
sidewalk 12 man-made terrain 1
person 13 void 0
earth 14 natural terrain 2
door 15 buildings 5
table 16 void 0

mountain 17 natural terrain 2
plant 18 low vegetation 4

curtain 19 void 0
chair 20 void 0
car 21 car 8

water 22 natural terrain 2
painting 23 void 0

sofa 24 void 0
shelf 25 void 0
house 26 buildings 5

sea 27 natural terrain 2
mirror 28 void 0

rug 29 void 0
field 30 natural terrain 2

armchair 31 void 0
seat 32 void 0

fence 33 hard scapes 6
desk 34 void 0
rock 35 natural terrain 2

wardrobe 36 void 0
lamp 37 void 0

bathtub 38 void 0
railing 39 hard scapes 6

cushion 40 void 0
base 41 hard scapes 6

53

box 42 void 0
column 43 hard scapes 6

signboard 44 hard scapes 6
chest of drawers 45 void 0

counter 46 void 0
sand 47 man-made terrain 1
sink 48 void 0

skyscraper 49 buildings 5
fireplace 50 void 0

refrigerator 51 void 0
grandstand 52 hard scapes 6

path 53 man-made terrain 1
stairs 54 hard scapes 6

runway 55 void 0
case 56 void 0

pool table 57 void 0
pillow 58 void 0

screen door 59 buildings 5
stairway 60 hard scapes 6

river 61 natural terrain 2
bridge 62 hard scapes 6

bookcase 63 void 0
blind 64 void 0

coffee table 65 void 0
toilet 66 void 0
flower 67 low vegetation 4
book 68 void 0
hill 69 natural terrain 2

bench 70 void 0
countertop 71 void 0

stove 72 void 0
palm 73 high vegetation 3

kitchen island 74 void 0
computer 75 void 0

swivel chair 76 void 0
boat 77 void 0
bar 78 void 0

arcade machine 79 void 0
hovel 80 buildings 5
bus 81 car 8

towel 82 void 0
light 83 void 0
truck 84 car 8

54 A Tables

tower 85 buildings 5
chandelier 86 void 0

awning 87 void 0
streetlight 88 hard scapes 6

booth 89 buildings 5
television 90 void 0
airplane 91 void 0
dirt track 92 man-made terrain 1
apparel 93 void 0

pole 94 hard scapes 6
land 95 natural terrain 2

bannister 96 hard scapes 6
escalator 97 hard scapes 6
ottoman 98 void 0

bottle 99 void 0
buffet 100 hard scapes 6
poster 101 void 0
stage 102 hard scapes 6
van 103 car 8
ship 104 void 0

fountain 105 hard scapes 6
conveyer belt 106 hard scapes 6

canopy 107 buildings 5
washer 108 void 0

plaything 109 void 0
swimming pool 110 hard scapes 6

stool 111 void 0
barrel 112 void 0
basket 113 void 0

waterfall 114 natural terrain 2
tent 115 buildings 5
bag 116 void 0

minibike 117 void 0
cradle 118 void 0
oven 119 void 0
ball 120 void 0
food 121 void 0
step 122 hard scapes 6
tank 123 hard scapes 6

trade name 124 man-made terrain 1
microwave 125 void 0

pot 126 low vegetation 4
animal 127 void 0

55

bicycle 128 void 0
lake 129 natural terrain 2

dishwasher 130 void 0
screen 131 void 0

blanket 132 void 0
sculpture 133 hard scapes 6

hood 134 void 0
sconce 135 hard scapes 6
vase 136 void 0

traffic light 137 hard scapes 6
tray 138 void 0

ashcan 139 hard scapes 6
fan 140 void 0
pier 141 void 0

crt screen 142 void 0
plate 143 void 0

monitor 144 void 0
bulletin board 145 void 0

shower 146 void 0
radiator 147 hard scapes 6

glass 148 void 0
clock 149 void 0
flag 150 hard scapes 6

Table A.1: The table shows the mapping from the classes of ADE20K to the
classes of Semantic3D

56 A Tables

City Class City Class-num Sem3D Class Sem3D Class-num
void 0 void 0
road 1 man-made terrain 1

sidewalk 2 man-made terrain 1
buildings 3 buildings 5

wall 4 buildings 5
fence 5 hard scapes 6
pole 6 hard scapes 6

traffic light 7 hard scapes 6
traffic sign 8 hard scapes 6
vegetation 9 high vegetation 3

terrain 10 low vegetation 4
sky 11 void 0

person 12 void 0
rider 13 void 0
car 14 car 8

truck 15 car 8
bus 16 car 8

train 17 void 0
motorcycle 18 void 0

bicycle 19 void 0
Table A.2: The table shows the mapping from the classes of Cityscapes to
the classes of Semantic3D

Bibliography

[1] Leo Breiman. Random forests. Mach. Learn., 45(1), 2001. Cited on page 7.

[2] Martin Danelljan, Giulia Meneghetti, Fahad Shahbaz Khan, and Michael
Felsberg. Aligning the Dissimilar : A Probabilistic Method for Feature-
Based Point Set Registration. ICPR16, 2016. Cited on page 3.

[3] ETH Zurich. Large-Scale Point Cloud Classification Benchmark. URL
http://www.semantic3d.net/. Cited on pages 4, 23, and 40.

[4] Golnaz Ghiasi and Charless C. Fowlkes. Laplacian reconstruction and re-
finement for semantic segmentation. ECCV, 2016. Cited on pages 1, 6,
and 16.

[5] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast Semantic Segmen-
tation of 3D Point Clouds with Strongly Varying Density. ISPRS16, 2016.
Cited on pages 7, 40, and 41.

[6] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093, 2014. Cited on
page 21.

[7] Sagi Katz. Direct Visibility of Point Sets. ACM Trans. Graph., 26(3), 2007.
Cited on page 11.

[8] Jan Knopp, Hayko Riemenschneider, and Luc Van Gool. 3D All The Way
: Semantic Segmentation of Urban Scenes From Start to End in 3D. CVPR,
2015. Cited on pages 1 and 7.

[9] Yann LeCun and Yoshua Bengio. The handbook of brain theory and neural
networks. chapter Convolutional Networks for Images, Speech, and Time
Series, pages 255–258. MIT Press, Cambridge, MA, USA, 1998. Cited on
page 5.

[10] Linköping University. Virtual Photo Sets. URL http://www.hdrv.org/
vps/. Cited on page 27.

57

http://www.semantic3d.net/
http://www.hdrv.org/vps/
http://www.hdrv.org/vps/

58 Bibliography

[11] Tianyi Liu, Shuangsang Fang, Yuehui Zhao, Peng Wang, and Jun Zhang. Im-
plementation of Training Convolutional. arXiv:1506.01195, 2015. Cited on
pages 5 and 6.

[12] Marius Cordts. Cityscapes Dataset. URL https://www.
cityscapes-dataset.com/dataset-overview/. Cited on page
16.

[13] C V May. Fractional Max-Pooling. arXiv:1412.6071, 2015. Cited on page 5.

[14] Peter Meer. Mean Shift : A Robust Approach toward Feature Space Analysis.
IEEE, 24(5), 2002. Cited on page 12.

[15] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). ICRA, 2011. Cited on page 21.

[16] Richard Szeliski. Computer Vision : Algorithms and Applications. 2010.
URL http://szeliski.org/Book. Cited on page 12.

[17] Martin Thoma. A Survey of Semantic Segmentation. arXiv:1602.06541,
2016. Cited on page 6.

[18] Andrea Vedaldi and C V May. MatConvNet Convolutional Neural Networks
for MATLAB. arXiv:1412.4564. Cited on page 21.

[19] Daniel Wolf, Johann Prankl, and Markus Vincze. Fast Semantic Segmenta-
tion of 3D Point Clouds using a Dense CRF with Learned Parameters. ICRA,
2015. Cited on pages 1 and 7.

[20] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vi-
neet, Zhizhong Su, Dalong Du, Chang Huang, and Philip Torr. Conditional
Random Fields as Recurrent Neural Networks. ICCV, 2015. Cited on pages
1 and 6.

[21] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and An-
tonio Torralba. Semantic Understanding of Scenes through the ADE20K
Dataset. arXiv:1608.05442, 2016. Cited on pages 1, 6, and 16.

https://www.cityscapes-dataset.com/dataset-overview/
https://www.cityscapes-dataset.com/dataset-overview/
http://szeliski.org/Book

	Abstract
	Contents
	Notation
	1 Introduction
	1.1 Problem
	1.2 Motivation
	1.3 Contributions
	1.4 Outline

	2 Related Work
	2.1 Convolutional Neural Networks
	2.2 Semantic Segmentation in 2D
	2.3 Semantic Segmentation in 3D

	3 Method
	3.1 Outline
	3.2 Projection of Point Clouds into 2D
	3.2.1 Defining Camera
	3.2.2 Katz Projection
	3.2.3 Mean Shift Clustering
	3.2.4 Generating Label Images

	3.3 2D Semantic Segmentation
	3.4 Back projection of scores

	4 Implementation
	4.1 Libraries
	4.1.1 PCL
	4.1.2 Matconvnet
	4.1.3 Caffe

	4.2 Implementation of Semantic Segmentation of Point Clouds

	5 Experiments
	5.1 Datasets
	5.2 Performance Measures
	5.2.1 Measures for Semantically Segmented Images
	5.2.2 Measures for Semantically Segmented Point Clouds

	5.3 Results
	5.3.1 Semantic Segmentation of Images
	5.3.2 Semantic Segmentation of Point Clouds
	5.3.3 Evaluation of Semantic Segmentation of Images
	5.3.4 Evaluation of Semantic Segmentation of Point Clouds

	6 Discussion and Future Work
	7 Conclusion
	A Tables
	Bibliography

