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Abstract

Flight control design for modern fighter aircraft is a challenging task. Aircraft
are dynamical systems, which naturally contain a variety of constraints and
nonlinearities such as, e.g., maximum permissible load factor, angle of attack
and control surface deflections. Taking these limitations into account in the
design of control systems is becoming increasingly important as the performance
and complexity of the aircraft is constantly increasing.

The aeronautical industry has traditionally applied feedforward, anti-windup
or similar techniques and different ad hoc engineering solutions to handle
constraints on the aircraft. However these approaches often rely on engineering
experience and insight rather than a theoretical foundation, and can often
require a tremendous amount of time to tune.

In this thesis we investigate model predictive control as an alternative design
tool to handle the constraints that arises in the flight control design.

We derive a simple reference tracking MPC algorithm for linear systems
that build on the dual mode formulation with guaranteed stability and low
complexity suitable for implementation in real time safety critical systems.

To reduce the computational burden of nonlinear model predictive control
we propose a method to handle the nonlinear constraints, using a set of
dynamically generated local inner polytopic approximations. The main benefit
of the proposed method is that while computationally cheap it still can
guarantee recursive feasibility and convergence.

An alternative to deriving MPC algorithms with guaranteed stability properties
is to analyze the closed loop stability, post design. Here we focus on deriving
a tool based on Mixed Integer Linear Programming for analysis of the closed
loop stability and robust stability of linear systems controlled with MPC
controllers.

To test the performance of model predictive control for a real world example
we design and implement a standard MPC controller in the development
simulator for the JAS 39 Gripen aircraft at Saab Aeronautics. This part of the
thesis focuses on practical and tuning aspects of designing MPC controllers for
fighter aircraft. Finally we have compared the MPC design with an alternative
approach to maneuver limiting using a command governor.






Popularvetenskaplig sammanfattning

Styrsystem i moderna flygplan ska sitta stopp om piloten gor en hastig mandver
som dventyrar sikerheten. Speciellt viktigt dr det i jaktflygplan dir piloten kan
tvingas mandvrera flygplanet precis pd grinsen for vad konstruktionen klarar.
Reglermetoder frin processindustrin anpassas nu for att passa flyget.

En av de viktigaste faktorerna nir man konstruerar ett flygplan ir att flygplanet
ska vara enkelt och sikert att flyga. Dirfor dr det av yttersta vikt att man
konstruerar flygplanens styrsystem si att piloten inte kan sitta flygplanet i
en sddan situation att sikerheten idventyras. En sddan situation kan vara att
piloten styr flygplanet si att det tappar sin lyftkraft och dirmed sin férmdga
att flyga eller ocksd att kraftig turbulens utsitter konstruktionen for allt for
stora péfrestningar.

Speciellt viktigt dr detta dven i designen av styrsystem for jaktflygplan. Dessa
kriver maximal mandverformaga for att kunna ha Gvertaget 1 en luftstrid eller
dd de madste utmandvrera en fientlig missil. Piloterna mandvrerar flygplanen
vildigt nidra grinsen for vad farkosten klarar av och ett automatiskt skydd, si
kallat manéverskydd, mot att hamna 1 en riskfylld situation dr en nddvindighet.

I min forskning studerar jag hur man med hjilp av intelligenta datoralgoritmer i
flygplanens styrsystem ska kunna forebygga och hindra att flygplanet Gverskrider
de begrinsningar som finns i konstruktionen och hamnar i ett riskfyllt tillstdnd.

Ett sitt som man kan gora detta ir med sd kallad prediktionsreglering, vilket
har anvints framgangsrikt inom till exempel processindustrin. Prediktionsregle-
ring innebidr i praktiken att datorn forsoker forutspd (prediktera) flygplanets
framtida rorelser och utifrin det finna de bista styrkommandona si att inga
begrinsningar Gverskrids samtidigt som pilotens Onskemal i storsta mojliga
utstrickning f6ljs. Detta gors genom att man formulerar ett matematiskt op-
timeringsproblem dir man vill minimera skillnaden mellan pilotens onskemal
och prediktionen av flygplanets framtida beteende. Bivillkor till detta optime-
ringsproblem ir da flygplanets dynamik och alla de begrinsningar som kan
finnas i systemet. Detta optimeringsproblem loses sedan av flygplanets styrdator
sa fort nya mitdata dr tillgingliga, det vill siga ménga ginger varje sekund.
Dessa optimeringsproblem dr komplicerade och kriver mycket berikningskraft.
En stor utmaning dr ddrfor att gora dessa enklare och mer anpassade for
flygindustrin.

I min forskning fokuserar jag pd de teoretiska egenskaperna hos de optimerings-
problem som prediktionsregleringen ger upphov till. Jag forsoker anpassa dessa
optimeringsproblem sd att de ska vara relativt litta att 16sa samtidigt som de
ska hantera de specifika problem som finns i flygindustrin.
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Introduction

11 Background and research motivation

Modern military aircraft offer a challenging control task since they operate
over a wide range of conditions and are required to perform at their best in
all conditions. Agile fighter aircraft require maximum control performance in
order to have the upper hand in a dogfight or when they have to outmaneuver
an enemy missile. Therefore pilots must be able to maneuver the aircraft very
close to the limit of what it is capable of while at the same time focus on
the tactical tasks of the mission. To enable this in open loop unstable aircraft,
modern flight control systems need to have automatic systems for angle of
attack and load factor limiting, so called maneuver load limits (MLL).

When surveying the available literature, such as, e.g., Nato [2000], one can
draw the conclusion that for the design of these systems the aeronautical
industry have traditionally used feedforward or anti-windup-similar techniques
and different ad-hoc engineering solutions. The main drawback with these
ad-hoc methods is that they usually lack any theoretical foundation and instead
they rely on engineering experience and insight, and also that they require a
tremendous amount of time to tune. However the increase in computational
power over the last decade has opened up for more advanced control techniques
to be used to systematically take constraints into account in the design.

One of the modern control system design techniques that has gained significant
popularity in the aircraft industry is Linear Quadratic control (LQ), e.g., the
Swedish fighter aircraft JAS 39 Gripen uses a gain scheduled LQ controller
for its primary stabilizing controller. The LQ design technique is based
on minimizing an objective which is quadratic in the states, x(z), and the
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controls, #(t).

o)

mini(rtr)lize /x(t)TQx(t) + u() Ru(t) dt (1.1)
0

with (as the name indicate) linear system dynamics, i.e., the state evolution is
described by a linear differential equation.

x(t) = Ax(t) + Bu(t) (1.2)

Kalman [1960] showed that this problem can be solved explicitly and the
optimal control law, x(x), is a linear state feedback.

u(t) = k(x) = -Kx(t)

However, adding constraints on states and controls to the LQ problem formu-
lation (1.1) and (1.2) results in a nonlinear optimal control problem

mini(rr)lize /x(t)TQx(t) +u(t) Ru(t) dt (1.32)
0
subj. to
x(t) = Ax + Bu (1.3b)
x(t) € X (1.3¢)
u(t) eU (1.3d)

which, in contrast to the LQ problem, can be extremely difficult to solve
explicitly.  An open loop solution can be obtained using the Pontryagin
Maximum Principle (PMP) but to obtain an explicit closed loop feedback
solution, i.e., #(t) = k(x), one has to solve the partial differential equation
known as the Hamilton-Jacobi-Bellman equation. ~ Unfortunately this is for
almost all practical cases impossible to solve analytically [Maciejowski, 2002].

To overcome this, other application areas, such as the process industry, most fre-
quently use real-time optimization-based methods to approximate the nonlinear
optimal control problem. One of the more popular optimization-based meth-
ods is Model Predictive Control (MPC), in which the nonlinear optimal control
problem is approximated with a finite dimensional optimization problem that
is solved repeatedly on line in each iteration of the control system.

The objective of this thesis is to investigate model predictive control for the
aeronautical industry with focus on the maneuver limiting tasks. The objective
is to study both theoretical and application aspects to determine the suitability
of MPC for flight control.



1.2 Previous research 3

1.2 Previous research

Model predictive control is one of the most popular modern control techniques
and there has been extensive research in the last 20 years. The theoretical
development has been tremendous and as the computational power has grown
the application of model predictive control has spread from the traditional
process industry applications to faster more time critical applications typically
found in the automotive and the aeronautical industries.

Within the aeronautical industry there has been an increasing interest in model
predictive control during the last decade but early publications that apply
model predictive control to the flight control problem can be traced back to
the 1990’s in papers such as e.g., Ebdon [1996], Shearer and Heise [1998].

One attempt to make an overview of the vast amount of literature on
applications of MPC to the aeronautical industry has been done in the recent
paper by Eren et al. [2017]. They review previous research from the aspects of
system modelling, control problem formulation and controller structure, safety
related issues and implementation aspects. For an in depth review of the area
the reader is referred to this paper and we will not recapitulate the content
here. Instead we will focus on some different types of applications of model
predictive control in the aeronautical industry.

There are many different types of applications of model predictive control to
the flight control problem that has been studied over the last decades. The
general inner loop design has been studied by, e.g., Bhattacharya et al. [2002],
Shearer and Heise [1998], Steinberg [1999] and Keviczky and Balas [2006a],
while outer loop and guidance applications has been studied in papers by
Fukushima et al. [2006], Keviczky and Balas [2005, 2006b], Petersen et al.
[2013], Yang et al. [2009] and Gryte and Fossen [2016].

One of the greatest interest has been the application of MPC to design
reconfigurable flight control laws that can adapt to actuator failures or battle
damages. This has been studied in, e.g., de Almeida and Leissling [2009], Ebdon
[1996], Hartley [2015], Kale and Chipperfield [2005], Kufoalor and Johansen
[2013], Siddiqui [2010] and Maciejowski and Jones [2003]. For example in
Maciejowski and Jones [2003] the authors claim that the fatal crash of the El
Al Flight 1862 [NLR, 1992] could have been avoided if a fault tolerant MPC
controller had been used.

Other applications are, e.g., structural load protection [Giesseler et al., 2012],
and aeroelastic aircraft [Wang et al., 2016].

Studies that have focused more on the task of envelope protection and maneuver
limiting control design are Falkena et al. [2011], Gros et al. [2012] and Hartley
and Maciejowski [2015].

Model predictive control applied to fighter aircraft has been investigated in,
e.g., Ebdon [1996], Kale and Chipperfield [2005], Keviczky and Balas [2006a],
Shearer and Heise [1998] and Kufoalor and Johansen [2013]. Ebdon [1996]
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investigate model predictive control for fault tolerant control of an F-18 aircraft.
Kale and Chipperfield [2005] and Kufoalor and Johansen [2013] also investigate
MPC for fault tolerant and reconfigurable control laws. In Kufoalor and
Johansen [2013] it is applied to an F-16 aircraft and Kale and Chipperfield
[2005] implement the MPC controller on the ADMIRE model [Forssell and
Nilsson, 2005]. Both Shearer and Heise [1998] and Keviczky and Balas
[2006a] apply model predictive control to the nonlinear dynamics of an F-16
aircraft. In the paper by Keviczky and Balas [2006a] the authors compare
linear MPC control to a gain scheduled MPC and a full nonlinear MPC
controller.  Their conclusion is that gain scheduling is necessary to have
sufficient performance over the whole nonlinear dynamics, compared to a
simpler linear MPC controller. The gain scheduled controller is also more
computational tractable and perform sufficiently well compared to the full
nonlinear MPC controller.

1.3 Publications and main contributions

The contributions in this thesis can be divided into two main parts, theoretical
development of algorithms and the practical aspects of implementation of MPC
for realistic aircraft control problems.

The main theoretical contributions of this thesis are on different aspects of
stability of model predictive controllers.

Due to the iterative nature of MPC one must take special measures to ensure
that the optimization problem remains feasible and that the controller stabilises
the system. However, these measures can in severe cases limit the reference
tracking ability or result in a complex algorithm. In the conference paper

Daniel Simon, Johan Lofberg, and Torkel Glad. Reference tracking
MPC using terminal set scaling. In sist IEEE Conference on Decision
and Control (CDC), pages 4543-4548, dec 2012.

we extended the standard dual mode MPC formulation to a simple reference
tracking algorithm and studied the stability properties of the proposed al-
gorithm. The main theoretical contribution of this paper was to develop
simplified stabilising constraints compared to existing methods for reference
tracking in linear MPC by making small adjustments to the existing stabilizing
constraints of the dual mode formulation.

However the proposed MPC algorithm that was derived in the above conference
paper suffered some major drawbacks. It required the complete enumeration of
all vertices in a, possibly complicated, polytopic set. Since the computational
burden of this task, in the worst case, grows exponentially with the state
dimension it was desired to reformulate the algorithm such that the vertex
enumeration was avoided. In the journal paper

Daniel Simon, Johan Lofberg, and Torkel Glad. Reference Tracking
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MPC using Dynamic Terminal Set Transformation. IEEE Transactions
on Automatic Control, 59(10):2790-2795, 2014.

we derived a dual formulation of the constraints involving vertex enumerations.
This reformulation greatly reduced the worst case complexity of the controller
making it suitable for implementation. An example from the aircraft industry
showed that the proposed controller has the potential to be far less complex
than existing state of the art algorithms without losing any performance.

In the conference paper

Daniel Simon, Johan Lofberg, and Torkel Glad. Nonlinear Model
Predictive Control using Feedback Linearization and Local Inner
Convex Constraint Approximations. In Proceedings of the 2013 Euro-
pean Control Conference, pages 2056-2061, 2013.

we considered the task of controlling a constrained nonlinear system with a
combination of feedback linearization and linear MPC. This approach in general
leads to an optimization problem with nonlinear and state dependent constraints
on the control signal. The main contribution in this paper is that we replace
the nonlinear control signal constraints with a set of convex approximations.
The proposed algorithm results in an easy solvable convex optimization problem
for which we can guarantee recursive feasibility and convergence. An example
from the aircraft industry shows that the performance loss compared to using
a global nonlinear branch and bound algorithm can be very small.

In principal all proofs of stability for model predictive controllers follow the
same basic idea of showing recursive feasibility and convergence using the
objective function as a Lyapunov function candidate. This approach works
only in the most basic cases and more advanced formulations are often adapted
so they can be proven stable with the basic approach. To overcome this
limitation we derive an algorithm for post design stability analysis of linear
model predictive controllers in the following conference paper

Daniel Simon and Johan Lofberg. Stability analysis of Model Predic-
tive Controllers using Mixed Integer Linear Programming. In IEEE
ssth Conference on Decision and Control, pages 7270-7275, Las Vegas,
2016.

The chapter in which this is discussed also contains a section of previously
unpublished material. In this section we extend the above stability test to a
test for robust stability for systems subject to additive disturbances.

The first main application-oriented contribution of this thesis can be found in
the journal paper

Daniel Simon, Ola Hirkegird, and Johan Lofberg. Command Gov-
ernor Approach to Maneuver Limiting in Fighter Aircraft. Journal
of Guidance, Control, and Dynamics, 40(6):1514-1527, 2017b.

which also has been presented as the conference paper
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Daniel Simon, Ola Hirkegird, and Johan Lofberg. Angle of At-
tack and Load Factor Limiting in Fighter Aircraft using Command
Governors. In AIAA Guidance, Navigation, and Control Conference,
AIAA Scilech Forum, 2017a.

Here we investigate a different approach to maneuver limiting of a fighter
aircraft.  We implemented and evaluated a command governor approach in
Saab’s simulation environment for the JAS 39 Gripen aircraft on a similar
nonclassified fighter aircraft model. The command governor was augmented to
the basic LQ controller already in place in the simulation environment.

The second application oriented contribution of this thesis is previously unpub-
lished material. Here we have implemented an MPC controller for the same
nonclassified aircraft model in Saab’s simulation environment. The objective
of that work was to review the practical implementation aspects and tuning
strategies of real world flight control design problems in order to evaluate the
applicability of MPC within the aeronautical industry as well as to give a
proof of concept of MPC as a design technique for advanced flight control
systems. The work focus on the practical aspects of model predictive con-
trollers for flight control design such as structure of the controller, tuning and
implementation.

1.4 Thesis outline

This thesis is divided into two main parts, Theory and Application. The
theory part covers chapters 2 - 7 and the application part covers Chapter 8
and Chapter 9.

The necessary background material is covered in the chapters 2 - 4 while the
main contributions are found in chapters 5 - 9.

The content of the chapters are as follows.

In Chapter 2 we outline the necessary mathematical background for the
remaining parts of the thesis. We discuss nonlinear optimization and distinguish
between convex problems and nonconvex problems and their properties. We
also briefly discuss problems that have integer variables and how to solve them.
In this chapter we also give an introduction to Convex Polytope Geometry
which will play a central roll in two of the upcoming chapters of the thesis.

Chapter 3 covers the necessary parts of flight dynamics to give the reader who
is unfamiliar with aircraft flight dynamics the basics to understand the problem
formulation and the applications. This chapter also contains a slightly more
detailed description of the aircraft models and simulation environments used
throughout this thesis.

Chapter 4 gives the reader an introduction to Model Predictive Control. For
linear systems we present the main stability results, reference tracking concepts,
practical aspects of robustifications such as integral control and soft constraints
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and derive the explicit MPC formulation. For nonlinear systems we only
briefly discuss the complicating factors such as guaranteed stability, recursive
feasibility and nonconvexity of the optimization problem.

In the Chapters 5, 6 and 7 we present the main theoretical results of the
thesis. In Chapter 5 we consider reference tracking MPC, while in Chapter 6
we combine a feedback linearization controller with a linear MPC structure
to stabilize the nonlinear dynamics of a fighter aircraft. In Chapter 7 we
discuss a stability test for model predictive controllers based on mixed integer
programming.

Chapter 8 contains the main application results where we implement an
MPC controller for the pitch dynamics of an agile fighter aircraft in Saab’s
development simulator for the JAS 39 Gripen aircraft. We investigate a
slightly different approach with a different discretisation time step in the MPC
controller than in the closed loop implementation. We also investigate how to
utilise existing LQ design methodology to tune the MPC controller.

Finally in Chapter 9 we investigate a different approach to maneuver limiting
with the application of a command governor to the nominal flight control
system of Saabs main simulation model.

Some concluding remarks and thoughts on future work are discussed in
Chapter 10.

How the different chapters correspond to the different publications is presented
in the beginning of each chapter.
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Background on optimization and
polytopic geometry

In this chapter we will provide the necessary mathematical tools which we will
use frequently in the remaining chapters of the thesis. Section 2.1 will give
a very brief introduction to mathematical optimization, distinguish between
convex and nonconvex optimization problems and discuss the concept of duality.
For clarity of the presentation we have skipped many important details and
concepts and we refer the reader to Boyd and Vandenberghe [2004] for a
comprehensive presentation of the material.

We will also briefly discuss optimization problems with integer variables and
how to solve them in Section 2.1.4 since they are a fundamental part of the
theory developed in Chapter 7.

Section 2.2 outlines basic properties and fundamental calculations with convex
polytopic sets.

21 Optimization

An optimization problem is the problem of finding a value for the variable, x,
which minimizes (or maximizes) a certain objective, possibly, while satisfying
a set of constraints. A general formulation of an optimization problem can be
written as

minimize fo(x) (2.1a)
subj. to
fi(x)SO 1=1,....,m (2,1b)

7i(x) =0 i=1,...,p (2.1¢)

11
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where fo:R” —» R is the objective function (or cost function) which we want
to minimize and the functions f; :R” > R and 4, : R” > R are the inequality
and equality constraint functions. We will adopt the convention of using
a straight inequality sign, <, for scalars and for element-wise vector valued
inequalities, while we will use the curly inequality sign, <, to denote the
positive semidefiniteness property of matrices.

The optimal objective value is denoted as f;° and the optimal (minimizing)
variable value is denoted as x*; 1.e.,

fo =inf (o) | i) <0i=1,...m g(x)=0i=1...p)
x* {x Ifo(x)zfo*}

A value % is said to be feasible if and only if f;(¥) <0, ¥Vi=1,...,m and
gi()=0,VYi=1,...,p and it is strictly feasible if the inequalities hold strictly.

The problem (2.1) is often referred to as the Primal problem and a value %,
satisfying (2.1b) and (2.1c) as Primal feasible.

211 Convex optimization

The optimization problem (2.1) is said to be comvex (or having a convex
representation) if the objective function, fo, is a convex function (if it is a
minimization problem and concave if it is a maximization problem) of the
variable x, the inequality constraint functions, f;, are convex functions of x
and the equality constraint functions are affine, ie., g,(x) = al.Tx + b;. The
constraints in the optimization problem form a set, X, of feasible values of x,
a set that must be convex in order for the whole optimization problem to be
convex.

N £ *,° . . . .

Definition 2.1. A set, X, is said to be convex if and only if, for any two
points x; and x; in X, all points on the line between x; and x; also belong
to the set X, 1e., if

xpx2€ X =2yx1+(1—-y)xe XVO0<y<1

then the set X is convex.

From this definition of convex sets we can draw the important conclusion that
the intersection between any two (or more) convex sets is also a convex set.

——Example 2.2: Convex sets
A closed halfspace in R” is defined as

{x e R” | al.Tx sb,-}

The intersection of a number of such halfspaces constitutes a convex set, see
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Figure 2.1. We write this as

P:{xGRn| ﬂdl-Tbei}

or equivalently as
P={xeR"|Ax < b}
where A has aiT as its 1:ith row and & has b; as its iith element. Such an

intersection is called a Polybedron if it is unbounded and a Polytope if it is
bounded. We will, with a slight abuse of language, only use the term polytope.

1 2 3 4

Figure 2.1. The figure shows a polytope, the shaded area, which is the intersection of
five halfspaces (indicated with the lines aiTx = b;) where each halfspace constitutes
one edge of the polytope and each vertex is the intersection of two halfspaces.
Additionally the figure shows two arbitrary points in the polytope and the line
connecting them. It is evident that the entire line belongs to the set for any two

points, hence the polytope is a convex set.

Let us now continue by defining convex functions

Definition 2.3 (Boyd and Vandenberghe [2004]). A function, f(x), is said
to be convex if the domain of f, dom(f), is convex and

flxi+ (T=y)x2) <yf(x) + (1=y)f(x2)

for any two points x1,x; € dom(f) and any scalar 0 <y < 1.

In other words, a function is convex if the function curve between any two
points lies below the line connecting those two points, see Figure 2.2. The
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function is concave if the opposite holds. From the definition we can derive

the first and second order conditions for convexity.

I
6,
4,
X2
2,
X1
O,
| | | | | |
-2 -1 0 1 2 3

Figure 2.2. An example of a convex function and its relation to the straight line that
passes through two arbitrary points. The curve segment of the convex function

between the two points always lies below the line.

Definition 2.4 (Boyd and Vandenberghe [2004]). A differentiable function is
convex if and only if it for every two points x1,x; € dom(f) satisty

f(x2) 2 fxr) + Vf(xn)(x2 = x1)

or for a twice differential function

Vif =0

and the function is strictly convex if the inequalities hold strictly.

We illustrate these definitions with an example.

—— Example 2.5: Convex functions

Using the definition of convexity we can see that the norm function, f(x) =
[lx||, is convex. This follows from the triangle inequality
fxi+ (L=y)x2) = [lyxr + (1= y)xal|
< llyxll + [I(1 = y)x2l|
=y llxill + (1 =) [lx2ll
=yfx)+ (1=-y)f(x2)

As another example, consider a quadratic function f(x) = x”Qx + ¢7x + c.

Differentiating this function twice we have

Vif=Q
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This shows that a quadratic function is convex if and only if Q is positive
semidefinite.

Affine functions, f(x) =alx + b, the negative logarithm, f(x) = —logx, and
the max-function, f(x) = max{xy,x2,...,x,} are some other important examples
of convex functions.

Convex optimization problems, also called convex programs, are generally di-
vided into several different standard forms such as, e.g., Linear Programs (LP’s),
Semidefinite Programs (SDP’s), Geometric programs (GP’s) and Quadratic pro-
grams (QP’s). In this thesis we will mostly consider QP’s since, as we will
see in Chapter 4, the control problems that we consider very often can be
formulated as QP’s.

A QP has a convex quadratic objective function, fo, and affine constraint
functions, f; and g4;

minimize x7Qx + ¢’ x + ¢ (2.2a)
subj. to

Fx<b (2.2b)

Gx=h (2.2¢)

The constraint functions form the feasible set defined by the intersection of

the polytope, Fx < b, and the hyperplane Gx = h.

—— Example 2.6: Discrete time LQ controller
The discrete time LQ problem is given by

[ee)
minimize Z x-TQxl- + ul Ru;
X it !
1=0
where the states x; have to satisfy the state equation
x;j+1=Ax; + Bu;,  x0=x(0)

We can see this as an (infinite dimensional) equality constrained QP in the
variables x; and ;.

One great advantage and fundamental property of convex optimization problems
that makes them very useful is given in the following theorem.

Theorem 2.7. If x* is a local minimum of a convex optimization problem (z.1),
then it is also a global minimum of the problem. Furthermore if fo is strictly
convex, then the minimum is unique.

Proof: Let x* be a local minimum of fo, ie.,

fox™) =inf {fo(x) | x € X, [lx — 7]l < R}
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Now assume that there exist a feasible £, with ||£ —x*||, > R, such that
Jfo(R) < fo(x*). Since both £ and x* are feasible there exist a feasible point as
the convex combination of £ and x*
£=08 +(1-6)x"
. — R l N Nk — BNk —
With 6 = M, <2 Ve have ||% - x*|l; = 6||x —x*|l, = R/2 < R and by
convexity of fo we have

Jo(®) < 0fo(x™) + (1=6)fo(%) < fo(x™)

but this contradicts the assumption that fo(x*) was the minimum within the
neighborhood of radius R, hence % cannot exist and x* is the global minimum.

To show uniqueness of the solution assume instead that fo(x*) = fo(X) and that
fo is strictly convex. Then it directly follows that

Jo(®) < 8fo(x™) + (1= 6) fo(X) = fo(x™)
which also contradicts the assumption that x* (and %) are minimum of f5. O
An optimization problem is said to be unbounded below if the optimal objective
value is f;" = —co and infeasible if it is f;f = coIn order to derive necessary
and sufficient conditions for a point x* to be the global minimum of a

convex representation of the problem (2.1) we need to consider something
called Duality.

21.2 Duality

Let us start by defining the Lagrangian function for the optimization prob-
lem (2.1) as

m P
L) = folx) + Y. fi(x) + D vigi(x)

i=1 =1
The variables A; and v; are the so called dual variables or Lagrange multipliers.
We also define the Dual function as

DA, v) = ;g‘fs L

where S = ( i dom(ﬁ)) N (ﬂle dom(g») is the domain of the problem. It
can easily be shown that for A > 0 the dual function fulfills D(4,v) < f;* for

all x € S. So the dual function defines a global lower bound for the optimal
value of the primal problem (z.1).

From this we define the Dual problem as
maximize D(4,v)
Ay
subj. to
1=>0
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with the additional implicit constraint that the dual function must be bounded
from below, i.e., D(4,v) > —c. The optimal value, D*, to the dual problem
is the best lower bound for the primal problem. In the case when this best
bound is tight, i.e., D* = f, we say that Strong duality holds. In the practical
cases we will consider in this thesis (e.g., for most convex problems) we can
assume that strong duality holds. This dual problem is one of the key details
in the derivation of the controller in chapter s.

—— Example 2.8: Dual problem to an LP problem

Consider the following LP maximization problem

maximize a’x +b subj.to Flx <y
X

This is equivalent to the minimization problem
minixmize —(a'x +b) subj.to Flx<y
The Lagrangian is then given by
L(x, ) =—(a"x +b) + AT (FTx - 9)
and the dual function
D) = inf £
=i§1f —/ng—b +(FA-a)x
_{—/qu—b if Fi-a=0
-0 otherwise
The dual problem is then given by

maxiﬁmize —7TA+b)

subj. to
120
FA-a=0

We now have the tools to characterize the optimal solution, x*, to a convex
optimization problem. As stated above, for most convex problems, strong
duality holds, i.e., D(1*,v*) = fo(x*). The definition of D then gives

m )4
fo(x*) = DA*v™) = folx™) + Za;ﬁ(x*) + Zvi’“qi(x*)
i=1 =1

and since ¢;(x*) =0 it must hold that
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Zﬁffi(x*) =0 (2.3)
i=1

This means that if the constraint is not active then the corresponding dual
variable must be equal to zero, ie. if fj(x*) <0 then A; =0 and if the
constraint is active, i.e., fj(x*) =0 the dual variable can be nonzero. Note also
that both A; and f; can be zero at the same time (then f; is called a weakly
active constraint). The condition (2.3) is called complementary slackness.

Furthermore since x* minimizes the Lagrangian it must also hold that the
gradient is zero,

m p
VL =Vfo(x") + Z Vfi(x*) + Z viVgi(x*) =0 (2.4)
i=1 =1
To summarize, for a point x* to be optimal for a convex instance of the
optimization problem (2.1) it is necessary and sufficient that the following
conditions hold

m p

V™) + ) V(T + ) viVgi(x®) =0 (2.5)
i=1 =1

fi(x") <0 (2.6)

gi(x*) =0 (2.7)

A" =0 (2.8)

DA fi) =0 (2.9)
i=1

These conditions are called the Karush-Kubn-Tucker conditions, (KKT). The
conditions (2.6) and (2.7) require x* to be primal feasible and the condition
(2.8) requires A to be feasible for the dual problem.

Note that for the KKT conditions to be sufficient conditions for optimality
strong duality must hold. We have not discussed under what conditions strong
duality holds for a convex program; we merely state that for our applications
(except for parts of Chapter 7) strong duality does hold and refer the details
to Boyd and Vandenberghe [2004].

We will use the KKT conditions in Section 4.2.5 to derive an explicit formula-
tion of the model predictive controller.

21.3 Nonconvex optimization

In the previous section we did not discuss how to actually solve a convex
optimization problem. There are different methods to solve such problems, e.g.,
by using so called gradient methods which generally searches for the optimal
point in the direction of the negative gradient. Due to the special properties



2.1 Optimization 19

of convex problems described in Theorem 2.7, this search will eventually lead
us to the global optimal solution. However if the problem is nonconvex, then
one can not use local information to find the global optimal solution, and this
makes non-convex problems much harder to solve and requires us to use more
complex solution algorithms.

—— Example 2.9: Controller for a nonlinear system
Let us consider the same objective function as in Example 2.6, but now with

nonlinear system dynamics

uiXi

(o]
minimize leTQxl + ul-TRui
1=0

xiv1 = f(xin;), xo0=x(0)

Since the equality constraint now consists of a nonlinear function, the optimiza-
tion problem is no longer convex (that would require the equality constraint

to be affine).

In Chapter 6 we will look more into some methods to overcome this difficulty
and present a new method that approximates this nonlinear program with an

easily solvable QP.

The techniques to solve nonconvex problems can be divided into two distinct
categories, local techniques and global techniques.

The local techniques, such as, e.g., the Broyden-Fletcher-Goldfarb-Shanno al-
gorithm (BFGS) or Sequential Quadratic Programming (SQP), use a convex
approximation of the problem around an initial guess of the optimum to
calculate the search direction. This will lead the algorithm to converge to
a local optimum, which unfortunately can be far off from the true global
solution. The local solutions are obviously very dependent on the initial guess
of the optimal point. The benefit of local methods in comparison to global
techniques is that they are relatively faster.

In contrast to local methods, techniques that find the true global optimal
solution are extremely computationally expensive and even for modest scale
problems they can take several hours to converge to the global solution. The
global solution methods are either heuristic or nonhbenristic in their nature. One
nonheuristic method that has received much attention is the Branch and bound
method. We will detail the branch and bound method further in the next
section where we discuss the special type of nonconvex programs that contain
integer variables, the so called (mixed) integer programs.

Another nonheuristic method that has gained significant popularity in the last
decade is the so called Semidefinite relaxation. The relaxation of a general
optimization problem

minimize {fo(x)|x € X}
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is another optimization problem
minimize {ﬁ;(x) | x € X}
X

such that fo(x) < fo(x),¥x € X and X C X. In semidefinite relaxation the
resulting relaxed optimization problem is an SDP. Lasserre [2001] propose a
method to find the global solution to a nonconvex polynomial problem by
solving a sequence of semidefinite relaxations of the original problem.

There also exist several heuristic methods for global optimization such as,
e.g., Simulated Annealing, Direct Monte-Carlo Sampling and Particle Swarm
Optimization. These methods essentially perform a guided random search
converging to the globally optimal solution if given sufficient time.

214 Mixed integer optimization

In the preceding sections all variables in the optimization problems have been
real variables, x € R”. But there exist another important class of optimization
problems, the so called integer programs that only contain integer variables,
z € Z™, or mixed integer programs that has both real and integer variables.
Optimization problems containing integer variables are nonconvex problems.
This is easy to realize if we consider Definition 2.1 of a convex set. When
we have integer valued variables, no points on the line between two integer
valued points will belong to the set, ie., it is not a convex set and hence the
problem is nonconvex.

If the optimization problem is a QP problem that has (some) integer variables
it is called a (mixed) integer quadratic program (MIQP) and in the same way
it is called a (mixed) integer linear program (MILP) if it is an LP problem.
It should be pointed out that in this thesis, i.e., Chapter 7, we will only
consider the type of integer LP problems where the integer variables in fact
are binary, ie., mixed binary LP problems. However we will with a slight
abuse of notation refer to them as mixed integer linear programs.

A mixed integer linear program can be written in a general form as

minimize f7x + g7z (2.10a)
X,z
subj. to
Ax + Ez <b (2.10b)
zeZ” (2.10¢)

We will not go into the details of integer programming in this thesis. For that,
the reader is referred to, e.g., the book by Wolsey [1998]. Instead we will
focus on briefly explaining how mixed integer linear programs can be solved.

Integer and mixed integer problems are in general very hard to solve and one
can not use gradient descent methods that is used for convex problems to
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solve these problems. Instead methods for solving nonconvex problems need to
be applied. Two of the more wide spread methods are the Branch and bound
method and the Cutting plane method.

The branch and bound method

The Branch and bound method is one of the most widespread global solvers
for non convex problems. The basic idea of the branch and bound method is
to partition (branching) the feasible set into subsets and successively building a
search tree over partitions of the feasible set.

For each of these subsets the algorithm calculates an upper and lower bound
on the optimal value by solving simpler problems. The upper bound could
be found by using either one of the local optimization techniques as described
earlier or by simply selecting any feasible point. The lower bound can be found
by solving the (always convex) dual problem or by some convex relaxations.
The upper and lower bounds are compared for each of the partitions and if
the lower bound of one partition has a higher value than the upper bound in
some other partition, this partition can surely not contain the global optimum,
and hence it can be discarded (pruned). The algorithm then continues by
splitting the best partitions into smaller and smaller partitions repeating the
computations and comparisons of the bounds until all partitions are discarded
but one. One big advantage with the branch and bound method is that it can
quantify the level of suboptimality. This in contrast to the local methods that
are unable to provide us with such quantities.

Since we are mostly interested in mixed integer linear programs in this thesis
let us briefly exemplify how these are solved using branch and bound.

The algorithm starts by computing an upper and lower bound to the mixed
integer linear program (2.10). An upper bound on the optimal can be found,
e.g., by selecting any feasible point z € Z”, x € R” such that Ax + Ez <b. A
lower bound on the optimal solution to this problem can be found by simply
solving the LP relaxation

minimize f7x + g7z (2.11a)
X,z

subj. to
Ax+ Ez <b (2.11b)

that is given by ignoring the integrality constraint. Why this is a lower bound
can be realized by noting that the feasible set of the LP relaxation is larger
than that of the mixed integer problem, i.e., it contains all rational numbers,
z, such that Ax + Ez < b, not only integers.

Then the algorithm continues by splitting (branching) the set into a number
of subsets (nodes). The branching can be done in several ways, e.g., one can
split a subset into new ones along dimensions for which the optimal solution
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to (2.11) is rational [Wolsey, 1998] or one can simply split the subset in half
along the dimension for which the subset is the largest.

A node is pruned, or discarded from further splitting, if the LP problem in
this node is infeasible, if the optimal solution is integer or if the lower bound
is larger than the best global upper bound, because then the optimum can not
be found in this branch.

There is also a decision on how to search through the tree in order to quickly
find the global minimum. One can, e.g., always start by searching down the
tree in the path that has the lowest lower bound.

The branch and bound method is often combined with the cutting plane
method in what is called a branch and cut method.

The cutting plane method

The cutting plane method is based on the observation that the convex hull,
conv(S), of the set S={z €Z| Az < b} can be used to efliciently solve integer
LP problems. To see this we must observe that all vertices of the convex hull
are integer points and since the optimum to an LP always is at a vertex of
the feasible set the optimal solution to the LP relaxation

minimize ¢!z
VA

subj. to
z € conv(S)

is, in fact, equal to the optimal solution to the integer LP. However the convex
hull is often quit expensive to compute and we are only interested in having
a good approximation of it around the optimal point.

The cutting plane method works by successively adding linear inequalities
(cutting planes) to the LP relaxation in order to cut of any non-integer
optimal solutions until the solution to the LP relaxation is an integer solution.

The inequalities that are added to the LP relaxation must be so called walid
inequalities [Wolsey, 1998] which basically means that the inequality can not
cut of integer solutions from the feasible set, ie., the inequality 47z < h; is a
valid inequality for the set S if

ql-Tzshi\/{ZEZmlAng}

There exist several types of valid inequalities such as, e.g., Chvatal-Gomory cuts,
lift and project cuts, split cuts and rounding cuts. For more information on
constructing valid inequalities see, e.g., Marchand et al. [2002] or Cornuéjols
[2008].
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2.2 Convex polytopic geometry

In this section, we will consider a branch of mathematics which is concerned
with geometric problem solving and computation with simple convex sets of
different dimension such as, e.g., points, lines, hyperplanes and polytopes. We
will detail fundamental properties and some basic algebraic calculations with
polytopic sets which are particularly interesting from the perspective of our
application. For a more in depth description of these topics we refer to
Griinbaum [2003] and for more general computational geometry problems we
refer the reader to the work of de Berg et al. [2008].

Let us first recall the definition of a polytope from the previous section. We
define a polytope as the bounded intersection of a finite number of halfspaces

P={x|Ax < b}
We will refer to this as the Halfspace representation.

Using the halfspace representation we can show that the intersection of two
(or more) polytopes is a new polytope (unless it is the empty set). Consider
two polytopes

Pr={x|Aix <b}, Pr={x|Axx < by}

then the intersection can be written as the polytope

7>3=7?1ﬂ Pz:{"' [ﬁ;]xs[ij}

In this description of the polytope there can be a number of redundant
hyperplanes which can be removed through solving a set of LPs in order to
have a minimal representation of the polytope. Algorithms for doing this can
be found in Baotic [2005].

For a set of N points, X = {x1,x2,...,xn}, the Convex hull, conv(X), is
defined as the smallest polytope that contains all N points. This set can be
represented as the convex combination of all points

N N
conv(X):Z,Bixi, v Osﬂisl,ZBizl
i=1

i=1
Similar to the halfspace representation there exist a wvertex representation of a
polytope which is the minimal representation of its convex hull, i.e.,

P = i Bivi
i1

where v; are those x; that constitute the vertices of the polytope and v, is the
number of vertices in the polytope, see Figure 2.3. Algorithms for extracting
the convex hull from a set of points can be found in de Berg et al. [2008].

The task of going from the halfspace representation to the vertex representation
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Figure 2.3. An example of a set of nine points x;, and the convex hull of those
points (the shaded area). The points that constitute the vertices of the convex hull
are the vertex representation of the shaded polytope.

of a polytope is known as the wertex enumeration problem and the opposite
(vertex to halfspace representation) is known as the facet enumeration problem.
These are complicated and possibly very computational expensive tasks and
in Avis and Fukuda [1992] the authors present one algorithm for performing
those.

Let us now continue with some basic polytope operations which will be useful
in the following chapters.

For two polytopic sets, P; and P,, the Minkovsky sum is the set
ProPr={x1+x2|x1 €P1, x2 € P2}

and correspondingly the Pontryagin difference of two sets is the set
ProPr={x1|x1+ x2 € P1,Vx2 € Py}

An illustration of these two polytope operations are shown in Figure 2.4.

Furthermore, the Cartesian product of the two sets is
P1x Py ={(x1,x2) | x1 € P1, x2 € P}

If the dimension of P; is R” and P, is R™, then the dimension of the product

is R”*7,

"Definition 2.10. For a polytopic set P with the halfspace representation

P={x|Ax < b}

we define
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Figure 2.4. The left axis shows an example of the Minkovsky sum. The two most
inner polytopes are P; and P, respectively. The outer polytope is the Minkovsky
sum of P; and P;. The right axis shows the same two polytopes and the
Pontryagin difference as the smaller triangular polytope.

e the scaling of the set with a positive scalar @ as

aP ={x | Ax < ab}

* the manslation of the set to an arbitrary point y as

Piy)=Paey={x|A(x—-y) <b}

|

Note that the translation of a polytope to an arbitrary point is the same as the
Minkovsky sum of the set, P, and a set consisting of only one point, y. It is
straightforward to derive the vertex representation of scaling and translation as

Vp
aP =« Z Biv;
=1
and

Vp
PO)Y =y + Y Bivi
1=1

Given a polytope, P, the interior of the set, int(P), is defined as all those
points y € P for which there exists an € > 0 such that for any point x in P,
y is within an e-radius of x.

int(P)={y | lx-yl,<exeP|cP

One could also more loosely describe these points as all points in P, except
the border. Since the interior is an open set it is practical to work with the
closely related e-interior to a set.

N C_ *.° . ..
Definition 2.11. For a given constant 0 < € < 1 and set P containing the
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origin in its interior, let inte (P) denote the e-interior of P, ie.,
inte (P)=(1-e)P={x|Ax < (1 -¢€)b}
—

This is a key detail in the stability proof of our controller in Chapter s.

The affine transformation, F(-), of a set, P, defined by a matrix A and vector
b is an affine map of all elements in P.

F(P)={Ax + b | x € P}

and we will adopt the short hand notation F(P) = AP+ for this. Additionally
there exist an inverse affine mapping defined through

FY(P)={x|Ax + b e P}

This inverse mapping is central to the calculation of invariant sets which is an
important detail of the stability of model predictive controllers.

Note that the scaling and translation defined above are just special cases of the
affine mapping.

We argued in the beginning of this section that the intersection of two
polytopes is a new polytope, but in fact, all the polytope operations we have
defined will result in a new polytope [Boyd and Vandenberghe, 2004].

For our intended application it is also needed to be able to calculate some
kind of center point of a polytope. The center point that we consider is
the so called Chebychev center, which is the center point of the largest ball
(Chebychev ball) that can be inscribed in the polytope.

A Ball is all points x that are within a radius R from a center point x.
B(xe,R) = {xc + x| lIxll2 < R}

For a polytope P we find the Chebychev center from the following optimiza-
tion problem

maximize R
xcR

subj. to
B(x.,R) € P

To see how this abstract formulation can be written as a simple linear program
first note that if B(x.,R) C P it must hold for all facets of the polytope. This
means that al,T(xc +x)<b;,Vi=1,..., m, where m is the number of facets in
P. Also note that this constraint shall hold for all ||x||; £ R and so it must
hold for the worst case x. Thus we obtain

sup {aiTx I llxll2 < R} = ||“iT|2R
X
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and we can write the constraint as

aiTxC+)aiT ZRSbi YVi=1...,m

The resulting LP becomes

maximize R
xe,R

subj. to

aiTxC + HaiTHZR <b Vi=1...,m
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Aircraft flight dynamics and flight control
design

In this chapter we will derive the necessary equations to give the reader enough
background to the dynamics of flight to understand the applications of the
research. Since the goal is not to be a comprehensive source of information
regarding flight dynamics we will cut some corners in the presentation and
also make some elementary assumptions. For a full treatment of the subject
the reader is pointed to the excellent books of Stevens and Lewis [2003] and
Nelson [1998].

The first assumption is that the aircraft is a single engine aircraft of military
type that is symmetric in its x-z plane, see Figure 3.1. This is not a significant
assumption but not having to take civil aircraft configurations into account
will simplify some of the equations and arguments. Secondly we assume that
the flat earth approximation is valid and neglect the earth rotation since this
will significantly simplify the equations and it serves our purpose well. The
final assumption is that the aircraft is a rigid body. This will also greatly
simplify the equations since we do not have to take any structural dynamics
into account.

First we will derive the full 6 DOF nonlinear equations of motion of the
aircraft. These equations will then be simplified to a set of linear equations
that are suitable for control law design and explain the objectives of the
control law design. The last section will describe the model and simulation
environments used in this thesis.
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3.1 The nonlinear dynamics

In order to describe the dynamics of flight we first have to say some words
about different coordinate systems. There are several different coordinate
systems used to describe the motion of an aircraft, e.g., the body fixed
coordinate system, wind axis system, stability axis system and the inertial
reference system. We are not going to go into details about these but the
reader should be aware of them since several of the interesting variables
discussed are defined in the different systems.

The inertial system or the earth fixed reference system is defined in a north,
east, down, direction (the so called NED system) with the origin on a fixed
point on the earth’s surface. The body fixed coordinate system has its origin
in the aircraft center of mass and its x-axis is pointing out through the nose
of the aircraft. The y-axis is pointing out through the right hand side wing
and the z-axis is pointing down, see Figure 3.1

Figure 3.1. Definition of the body fixed coordinate system.

The relation between the NED and the body fixed coordinate systems are
described by the position

Pnep =[pn pE  —pD]

and the orientation, the so called Euler angles, of the body fixed frame

O=[¢ 6 y]

where ¢ is the roll (or bank) angle, 6 is the pitch angle and ¢ is the yaw
angle respectively, see Figure 3.2.

The wind axis coordinate system has its x-axis aligned with the incoming
airflow, or in direction of the airspeed vector. The relation between the wind
axis and the body fixed systems are defined through the angle of attack, «,
and sideslip angle, B, see Figure 3.2. Finally the flight path angle, v, relates
the wind axis system to the NED system.
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Figure 3.2. Definition of the Euler angles, ¢, 6, ¢, the aerodynamic angles, @ and
B and the flight path angle, y, and the angular rates, p, ¢ and » [Hirkegird, 2003,

p. 10].

3.1.1 Equations of motion

Newton’s second law of motion in a rotating reference frame gives us a starting
point for formulating the equations of motion. It states

F=mV +wxmV (3.1)
for the forces acting on the aircraft and
T=1o+wxlw (3.2)

for the moments. F is the total force acting on the aircraft, 7' the total
moment, m is the aircraft mass, / the inertia, V =[# v w]’ is the velocity
and finally w =[p ¢ r]” is the angular velocity of the aircraft.

The total force acting on the aircraft has three main contributions, the
gravitation, g, the thrust from the engine, Fr, and the aerodynamic forces,
F.y,. The gravity acts in the downward direction of the NED system and
thrust is assumed to act only in the direction of the x-axis of the body fixed
coordinate system.

The moments will be assumed to mainly come from the aerodynamics. Other
effects like thrust vectoring or engine misalignment will not be considered in
this thesis.

The aerodynamic forces and moments acting on the aircraft arise due to the
airflow around the aircraft as it flies through the atmosphere. The forces
and moments depend on many different properties such as the air density,
o, the velocity of the aircraft, V, the geometry of the aircraft as well as
its orientation relative to the airflow. The geometry of the aircraft is usually
characterized by the wing area, S, and either wingspan, 4 or mean aerodynamic

chord c.

The aerodynamic forces can be modeled in the body fixed coordinate system
as

F, = %p\_/ZSCx



32 3 Aircraft flight dynamics and flight control design

1 -
Fy = szZSCy

1 -
F, = szZSCZ

where V = Vu2 + 2 + w2, C(-) are the so called aerodynamic coefficients. It
is also common to formulate the force equations in the wind axis system
using the drag coefficient, Cp, the side force coeflicient, Cy, and the lift force
coefficient, C;. The aerodynamic coefhicients depend on many variables such
as control surface deflections, &, aerodynamic angles, @, B, the angular rates,
P, q and r (see Figure 3.2), as well as their derivatives. As an example, the
lift force coefficient, Cy, is increasing with increasing angle of attack, up to a
certain point, the stall angle, then it drops rapidly, see Figure 3.3.

0o 5 10 15 20 25
a[’]

Figure 3.3. One example of how the aerodynamic lift coefficient, C;, can depend
on the angle of attack, o.

The aerodynamic moments are modeled in a similar way with
1 5.
Ty=3p V28¢C,,
for the pitching moment and

T, = %p\_/ZSbCZ

T, = %p\_/szCn

for the rolling and yawing moment respectively.
Modeling of the aerodynamic coeflicients is difficult, they are in general

nonlinear functions that depend on many variables and vary with Mach
number!. In the early stages of an aircraft development a first estimate of the

"The Mach number id defined as the ratio of the local airflow to the speed of sound, M = %
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coeflicients are created using wind tunnel testing and CFD (Computational Fluid
Dynamics) calculations as well as handbooks with aerodynamic properties of
known aircraft geometries. In later stages flight testing and system identification
is used to refine the models.

Now, combining the equations for the aerodynamic forces and moments with
Newton’s law of motion we obtain the nonlinear equations for the dynamics

of flight

Fr + %p\_/zSCx —-mgsind =m(4 + qw — rv) (3.32)
%p\_/zSCy +mgsingcosd =m(v + ru — pw) (3.3b)
%p\_/ZCZ + mgcos¢gcosd = m(w + pv — qu) (3.3¢)
1 -, . .

7PV SbCy = Iip — Ii,7 + (I, — I)qr — Li,pq (3-42)

%p\_/ZSC_Cm =L + (I - L)pr + L, (p* = %) (3.4b)

%p\_/ZSan = L7 = L,p + (I, = L)pq + L.qr (3.4¢)

The equations (3.3) are the force equations in body axis coordinates and (3.4)
are the body axis moment equations. (- represent the appropriate element in
the inertia matrix, .

To obtain the total description we also need the attitude equations

6 = qcos¢ —rsing (3-52)
d=p+qsinptan6 + r cos ¢ tan 6 (3-5b)
Y = (gsing + r cos¢)sect (3-5¢)

and the navigation equations
PNED = mev (36)
where
cosfcosy singsinfcosy —cospsiny  cos ¢ sinf cosy + sin @ sin

Thao = |cos@siny  singsinfsinyg + cosd cosy cos@sinf siny — sin ¢ cos ¥
—sin6 sin ¢ cos @ cos ¢ cos 6

The equations for the forces in the X and Z dimension, (3.3a2) and (3.3¢)
together with the pitching moment (3.4b) and the attitude equation (3.52) form
the so called longitudinal dynamics. Similarly the equations for Y-force (3.3b)
together with the roll (3.4a) and yaw (3.4c) moments and the attitude equations
(3.5b) and (3.5¢) form the lateral dynamics.

The free response of the longitudinal dynamics, ie., the solution to the
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differential equations with no control surface input, is characterized by two
types of motions, the slower Phugoid mode and the high frequency Short period
mode. In the Phugoid mode the aircraft has a slowly varying pitch angle, 6,
with fairly constant angle of attack, @, while the Short period mode instead
is a high frequency oscillation in the angle of attack under almost constant 6.
The corresponding lateral modes are the Roll mode, Spiral mode and the Dutch
roll mode.

All of the above modes can either be stable, i.., returning to an equilibrium
point, or unstable, i.e., diverging from an equilibrium point. One of the
objectives of the flight control system is to stabilize any unstable modes and
to give the modes desirable properties in terms of amplitude, damping and
frequency.

3.2 The linearized dynamics

If we intend to utilize linear design techniques to design the flight control
laws then the nonlinear equations of motion derived in the previous section
are not suitable but needs to be simplified. To do this one rearranges the
equations (3.3) and (3.4) and then use small disturbance theory to derive a set
of linear differential equations

X(t) = Ax(t) + Bu(t) (3.7)

where x represent the deviation in the states from a steady flight condition
and # is the deviation from steady state value of the selected control inputs.
We will not go into details on how this is done, just state the results, the
interested reader is referred to the excellent exposition in Nelson [1998].

It should be pointed out that the states here do not necessarily need to be only
the states in the dynamics of motion derived in the previous section but can
also include, e.g., control surface deflection angles as states. The control inputs
are then the commanded control surface deflections and the servo dynamics are
normally modeled as a first order system.

Longitudinal model

For the design of the inner loop control laws which we will discuss in the
next section the phugoid mode is most often neglected and only the short
period mode is modeled.

The short period dynamics, which is the dynamics we will mainly be focusing
on in this thesis, can then be modeled as a two state linear system with the
angle of attack, @, as one state and the pitch angular rate, ¢, as the other.
The input to the system is the elevator control surface deflection, ..

Zs,

i Oe
M,;e + %Z&e

(3-8)

R PN
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Here M-y is the derivative of the moment equation (3.4b) with respect to the
different variables and Z(.) is the derivative of the force equation (3.3¢c) with
respect to the different variables. The derivatives have the form [Stevens and
Lewis, 2003]

—Cwn OS -C A
z, = MR8 7, = SN Q8
m m
Cpn,QSé Cn,QSc?
Mo = I, My = 2ul,
My = Cony, QS¢ M, = C; QSE?
I, 2ul,

where we have introduced the dynamic pressure, Q = pV?2.

The normal acceleration (or the load factor) in the center of gravity is defined
as the ratio between the aircraft lift force and aircraft weight and it is given

by
F,
mg

Mzeqg = —

but the load factor experienced by the pilot becomes
iAl
Ny =Ngeqg t =
where Al is the distance along the body fixed x-axis from the center of gravity

to the pilot. This can be incorporated into the linear dynamics as an output
from (3.8).

Lateral model

The corresponding differential equations for the lateral dynamics, i.e., the roll
mode and the dutch roll mode, is a three state dynamical system with the
states, roll rate, p, sideslip angle, B and yaw rate, r, and with the control
inputs aileron deflection, 6, and rudder deflection, 6,. The state space model
can be written as

; Y, Y, Ys
,3. 7ﬁ 7P % -1 (B 0 % S5,
pl= Ly L L p|+|Ls, L [6,] (3.9)
7 Ny Ny N/ 4 Ni  Nj

where
Ll =Ly + Ix—ZN N/., =Ny + Ix—ZL
(y=Ley+ -Ney, Ny =Ney + =L
and where the derivatives are given by

_QSC, QSbC,,

i =

2mu
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ShC sC
v, - 85, v, - %
mu m
QSbCy, Qsb’C,
Lg=—0 P
x — f 2u(ly, — f)
QsbiC), QSbCy,,
2u(1x -1 Ix -1
QSbC, QSbC,,
6= Np=—7
I 1
x = fz Iz - ]sz
N - QSH2C,, N - Q882G
2L, - ) 2, -
QSbCy,, QSbCy,
I -t I, -

Note the zero element in the B-matrix of (3.9). The effect of aileron deflection
on the side force is neglectable and hence very often set to zero.

3.3 Fighter aircraft flight control law design

The design of flight control laws is a very challenging task, especially for
fighter aircraft. The flight control system shall provide stabilization, disturbance
rejection and desired characteristics of the short period, roll, dutch roll and
spiral modes as well as automatic trimming in all axes and superior pilot
handling qualities in all modes of operation.

The aircraft dynamics varies significantly over the full operating envelope. The
speed ranges from low subsonic speed where the aircraft usually are open loop
unstable to supersonic speed where they are stable. Furthermore, different
combinations of external stores change both mass, inertia, aerodynamics as well
as the center of gravity of the aircraft. For modern military aircraft there
can be over a thousand different external store combinations. The amount
of fuel and how the different tanks are emptied also affects the mass and
center of gravity location. In addition to this, a fighter aircraft is maneuvered
aggressively over a large span of angle of attack, angle of sideslip and roll rate
which makes the nonlinearities of the dynamics non negligible.

The flight control system shall be designed to give maximum attainable perfor-
mance in all conditions while at the same time respecting bandwidth limitations
of actuators and sensors. Also the bandwidth of the flight control system must
be low enough to not excite any structural vibrations and flutter. The flight
control system must also be designed such that there are no PIO (Pilot Induced
Oscillations) tendencies.

All the above must be met also in a number of failure cases of, e.g., sensors or
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actuators. Therefore the flight control system must be able to reconfigure and
redistribute control commands in case of actuator failures or manage any input
data loss in order to provide safe continued flight and landing. The system
safety requirements on flight control systems are very high, no single failure
may cause a loss of the aircraft so the flight control system must incorporate
an advanced system for test and monitoring of all parts of the system.

It is difficult to obtain a good overview of the industry state of art design
principles for flight control systems of advanced fighter aircraft since it is
most often considered intellectual property rlghts and very little material is
published on the matter. Although one good review paper is the one written
by Balas [2003]. In this paper it is evident that the industry utilize both
linear and nonlinear design techniques. One common approach seem to be
the combination of Nonlinear Dynamic Inversion (NDI) together with classical
proportional and integral control techniques and this has been used in e.g., the
F-35 Joint strike fighter aircraft, the Boeing X-36 aircraft and in some versions
of the VAAC Harrier. Other common approaches are to use gain scheduled
Mo or LQ techniques and these has been used in, e.g., the Boeing F/A-18
aircraft, the Saab JAS 39 Gripen and the VAAC Harrier.

Let us now discuss, in a bit more detail, one procedure of designing flight
control laws using linear and gain scheduled techniques.

Due to the vast complexity of the overall design task one has to divide the
problem into smaller simpler design tasks. A common approach is to linearize
the dynamics in a number of different operating points of Mach, altitude
and angle of attack and in each of these tune the control laws for different
configurations such as external stores combinations, mass and center of gravity
locations. Usually one starts of with a small operating envelope and a single
external store and design and tune the control laws for this case and then one
gradually extend the flight envelope and adds additional stores combinations. It
is crucial for the quality of the design that there is a close cooperation between
the control design engineers and the pilots since most often the pilots’ opinions
are far more stringent then the requirements set out in any documents.

It is quite common to separate the control law design of the longitudinal
dynamics and the lateral dynamics into two separate design tasks. The basic
structure of the flight control laws for both the longitudinal and lateral
dynamics are shown in Figure 3.4 and in consists of a feedback part, a feed
forward part and an integral control part.

The reference input is calculated from the pilot control stick and pedal input.
For agile fighter aircraft it is most suitable according to Stevens and Lewis
[2003] that the reference input for the longitudinal dynamics is either pitch
rate or load factor. There is a close relation between the load factor and
the angle of attack. For a given angle of attack the load factor increases
quadratically as a function of speed, which means that the maximum angle of
attack, before the aircraft stalls, limits the attainable load factor for low Mach
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Figure 3.4. The nominal LQ controller of the ARES model.

numbers. While for higher Mach numbers the structural load on the airframe
and the pilot will limit the maximum load factor, see Figure 3.5. The speed
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Figure 3.5. The attainable normal load factor envelope as a function of speed (Mach).
At low speeds the maximum (or minimum) C; will limit the attainable load factor.

where the angle of attack limit meets the load factor limit is known as the
maximum maneuvering speed or corner speed.

Due to this relation it can be convenient to use a combination of load factor
and angle of attack as reference input, using load factor above corner speed,
when the load on the pilot and airframe is high, and angle of attack below
corner speed, when the loads are small but a high angle of attack risks to stall
the aircraft. For the lateral dynamics it is most common to use roll rate, p,
and sideslip angle, B, as the controlled variables.

The feedback loop is designed to achieve required damping and frequency of
the short period, roll and dutch roll modes such that they meet the level
1 requirements in MIL-F-8785C [1980] and to fulfill the flying and handling
qualities criteria specified in, e.g., Gibson [1999]. It shall also meet requirements
regarding disturbance rejection and flutter. The inner feedback loops shall be
designed explicitly taking the pilot feedback loop into account, since this has
proven to give exceptional handling qualities and robustness once the real pilot
is closing the loop. The feedback loop also need to compensate for the change
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in dynamics from the different external stores. Due to the vast amount of
combinations it is not tractable to design a separate feedback for every store
combination but instead more efficient techniques must be used.

The feedforward loop should be designed concurrently with the feedback loop
in order to achieve excellent pilot handling qualities. It usually consists of
either a static feedforward gain, scheduled over the flight envelope, or a
dynamic prefilter for shaping the pilot command, and rate limit filters to
remove any PIO tendencies. The rate limit filters can advantageously be
designed with phase compensation using feedback such as those in Rundqwist
and Stdhl-Gunnarsson [1996] to improve stability margins compared to classic
rate limit filters. To achieve carefree maneuvering and reduce any overshoots
of, e.g., angle of attack and load factor limits, command limiting functions
are also added to the feedforward path. The roll command from the pilot
is translated into both an aileron command and a rudder command in the
feedforward path of the lateral dynamics such that the aircraft rolls around the
velocity vector or the bullet trajectory since this most often is more suitable
than rolling around the x-axis.

The integral control is designed as a PI controller and the objective of the
integral part is to account for any model uncertainties and gain scheduling
errors. The PI controller integrates the error between an ideal output from a
response model and the actual output.

For aircraft with a delta-canard configuration such as the JAS 39 Gripen,
Eurofighter Typhoon and the Dassault Rafale, the control commands can be
distributed to the control surfaces in different ways. The control surfaces on
the trailing edge of the main wing are used for both pitch and roll motion
and special care must be taken to account for this in the design. Also the
pitch command can be actuated with both the trailing edge control surfaces
and the canard wings. The trade off between these should be made in a drag
optimal way.

Once the linear control laws are designed it is common to add additional
nonlinear feedback terms to account for the nonlinearities in, e.g., high angle
of attack situations.

In the design it is very important to minimize all types of time delays not
only in the control system itself but also to the display system and the
head up display (HUD) since the pilot is closing the loop with the display
system. Investigations and experience from earlier design projects has shown
that pilots in general act as a proportional feedback gain in the control loop.
Furthermore, in order to reduce the pilot workload, the flight control system
shall be designed such that the longitudinal and lateral dynamics are de-coupled
to the extent possible also for very asymmetric external store combinations.

Due to the iterative nature of the design process flight control laws should
be designed to enable new functionality or performance to be added piece by
piece. The performance and safety of the flight control laws are verified through
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extensive analysis and a huge amount of linear and nonlinear simulations. This
requires very accurate models to be developed and maintained throughout the
development. The first iteration of the control laws are based on models
derived from physical modeling and wind tunnel testing. Once the aircraft
proceeds to flight testing the models are continuously updated with real flight
data.

The industry has collected a set of best practices for flight control design that
can be found in Nato [2000].

3.4 The ARES and ADMIRE models

In this thesis we will mainly use two different aircraft simulation tools to
derive linear models for control system design and to implement and simulate
the closed loop system. For the simpler examples used in the theoretical
development in chapters 5 to 7 we have used the ADMIRE tool and for the
implementation studies in complex environments presented in chapter 8 and 9
we have used an in-house tool, ARES, at Saab Aeronautics.

Both simulation tools model a single engine fighter aircraft with a delta-canard
wing configuration, see Figure 3.1. The canard wings are the two small wing-
shaped control surfaces just behind the cockpit. They are separately controlled
but they are in general only commanded equally to control the pitching
moment. The elevon control surfaces are the control surfaces on the trailing
edge of the main wing and they are used as combined elevator and aileron
control surfaces, generating both pitching and rolling moment.

The ADMIRE (Aero-Data Model In Research Environment) tool is a Simulink
based simulation environment that implements a nonlinear rigid body motion
with nonlinear aerodynamics based on the Generic Aerodata Model (GAM),
developed by Saab and the Swedish Defense Research Agency. It has simplified
models for engine, actuators and sensors.

For a complete description of the ADMIRE tools the reader is referred to
Forssell and Nilsson [2005].

The ARES (Aircraft Rigid-Body Engineering System) tool is the main simu-
lation tool used at Saab Aeronautics. It is an in-house developed simulation
environment that can be used both for desktop simulations as well as for
software and hardware simulator testing. The ARES tool is used in the JAS
39 Gripen development program for all types of flight dynamical simulations
such as, performance investigations, pilot training and flight control law design
and clearance.

The ARES tool consists of a core simulation environment in which different
submodels are linked together, see Figure 3.6. The different submodels can be
replaced to simulate different aircraft and configurations.
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Figure 3.6. The structure of the ARES simulation environment and its submodels.

Let us shortly describe the purpose and complexity of the different submodels
in order to give an overview of the realism of the ARES tool.

A/C body: This model implements the rigid body equations (3.1) and (3.2)
and based on the forces and moments calculate the velocities and angular
velocities.

Inertia: Calculates the aircraft mass, inertia matrix and center of mass based
on, e.g., the amount of fuel and external stores.

Aero: Calculates the aerodynamic forces and moments from tables of the
aerodynamic data that is scheduled over speed, altitude as well as angle of
attack and sideslip. The tables have been constructed from wind tunnel testing,
CFD? calculations and flight testing. The aerodata model used in this thesis is
based on the GAM.

Engine: A linear dynamical model of the engine simulating engine thrust,
airflow and engine speed.

LDG: Landing gear model simulating the gear extension and retraction as well
as the suspension and nose wheel steering.

Special forces: This submodel models other forces affecting the rigid body
motion than the standard ones described above such as, e.g., automatic cannon
recoil.

Structure loads: Calculates the structural loads on the different parts of the
airframe.

Servo/Hydraul: A simulation model for the control surface actuator servos

2Computational Fluid Dynamics
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and the hydraulic system. It calculates pressure and flow in the hydraulic
system from pump models and calculates hydraulic consumption in the servos.

Incidence: This submodel calculates the wind axis variables, angle of attack, «,
and sideslip angle, S.

Atmos: This is the atmosphere model. It is the International Standard
Atmosphere (ISA), which models the pressure, density, temperature, viscosity
etc. of the atmosphere as a function of altitude.

Wind: The wind model is the Dryden turbulence model developed by the
United States Department of Defense.

EFCS: Models the algorithm of the Electronic Flight Control System (EFCS).
It is in this model we implement the control algorithms studied in this thesis.

Sensor: This is a model of the sensors supplying data to the flight control
system. It models acceleration, angular rate, angle of attack and angle of
sideslip sensors.

Busdata: Models the bus communication between the flight control computer
and other computers in the aircraft.

Pilot: This model implements a number of different maneuvers that a pilot
performs. It is intended to be used in Monte-Carlo simulations.

The different submodels are implemented in C, C++ or Fortran and all the
models are automatically linked together in a correct way during compilation of
the environment. The compilation can be done for desktop and Monte-Carlo
simulations or to interface with real hardware in the simulators.

The ARES model can be trimmed in different steady state flight conditions as
initial conditions for simulation or to extract linear models such as (3.8) and
(3.9) for control law design and analysis.

3.41 ARES baseline LQ controller

The nominal control system that is implemented in ARES for the GAM
aerodynamics is a gain scheduled controller with similar principle structure as
the controller in the JAS 39 Gripen aircraft. It has an LQ designed feedback
from the states together with a proportional and integral feedback from the
tracking error and a static feedforward from the pilot command. A simplified
schematic of the controller structure is shown in Figure 3.4.

For the control law design the ARES model is linearized around trimmed level
flight at 25 different envelope points of Mach and altitude in the subsonic
region and the design is made separately for the longitudinal and lateral
dynamics.

For the longitudinal control law design the short period dynamics (3.8) is
augmented with the actuator dynamics for the canard and elevator control
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surfaces. The actuator dynamics is modeled as a first order system with a
time constant of 0.05 seconds from control surface command, #(t), to control
surface deflection angles, 6, and &, respectively

S| _[-20 0 |[sc(2) 20 0

[560) - [ 0 —20] [68(0] * [o 20] #(t) (3.10)
The output, y(z), is either angle of attack or normal load factor, depending
on which variable we want to control.

From these linearized models the LQ feedback gain, L, and feedforward gain, F,
are calculated in each envelope point and linear interpolation is made between
the design points. The feedforward term is a static gain calculated such that
the closed loop system should have a unit static gain in each design point, i.e.,

C(sI-A+BL)'F+DF=1

The feedback and feedforward gains are tuned to ideally give the closed loop
response y = G, (s)r where, when the actuator dynamics are neglected, G,,(s)
1s

2

w
Gp(s) = ——2—— (3.11)
s2 + 20 wos + u)g

and where the damping, ¢, and frequency, wo, vary with speed and altitude.
The parameters ¢ and w are design parameters and the closed loop system is
tuned such that they meet requirements in, e.g., MIL-F-8785C [1980] and pilot
experience.

The pilot command to the controller is the increment in load factor, An, 4,
from trimmed flight. The reference input, 7, to the controller is then calculated
from the pilot command as both a total load factor command

Nyemd = ANy g + cOsO
and an angle of attack command,
Xemd = Ka/nzAnz,cmd + Qprim

The pilot command, Az, , is limited such that the load factor command
and angle of attack command ideally stays within the specified design limits

-3< Nzemd < 9

-8 <a.,,g <18
The controller then tracks either the angle of attack command, a4, or the
load factor, 7,,,4, command based on the current speed (over corner speed the
controller tracks the load factor command and below corner speed it tracks the
angle of attack command). From the reference command a nominal response,
Ym 1s calculated as

Ym = Gm(s)r

where the model, G,,(s), is the second order model (3.11) and is the same for
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both angle of attack and load factor reference commands.

The nominal response is then compared to the actual response of the aircraft
to calculate the model following error, e = y,, —y. The feedback term from the
model following error is a proportional and integral term trying to integrate
out all model errors such that the true closed loop response is as close as
possible to the desired response throughout the whole flight envelope.

The lateral controller has the same principle structure as the longitudinal
controller and is designed for the lateral dynamics (3.9) augmented with the
actuator models for ailerons and rudder control surfaces. The pilot command
roll rate, p, with the control stick, and sideslip angle, B, with the pedals. The
feedforward from the pilot commands has cross coupling terms, ie., the roll
rate command has a feedforward to the rudder control surface command and
vice versa.

Finally the commands 6., 6., 6, and &, are limited and sent to the control
surface servo loops. Note that in the ARES model the elevator command
and aileron command are sent to the combined control surfaces, the elevons.
This means that he commands are added together before they are sent to the
corresponding actuator.



Introduction to model predictive control

In this chapter we give the background to the Model Predictive Control (MPC)
problem formulation and present some variants and extensions of the theory.
Section 4.1 gives a short historical background to the development of MPC. In
Section 4.2 we derive the MPC controller formulation for linear systems and
discuss stability and robustness issues as well as reference tracking. We also
derive the explicit controller formulation. Finally the concepts of using MPC
for nonlinear systems are briefly discussed in Section 4.3.

41 Introduction

As described in the introduction, adding constraints to the infinite horizon
linear quadratic optimal control problem makes it in general extremely difficult
to solve explicitly, i.e., finding an explicit formulation for «(x). Model
Predictive Control offers a way to overcome these difficulties by defining an
open loop optimal control problem, which is easier to solve than the original
problem, and then iteratively solves it online, using the current state of the
system as initial condition, giving a closed loop feedback controller.

Model predictive control research originated in the early 1960’s with the work
of Propoi [1963] but in the 1970’s and 1980’s much of the development came
from the process industry with methods such as DMC, GPC, IDCOM, QDMC
and SMOC. These techniques were extensively implemented in industry and
hence solved real world problems with constraints and nonlinearities, however
they did not build on firm theoretical foundations, e.g., they did not guarantee
stability and required careful tuning and stable models. In the 1990’s, several
influential papers were published that rigorously developed the stability theory

45
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and reference tracking formulation. A big leap in the theory development
occurred in the early 2000’s with the introduction of Explicit MPC that
opened up a new area of research within the community. In the last two
decades a large body of research has been done on nonlinear MPC and its
theoretical foundations, and today linear and nonlinear MPC is one of the
most promising advanced control techniques to handle constrained multivariable
systems.

472 Linear MPC

The most common formulation of MPC is the discrete time version and
therefore we will limit our discussion to discrete time systems and the discrete
time formulation of the MPC controller (with the exception of Chapter 6
where we also discuss continuous time nonlinear systems). Hence let us for
the remainder of this section assume that the system dynamics can be described
by a linear discrete time difference equation

xiv1 = Ax; + Bu; (4.1)

and the subscript 7 is short for the time index, ie., x; = x(:7;) where T; is
the sample time of the system.

Consider the discrete time constrained optimal control problem of the form

migli,rggize ; (xlTQxl + uiTRui) (4.2a)
subj. to

xo = x (1) (4.2b)

Xi+1 = Ax; + Bu; (4.2¢)

x; €X (4.2d)

u; €U (4.2€)

and assume that the sets X and U are convex. Then this can be viewed as
a general convex optimization problem with an infinite number of decision
variables x;, #; ¥ i > 0. Instead of solving the infinite dimensional optimization
problem (4.2) it is possible to recast it as a finite problem by splitting the
objective function (4.2a) into two parts

N-1 o
ERC T T T T
minimize Z (xi Qx; + u; Rui) + Z (xi Qx; + u; Rui)
n i=0 i=N

and try to find a way to approximate the last part of the objective function,
or at least to bound it from above by some function W(xy)

[ee)

(xiTQxl- + uiTRm) < W(xn) (4.3)
=N
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Then the resulting optimal control problem will have a finite dimension.
N-1
.« . . T T
minimize Z(; (xl- Qx; + u; Rui) + P(xn) (4.42)
i=
subj. to
xo = x(t) (4-4b)
Xis1=Ax; + Bu; Vi=0,...,N-1 (4.4¢)
x;€X VYi=0,...,N-1 (4.4d)
ujed vi=0,...,N-1 (4.4€)
xN €T (4.4f)

In order to make the approximation or bound (4.3) valid there might be some
extra constraints (4.4f) on the state at the end of the horizon, xy. We will
discuss further how to choose W(xn) and 7 in Section 4.2.1 since it relates
closely to stability of the closed loop system.

By solving the optimization problem (4.4) with the current state as xp, the
solution is a sequence of N optimal control inputs unl, denoted {u;“}i]\i 5 1
for which the objective (4.4a) is minimized. Implementing this sequence o
controls as inputs to the real system will result in an open loop controller.
However it is widely known that closed loop control is preferred since all
real systems suffer from disturbances and all models have errors [Skogestad and

Postlethwaite, 2005].

To achieve closed loop control we implement, at each time step k, only the
first control signal, #j, in the optimal sequence {#?}Y ! and then in the next
time step, B + 1, measure the current state and redo the optimization with
the new current state as xo. This strategy is referred to as Receding Horizon
Control since the control problem is solved over a future horizon that is

progressing into the future as time evolves.

, PAST FUTURE
- -
B — o "
(_‘_.-»-" . -+— Reflerence Trajectory
o o Pradicted OQutpul
>4 Measured Output
P Predicted Control Input
e Past Control Input
r"f
e Prediction Horizon
’ R S
| | 1 l | | 1 | l
T L] T T T T T T T >
—
Sample Time
K k+1  k+2 e K+

Figure 4.1. The receding horizon concept of Model Predictive Control (By Martin
Behrendt, via Wikimedia Commons).
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This could also be explained as at each discrete time instant ¢ = k7, (where
T; is the sample time of the controller) the current state of the system is
measured x(t) = x(kT;) = x; and the controller predicts the response of the
system N time steps into the future (see Figure 4.1). The optimal control
input is selected based on the predicted future behavior of the system by
solving the optimization problem (4.4). In conclusion, the Model Predictive
Control law, «(xp), is defined by the solution to the following optimization
problem

N-1
Vi = fr;glg;ize Zc; O(xpyisttpsi) + Plxpen) (4-52)
subj. to

xp = x(t) (4.5b)
Xpyis1 =Axpy; + Bup,; ¥Yi=0,...,N-1 (4.5¢)
Xp; €X Vi=0,...,N-1 (4.5d)
up;, €U Yi=0,...,N-1 (4.5€)
xpen €T (4-5f)
and by applying the first element, #;, of the optimal solution sequence

{”Zn}z]'\igl as control input, ie.,

K(xp) = u (4-58)

In (4.5) we have generalized the notation by replacing the quadratic cost
function, x; . Qxg,; + ukTH.Ru/HZ-, with the more general expression, £(xy,up).
We have also introduced the notation V" as the optimal objective function
value. Note also that in (4.5), k£ denotes the current time step and i is used
to denote the prediction steps into the future. This is only for notational
convenience, in a real implementation there is no difference between (4.4) and
(4.5). Although X and U can be any arbitrary convex sets we will in this
thesis mainly consider polytopic constraint sets, i.e.,

X:{xIFXbeX}, u={u|Fz/{1¢Sbu}

The formulation (4.5) is the standard linear MPC formulation and will, with
a few exceptions, be used throughout this thesis, but there exist several other
formulations with different objective functions and constraint formulations.

421 Stability

Due to the presence of constraints, the MPC formulation is a nonlinear control
problem and to show stability for the closed loop system it is common to
use Lyapunov Stability Theory [Khalil, 2002]. In this section we will give a
brief outline of the stability properties for the MPC formulation. We assume
in this section that the model of the system is perfect and that there are no
disturbances acting on the system.
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To begin with let us first briefly sketch how one can argue stability for the
infinite horizon case. The infinite horizon MPC formulation (4.2), although
it in general is impossible to solve, is stabilizing due to the Principle of
Optimality. It f(xp,up) is a positive definite function such that #(0,0) =0 and
l(xp,up) = oo when xj — o0, #, — oo, then it follows that the optimal cost at
time k£ + 1, is

/e+1 Z[(x/e+1+z ”/e+1+z)

* * * ok k%
g Hpgrg) T 0Cepmy) = L(xg, my)

T L8 I ;

~
Il
o

Z(xZH" MZ+i) N [(XZ’ MZ)

V /(xk,uk)
< V/:

which means that for all x; #0 and #; # 0, then the objective function (4.2a)
is strictly decreasing as time progresses.

Furthermore since v is bounded below by zero it must follow that
O(xp,up) — 0 as k — oo and hence x; =0 and u; — 0.

For the finite time horizon formulation (4.5) this type of argument can not be
used since the horizon is progressing over time, taking new information into
account. The solution at time k + 1 can therefore be very different from that
at time k. For this case one has to carefully chose the function ¥(x;,y) and
the terminal constraint x;,x € 7 to ensure stability. There exist several such
choices and we will give a brief review of some different techniques proposed
in the literature. For a more extensive survey we refer to the excellent review
paper by Mayne et al. [2000].

If the system is stable, a pragmatic approach would be to assume all control
signals #;,; =0 for i > N and calculate (4.3) as the uncontrolled response of
the system starting from the state x;, . This is approach proposed in [Muske
and Rawlings, 1993] and [Rawlings and Muske, 1993]. Keerthi and Gilbert
[1988] proposes instead to impose a new constraint, x;,y =0 (i.e, T =0),
which for linear systems will give W(x;,n) =0. With this setup they show
that the closed loop system is stable. Additionally they show that the cost of
the finite horizon optimal control problem (4.5) approaches that of the infinite
horizon problem (4.2) as N increases.

A natural relaxation of this approach would be to constrain the final state
Xp+N» Dot to the origin, but instead to some small region, 7, around the origin
in which a local controller, #;, = «(x}), can take over and drive the system to
the origin. This approach is called Dual Mode Control since, in theory, the
controller is divided in two modes, one solving the receding horizon control
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problem and one that is a local control law. However in practice the local
controller is never implemented, it is only a theoretical construction to show
stability. Combining this approach with a cost ¥(x;, ) which is the cost for
the local controller to drive the states to the origin is, at least in academia,
the most widely used formulation of the MPC controller (4.5).

Before we can state the formal stability theorem of the dual mode MPC, we
first need a definition, which can also be found in Blanchini [1999].

Definition 4.1. The set 7 c R” is said to be positively invariant for a system
Xpe1 = f(xp) if for all x, € T the solution xp,; € T for i > 0.

With this definition in place we are now ready to state the main stability
theorem.

Theorem 4.2 (Mayne et al. [2000]). If the system (4.1) is controlled with
the MPC law (4.5), where £(xp,up) > c(|(xp, up)|)?> and £(0,0) = 0, the closed
loop system is stable and asymptotically converges to the origin if the following
conditions hold:

1. T is a positively invariant (see def. 4.1) set of the system (4.1) controlled
with the feedback wu;, = k(xp) where k(xp) €UV xp €T

2. TCX with 0eT

3. AW(xp) + l(xp, k(xp)) <0, Yxp € T, where A¥(xp) = P(xp,1) — Plxp).

The first two conditions ensures that the problem is recursively feasible, i.e.,
given that there exist a solution at one time, then there will exist a solution for
all future time steps. The last condition ensures that the system asymptotically
converges to the origin. The properties of ¥ that fulfill condition 3 can be
obtained if ¥ is chosen to be a Lyapunov function upper bounding the infinite
horizon cost when using the controller x(xp).

To show the convergence let us assume that there exists a solution at
time k with an optimal cost V.  Then, at the following time step

we apply the feasible but possibly suboptimal control sequence {#,;}Y, =

(] ooty KX D) Then the suboptimal cost, V},q, is
N-1
Vier1 = [(xz+1+i’”/e+l+i) + W(xpi14n)
1=0
N-2

[(x/:+1+i’MZ+1+i) + [(xZ+N’”k+N) + Wxpr14n)

]
o

i

0k ) — 0k ul) + PO ) = P(xE, )
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N-1

= Z [(xZ+i’MZ+i) + lP()CZ+N)
i=0

v
= 0Cepup) + 00 ot en) + Wxpan) — W, )
=V =l u]) + 0(x], o K(Xpsn)) + AP (xpsn)

N—

<0 <0

N
<Vk

The last inequality follows from the third property of the theorem and from
this we conclude that the optimal cost at time & + 1 fulfills

Vi, < Vi <V

In other words, V" is strictly decreasing as long as x; #0 and #; # 0. Hence

x* =0 and #F — 0.

k k

The above derivation assumes that there exists a solution to (4.5) at time k + 1,
i.e.,, that 0 is feasible, this is not trivial and it must be proven that there
always exist a solution to the open loop problem, so called recursive feasibility.
To show this let Xy be the set of x where (4.5) is feasible. Assume x, € Xn

. . . . * N-1 . .
Wlt}‘l an optlmal'solutlon given by the sequence {n) %5 and with predicted
optimal state trajectory {xz+i}l.]\i .

. A ) N _ * * * * 1 -
At the next time step Uegiticg = g, oty gt k(g )Y IS 2 fea

sible control sequence, since x; . € 7 and hence «(x] ) € U according
to Condition 1 of Theorem 4.2. The new, possibly suboptimal, state se-
quence at time k + 1 is {£k+i}£;1 = (X}, X, 3+ %),y XkeN+1) Where
Xpen+1 = Axp,  + Bx(x}, ). Since T is positively invariant w.r.t the system
Xpe1 = Axp + Bk(xy), it follows that xp, 4 stays in T, ie., the terminal state
constraint xg,n.1 € 7 is satisfied. This argument can be used recursively and

shows that the problem is feasible at all k.

*

It should be noted that the property of recursive feasibility require that the
model of the system is perfect and that no disturbances act on the system.
We will discuss more on how to ensure recursive feasibility in the presence of
model uncertainties and disturbances in Section 4.2.4.

Sznaier and Damborg [1987] proposes a dual mode formulation for linear
systems where the local controller «(xp) = -Kx; and W(xp,n) = x/Z+Nka+N

is the solution to a discrete time version of the unconstrained infinite horizon
LQ problem, i.e.,

K =(R +B'PB)"'BTPA (4.6a)
where P is the solution to the Riccati-equation

(A-BK)'P(A-BK)-P=-Q-K'RK (4.6b)
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The authors show that by iteratively solving (4.5) for an increasing horizon, N,
until (4.4f) is satisfied (where 7 is an invariant set of the system controlled
with the local controller, see 4.1) then the solution is also the solution to the
constrained LQ problem (4.2). Later versions of this approach have explicitly
incorporated (4.4f) as a constraint and use a fix horizon, N.

To see that this choice of local controller and terminal state penalty indeed
satisfy the third property of Theorem 4.2 we note that since

C(xp,np) = xZka + ukTRuk

W(xpsn) = %, nPXEsN
Xp41 = (A= BK)x,
we obtain
CCxep, o Ko 3)) + Wprran) — W, )
= xply Qupy + Kxp ) REx v+ 0y Py = x5 P,y
= xptnQupyy + Xt KT RK X+ xpL (A= BK) P(A = BK)xp,

x/e+NPx/e+N
=x;7  (Q+K"RK + (A-BK)'P(A-BK) - P)x;,

(4.6b)
=0

where the last equality follows from the fact that P and K are the solution
to the LQ problem and hence satisfy (4.6b). This shows that the dual mode
MPC formulation with the LQ solution as local controller and terminal state
penalty is recursively feasible, stabilizes a linear system and is optimal in the
sense that it solves the infinite horizon constrained LQ problem when the final
state constraint is inactive. These desirable properties make this formulation
very attractive.

422 Reference tracking

When tracking a reference signal, i.e., the so called servo problem, the system
shall not converge to the origin but settle at some steady state (x,,#,) different
from the origin, yielding the desired output.

At this steady state it must hold that

Ve =T (4-7)

where 7 is the external reference to be followed and since it is a steady state
it must hold that

Xpp1 = Xp = Xy (4.8)
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Given a controllable linear discrete time system
Xpy1 = Axp + Buy, (4-92)
Ve = Cxp + Duy, (4.9b)
inserting (4.7) and (4.8) into (4.9) we obtain
xy = Ax, + Bu,
r=Cx, + Du,
Rearranging the equations gives the relation
A-1 B|[x] [0
e olli]= 1 20
This relation determines the steady state x, and control #, given a reference
input 7. However the combination of input and steady state that result in
yr = r might be non-unique, ie., if the matrix on the left hand side of (4.10)
is singular. In that case, a reasonable choice is to choose a steady state which

is the minimal norm input, which can be formulated as a convex problem
[Meadows and Badgwell, 1998, Muske and Rawlings, 1993]

minimize #! Wu, (4.11a)
subj. to
A-1 B||x,| |0
e al[il- ] ()
u, €U (4.11¢)
x, € X (4.11d)

In the case that a reference signal » results in an infeasible optimization
problem (4.11), then one can instead solve

minimize (yp — )T W(y, - 7)
Xy lhy
subj. to
|[A-1 B| [X] =0
Uy
u, €U
x, € X
resulting in the steady state that keeps the output as close as possible to r

[Muske and Rawlings, 1993]. An alternative to this approach is to use a pseudo
reference which we will discuss further later in this section.

Now a pragmatic approach to implement the reference tracking case is to
simply shift the origin of the problem to the new setpoint and apply the
standard MPC scheme on the translated system, i.e., in the original coordinate
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system, penalize deviations from the steady state setpoints.

N-1

rr;inirr]:ize Z C(Xpy; — X thpy; — ty) + Plxpin — Xr) (4.12a)
A
subj. to
Xpriv1 = AXpy; + Butgy; (4.12b)
Xpy; €X (4.12¢)
up.; €U (4.12d)
Xpen € T (xr) (4.12¢)

This formulation is the standard procedure of solving tracking problems in
the MPC framework, see, e.g., Lee and Cooley [1997], Mayne et al. [2000],
Meadows and Badgwell [1998], Muske and Rawlings [1993], Rao and Rawlings
[1999], Rawlings [2000], Rawlings et al. [1994]. In this setup the terminal state
constraint set now depends on the setpoint in the way that it shall be an
invariant set for the translated system. This will in general lead to a terminal
constraint set that has a different size and shape for every steady state setpoint.
This is a complicating fact since it could require a recalculation of the terminal
constraint set on-line. We will elaborate more on this topic in Chapter s.

A further extension to the tracking concept is to use a so called pseudo setpoint
or pseudo reference [Rossiter, 2006]. Instead of using the true reference » in
(4.11) one introduces a new optimization variable 7 which gives a corresponding
steady state and control, x and #, in the optimization problem (4.12), and then
penalize the deviation between the desired reference r and the pseudo reference
7 using a positive definite function ¢(7 —r) in the objective function. By using
this pseudo reference, the feasible region of the problem can be increased. The
dual mode MPC problem when using a pseudo reference then has the form

N-1
minimize _ Z O(Xpy; — Xpo ppy; — L)

Ul isXho+isXhsWEsTh

1=0

+ W(xpon —xp) + ¢ —7) (4.132)
subj. to

Xpyivl = Axpyi + Bugy; (4-13b)
Xpyi € X (4-13¢)
Hepi €U (4.13d)
Xpen € T (%) (4-13€)
et Al

Note that the only constraint on 7 is that it fulfills (4.13f), but since also x
and # are variables in the optimization problem they can be chosen and the
only constraint on how they must be chosen is (4.13¢). The limiting constraint
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is that x must be chosen such that the final state at the end of the prediction
horizon is in the terminal set, xp,n € 7(x). This means that an arbitrary
reference, r, can not lead to infeasibility since we can always chose 7 such that
xpeN € T(x) and the optimization problem remains feasible, but it might be
at a high cost. In this way the pseudo reference acts as a prefiltering of the
true reference such that feasibility can be guaranteed when changing references.

Both the formulation (4.12) and (4.13) requires a perfect model of the system
otherwise there will be a nonzero steady state offset. Additionally, if there
are disturbances acting on the system there will also be an offset between
the desired output and the achieved output. Therefore one has to introduce
integral action in the MPC controller for any practical purposes.

42.3 Integral control

A standard way of introducing integral control is to augment the system model
with new states, €, which is the integral of the tracking errors

€p = €p1 T T =Dk

and then penalize the integral state in the cost function. However this may not
be a suitable approach in MPC since, firstly, the computational cost increases as
the cube of the state dimension and secondly due to the presence of constraints
there is a need for an anti-windup structure in order to avoid performance
degradation [Muske and Badgwell, 2002].

Instead the standard procedure in MPC is to augment the system model with
a constant disturbance, dj,

Xpy1 = Ax;e + B%k + Edk (4.143.)
des1 = dp (4-14b)
Ve = Cxp (4-14¢)

and use a disturbance observer to estimate this disturbance. Then the desired
steady state is compensated for the disturbance.

[AC ' g} m - [ E,dk] (4.15)
Many papers have been published related to integral control in MPC and almost
all are variants of this setup. One of the pioneering contributions by Muske
and Rawlings [1993] consider both input and output constant disturbances and
use the Kalman filter to estimate the disturbances. In Meadows and Badgwell
[1998] this concept is analyzed in the context of nonlinear MPC for constant
output disturbances. Pannocchia and Rawlings [2003] and Pannocchia and
Kerrigan [2003] extend the theory to a more general disturbance model and
non square systems and Maeder and Morari [2010] extends the theory further
to handle non constant disturbances such as sinusoids and ramps.

We will in this thesis only consider the standard setup with a constant
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disturbance model and following the derivation in Akesson and Hagander
[2003] we show that the use of a disturbance observer in MPC will, in fact,
result in integral action.

For simplicity and clarity of the derivation we consider an integral form of
MPC formulation (4.12) with a fixed reference, i.e., the terminal constraint
set (4.12e) is a fixed set and can be described as a polytope. Instead
of the state prediction used in (4.12) we use the state prediction equation

Xpijs1 = Axpy; + Bup,; + Ed, with x;, = X, where £, and d, are the observed
state and disturbance. The disturbance observer for the system (4.14) is given

by
J/i/e+1 _ A E %/e
dper| 10 T dg

where L is the observer feedback gain.

B A
up + L(y — Cxp) (4-16)

*lo

We also assume that the steady state and control are given by

e el

Uy C 0 r Hud H,H r ’
. T T
By defining X = [x/Z+1’ x/Z+2’ e, x/Z+N] and U, = [ukT, ”/Z+1’ e, ”/Z+N—1]
we can write (4.12) as
minli]mize (X -Ix,)" Q(X - 1x,) + (Up, - ]Iur)T R (U, —1u,) (4-18)
&
subj. to (4.19)
X = Afék + BU/€ + 562/6 (4.20)
FeX <Yy (4.21)
Fulp <, (4.22)
where the matrices in the objective function are defined as
I Q 0o o0 R 0o o
I Q 0 R 0
H = ) Q = N R =
0 0
1 0 0 p 0 0 R
and for the system dynamics as
A B 0 ... 0 E
A? AB B 0 AE + E
A= ., B= , €=

AN AN-1B AN-2B . B SN AE
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The state and control constraint matrices defined as

Yo =[6L 6L ..o bRV, v, =(8 b ... L]
Fx 0 0 Fy 0 0
Fx 0 Fy 0
Fe = , Fu=
0 . 0 .
0o o0 Fr 0 0 Fy

We can eliminate the state variables from the above formulation with the use
of the state dynamic equation. This results in the following optimization
problem

minimize U{' (57 QB + R) Uy + 2U{ BT QA% + 2U] BT ogd,

—2U] BT Qllx, - 2UT R Tu, + DRy, dpy %, 1)

subj. to
FiB Ty — Fo ARy — FoEdy
[}_” ] U, < T,

where we have collected all the terms of the objective function that are
independent of #p,; in ®(-). From Section 2.1.2 we know that at the
optimum it must hold that the gradient of the Lagrangian is equal to zero,
hence form the Lagrangian and differentiate it w.r.t. Uj.

dr T * T A T 7
d_Uk:Z(B QB + R) Uy + 2B QA% + 2B" Q&d,
F
T T u *®
2B Qllx, - 2R 1, + [IXB} A*=0

From this we can easily solve for U,

1

U; =-(BTaB+R)" (BTQ (A)ek + Edy - er) - RTIu, + 5

Fu ] pe
FiB
and the optimal control, #}, is defined by the first row of the equation as

%Z = _nyek - Kda?/e + nyxr + K%r”?’ - Kya” (4'23)

for an appropriate definition of the matrices, K(-). Using the relation (4.17)
we can write #; as

I/t;: = —Kx)%/e - (Kd - nyl'lxd - K,hHud) d/e + (erl'[xr + K,MHW) r - K/l/l*

K, K,

= —KXp — I%dcfk + K, r —Ky* (4.24)
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Inserting (4.24) into the observer equations (4.16) we obtain

Xpe1]  [A-BK.-L,C E-BK;|[%] |[BK, Ly BK,] ..
A = A+ + + A
[d/m} [ -L,C I dy, o |" T |Ly|* 0
. [ Au Aw] ] | [BK, L, BK,| ..
_[_Aﬂ 1][dk]+[o r+Ldy/€+ 0 A

Rewriting the observer equations into the z-transform domain and into transfer
matrix form yield

x(z) _ Zfll—ANu —A~12 - Bkr L, BK,| .,
- ] (o oo P e

and the matrix inverse is

U -Ay -Ap -
A =3

_| Y@ S Y@An
5 AWz & (1 - 5 An¥(2)An)

where, W(z) =271 - Ay + 1f—21412/121, denotes the Schur complement to =%1.

Inserting (4.25) into the z-transform of (4.24) we finally obtain

w(z) = -K£(z) - Rgd(2) + Ko7 (2) - K °
= —K¥(2)Lyy(2) = (K:¥(2)B - ) K,7(2)

+ =027 (2) = ¥(2))
- (KX‘P(Z)B - i—zkdﬁﬂw(z)B - 1) K" (4.26)
with

~ N N A w
O(2) = K'¥(2)A2Lg — KagAn¥(D)Lx + Kg = T KyAn¥(2) ALy
[(z) = ® ' (2)K; 451 ¥(z) BK,

Equation (4.26) shows that the MPC setup with a disturbance observer for a
constant disturbance will result in an output feedback term, —K,(2)¥(z)Lyy(z),

a reference feedforward term, — (Kx (2)¥(2)B(z) - K, (z)) 7(z), a term depending
on the optimal dual variables, — (KX‘P(Z)B - fTZl%dAﬂ‘P(z)B —I) K A*, and an
integral term of the output error, £ ®(2)(I(z)r(z) —y(z)). It is worth noting
that if no constraints are active then the complementary slackness condition
(2.9) implies that the optimal dual variables, A%, are zero and hence that term
has no affect on the control signal (as one would expect).

In Figure 4.2 we apply this integral control algorithm to the pitch dynamics
of an aircraft as defined in Section 3.2, but here subject to a constant state
disturbance. The figure clearly shows the benefits of adding integral control
since without the integral action there is a large offset from the reference signal
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which is completely eliminated with the use of integral control.

15 T T T T T T

10| . \ _

.......

-20

Time [s]

Figure 4.2. The step response of a system subject to a constant state disturbance
when controlled with an MPC controller without integral action and with integral
action. The dashed lines are the output and control signal of an MPC controller
without integral action and the solid lines are the output and control signal when
integral action is added.

Note that we have not discussed anything about the stability properties of this
output feedback MPC algorithm. As a matter of fact, the well known principle
of separation does not hold and a separate state estimator and feedback design
does not necessary stabilize nonlinear and constrained systems. We will not go
into detail on the stabilizing properties of output feedback MPC in this thesis,
instead we refer to Rawlings and Mayne [2009] for a more in depth treatment.

424 Slack variables

Due to the iterative nature of the MPC method it can happen, due to, e.g.,
model errors or disturbances, that at some point in time the optimization
problem becomes infeasible. There exist several ways to handle this, one ad
hoc way is to simply use the next control signal, #;,{, from the optimal
sequence in the previous time step; but there is no guarantee that the problem
becomes feasible again at a later point in time.

A better and more systematic way to handle infeasibility issues is to add an
extra optimization variable, a so called slack variable, &, to the problem. The
slack variable is a non-negative vector that is added to the right hand side of
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the state constraints
FX}C < b;{ + &

The effect of adding the slack variable to the right hand side of the inequality
constraints is that if an element of the slack variable is larger than zero then
the corresponding constraint is relaxed, i.e., feasibility can be regained.

Usually, the slack variables are only added to the state constraints and not
to the input constraint [Maciejowski, 2002], since the input constraints usually
are real hard constraints with physical limits, hence it makes no sense to relax
those constraints. Note however that in theory one could also add slack to
the input constraints if it makes any sense, e.g., if the input signal limits have
some safety margin to the real physical limit which one do not want to break
unless it is extremely important.

In addition to adding the slack to the constraints it is also added in the
cost function with some positive definite function, ¢(¢), that penalizes the
constraint violations. In de Oliveira and Biegler [1994] it is suggested to use a
quadratic cost function of the form

e(e) = pllell?

The drawback with this type of penalty function is that if any constraints
are active in the optimum, then a quadratic penalty on the slack variable will
always cause the constraints to be violated to some small extent. This comes
from the fact that the increased cost from the penalty function is of order
O(&?) and smaller than the reduced cost from the other parts of the cost
function, which is of order O(g), for small values of & [Maciejowski, 2002].
If instead a linear penalty function is used then the increase in cost is also of
order O(e) and if p is large enough, then the constraints will only be violated
if there does not exist a feasible solution to the problem with slack variables
equal to zero [Maciejowski, 2002].

This is known as an exact penalty but the question remains how to chose the
gain p. Unfortunately, in order to have exact penalty the choice of gain, p,
depends on the optimal dual variables (which are not known until the problem
is solved). Fletcher [1987] shows that the gain must be larger than the dual
norm of the Lagrange multipliers (the dual variables).

p > 1%y

In order to overcome this problem one has to estimate a bound on the dual
variables and in Kerrigan and Maciejowski [2000] the authors derive a fixed
lower bound on the gain.

Finally the resulting MPC problem with integral action, pseudo setpoint and
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slack variables can be formulated as

N-1
minimize Y £(tgy; = o dpai — i) + Py — )

Ul is X4 isX s HlsThE

+ ¢ —7) + pllelle (4-272)
subj. to

Xpsivt = AXpy; + Bup,; + Edy, (4.27b)
Fyxp,; <bx +¢ (4.27¢)
Funp,i < by (4.27d)
Frap.n < br (4.27¢)

A-1 B)[%] _[-Ed,
-

where x,, r and c?k are the input variables and c?k is estimated with a
disturbance observer like (4.16). The applied control law is x(xp) = u;.

425 The explicit solution

For many years it has been the general conception that an explicit solution to
the constrained optimal control problem (4.2) is extremely difficult to calculate
[Mayne et al., 2000]. However in the last two decades this notion has been
overthrown by what is called Explicit Model Predictive Control.

The development of explicit MPC has been motivated mainly by the need
for MPC algorithms to control systems with very fast dynamics and a need
for algorithms to be implemented on low cost hardware, where an online
optimization is not possible. However yet another aspect is that of verifiability
of the algorithm for safety critical applications; since in the recent years very
fast online algorithms have been developed, verifiability might be the most
important aspect today for using explicit MPC in aeronautical applications.

Explicit MPC builds on the concept of multi-parametric programming, which
has been a research topic within the optimization community since the 1960’s
[Gal, 1980], but it was not until the papers of Bemporad et al. [2002a] and
Bemporad et al. [2002b] that these techniques became widely known within
the MPC community.

A multi-parametric program can in its general form be written as

z*(0) = argmin f(z,0)

subj. to 4(z,0) <0

where z is the optimization variable and 6 is a vector of parameters. Both the
objective function and the constraint function can depend on the parameter
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vector and of course also the solution z*(6) is dependent on the parameter
values.

We will in this section derive the explicit formulation for the quadratic program
(4.5) where the constraint sets X, U and T are polytopic sets.

In the same manner as we did in Section 4.2.3 we can rewrite the basic MPC
formulation (4.5) by defining the concatenated vectors

X = [xlz;+1 xlz;+2 x/Z+N]T
and
T T T r
Uk = [M/e w1 - ”k+N—1]
which results in
min[i]rknize xTox + UkTRUk (4.282a)
subj. to
X = Axk + BUk (4.28b)
FiX <Yy (4.28¢)
FuU, <1y (4.28d)

From this we can again use the state dynamics equation (4.28b) to eliminate
the state variable from (4.28) and the resulting optimization problem is a
multi-parametric problem

minlijznize UkT (BT OB + R) U, + ZUkT (BTQA) xXp + x]z (.ATQA) xp  (4.29a)

. Fu
suby. to []:,CB] U, <

T

where U, is the optimization variable and x; the parameter.

If we introduce the variable
z=U + (B70B+R)” BT QAx,
we can rewrite (4.29) to
minimize z! Hz (4.30a)
subj.to Mz < N + Sx; (4.30b)
with
_nrT _ Fu
H=B"OB+R, M= []__XB]
F. (BT0B +R) " BTQA

i
N = N S = -1
-F.A+ FB(BTOB+R) BTQA
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where now only the right hand side of the constraints depends on the
parameter.

Given a value on the parameter x, the solution to the multi-parametric QP
(4.30) is given by the KKT conditions

2Hz + MTa=0 (4.31a)

Mz - (N + Sx,) <0 (4.31b)
1>0 (4-31¢)

Ai(Miz = (N + Sxz); ) =0 (4.31d)

where the subscript i denotes the iith row of the matrices. From (4.31a) we
can solve for z

zt=-H'M"a
which if we insert it into the complementary slackness condition (4.31d) gives
A(MH™'M"2 + (N + Sx) ) =0
From Section 2.1.2 we know that for all active constraints it must hold that
MAH"MEA4 + Na + Sax, =0

where the subscript A denotes the part of the matrices for which the corre-
sponding constraint is active. From this equation we can determine the dual
variable and substitute it into the solution for, z*(x;), yielding

-1
z*=H'"M" (MAH7'ML) ™ (N4 + Saxy) (4-32)

From (4.32) we observe that the optimal solution z*(x;) to the KKT conditions
(4.31) is an affine function of the parameter x;

z"(xp) = Fixp + g;

where F; and g; depends on the set of active constraints and hence the solution
z*(xp) is a different affine function depending on the set of active constraints.
The set of the active constraints, X;, can easily be determined if we note that
the optimal solution z*(x;) must fulfill the primal feasibility constraint (4.31b),
ie.,

—_ _ -1
MH'MT (MgH'ML) " (Na + Saxg) < N + Sx; (4-33)

The inequality constraint (4.33) specifies the polytopic subset, A;, of the state
space where the optimal solution, z*(x;), is valid.

It can be shown that the optimal solution z*(x;) is, in fact, a continuous
piecewise affine function (in the sense of definition 4.3) of the parameter x;
[Bemporad et al.,, 2zo02b]. Each afhine function valid in a different polytopic
subset, X;, of the state space where the active constraints does not change.

Definition 4.3. A function z*(x) is said to be piecewise affine if it is possible
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to partition the polyhedral state constraint set X’ into convex polyhedral regions
X; such that z*(x) = Fix + ¢; Yx € X

The calculations of the explicit controller is an iterative procedure where the
entire feasible set is partitioned into convex polyhedral regions, each with an
afine feedback solution. Here we will only outline the main structure of one
such algorithm and refer to Baotic [2005] for the details. Once an initial
xp has been chosen and the affine solution and the polytopic subset, A;, has
been calculated, then the remainder of the state space can be partitioned into
convex regions, P;. In each convex region a new x; is chosen and a new
solution, z*(x;) and the polytope of active constraints, X; are calculated. The
algorithm gradually explores the different regions P;, ﬁndmg new partitions, A;,
and dividing the remaining region into new smaller regions. This procedure
continues until all regions have been divided into partitions and no unexplored
regions remain. Then the entire feasible set will be divided into convex
polyhedral partitions, see Figure 4.3.

We summarize the above discussion in Algorithm 1.

Algorithm 1 Offline calculations of the explicit MPC feedback solution

©: Given an initial set of constraints (in the first iteration the state constraint
set X), select an initial state x; belonging to the set, for example the
Chebychev center (2.12) of the set [Bemporad et al., 2002b].

: Solve the KKT equations 4.31.

: Determine the set of active constraints.

: Calculate F; and ¢; from (4.32).

: Determine the set X; from (4.33).

: Partition the remainder of the state constraint set into non overlapping
convex regions P;.

7: Repeat from 1, now with the set P; as initial set of constraints.

(o N I R CS N N)

Note that with the procedure for exploring the state space by dividing it
into regions P;, which has been described in both Dua and Pistikopoulos
[2001] and Bemporad et al. [2002b] it can happen, due to the nature of
the algorithm, that several adjacent partitions have the same feedback solution.
If the partitions constitute a convex set, then they can be merged into one
partition, reducing the complexity of the controller, see Figure 4.3.

The online complexity of the explicit solution is mainly affected by the task
of finding the partition, X;, in which the current state, x;, is located (the so
called point location problem) and hence dependent on the number of partitions,
Ny, that are required to describe the solution. The runtime complexity is in
worst case O(Ny) if a straightforward simple search routine is implemented
but with advanced search algorithms the runtime can be reduced to O(log, Nx)
[Jones et al., 2006, Kvasnica, 2009].
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Figure 4.3. In the left axis the total number of partitions, X;, generated by the
algorithm and in the right axis the number of partitions after reduction.

Since the number of state space partitions so greatly affect the applicability
of explicit MPC, a large amount of research has been performed on the
task of defining a simple state space partition structure in order to reduce
the complexity in the point location problem, see, e.g., Genuit et al. [2011],
Raimondo et al. [2012], Rubagotti et al. [2012].
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-20

5 5 ~100
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Figure 4.4. The optimal explicit MPC feedback solution plotted over the polytopic
regions where each affine solution is valid.

In Figure 4.3 and 4.4 we have used the pitch dynamics of from Section 3.2 to
calculate a simple explicit MPC controller for stabilizing the unstable dynamics
around the origin. In Figure 4.4 we can see that the optimal feedback solution
is a piecewise affine function with three regions. One region where the solution
is the discrete LQ solution and two regions where it is the saturated control
input.
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In Chapter 5 we develop a new MPC formulation for reference tracking
purposes, which has the property of greatly reducing the number of state space
partitions needed to describe the explicit solution.

4.3 Nonlinear MPC

Even though all MPC formulations, because of the constraints, result in
nonlinear controllers, the term nonlinear MPC usually refers to the case where
the system dynamics is nonlinear

Xpy1 = f g, np)

and the MPC problem formulation (4.5) now looks like

N-1
rr;}enlrglze 2, C(Xpris hori) + P(Xpin) (4-342)
i
subj. to
Xe+i+l = f(x/e+i»”/e+i) (4-34b)
Xpri € X (4-34¢)
weri €U (4-34d)
xpan €T (4-34€)

Even though (4.34) looks very much like (4.5) and the analysis in Section 4.2.1,
such as Theorem 4.2, can be extended to hold also for nonlinear systems there
are some very important subtle differences.

In general it is extremely difficult to find the terminal state penalty, ¥(xp,x),
and constraint set, 7, such that the problem corresponds to the infinite horizon
optimal control problem. In the linear case this is relatively straightforward
and a quadratic penalty term can be used with the unconstrained LQ solution,
P, as penalty.

Instead several different approaches on finding good approximate solutions to
the infinite horizon problem have been proposed in the literature. Many of
the methods, their stability properties, performance and implementation are
analyzed in the easily accessible paper by Nicolao et al. [2000].

One popular approach proposed by, e.g., Chen and Allgower [1998], Michalska
and Mayne [1993] and Magni et al. [2001], is to use a linear controller that is
stabilizing the linearization of the system around the origin, to define terminal
state constraint and cost. Another approach found in Primbs et al. [1999]
and Jadbabaie et al. [2001] uses the theory of Control Lyapunov Functions
to define an appropriate terminal cost function. Nicolao et al. [1996, 1998]
propose to use a nonquadratic terminal state cost which is infinite outside an
implicit terminal region, forcing the terminal state into a region where a linear
state feedback stabilizes the system. In the paper by De Oliveira Kothare and
Morari [2000] the authors introduce contractive constraints that forces the norm
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of the state at the prediction horizon to be smaller than the norm of the
current state. Using this the authors can show, under feasibility assumptions,
that the closed loop system is exponentially stable.

Other relevant papers analyzing stability of nonlinear MPC are Henson [1998],
Mayne [2000], Mayne and Michalska [1990], Michalska [1997], Morari and Lee
[1999] and Fontes [2001]. In Scokaert et al. [1999] two suboptimal MPC
algorithms are analyzed which can guarantee stability even in the absence of
an optimal solution. The main benefit of the proposed suboptimal schemes is
the low computational complexity compared to other algorithms.

Regardless which of the above mentioned stabilizing algorithms one consider,
the fact that the system dynamics is nonlinear makes the MPC formulation
(4.34) a nonconvex program. In general, nonconvex programs are much
harder to solve than the convex program that a linear dynamics and quadratic
cost function results in [Boyd and Vandenberghe, 2004]. In the survey
of Cannon [2004] several different techniques to solve the nonlinear MPC
problem in a computational efficient way are reviewed. These methods include
Sequential Quadratic Programming, (SQP), Euler-Lagrange- and Hamilton-Jacobi-
Bellman approaches as well as Cost and constraint approximation.

The SQP method tries to find a solution for (4.34) by solving a sequence
of approximations defined as quadratic optimization problems. The solution
to each QP gives a search direction for the original problem (4.34). The
main drawback with the SQP method is that the sequence of iterates can be
extremely long and secondly that there are no guarantees that the sequence
converges to the global minimum.

The FEuler-Lagrange and Hamiltion-Jacobi-Bellman techniques circumvent the
troublesome task of solving the nonconvex optimization problem by viewing
the nonlinear MPC problem formulation in the light of optimal control.
The Euler-Lagrange method numerically solves the two point boundary value
problem that arise from Pontryagin’s Maximum Principle and the Hamilton-
Jacobi-Bellman approach tries to numerically solve the Hamilton-Jacobi-Bellman
partial differential equation. These techniques either lack any stability guarantees
or are extremely computational expensive.

Another approach to reduce the computational burden is to approximate the
cost and constraint functions such that a convex program can be solved instead.
This approach of course yields a suboptimal solution to the original problem
(4.34) and for some approximation schemes not even recursive feasibility can
be guaranteed.

One fairly popular approach to remove the nonlinearity of the system dynamics
is to first design a linearizing inner feedback loop and then add a linear MPC
controller for the linearized system. This alternative also has some major
drawbacks and in Chapter 6 we investigate this approach further.






A low complexity reference tracking
MPC algorithm

Among the many different formulations of MPC with guaranteed stability, one
that has attracted much attention is the formulation with a terminal cost and
terminal constraint set, i.e., the dual mode formulation. Despite its popularity
only little has been published concerning stability properties for reference
tracking applications. In this chapter we build on the dual mode formulation
of MPC and our goal is to make minimal changes to this framework, for the
linear polytopic case, in order to develop a flexible reference tracking algorithm
with guaranteed stability and low complexity, which is intuitive and easily
understood.

The main idea is to introduce a scaling variable that dynamically scales the
terminal constraint set and therefore allows it to be centered around an
arbitrary setpoint without violating the stability conditions. The main benefit
of the algorithm is reduced complexity of the resulting QP compared to other
state of art methods without loosing performance.

This chapter is based on the journal paper:

Daniel Simon, Johan Lotberg, and Torkel Glad. Reference Tracking
MPC using Dynamic Terminal Set Transformation. IEEE Transactions
on Automatic Control, 59(10):2790-2795, 2014.

which is an extension of the work previously published in the conference paper

Daniel Simon, Johan Lofberg, and Torkel Glad. Reference tracking
MPC using terminal set scaling. In sist IEEE Conference on Decision
and Control (CDC), pages 4543-4548, dec 2012.

and in this chapter we have also added simulation results which were presented

69
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on the IFAC world congress 2014, as an extended abstract.

51 Introduction

As described in Section 4.2.2 it is often argued that with a simple change of
coordinates the origin can represent any suitable setpoint for the controller. A
pragmatic approach to implement the reference tracking case would therefore
be to apply the standard MPC scheme (4.5) on the translated system, i.e.,
in the original coordinate system, penalizing deviations from the steady state
setpoint.

However for the dual mode formulation the possibility to guarantee recursive
feasibility and stability when tracking a reference is dependent on the possibility
to guarantee that the terminal set, which depends on the chosen setpoint, still
is a valid positively invariant set. In order to guarantee stability it must
hold that the translated terminal set still fulfills the conditions (1) and (2) in
Theorem 4.2. What could easily happen if a simple change of coordinates is
used is that 7(x,) ¢ X, ie., a translation of 7 moves parts of it outside X,
see Figure 5.1, thus invalidating any claim of positive invariance (and similarly
w.r.t to control constraints for the nominal controller in 7 (x,)).

Figure 5.1. Example of a terminal set 7 (dark shaded polytope) calculated with the
setpoint at the origin (marked with a star) and the same terminal set shifted to a
new setpoint x,. When translating the terminal set, parts of it may leave the set
X (the square polytope).

Common assumptions when proving stability of linear MPC algorithms for
tracking applications are to assume that the terminal constraint set is small
enough and that the desired setpoints are located far into the interior of the
feasible set such that the translated terminal constraint set still is positively
invariant. This is a major drawback since many applications have optimal
operating points on or close to the border of the feasible set.

To overcome the problem a straightforward way would be to recalculate the
terminal constraint set online based on the current setpoint, see Figure j5.2,
which is implicitly assumed in, e.g., Rao and Rawlings [1999], where the
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authors develop a method to handle active constraints at setpoints. To
recalculate the terminal constraint set can however require complex calculations
to be performed online and might thus not be suitable for systems where the
setpoint changes often.

Figure 5.2. Example of terminal state constraint set recalculation for different set-
points. Upper left axis is the terminal set calculated with the origin as the
setpoint (marked with a star). The three other axis show the terminal constraint
set calculated for three different setpoints other than the origin.

A far better approach has been proposed in different forms by several authors
Chisci and Zappa [2003], Limon et al. [2008] and Ferramosca et al. [2009]. In
Chisci and Zappa [2003] the authors augment the system with a new constant
state which corresponds to the reference signal providing a terminal constraint
set in the higher dimension (x,7) which contains the whole feasible equilibrium
set for any given reference, i.e., the terminal constraint set is a fixed set which
can be pre-calculated. Instead of using the reference as augmented state the
authors of Ferramosca et al. [2009], Limon et al. [2008] introduce a new
optimization variable, 6, which spans the null space of steady state equation
(4.11b). The resulting controller guarantees feasibility and stability and has a
larger domain of attraction than the standard MPC tracking controller.

The main drawback with these augmented state controllers is that they can be
relatively complex even for small systems, making any explicit implementations
impractical. This motivates an extension of the theory which is developed in
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detail in the remaining sections of this chapter. We develop a reference tracking
algorithm with a modified terminal constraint set which can guarantee stability
for arbitrary setpoints in the entire feasible set. The developed algorithm has
the potential to be much simpler than existing methods.

5.2 The proposed controller

We will start with the MPC formulation (4.13) and in this section derive a
high level representation of the proposed controller.

Instead of augmenting the system with a new state as in Chisci and Zappa
[2003], Limon et al. [2008] the main concept here is to introduce an extra
optimization variable, A, which scales the terminal set, 7. The scaling allows
us to move the terminal constraint set to an arbitrary setpoint, Xj, since the
terminal set can be scaled down to a single point, i.e., T = X}, eliminating the
need for any online recalculation of 7 as in Rao and Rawlings [1999] and the
terminal constraint set can possibly be far simpler than the terminal set for an
augmented system.

The proposed terminal state constraint is a scaled and translated version of the
terminal constraint set (4.4f)

Xpen € AT (xp) (5.1)

where 1, is a non-negative scalar. The constraints on how 1, can be chosen
are such that the conditions of Theorem 4.2 hold, ie., the terminal set must
be positively invariant (which we will argue that it is in Lemma 5.5) and
the state and control constraints must be satisfied in 7. To ensure this the
following constraints must be added

AT (xp) € X (5.2a)

k(x,Xp,up) €U Y x € 1T (xp) (5.2b)

The first constraint states that the scaled and translated terminal set is a subset
of the feasible state space, i.e., state constraints are satisfied in A7 (%), and
the second constraint states that the predefined stabilizing controller «(-) fulfills
the control constraints for all x in A7 (xp).

Note that A is not necessarily less than 1, it might actually enlarge the
terminal set if this is possible with respect to the conditions of Theorem 4.2.
Let us illustrate this with an example.

—— Example 5.1
Consider a discrete time system (artificially constructed to illustrate the behavior
with terminal set enlargement) with A and B matrices

0.9 05 0
A‘[o —0.8]’ B‘[o.e]
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and with the state constraints
X={x|llx-ply <10 p=@75 07}
and the control constraints
U={u| -3 <u<5}

The terminal constraint set, 7, is calculated as an invariant set for an LQ state
feedback control law

k(xp) = —Kxp,
where the feedback gain is
K=-(+BT'PB)"'BTPA
and P is the solution to the Riccati equation with Q =7 and R =1
P=A"P(UI +BB'P)'A+CTC

The terminal set for the nominal case, i.e., when the setpoint is the origin,
will for this problem setup result in a relatively small terminal set polytope,
T, located in the small left part of the state constraint set, see Figure 5.3.

10
S0 / *
-10
0 5 10 15
X1

Figure 5.3. Illustration of how the terminal set 7 can be scaled with a 4 > 1.
The state constraint set X is the outermost polytope. The original terminal state
constraint set, 7, for zero reference, is the dark shaded polytope to the left which
has the origin (marked with a black star) in its interior. This set translated to the
new setpoint (also marked with a star) without any scaling is the inner most of
the two polytopes located around xqy =5. The outer of the two polytopes is the
translated set, scaled with A = 1.55.

When the system tracks a reference signal, the change of reference will then
cause the terminal set to be shifted accordingly. From Figure 5.3 it is evident
that 7(x) c X, ie., the shifted terminal set lies in the strict interior of the
feasible set. This means that it is possible to scale up the terminal set without
violating the state constraints. However also the local control law needs to be
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feasible in the scaled terminal set, i.e., x(x) €U ¥ x € AT (x).

In this example 7(x) can be scaled with a A < 1.55 before the state constraints

limit the scaling.
L

Modifying the MPC tracking algorithm (4.13) with the above constraints we
arrive at the following high-level representation of the optimization problem

N-1
J?i?&’?,if‘ik ZZ; Xy = Xpy ey — ) + V(xpqn — Xp) + (7 —7) (5.33)
subj. to
Xpije1 = Axpo; + Bup,; VYi=0,...,N-1 (5.3b)
xpy, €X Yi=0,...,N-1 (5.3¢)
;€U Yi=0,...,N-1 (5.3d)
XpeN € AT (x) (5.3¢)
LT (%) C X (5-3f)
i — K(x —x) €U Vx € 3T (xp) (5.38)
et ollal-1) 5
X € inte (X) (5-31)
#y, € inte (U) (5-37)

In order to guarantee the convergence properties of the controller, our proof
in section 5.2.4 requires the steady states and controls to be strictly feasible,
i.e., the terminal set has to be placed in the strict interior of the feasible set.
From a practical point of view we achieve this by constraining them to an
e-interior of the feasible set, constraints (5.31) and (5.3)). Simulations indicate
that for practical purposes any arbitrarily small € can be chosen, even e =0.

Unfortunately, as the problem is written in (5.3), it is not suitable for
implementation. For example as the constraints (5.1) and (5.2a) are written
now, it is not obvious that they are linear in A; and %, and (5.2b) is an
infinite-dimensional constraint. Hence, a reformulation is needed.

5.21 Vertex enumeration reformulation

As a first step we will show that the constraints in fact are linear in the
variables and that the constraints can be formulated using a finite (although
possibly large) number of linear constraints.

Let us begin with (5.3¢) which constrains the terminal state to be inside the
scaled and translated terminal set. Since the terminal set is polytopic, we
have a representation of the form 7 = {x | Frx < by}. With our definitions of
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translations and scaling from Chapter 2.2, we obtain a linear constraint.

Fr(xpen — Xp) < b7 (5-4)

The constraints (5.3f), which ensure the scaled and translated terminal set
to be state feasible, and (5.3g), which ensures that the nominal control law
#p — K(x — xp) is feasible for any x in the scaled and translated terminal set,
can be rewritten using the vertex form of the terminal set 7.

Let 7 have v, vertices v; and it follows that 1,7 (x;) can be represented as
the convex hull of the vertices x; + A,v;. By convexity, this polytope is a
subset of X if and only if all vertices are. With X = {x | Fxx < by} we obtain

Fxx < by, \/{xIxzik+/1/ev/-,\7'j=1,...,vp} (5.5)
and we arrive at
Fy(xp + /l/e’v]') <bx Vi=1..., Vp (5.6)
Similarly for the control constraints, we have to ensure that
Py —K(x = %) by, Y{xlx=% + 40, ¥j=1,...,v) (57)
Inserting the vertices leads to
Fr(uy, - /l/eva) < by Vi=1..., Vp (5.8)
As the constraints (5.6) and (5.8) are derived now the main drawback is that
they require the enumeration of all vertices in the terminal set. This can,
even for simple polytopes, be extremely expensive [Griinbaum, 2003], e.g., in
the case when 7 is a simple box in R” it has 27 facets but 2" vertices and
for higher dimensions this difference becomes crucial from a computational
complexity point of view. Therefore we seek to avoid performing the vertex

calculations, which can be done by rewriting the constraints (5.5) and (5.7)
using duality theory.

5.2.2 Dual formulation of terminal set constraints

First note that the constraints (5.6) and (5.8) can be interpreted as uncertain
constraints, i.e., they must hold for all x € 1, 7(x;) and we can write them as

Fu (g, = K (x = %)) < bu (5.92)
Fyx < bx (5.9b)
for all x such that
{x | Fr (x = ) < AbT)
Now consider a general uncertain affine constraint of the form

(ch+d)+(Ax+b)TpSO \4 {xIFTxSE} (5.10)
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where x is an uncertain, but bounded, variable and p is the decision variable.
This constraint must hold for all possible values of x, i.e., it must hold for
the worst case x, in this case, the one that maximize the left hand side.

This maximum of the left hand side can be determined by the following
optimization problem

max. (ATp + c)T X + (pr + d) subj.to FTx < E (5.11)

Additionally we know that for a solution p to satisfy (5.10) it must hold that
the left hand side is negative and hence also gives a negative optimal cost for
the optimization problem (5.11).

From duality theory, see, e.g., Boyd and Vandenberghe [2004] or Nesterov and
Nemirovskii [1994], the dual problem of (5.11) can be formulated in the dual
variable ¢ as

m}n. ET¢ + (pr + d) subj.to £ >0, Ft=ATp + ¢ (5.12)

Since the optimal value to the primal problem (5.11) is negative it then follows
that the optimal value of the dual problem, which is a tight upper bound to
the primal problem, is negative. Thus we can conclude that given a solution
p and the existence of a dual variable ¢ >0 such that

ETs + (pr + d) <0, Fi=ATp+¢ (5.13)

is equivalent to that p satisfies the constraint (5.10) for all values of the
uncertain variable x. This derivation has previously been presented in, e.g.,
Ben-Tal and Nemirovski [2002] in the context of robust optimization.

Let us now use this result to rewrite the constraints (5.6) and (5.8) into the

dual form. Denote the decision variable p, = (i4.#;)7 and write each row of
(5.9) generically as

Flx+ flpe+d<0Y (x| Fr(x—%) < 44br)

where £l denotes the rows of the matrix

C[-RuK
Fo= |74
and pr denotes the rows of
FyuK  Fy
B=1"0 o]

. . T
and d is the corresponding row element of the vector (—bg - b/,Tv) .
Writing this in the same structure as (5.10) gives

(fxTx + d) + (Ox +]?,)Tp/€ <0V {x| Frx < 44br + Frxg)
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and the dual form then becomes
(b7 + Frig) ¢ + fipn+d <0 FfZ=f, (20
Expand the parenthesis and use the fact that FLZ = f, this gives

/l/eb;( +92fo +prp/e +d <0, F%{zfx, >0

Hence, we should have a global solution (Ap,pp) such that there exist a ¢
for every row satisfying this set of equations. Note that the term 5L/ is

non-negative (both 197T— and ¢ are non-negative) since the terminal set contains
the origin in its interior. Hence, it is beneficial to make this term minimal for
every row. Note also that this choice of b7¢ is independent of the variables
Ap, pp- Therefore let

Y= m}n. b7T-§ subj. to F7T-§ =fu {20 (5.14)
and replace the term b1 with the solution y, finally giving

Ay + %L fe+ flppe+d <0 (5.15)

We can now replace each row of the uncertain constraints (5.6) and (5.8) with
(5.15) and if we write this into a matrix form we obtain

-y K FyuK F X b
u u u (;Z) < (bi) (5.16)

Fy 0 0
where the vector I' has the solution y to (5.14), for each f, of Fy, as its
elements.

/lkr+[ Xp +

The equations (5.4) and (5.16) gives a complete description of the terminal state
constraint set.

5.2.3 The QP formulation

We can now summarize all the pieces into the quadratic program formulation
of the proposed controller.

First select the different parts of the cost function in (5.3) as

O = Fpo gy — 1) = |Xpri = %gllG + g — il % (5-172)
Wxpen = %) = |Xpan = %ellp (5.17b)
¢ —7) = BlIre = rlle (5-17¢)

In (5.17a), Q and R are positive definite penalty matrices, used also to define
the Lyapunov cost matrix P in (5.17b) and nominal state feedback K through

(A-BK)'P(A-BK)-P=-Q-K'RK (5.18)
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In (5.17¢), B is a positive scalar, r is the desired reference to track and 7, is
the pseudo reference variable. Later in this chapter we will discuss on how to
choose the scalar B in order to achieve desired properties.

The proposed controller is then defined by the solution to the following
quadratic programming problem

N-—
minimize W(rp,y = &) + $(Fe = 1) + D C(tpyi = oty = ig)

U, X, Afs X oyt T

—_

1=l

(5.192)
subj. to
Xpijo1 = Axpo; + Bup,; Vi=0...,N-1 (5.19b)
Fyxp.;<bxy ¥i=0...,N-1 (5.19¢)
Fynp,; <by Yi=0,...,N-1 (5.19d)
Fr(xpen = Xp) < kb1 (5-19€)
_ Xp by
4T + Fyxp + F, (ﬁle) < (b)() (5.19f)
A-1 B||x| |0
C D] [%k} B [f/e] 198)
Frx(x)<(1-¢€)by, >0 (5.19h)
Fy(ap) <(1-¢€) by, €¢>0 (5.191)
Solving the above problem gives an optimal control input sequence {uZ”}fi 5 1
and the applied MPC law is the first element of this optimal sequence
k(xg) = u, (5.20)

It should be noted that the above formulation, in strict sense, is not a quadratic
program on standard form since the cost function contains the infinity norm.
However it is a trivial task to reformulate this into the standard QP form

(2.2).

5.2.4 Stability and feasibility of the proposed algorithm

In the following theorem we establish the stability and convergence properties
of the proposed controller that was derived in the previous section. Before we
outline the stability properties of our proposed algorithm we must make some
necessary assumptions and definitions.

N £ *,° . . . .
Definition 5.2. r, is defined as the closest strictly feasible point to the
reference r in a distance measure determined by the function ¢(-)
v, =argmin ¢(7 — 1)
1;

subj. to
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(e 3k-P

% € int, (X)
u € inte (U)
JE—
Assumption 5.3. The matrix
A-I1 B
C D
is such that there exists a solution to (4.11) for any reference 7.
Assumption 5.4. X, U and T contain the origin in their interior.

Lemma s5.5. Let T be a positively invariant set for a stable discrete time linear
system, xpo1=Acxp. Then for amy scalar A >0, the scaled set, AT is also a
positively invariant set for the system.

Proof: The lemma follows directly from the scaling invariance of linear systems,
see, e.g., Blanchini [1999]. m|

With these definitions and assumptions in order, we are ready to formulate the
main stability theorem for the proposed controller.

Theorem 5.6. For any feasible initial state xo and Assumptions 5.3 and 5.4 , the
MPC algorithm defined through (5.19) - (5.20) remains feasible and stabilizes the
system (4.9). Additionally, x; asymptotically converges to a setpoint given by the
projection of the reference r onto the (e-contracted) feasible set.

The proof of the theorem is relatively straightforward and recursive feasibility
and convergence of the state to a stationary point follow standard proofs found
in the literature [Mayne et al., 2000]. In a second step, to show that the
setpoint to which the state converges is the setpoint associated with the given
reference 7, if feasible, or the setpoint corresponding to the closest feasible
reference has previously been proven in similar ways in Ferramosca et al.

[2009].

Proof: Let Xy be the set of x where (5.19) is feasible. Assume x; € Xn with
. . . * N-1 * ok 1
an c?ptlmal solutlf)n given by the sequence {u; .} 5" and A; and 7}, with
predicted state trajectory {xzﬂ.}f\i .
M N . N _ * * * ok * _ o
At the I?ext time step {ukﬂ}i:l.— {”/e_+1’”/e+2""’”k+_N—1’_”/e K(xk+N x!e)}
is a feasible control sequence, since u, — K(xp, = %) 1s feasible according
to (5.3g). Furthermore, we use A, = 5 and 74,1 = T Keeping A, and
7p+1 unchanged means that we keep the scaled and translated terminal set
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unchanged The new, p0551bly suboptimal, state sequence is {&,;};! where
XpiN+1—%Xi=(A- BK)(x k) Since /lkT is positively invariant w.r.t. the

system xk+1 =(A- B}’(')x/€ accordmg to Lemma 5.5, it follows that x4, .1 — %
stays in A;7, ie., the terminal state constraint x,y.1 € 4,7 (x;) is satisfied.
Since 4, T(x]) € X, state constraints are trivially satisfied.

Now assume that we have an optimal solution at time % and denote the
optimal cost

N-1

V/: = Z (sz+i — X

1=0

»t ¢(r, —7)

) + Hx/e+N

M/e+z

Applying the control sequence {#,;}¥, defined in the previous section gives
the suboptimal cost V. as

2

) + ”x/e+1+N x/e”p + ¢(7’/€ -7)
N-2

= Z (Hx/:+1+i _)_C/: ig )
1=0

i~ K =5~ ﬁzl\i # [feneron = %, + 07 - 1)

N-1

2 *
Q + Huk+1+z

X, -x;
k+1+i k

— |2

3k
XpaN ~

*
Upiq4i ™

2
% = %
YeeN T
* x| [2 * ]2 * |2
_|x/e_x/e Q“”k‘”k R Xken —
N-
ST ) et 00
e i TR ) RN T Xkllp T G -7
1=0
v
* - 2 * = % 2 =% 2 * — % 2
* Hx/e+N %k Q + “K(xk+N - rRT ka+1+N -X YN T
=0 due to (5.18)
_ * - _ ‘ * _ =k 2
Xk "k
and thus, it follows that the suboptimal cost is
2 2
_ * * = * =k
Ver1=V, Xy, T |
which implies that the optimal cost V/* | fulfills
2
* _ ® *® ok * *
Vi < Vi = V= ||xg |y, - <v

In other words, V* is strictly decreasing as long as x/: #x; and u; # .
Hence x; — x; and #; — ;. Note that in the limit we have, since x and u
i.e., the pseudo setpoint

represent a stationary pair, that xj = xy =x;, =%,
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converges too.

To show convergence of Fp = r., assume that the system has settled at
a setpoint given by x;,#;, defined by 7. The proof will proceed by
contradiction, so we assume 7, # r,. Consider a perturbation (0 <y <1) of
the pseudo reference 7 towards 7., given by

ry=yr, + (L=y)ry
Our first step is to show that this choice is feasible for y sufliciently close
to 1. By convexity, 7, is feasible with respect to (5.19h) and (5.19i). We use
the constant control sequence corresponding to the steady state control given
by 7, ie. wp,; =i, (which is also feasible by convexity) and the predicted
states evolve according to
Xb+1 = A)_CZ + Blz_ty

=Ax, +yBu, + (1-vy)Bu,

=A(yx, + (L=y)xy +x;, —yx, = (1 =y)x1) + yBuy, + (1 = y)Bu,

=y(Ax, + Buy) + (1—y)(AxyL + Buy) + (1 -y)A(x, —x1)

=yx, + (L=y)xL + (1 =y)AG, —x1)

=%y + (1= A(x, —x1)
Applying the same manipulations recursively leads to

Xpai =Xy + (1= YA (%) - x1)

*

] k
and x, (and thus x,) are strictly inside X and (1 - NA(X] —x1) approaches

o as y goes to 1. What remains to show is that we can select A, such that
XpenN+1 € AT (%)) and 4,7 (x,) C X.

For y sufliciently close to 1 all predicted states are feasible w.r.t. X, since x

P d

/\"I}l—'i' ..'\'- +1
I - I. '-!IJ_
.-_’ '-,‘:‘ Xa

int. X

Figure 5.4. Illustration of the components in the proof of convergence of the pseudo
reference. The figure shows portions of the sets X and inte(X), and the triangular
set AT (xy) with its inscribed Euclidean ball.

Since the pseudo reference is in the strict interior (defined by €), it immediately
follows that there exist a constant €, > 0, determined by the geometry of T, X,
U and €, such that €,7(x) € X for any strictly feasible x. Let d denote
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the radius of the largest possible Euclidean ball centered at the origin which
can be inscribed in 7, see Figure 5.4. Since 7 contains O in its interior
by assumption, d > 0. The distance from the terminal state x;,y.; to the
new pseudo setpoint is given by ka+N+1 xy” = (1—)/)HAN+1(x —xl)”
If this distance is smaller than A,d, the terminal state is inside the scaled

and translated terminal set. Hence, if y > 1 - the terminal state

__ad
lav x|
constraint is fulfilled. Since X is polytopic, the denominator in the expression
has an upper bound.

Returning back to the objective function for our proposed feasible solution,
and using the notation ¥; = Al(x) - x1), we arrive at

N-1
) .
Ve = 1L =2ENIG + D A=Wl + ([ = oy [ +¢ (v + (1= y)ri = 7)
1=0 T
N-1
= (1= NI + (1= D IS + ¢ (yFp = 70) + (i = 1)
1=0

Differentiate 7, with respect to the step size y

aj N-1
0; ~2(1-v) [”\PNHP + Z ||\P||Q] + 7 —71)
=0

where ¢ is the subgradient to the function ¢(-) at y = 1. Evaluating this at
v =1 gives
PYA

T /=%
=c'(r, —7r1)
oy =1 k

If this inner product is positive, the cost function decreases as y decreases
which in turn implies that the cost can be reduced by moving 7} closer to
r.. From the definition of the subgradient it follows that

$(ri—1)> ¢y =)+ (r = 7))
which gives

Ty =70 2 ¢ —71) = p(ri = 7)
Since 7, by definition is the closest feasible point to r in the chosen norm,
the right hand side is strictly greater than zero unless 7; = r,. This means
that the cost, V,, can be improved by making an arbitrarily small move of
7y towards r, and hence the only stationary point for 7 is r.. Since we
previously proved that x; asymptotically converges to x, and now proved that
X converges to x; we can conclude that as x; comes sufficiently close to
% the cost will be reduced by moving x, closer to x, and hence, x; will
asymptotically converge to x,. o
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Note that it is not self-evident that this tracking MPC algorithm, using pseudo
setpoints, is locally optimal in the sense that it minimizes the infinite horizon
LQR cost in a vicinity of the setpoint, or in other words that it gives the
same solution as the infinite LQ controller when possible.

However in the recent work by Ferramosca et al. [2011] the authors argue
that under certain conditions a similar type of MPC algorithm has the local
optimality property. In fact if the pseudo reference penalty is an exact penalty
function, then it directly follows that the controller has the local optimality
property. Since the same arguments can be used to show that also this
algorithm possesses the local optimality property will we only briefly outline
the train of thought and leave the details to the reader.

If ¢(7, —7) = B||7p — 7|lo and B is chosen such that ¢(7, — r) constitutes an
exact penalty function, as described in Section 4.2.4, then for all x; where
¢(7p —7) =0 is a feasible solution to (5.19), we will have V" = XA/]:, where XA//:
is the solution to the related optimization problem
N-1

minimize  W(xgp,n — Xp) + Z (X = Xpy Wy — ) (5-21)

U A X o, U T s
subject to constraints (5.19b) - (5.191) and the constraint ¢(7, —7) =0 and where
W(-) is defined by (5.17b) and ¢(-) by (5.17a). Note that the optimization
problem (5.21) is a dual mode formulation of the MPC controller (although
translated to a new origin).

The results from Sznaier and Damborg [1987] show that the dual mode
MPC formulation, with terminal state penalty equal to the infinite horizon
unconstrained LQ cost and with a local controller that is the unconstrained
LQ controller, has the local optimality property, i.e., the finite horizon cost
equals that of the infinite horizon LQ problem, V.. From this it is clear that
for all x; where V" = \A/k* it holds also that V' = V.{. Note that the set of
states, for which the local optimality results hold for the proposed controller,
is not maximally large. This can be realized when considering that the scaled
terminal set is not the maximum invariant terminal set that can be constructed
for a given setpoint.

53 Examples from the aeronautical industry

In this section we illustrate the proposed method by two examples from the
aeronautical industry. The first example considers maneuver limiting of an
unstable fighter aircraft and in the second example we consider flight envelope
protection for a small scale unmanned helicopter.
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531 Maneuver limitations on a fighter aircraft

We will in this example compare the proposed controller to the reference
tracking MPC algorithm first proposed in Limon et al. [2008] and then
analyzed and extended in Ferramosca et al. [2009] and Ferramosca et al. [2011].
We will refer to this method as the reference method. Both controllers have
been tuned using the same penalty matrices.

In this example we consider the linearized short period dynamics (3.8) for the
ADMIRE model, see 3.4, discretized using a sample-time of 16ms.

@per | [ 09719 0.0155 | [ oy 0.0071 | ¢
qrer | | 02097 09705 || g4 0.3263 | %

B

A
@
=L e[ ]
c
The maneuver limits for angle of attack and pitch rate have been set to
xp € X ={(a,q)" | —15 < @ <30,-100 < g < 100}
The elevator control surface angle deflection limits have been set to 25°
opeU={0] -25<6 <25)

The objective is to have the state @ track a reference r given by the pilots
control stick input, as close as possible to the boundary of the feasible set X.

The penalty matrices in the costfunction (5.17a) have been chosen as

Qz[o 1}’ k=1

and P in (5.47b) is the Lyapunov cost of the corresponding LQ controller.
The prediction horizon is chosen to N =20 and € is chosen small enough to
not have any noticeable effect, € = 107°.

This example been implemented in MATLAB with the use of the toolboxes
YALMIP [Lofberg, 2004] and MPT [Herceg et al., 2013].

Nominal performance

The step response for both controllers are shown in Figure 5.5. The response
in angle of attack is very similar between the proposed method and the
reference method, only a slightly faster convergence can be observed for the
proposed controller as the angle of attack approaches the border of the feasible
set. Note that a converges to the desired reference if feasible. When setting
the reference to a = 30°, ie., when it is located on the border of X the
output will track the reference, but when the reference is set to @ = -20°,
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0 0.5 1 1.5 2 2.5
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w
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Figure 5.5. The upper axis shows the pilot input reference, r (step shaped signal)
and the output, @, for the two controllers. The proposed controller is the solid
line and the reference controller is the dashed line. The lower axis shows the
control signal for both controllers.

ie., outside the feasible set, the output will track the pseudo reference that
converges to the closest feasible point.

Since the terminal constraint set is a scaled version of the nominal invariant set,
i.e., the one calculated for » =0, it is clearly not the maximal invariant set and
hence, it can result in a smaller domain of attraction. This drawback becomes
evident only for shorter prediction horizons, e.g., for N =5 the proposed
controller has a smaller domain of attraction than the reference method, see
Figure 5.6, while for N =10 there is no difference between the two controllers.
Therefore one must make a tradeoff between the complexity, i.e., the prediction
horizon, and the needed domain of attraction.

Complexity of explicit solution

Comparing the complexity, i.e., the size of the QP, of the proposed controller
with the reference method we can conclude that the proposed controller results
in a large reduction in number of constraints. The reference method has 66
variables and 229 constraints while the proposed controller has 67 variables,
but only 164 constraints. The significant difference in number of constraints
comes from the terminal constraint set which is defined with 72 inequalities,
in R, for the reference method compared to only 4 inequalities, in R?, for
the proposed controller. The large amount of inequalities needed to describe
the terminal set for the reference method comes from the structure of the
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Figure 5.6. The domain of attraction for the proposed controller (blue solid) and
the reference method (red dashed line) for prediction horizon N =5.

augmented system and has been noted by Limon et al. [2008]. In fact the
authors state that it might not be possible to determine the terminal set with
a finite number of constraints and if that is the case one has to shrink the
terminal set such that the reference is constrained to an interior of the feasible
set.

This difference in complexity will result in lower computational effort for online
solution of the QP or a reduced complexity of an explicit implementation.
When calculating the explicit MPC solution, the resulting controller for the
reference method, with a prediction horizon of N = 10, has Ny = 6850
partitions, compared to the explicit solution for the proposed method which
has only Nx = 840 partitions, i.e., a reduction of the number of partitions
with 87%. In Figure 5.7 the state space partitioning for a zero reference
is shown. Compared to the purely stabilizing controller that was calculated
in Section 4.2.5 we can see that adding the possibility of reference tracking
increases the complexity of the solution also for zero references.

100 -

-100 |-
-20 -10 0 10 20 30

Figure 5.7. State space partition of the explicit solution for reference, r = 0.
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Figure 5.8 shows the optimal control signal as a (piecewise affine) function of
the states for different references. It is clear that the optimal feedback varies
considerably with the reference. For zero reference (the upper left figure) one
can recognize it as the saturated LQ solution from Chapter 4 and for reference
values of r = —10 (upper right figure) and r =20 (lower left figure) there are
small regions, i.e., inside the invariant set, where the LQ solution is still valid.
For the reference r =30 (the lower right figure) we can see that the control
signal is saturated for the most part of the state space and only for large
angular rates there is a varying state feedback. For this reference value the
terminal constraint set is scaled down to a single point and hence nothing of
the original LQ solution is in the feedback.

* =2
=
20
*:« O
=20 -20
-100

20 0 20 0
o 100 q a 100 q

Figure 5.8. Explicit feedback solution for different reference signals. Upper left axis
show the feedback solution for r =0, upper right axis shows the feedback solution
for » = =10 and the two axis on the bottom shows the solution for r =20 (left)
and » =30 (right).

Robust performance and integral control

In this section we look at the performance of the proposed controller when
the true system is different than that of the prediction model in the controller.
Since both the proposed controller and the reference controller have similar
performance characteristics we will restrict the discussion to the proposed
method.

Let the true system have a 25% larger destabilizing pitching moment, i.e., the
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(2,1) element of the A-matrix is 25% larger than in the model. Additionally
we let the true B-matrix be scaled with a factor of 0.8, i.e., the true system
has 20% less control surface effectiveness than modeled.

The time response of the closed loop system with the proposed controller and
the true system is shown in Figure 5.9. The initial response is slightly slower
than for the case where there are no model errors and the angle of attack
response overshoots the reference signal, settling at steady state value that is
larger than the reference. This overshoot will result in violations of the state
constraints when the reference approaches the boundary of constraint set.

Figure 5.9. Time response of the proposed controller (dashed) when the true system
is different than that of the prediction model. The solid line is the time response
of the proposed controller with added integral control.

To overcome this difficulty we add integral control as described in Section 4.2.3.
We can see from Figure 5.9 that the performance is much better and the ref-
erence is attained without any steady state error. Even though the disturbance
variable that is estimated in the disturbance observer is modeled as a constant
disturbance, it can clearly catch dynamic behavior such as model errors.

In this thesis we do not investigate further on the theoretical properties of
integral control, but leave this as an open topic for future research.

5.3.2 Nonlinear aircraft performance

Now we will consider a more advanced example in which we have applied the
developed tracking algorithm to the full nonlinear dynamics of the ADMIRE
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model. We have implemented the MPC controller described in the previous
sections to the pitch dynamics of the ADMIRE aircraft and used a standard
LQ controller for the lateral dynamics.

The MPC controller is tuned for the short period dynamics linearized around
trimmed level flight at Mach o.5 and altitude 3000 meters with penalty matrices

10 0
Qz[o o.s]’ R=1

and P from the associated LQ solution. The penalty on the reference has
been selected to B =1000. The controller has soft state constraints using slack
variables and we have used one slack variable for all state constraints at each
time step in the prediction horizon. Each slack variable has a linear penalty
(effectively a one-norm penalty) and the penalty on each variable is selected to
B. = 100.

The performance of the MPC controller has been evaluated and compared to
a simple LQ controller with integral action using maximum angle of attack
pitch commands. The nonlinearities of the model make the dynamics different
at high angles of attack. The effect of the model error is counteracted using
integral control with a disturbance observer. The disturbance is modeled as
constant and acting on both states, angle of attack and pitch rate. The
disturbance is estimated using a Kalman filter with penalty matrices

Qkr =02[, Rgp =0.0017
in which both states are assumed to be measured.

A comparison of the proposed MPC controller and an LQ controller is shown
in Figure 5.10. As we can see from the figure the MPC controller performs
better than the LQ controller at high angles of attack. It manages to track
the reference and respect the maximum limit on the angle of attack. The
LQ controller on the other hand has a large overshoot in the angle of attack
even though it is tuned to good performance for the linear dynamics. This
is mainly due to the change in the dynamics as the angle of attack increases.
This test indicate that it might be sufficient to use a linear MPC controller
with integral action to handle the typical nonlinearities that exist over the
angle of attack range.

Let us now consider the performance of the proposed linear MPC controller
when we change envelope point. Since a change of envelope point, especially
the variation in speed, changes the dynamics we can expect the linear MPC
controller to perform worse. We tested the controller at Mach 0.4 and altitude
3000 meters and the result is shown in Figure 5.11. From the figure we can see
that the performance is slightly worse but still fairly good. The shift in speed
caused the pressure center on the aircraft to move forward making it a bit
more unstable and from the response we can see that it is slightly less damped
with larger oscillations in the control signal. Despite the worse performance
the MPC controller still manages to keep the angle of attack response within
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Figure 5.10. A comparison between the MPC controller (solid line) and a simple
feedback feedforward LQ controller (dashed line) in high angle of attack maneuvers
on the nonlinear ADMIRE model.

the desired maximum limit. To overcome this performance degradation we
suggest that the MPC controller is scheduled over the flight envelope, with a
new dynamic model and penalty matrices in each selected design point.

5.3.3 Helicopter flight envelope protection

In this example we apply the developed method to control the forward speed
of a Yamaha R-max helicopter using the continuous five state model linearized
around hover flight from Mettler [2002]

v -0.0505 0 -9.81 -9.81 0 v 0

q -0.0561 O 0 82.6 0 q 0

6= 0 1 0 0 0 0| + 0 s (5.22)
a 0 -1 0 -21.7391 14 a -2.174

¢ 0 -1 o 0 -0.342| [c -0.7573

which we have discretized with a sample rate of 6oHz. The states consist of
the fuselage motion, i.e., the forward speed, v, the pitch rate, ¢ and the pitch
angle, 0, and also two states for the rotor dynamics. The first state of the
rotor dynamics, a, is the pitch angle of the virtual rotor disc that is formed
from the rotor blade rotation. The second state, ¢, is corresponding angle for
the stabilizer bar. The control signal input, &, is the so called swash plate
angle.
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Figure 5.11. The proposed MPC tracking controller tuned for Mach o.5 at altitude
3000 m and simulated in closed loop with the nonlinear ADMIRE model at Mach
0.4 and altitude 3000 m.

The state constraints are formed by upper and lower limits on each variable
-5<v<10, |g/<5 10]<3, la| <1, |c] <2
additionally there are upper and lower limits on the control signal, |6,| < 5.

In this example we have set the prediction horizon to N =10, the penalties in
the cost function to

50 0 0 0 O
0 01 0 0 O
W=10* Q=0 0 1 0 O0f, R=1
0 0 0 10 ©
0 0 0 0 01

and P again as the Lyapunov cost of the corresponding LQ controller. In
this setup the QP problem has 72 variables and 296 constraints, out of which
96 constraints come from the terminal constraint set. As a comparison the
terminal constraint set from the method of Limon et al. [2008] has 354
constraints.

Figure 5.12 shows how the variable 1, varies over time when the system tracks
a given reference input. From the figure we can see that the main changes
in the scaling variable come from the changes in the reference signal (compare
with Figure 5.13). When the reference is changed from o to 9 m/s at time
1 second, then A is increased to its maximum size in order to minimize the
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Time [s]

Figure 5.12. The variation of the scaling variable, A, over time as the system tracks
a given speed reference.

difference between the pseudo reference and the true reference. The same
happens at time 3.5 seconds when the reference is set back to o. Towards the
end of the simulation the pseudo reference pushes the set point out to the
border of the feasible set and hence A is reduced to zero, scaling the terminal
constraint set down to a single point. The small changes, or scattering, in
A that occur between 2 and 3.5 seconds and also between 4 and 6 seconds
depends on that the choice of A is not unique and hence depends on the
algorithm used to solve the QP. Note that this scattering in A is internal in
the controller and does not affect the applied control signal.

The step responses for the different state variables and also the optimal control
signal are shown in Figure 5.13. The upper figure show the speed reference in
red, the pseudo reference in green, the actual speed, v, in blue and the pitch
angle, 6, and pitch rate, ¢, in magenta and cyan respectively. The middle
figure shows the rotor disc pitch angle, 4, in blue and the stabilizer bar pitch
angle, ¢, in green. The bottom figure shows the control input, &;.

The controller is able to track the speed reference as long as it is a feasible
reference. At 6 seconds the speed reference changes to -10 m/s, which is
outside the feasible set and then the pseudo reference converges to the closest
feasible value.

On the contrary to the previous example it is not the output, v, that is the
critical variable to limit. Instead it is the pitch angle, 6, and pitch rate, g,
that we want to limit while tracking the speed as good as possible. From the
figure we can see that the pitch rate reaches its upper and lower limits during
the transients of the different step responses.

It is worth noting that the control signal seems to have a fairly aggressive
nature, but this comes primarily from the tuning of the controller and can be
reduced if the controller is retuned. However we have tuned the controller
such that the properties of the algorithm should be prominent.
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Figure 5.13. Response of the helicopter subjected to step changes in the speed
reference. The upper most axis show the fuselage states and the reference, the
middle axis show the rotor states and the bottom axis show the control signal.






Method for guaranteed stability and
recursive feasibility in nonlinear MPC

The main drawback with MPC is that it requires an iterative online solution
of an optimization problem. This is in general fairly computationally expensive
and has so far limited MPC’s practical use for nonlinear systems.

To reduce the computational burden of nonlinear MPC, feedback linearization
together with linear MPC has been successfully used to control nonlinear
systems. The feedback linearization is used as an inner loop to obtain linear
dynamics from input to output of the reference system in the MPC controller.
The MPC controller is then used as an outer loop to obtain desired dynamics
and constraint satisfaction. The main drawback is that this in general results
in an optimization problem with nonlinear constraints on the control signal.

Several methods to approximate the nonlinear constraints have been proposed
in the literature, many working in an ad hoc fashion, resulting in conservatism,
or worse, inability to guarantee recursive feasibility. Also several methods work
in an iterative manner, which can be quite time consuming making them
inappropriate for fast real time applications.

In this chapter we propose a method to handle the nonlinear constraints, using
a set of dynamically generated local inner polytopic approximations. The main
benefit of the proposed method is that while computationally cheap it can still
guarantee recursive feasibility and convergence.

This chapter is an edited and extended version of the following conference
paper

Daniel Simon, Johan Lofberg, and Torkel Glad. Nonlinear Model
Predictive Control using Feedback Linearization and Local Inner

95
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Convex Constraint Approximations. In Proceedings of the 2013 Euro-
pean Control Conference, pages 2056-2061, 2013.

6.1 Introduction

As described in Section 4.3, when controlling nonlinear systems the resulting
MPC optimization problem will be a nonconvex problem, which in general is
quite difficult to solve online at high frequency. For certain nonlinear systems
one way to handle this is to first create a linear response from (a virtual)
input to the output of the system and then design the MPC controller for the
system with the virtual input [Del Re et al., 1993]. This can be accomplished,
if the system is feedback linearizable (or input to output linearizable), with
inner feedback loop [Khalil, 2002] of the form

u="y(x,i) (6.1)
resulting in a closed loop system which is linear from # to y
2=Az+Bi, y=Cz (6.2)

Note that the feedback linearization is in continuous time while MPC is
in discrete time. Due to this discrete time implementation there will be a
prediction error in the models, i.e., the state at next time step will not be
exactly what the linearized model predicts. This issue has, to the authors
knowledge, not been addressed so far in literature and is interesting for future
research. However, in this chapter we have made the assumption that the
controller is sampled fast enough such that any such sampling affects are
neglectable. This kind of assumption is often valid in aircraft control.

We will outline the details of computing y(x,#) in section 6.1.1, but we will
first discuss some issues with the use of feedback linearization together with
MPC.

Firstly, even if the original cost function (4.34a) is convex the resulting cost
function expressed in # can possibly be a nonconvex function. One could
simply ignore this complication and formulate a new cost function, which is
quadratic in #. The performance trade off is analyzed in Primbs and Nevistic
[1997] with the conclusion that this approximation is justified only when the
complete problem can be formulated as a QP.

Secondly, and in our view a much more problematic issue, is that even simple
control signal constraints as

u<upy <u (6.3)

will transform into a nonlinear and state dependent constraints on 7# using
(6.1) according to

T(Xpyintt) <y < T(Xppy s, ) (6.4)

Several different methods to handle this have been presented in the literature.
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In, e.g., Deng et al. [2009] the authors calculate the exact input constraints
at time k and use them as constraints on the whole prediction horizon, an
ad-hoc procedure which clearly does not guarantee recursive feasibility. Other
authors such as Kothare et al. [1995], Kurtz and Henson [2010], Margellos
and Lygeros [2010], Nevistic and Del Re [1994] propose to use the solution
sequence from the previous time step to construct an approximation of the
nonlinear constraints.  These methods can guarantee stability under some
strict assumptions, e.g., recursive feasibility. Despite this they can be quite
computationally expensive if they work in an iterative manner, e.g., in Margellos
and Lygeros [2010] this approximation is done by iteratively solving the linear
MPC problem and in each iteration use the previous solution sequence {x; .JN;
to calculate the input constraints using (6.4). The iterations are cancelled whe
the solution sequence {u; .JX;' has converged. The authors of Kurtz and
Henson [2010] use a non-iterative approach to construct the approximation of
the nonlinear constraints. In the paper the authors propose to use the optimal

solution sequence at time k — 1, {uZ_HZ.}Z.Ii 5 1 to construct a feasible solution

o ,}Z\f‘l,O} which is used to predict the future
—1+:7:=0
trajectory {&4,;}% and from this reconstruct the nonlinear state dependent

i=
constraints.

at time k as {”Q/e—1+i}ilio = {{14

In this chapter we will adopt a different approach to handle the nonlinear
constraints based on using the exact constraints for the current time step and
a set of inner polytope approximations for future time steps.

In the recent paper by Pant et al. [2016] this method has been extended to
also address the case when the states of the nonlinear system are available
only through a state estimate and when the original states are not preserved in
the feedback linearization. In [Deori et al., 2015] the authors apply a similar
type of algorithm to the air traffic management problem. This approach has
also been considered as a possible strategy for heating, ventilation and air
conditioning in energy efficient buildings in the survey paper by Ercan [2016].

6.11 Feedback linearization

Let us, before we outline the proposed controller, describe the feedback
linearization scheme.

If we consider affine-in-control nonlinear systems of the form
x=f(x)+gx)u, y=h(x) (6.5)
and define the Lie derivative in the direction of f as
< 0
L= Z; fi(x)axi

then, if we repeatedly differentiate the output, we obtain y = Leh, j =
Ly(Lsh) =L§h etc.
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If we assume that the system has dimy = dim# = m and apply the Lie
derivative then we obtain for the i:ith output

j}i = L(f+ql4)hl = Lf+u1q1+u2gz+...+umgm)hi
= thi + %1Lg1hi + %zLyzhl‘ + ...+ ”qumhi

If all L, h; =0 this means that y; = Lh; and no control signal input affects the
output derivative. Continuing the differentiation until one of the L%L;’jhi # 0,

then #; affects y"” and we say that the system has a relative degree of v; in
xo [Khalil, 2002].

This procedure can be summarized in a decoupling matrix R(x) according to

vi—1 vi—1
Lyl ™hy oo Ly Ly
R(x) = : : (6.6)
Vi —1 Vi —1
Lyl oo Lo, Ly,
which gives
" m] | Lfh
=R | [ +]
If R(x) is nonsingular then the control signal can be chosen as
L;}hl
w=R1)|-|  |+4 (6.7)
Lf M

and the resulting closed loop system will be linear and decoupled from # to y
Khalil [2002].

This procedure works well when the zero dynamics is stable or when there is
no zero dynamics, i.e., when the relative degree is equal to the state dimension.
In these cases the system does not need to be transformed into a controllable
canonical form [Khalil, 2002] and the original system states can be kept which
is especially good if we have constraints on the states.

In the rest of this paper we restrict our discussion to these kinds of systems
that allow us to keep our original states. The aircraft example in Section 6.3.2
motivates this assumption.

6.2 The proposed algorithm

First we make the following assumptions.
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Assumption 6.1. The nonlinear system (6.5) is input-output feedback lineariz-
able using the control (6.7) and the linearized system has a discrete-time
state-space description

Xpy1 = Axk + Bﬁk (6.8)

with no unstable zero dynamics.

Assumption 6.2. The functions ¥(-) and /(-), in (4.34a), are such that they
satisfy the necessary conditions of Theorem 4.2, the sets X' and U, in (4.34c)
and (4.34d), are convex polytopes and for simplicity we assume U to be simple
bounds on the control signal.

Applying an inner loop feedback linearization as described in the previous
section to a nonlinear system of the form (6.5) and then MPC as an outer
loop controller, the resulting MPC problem setup is

N-1
minimize W(xp,y) + Zs 0(eris Apri) (6.92)
i
subj. to
Xpyis1 = AXpyi + Bl (6.9b)
XE4+i € X (6.90)
xpen €T (6.9d)
Hpy; €11 (6.9¢)

where we have defined
II= {ﬁkﬂ' | w(Xpyjott) < fpy; < ﬂ'(x/e+i7ﬁ)}

where the functions n(-) are the nonlinear constraints that arise from the
feedback linearization (6.7).

6.2.1 Nonlinear constraint approximations

To begin with, since the current state, x;, is known, the exact nonlinear
constraint on #; can be calculated as

m(xp,u) < #p < w(xp, %)

Obviously, since this is a linear constraint in #j, our scheme should be able
to use this exactly without resorting to any conservative approximation. It is
thus our goal to derive an algorithm where this constraint is used exactly, and
the constraints on future control signals are included in an as non-conservative
fashion as possible, while guaranteeing stability and feasibility.

A first step to handle the future time steps of the nonlinear constraint (6.9¢)
is to simply replace it with a global inner convex polytopic approximation

G={(x, %) | x € X, g (X) < < g, (X)} (6.10)
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where 4,(X) is a concave piecewise affine function such that 4,(X) < n(X,%)
and ¢;(X) is a convex piecewise affine function such that 4;(X) > n(X,%). An
example of an inner approximation, G, is shown in Figure 6.1. Note that this
approximation is not unique and the degree of suboptimality vary with the
method of approximation.

If the nonlinear constraints (6.9¢) form a highly nonconvex set, then it is fair
to assume that G poorly approximates the true nonlinear constraints over the
entire state space, i.e., it can only be close to the true constraints in some,
possibly small, regions, cutting of control authority in other regions. An
example of this is shown in Figure 6.2. This motivates us to not use a global
approximation for all time steps in the control signal sequence.

If one makes use of the fact that the true constraints are known at time k
it is easy to calculate the bounded evolution of the system to time & + 1 and
therefore all possible states, Ap,;. It is then obvious that for this limited
subset of the state-space there might exist a better inner convex approximation
of the nonlinear constraints than the global approximation G. Hence, we
would like to construct a convex polytope, Z, over the set A}, ; and constrain
(Xp+1> figs1) to this local approximation.

This procedure can of course be repeated for time step k+2,k+3,....k+ N -1,
generating a new local polytope for each (xp,;, fip,;). A significant problem
will however occur if one tries to prove recursive feasibility of this scheme.
Since we always use the exact constraint for the first control input, this conflicts
with our inner approximation that was used for future control input, when we
shift the horizon in standard MPC stability and recursive feasibility proofs. If
we use the full control authority in the next time instant, the state predictions
arising from that set will move outside the predictions that were used in the
previous time instant when predictions were based on an inner approximation
of the control input at # + 1. To account for this, a scheme based on both
inner approximations of control inputs for actual control decisions, and outer
approximations of control inputs to perform the propagation of state bounds,
will be used.

The local constraint approximations are constructed as inner convex approxima-
tions of the nonlinear constraints based on reachable sets.

Definition 6.3. At time k, the outer approximation of the i:th step reachable
set Ap,; is recursively defined as

Xpri = AXrio1 + BCryig
where
X = {xz}
.

The set Cp,; is an outer polytopic approximation of the nonlinear control
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constraints in the reachable set A}, ;, i.e.,
Cryi = {1’7/6+i | w/;”(X/eH) S lpy < w/f;H(X/eH)}
where w®*?(-) is a concave piecewise affine function such that
WS (X)) 2 7 (X1, 7)

and a)/;”(-) is a convex piecewise affine function such that
e
T( Xpy1, ) 2 W) T (Xps1)
The initial outer approximation, Cp, is the exact control constraints, i.e.,
Ce = {%/e | w(xp,u) < < ﬂ(xkﬁ)}

It should be noted here that we do not specify how to construct the sets Cp.;,
just constraints on how they can be constructed. The user is free to chose
any method he or she may find suitable and the stability and feasibility of the
algorithm holds regardless of the chosen method.

From the iith step reachable set the local convex approximation, ¥, i step
ahead at time k& can now be constructed as the polytope defined from the
constraints

BES Xy N X) < s < BES (X 0 )
Xpy; € Xpyi N X

where hE*i(-) is a concave piecewise affine function such
k+i -
qu(X/e+1) < hu+t(X/e+1) <Xy, %)

and hf”(-) is a convex piecewise affine function such

A( X1 28) < B (Xsr) < 9/ (Xpi)

In other words, the local polytope, ZF, shall be an inner approximation to the

nonlinear constraints and on the subset X},; it shall hold that G C If, which
can always be achieved.

Figure 6.1 shows an example that illustrates the relationship between the local
polytopes, the global polytope and the nonlinear constraints. Note that as for
the global inner convex approximation this construction is non unique, in this
thesis we have used a tangent plane for the concave surfaces and a piecewise
affine approximation of the convex surfaces (described further in the examples).

6.2.2 MPC receding horizon setup

Now let us summarize the discussion above into our proposed MPC algorithm.
At each sample time £ solve the NMPC problem given by Algorithm 2.

The state and control signals are constrained to the local polytopes up to
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Figure 6.1. Example showing the nonlinear constraints on # as upper and lower
bound, the global approximation, G, in cyan (dark shaded) and two local approxi-
mations, Z{e, for different x; in yellow.

horizon N; < N -1 and constrained to the global polytope for N; <i < N.
The introduction of the horizon N; is to highlight that, depending on the
problem, there might not be any performance gain in using the local polytopes
for the entire horizon, N — 1, so instead the fixed global inner approximation
is used for the last part of the horizon. We will see an example of this in
the next section. The final constraint set 7 is an invariant set as defined in
Definition 4.1 and it is calculated using the global inner polytope approximation,
G, as the initial bounds on x and #.

The practical advantage of this approach of shifting the local polytopes in
time, as in (6.12), is that only one local approximation has to be calculated in
each iteration. The theoretical advantage is that this also guarantees recursive
feasibility.

We can now state the main stability result for this controller.

Theorem 6.4. For any initially feasible state xo, the MPC controller defined by
Algorithm 2 remains feasible and stabilizes the system (6.5).

Proof: To show recursive feasibility, let us denote the set of states where (6.11)
is feasible with 7. Assume that x; € F and that (6.11) has the optimal solution
sequence WZ”}fiEl-

We now claim that a feasible solution at time k2 + 1 is to use the control
sk }N—l

s N _ * .
sequence {#;, }i', = {{Mk+i o ,K(xN)} where «(x) is a local controller as

defined in Section 4.2.1.

To see that this is a feasible solution we first note that since x;,n € T we can
select i, = k(xy,) since this will ensure that x;,x,q € T and all constraints
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Algorithm 2 Approximate NMPC algorithm

i: given measurement xz, and a set of approximations, Z¥ and G

2: Solve the QP

N-1
miniﬂmize WY(xp,on) + Z C(XpyinBipy;) (6.112)

1=0

subj. to

xk+i+1=Ax/€+i +BIZ/€+Z- Yi=0...,N-1 (6.11b)
w(xp,u) < #p < w(xp, %) (6.11¢)
(paisfipe) €TE Vi=1,..., N, (6.11d)
(x/e+i’ﬁ/e+i) EG VYi= Nl +1,...,N-1 (6.116)
xpaN €T (6.11f)

3: calculate the control signal as u; = y(x,#(1)) from (6.7)
4 update the local approximations ZF*1 as

THl=7k vi=1,.. N -1 (6.12)

1+1

5: construct a new set Ifgl from the procedure in Section 6.2.1
6: repeat from 1.

are satisfied at £ + N + 1. Also we note that since #* EI{e c I this means

k+1

that m(xg,1,2) <4}, < m(xp,e1,%) is feasible at time kb + 1.

Furthermore we have that all #; ., i=2 ..., N; are feasible at time & + 1
since the local approximations are shifted one time step (6.12). The control
v : ~ - R b+l

Ay nyeq €9 at time k are also feasible at time k& + 1 since Aoz €In 29
in Ap,n,41 at time k + 1 and I]/f[;'l is always a nonempty set if the problem
is initially feasible. All other #} Ny.i €9 are trivially feasible.

Convergence of the proposed algorithm is not affected by the local approxima-
tions and the standard proof from Section 4.2.1 hold without any change. This
means that the controller defined through Algorithm 2 stabilizes the system
(6.8) and by the Assumption 6.1 it also stabilizes the nonlinear system (6.5). O

6.3 Examples

In this section we present two examples to illustrate the properties of the
proposed algorithm. In the first example we consider a fictitious nonlinear
system whose purpose is to illustrate the generation and propagation of the
local polytopes.

In the second example we consider the task of controlling a fighter aircraft that
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has nonlinear unstable dynamics. The purpose of this example is to illustrate
the degree of suboptimality for the proposed method.

The implementation and simulation has been performed in MATLAB with
YALMIP [Lofberg, 2004] and MPT [Herceg et al., 2013].

6.3.1 lllustrative scalar example

Consider a nonlinear system given by

i =18x + (0.2x* + 0.875) u

y=x
with the constraints -2 < x <2, and -2 <« < 2. Following the procedure in
Section 6.1.1 we obtain the feedback linearization control law

1
h=—
0.2x* + 0.875

and the resulting linear system is an integrator from # to y.

(% — 1.8x)

The nonlinear feedback gives the following nonlinear control constraints on #
—04x* +18x - 1.75< 7 < 0.4x* + 1.8x + 1.75 (6.13)

shown in Figure 6.2 together with the global approximation G. Note the mas-
sive loss of control authority at, e.g., x; = £2, if only the global approximation
G is used to constrain 7.

10

Figure 6.2. Nonlinear constraints on # due to feedback linearization and a global
inner approximation G.

Algorithm 2 is applied to the discrete-time version of the integrator system
with sample time o.4s. Using N =5 and N; = 4, ie., we use the global
polytope G only to calculate the terminal constraint set, 7, and the objective



6.3 Examples 105

is to control the system to the origin. The local polytopes are calculated from
the tangent line at the center point in the reachable set.

10 10
=0 - 0
-10 -10
-2 -1 0 1 2 -2 -1 0 1 2
Xk Xk

Figure 6.3. The left axis shows the nonlinear constraints on # and the local
polytopes IZQ for 1 =1,...,4 at time k& =0. The right axis shows the local

polytopes Zl.z at time k = 2.

Starting in x = 1.9 the generated local polytopes at time k =0, Z?, are shown
in the left part Figure 6.3. It clearly demonstrates the increased control signal
ability compared to only using the global approximation as in Figure 6.2.

At the next time step the first local approximation, Z9, is discarded. All other
polytopes are shifted one step, i.e., Z! =13, I} = I}, etc. A new local polytope,
I, is generated at the end of the sequence. The right part of Figure 6.3
shows the local approximations at time k = 2. At this point the state has
moved to x; ~ 0.6 and an accurate approximation in the region around x = 1.9
is no longer of importance. In the figure one can see that the polytope I3
has been shifted and is now, at time k =2, the polytope Z?. The same holds
for 79 = 3.

6.3.2 Nonlinear aircraft example

In this example we consider a continuous time nonlinear model of the same
aircraft as in Section 5.3.1. The nonlinearity consists of an extra term in the
moment equation (6.14b) which is proportional to the square of the angle of
attack.

& = —1.8151a + 0.96059 (6.142)
q= 0.15a% + 12.9708a — 1.8988q + 19.8474¢6, (6.14b)
y=a (6.14¢)

The states are the same as in Section 5.3.1 where ¢ is the angular rate in pitch
and « the angle between the aircraft x-axis and the velocity vector.
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The coeflicients of the linear terms have been selected to correspond to the
linearized dynamics of the ADMIRE model at Mach 0.6 and altitude 1000
m, for details see Forssell and Nilsson [2005]. The coefficient for the a?-
term is selected to make the a-contribution to the moment equation in the
nonlinear model approximately 15% larger at @ = 30° compared to the linearized
model. The constraints on the system are basic control surface deflection limits
|6¢] < 25° and also limits on the angle of attack —10° < o < 30°.

For the system (6.14) it is easy to see that by selecting the nonlinear feedback
as

8, = # — 0.0076a> (6.15)

the closed loop system from MPC control input, #, to the output, @ will be
linear.

a = -1.8151a + 0.9605¢ (6.16a)
g =12.9708a — 1.8988q + 19.84747 (6.16b)

We can now formulate an MPC problem for the system (6.16) on the form
(6.11) where we chose to use a cost function that is quadratic in # since the
goal is to end up in a standard QP problem. In the cost function we used
the tuning parameters

5 0
Q= [o 1}’ R=2
and the sample time is 1/60 second.

Note that the state constraints are still linear after the feedback linearization
but the control constraints are now nonlinear and state dependent.

- 25° + 0.00760r; , . < fijy; < 25° + 0.0076ar (6.17)

In this case both the lower and upper bound is convex and therefore form a
nonconvex set. It is therefore difficult to make a good global inner convex
polytope approximation, G, of these constraints and control authority is lost
around the angle of attack limits, see Figure 6.4.

The lower bound can be approximated arbitrarily well with increasing complex-
ity of the polytope while at the upper bound we cut away control performance
around the a-limits with the global approximation. This opens up for the
possibility that control performance could be gained using local approximations
of the constraints when the current state is close to the e-limits.

If we compare Algorithm 2, with N; =1, with a global nonlinear solver (the
built-in branch and bound solver in YALMIP) for the problem (6.9), we obtain
a measure of the performance loss, ie., the suboptimality of our algorithm
compared to using the exact nonlinear constraints. We have compared the open
loop optimal cost of the two algorithms and as performance measure we use
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Figure 6.4. Nonlinear control signal constraints (6.17) and a global inner convex
polytope approximation, G

the relative error
ve-v
TV
between the optimal cost of the proposed algorithm, V', and the branch and

bound solver, V*. Figure 6.5 shows the variation of the relative error over the
entire feasible state space.

4-1072 |

= 2-1072]

100

q

Figure 6.5. Variation of the relative error, n, between proposed algorithm and global
solver over the state space.

From the figure we can conclude that for this example the maximum perfor-
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mance loss is approximately 4% and that it occurs in areas of the state space
where maximum control signals are likely to be used, i.e., large (absolute value)
combinations of angles and angular rates.

In the example we use only one step local approximations and a fair question
to ask is if any more performance could be gained by increasing the number
of local approximations. In Table 6.1 we compare, for a subset of the state
space, the relative error for both N; =1 and N; = 10.

Table 6.1. A comparison of performance loss, 17, when the number of local polytopes

are increased from N; =1 to N; = 10.
-14.0 -5.0 15.0 28.0
*o ~26.5 -9.5 28.3 52.9

N =1 41-100* 39-107% 77-107* 2.5-1072
N;=10 3.5-107'" 82-107¢ 35-107> 1.1-1072

The results in Table 6.1 indicate at least a 50% reduction in the relative
error of the optimal cost when the number of local polytopes are increased.
Although it is a significant decrease in the relative error the absolute values
are in both cases relatively small and it is questionable if it gives any practical
performance gain.

To evaluate the practical implications of the difference between the proposed
controller and the branch and bound method we compare the time response
of the closed loop system for the both controllers. We initiate the system at a
steady state where it is expected to have a relatively large difference in optimal
cost between the two controllers. However in Figure 6.6 we see that the time
response of both closed loop systems are identical to the naked eye.

Since there appear to be no difference in the time response we also look at
the error between the two time responses. Figure 6.7 reveal that there are
very tiny differences in both state and control signals between the two closed
loop systems. We can conclude that when there are only small nonlinearities,
there is no practical gain in increasing the number of local polytopes, i.e.,
the important property is that we can use the full control authority for the
current control input.
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Figure 6.6. Time response of the proposed controller (blue solid line) and the branch
and bound controller (red dashed line) for the initial condition xq = [27 51]7.
The two responses appear identical.

0.5

a Error
o

-0.5

o0 Error
o

. 10—6

0.5

1 1.5
Time [s]

2.5

Figure 6.7. Time response of the difference in state and control between the two

controllers.






Testing stability and robustness of MPC
controllers

In pervious chapters we have been concerned with the task of deriving model
predictive control algorithms which have guaranteed stability properties. In
this chapter we instead focus on the task of a posteriori verifying closed loop
stability of model predictive controllers for which standard stability proofs can

not be applied.
This chapter is based on the results previously published in

Daniel Simon and Johan Léfberg. Stability analysis of Model Predic-
tive Controllers using Mixed Integer Linear Programming. In IEEE
ssth Conference on Decision and Control, pages 7270-7275, Las Vegas,
2016.

The section on robust stability analysis consists of previously unpublished
material.

71 Introduction

It is a well known fact that finite time optimal controllers, such as MPC do
not necessarily result in closed loop stable systems. It is, as we have discussed
in previous chapters, common practice within the MPC community to add a
final state constraint and/or a final state penalty in order to obtain guaranteed
stability. However, for more advanced controller structures it can be difficult
to show stability using these techniques. Additionally as we have seen in
Chapter 5 the final state constraint set can consist of so many inequalities
that the complexity of the MPC problem is too big for use in certain fast
and time critical applications. This motivates us to instead focus on deriving

111
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a tool for analysis of the closed loop stability for linear systems controlled
with MPC controllers. We formulate an optimization problem that gives a
sufficient condition for stability of the closed loop system and we show that
the problem can be written as a Mixed Integer Linear Programming Problem
(MILP).

We consider a linear model predictive control formulation of the form

N-1
V= min. Z xl, Qupyi+ul Rupy; + ¥lxpan) (7.12)
p
subj. to xp4iv1 = Axpy; + Bugy; (7.1b)
Expo;<f i1=1...,N-1 (7.1¢)
TXk+N <t (71d)
Gup,; <h i=1,...,N-1 (7.1€)

Stability of the MPC control law (7.1) is most often proven a priori by
showing that the objective function (7.1a) is a valid Lyapunov function for the
closed loop system by designing ¥(x;,y) and the terminal state constraint,
Txp.n <t, such that

Vil -V (7:2)

is guaranteed to be less that zero, see section 4.2.1 for details.

However there exist many MPC formulations, such as move blocking Cagienard
et al. [2007] or soft constraints Zeilinger et al. [2014] (i.e., slack), for which it
can be difficult to show stability using this standard framework as presented in
Mayne et al. [2000]. Even if it allows for the possibility to guarantee stability,
the addition of the terminal constraints can add a significant complexity to the
original problem that might be unnecessary and limit the applicability of MPC
within certain fields. In reference tracking MPC the terminal set can become
very complex and some times not even finitely determined, see e.g., Chisci and
Zappa [2003] or Limon et al. [2008]. Therefore it can often be beneficial to
analyze and verify the stability of a certain design rather than building in the
stability by adding extra constraints.

The problem of analyzing stability of optimization-based controllers is no new
field. In Primbs and Nevistic [2000] the authors derive a stability test based
on bounds of the cost function. The author of Primbs [2001] uses the KKT
conditions for the MPC controller (7.1) to derive, using the S-procedure, an
LMI that gives a sufficient condition for stability. Several papers have followed
up on this idea such as Ahmad et al. [2014], Korda and Jones [2015], Lennox
et al. [2008], Li et al. [2006], Lovaas et al. [2007]. These papers have extended
the idea to hold for more general cases or improved the complexity of the
resulting LMI. E.g., in Korda and Jones [2015] the authors extend the ideas in
Primbs [2001] to hold for more general systems and show that given that the
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system and its constraints are polynomial, the stability can be analyzed using
sum-of-squares programming. In Lennox et al. [2008] the authors derive an
LMI of much lower dimension than that of Primbs [2001], which improves on
the complexity of the problem. However in order to reduce the size of the
LMI the authors of Lennox et al. [2008] need to make the assumptions that
the system is stable, i.e., A is hurwitz, and that the constraints on control
and states can be written as LU, + LNx;, < b. These assumptions are fairly
restrictive and not really suitable for our applications.

In this chapter we also exploit the KKT conditions of the MPC problem (7.1)
to analyze the closed loop stability. In Section 7.2 we analyze the difference
of the value function (7.2) as a proposed Lyapunov function candidate. But
instead of deriving an LMI condition we formulate the problem as an indefinite
quadratic bilevel optimization problem. We then show that this problem can
be rewritten as a Mixed Integer Linear Program (MILP), which can have
major computational advantages compared to using the LMI formulation. Later
in Section 7.3 we will analyze robust stability and we will have to propose
another Lyapunov function candidate and reformulate the stability problem
such that we can show closed loop stability of systems subject to additive
disturbances.

7.2 The MILP stability test

In this section we will derive the proposed stability test. We will formulate
an optimization problem that uses the MPC problem’s objective function as a
candidate Lyapunov function and then minimizes the difference of the Lyapunov
function between two consecutive time steps. Since the optimization problem
only tests the validity of a certain Lyapunov function candidate the formulated
problem can only verify stability, not prove instability. Therefore it is a
sufficient but not necessary condition for stability. Nevertheless, in situations
where the value function is non-decreasing at some point, it might be an
indication of problems in the design and further investigations and simulations
need to be made.

The resulting optimization problem is an indefinite quadratic bilevel optimiza-
tion problem, which is very difficult to solve. We will finally show how this
indefinite problem can be rewritten as a mixed integer linear programming
problem.

If the objective function (7.1a) is a quadratic or LP-representable function in
x and # we can rewrite the MPC problem (7.1), at time step k, in a more
compact form as

minimize V}, (7.3)
Ui

subj.to Exp + FU, < b
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where
1 1 -
V, = EUkTHUk + Ul Gxy + Ex,{Qx,e
and where Uy = [MZ,MZ+1,...,M/€T+N_1]T, x, 1s the current measured state and

the matrices, H, G, Q, E, F and b are suitably defined. The objective
function, V., at time k& + 1 is analogously defined.

The stability test can then be formulated as the following optimization problem

inimize V" — V" .
minimize V"= Vi (7-42)
subj. to xp,q = Axp + Bu,, (7.4b)
U, = argmin V, (7.4¢)
Uy, =argmin V4 (7.4d)

Hence we want to find the state x; of the system that results in the smallest
possible difference in our candidate Lyapunov function when controlled with
the MPC controller.

If this difference is nonnegative it means that V} is a valid Lyapunov function
for the system and hence the closed loop is stable. On the other hand if
this difference is negative this means that we have an increase in the Lyapunov
function candidate for some point x; and hence it is not a valid Lyapunov
function for the system.

Note however that when V}, is a Lyapunov function then the difference (7.4a)
is always zero if the origin is a stable equilibrium and negative if it is not,
i.e., the minimum of the optimization problem will in fact never be positive.
Therefore in order to show asymptotic stability or robustness the objective
function (7.4a) needs to be modified to, e.g.,

T T
V/: - /:H —€ (xk Qxp + ukRuk)

At this point it should be pointed out that it is assumed, throughout the paper,
that the MPC algorithms are recursively feasible. This must of course be tested
before one can apply the proposed stability test. A method for performing the
feasibility test is presented in Lotberg [2012].

Note also that in the case of the MPC problem having several non-unique
solutions then the stability test derived here is a pessimistic bound on the
stability, i.e., it selects the worst case combinations of optimal points, Uy,
U,y and xp.

Since the MPC problem (7.3) is a convex QP we can replace it in (7.4c) and
(7.4d) with the necessary and sufficient KKT conditions

HU, + Gx, + FTa, =0 (7.52)
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Ex, + FU,-b <0 (7.5b)
A >0 (7.5¢)
AL (Exp + FU, -b) =0 (7.5d)

and similar for time % + 1.

Note that equations (7.5d) are bilinear constraints but they can for each row be
modeled using a Big-M reformulation as four linear constraints with a binary
@) (2)

variable, z]il), and scalars, m|"”, and, m,"”, as

el w+ U by =0e
(@) @), ()
0< /lk =my’z,’,
0<bi—efxp - U <mP1-2) (7.6)

We can see that the binary variable zli’) forces either the constraint, b; —eiTx/e -

fiTU/e, to be equal to zero (when z/ii) =1) or the dual variable, /l/(;), to be equal
/(;) =0), ensuring that the complementarity constraint holds. In
(2)
k

to zero (when z

other words, we can view this as, z,” encodes whether the constraint is active

or not, i.e., z](;) =1= eiTxk + fl.TU/e = b;. The scalars m;i) and méi) needs to

be selected large enough to not affect the value of /l](ei) or bi —elx, — fTU,.

Using the KKT conditions (7.5) and the binary reformulation (7.6) we can

: : : _ T ..T 3T T T T T
write the problem (7.4) using the notation, y = [U/e ,xk,/lk,UkH,ka,/lkH]

and z = [Z/Z,ZT 17 as

k+1
o 1
minimize —y° Hy (7.72)
Y,z 2
subj. to Ey =0 (7.7b)
Ayﬁb_+cZ2 (7.7¢)
where
[H G 0 0 0 O]
GI Q o o 0 0
- 0 0 0 O 0 0
H=lo 0 0 - -G o
0 0 0 -G -Q 0
0 0 0 O 0 0
_[B A 0 0 -I O
E=|H G FT o0
0 H G FT
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F E 0 ..
“F -E 0 0
0o -1 o0
- o I 0 ..
A= o F E 0
o -F -E 0
0o 0 0 -I
o 0o o I
b 0 0]
Myl —b M, 0
0 0 0
- 0 - M0
b=1 4 | 4= 0
Myl —b 0 M
0 0 0
0 o M |

and where we have defined B such that BU[e = Buy. M; and M, are diagonal
matrices with the Big-M scalars m\” and m}’ as their diagonal elements.

Even though we have replaced the bilinear constraints with linear constraints
with integer variables the problem is still an indefinite QP. This is very difficult
for any integer programming method to solve and we have to reformulate the
problem into an LP or convex QP program.

To make the final reformulation into a MILP we observe that
| - . | -
min. =y” Hy = min. (min. =y Hy
vz 2 z y 2
where z is a parameter in the optimization problem over y. We can then

replace the optimization problem over y with its KKT conditions in the
minimization over z and thus we arrive at

I:Iy+AT77+ET,u=O (7.82)
Ay-b-dz<0 (7.8b)
Ey=0 (7.8¢)
nT(Ay-b-dz)=0 (7.8d)
n=>0 (7.8¢)

The KKT conditions in (7.8) are necessary but not sufficient for optimality
since H is indefinite. Thus it is necessary to test all points that fulfill the
conditions in order to find the optimal point and this is what is done in the
outer level optimization where we minimize over Z.
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If we now multiply (7.82) with 3y7 from the left we have
Yorg _ 1 17 Ter oy _Lp . g\T
5y Hy = =50T ATy + yTET py = = (b + dz)

=0

We see that in the optimum the objective can be equivalently written as a
linear term plus a bilinear term between a real variable and a binary variable.
We can see that the elements of the bilinear term are either o, if 2 =0, or
equal to diTn when z® = 1. Hence we can introduce a new variable, w, as

ZTa?Tn =1"w

where the elements w; can be modeled, yet again using the Big-M formulation,
with four linear constraints

“M3(L-2)<w-dn<Ms(l-2), -Msz<w < Mz

We can now combine all the pieces together and formulate the stability problem
(7.4) as the following MILP

minimize — lb_Tn - l]lTw (7.9a)
nuywizqg 2 2
subj. to

Hy +ATp+ ETpu=0 (7.9b)
Ey=0 (7-9¢)
—M3(1-2)<w-d'n < Ms(l-2) (7.9d)
- M3z <w < Mzz (7.9¢)
-~ My(1-¢q) < (Ay-b-dz) <0 (7.9%)
0<n < Msq (7.98)

The task of selecting the Big-M constants, M;, is by no means a simple task
and is partly still an open problem. If the constants are selected too small the
problem (7.9) will have a smaller feasible set meaning that we could obtain a
positive optimal value of (7.9) even though the original problem (7.4) has a
negative optimal value. This means that we obtain a false certificate of stability
if we select the Big-M constants too small. On the other hand if we select
the constants too big this will lead to numerical problems, i.e., they should be
selected as small as possible without affecting the optimal solution.

Note that we are not really interested in finding the optimum of problem
(7.9), but rather in finding if there exists any point, x;, where the objective
is less than zero. Hence we can reformulate the problem into a feasibility
problem which often is much faster to solve

find x,
subj. to
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- %b_TU - %]lew <0 (7.10a)
Hy+ATp+ETpu=0 (7.10b)
Ey=0 (7.10¢)
~M3;(1-2) <w-d'n < Ms(1-2) (7.10d)
- M3z <w < Mzz (7.10€)
~My(1-¢q)<(Ay—b-dz) <0 (7.10f)
0<n<Msq (7.108)

Due to the special structure of the original problem there is a large amount
of structure in the problem (7.10) that should be exploited to enhance the
performance of the MILP representation.

721 Exploiting structure in the MILP

First, let us observe that in MPC problems there are often upper and lower
bounds on the variables, e.g., #,,, < #p.; < #mar. These constraints can not
be fulfilled with equality at the same time and hence the two corresponding
binary variables, Z/(el) and z]i] ). in (7.6) can not be equal to one at the same
time. So we can introduce the constraint

3 (4
z/il) + zkj <1 (7.11)

for the appropriate indices 7 and ;.

Consider now a single constraint eiTxk + fl.TU/e < b; in the original MPC
problem. This single constraint generates through (7.6) the four constraints

eiTX/e + fiTU/e -b; <0 (7.12a)
b; — el-Tx/e - fiTU/e < méi)(l - z](ei)) (7.12b)
—/1/(;) <0 (7.12¢)

/1/(;) < mii)z/(;) (7.12d)

in (7.7¢).
By formulating the KKT conditions for (7.7), for each of these four constraints
we have yet another binary variable, ¢‘”, in (7.9f) and (7.9g). Since the
binary variables force a constraint to be active we can see that if Z/(;) =0 then
(7.12a) and (7.12b) can not both be active at the same time. This means that
the corresponding elements ¢ and ¢+ can not both be equal to one, ie.,
we can constrain them as

g? + gD <14 z/(;) (7.13)

Furthermore if z](;) =1 we have from (7.12a) and (7.12b) that eiTxk +fiTUk = b;
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which gives in (7.9f) and (7.9g) that
mP(1-qD) <elxp + fTU, —b; =0
m‘(‘n,l+i)(1 _ q(n/l+i)) < bi _ el'Txk _f;'TU/e =0

and hence we can in this case without any loss of generality constrain both
g and ¢+ to be equal to one. This is done by adding the constraint

gV + g™ 2 22 (7.14)

The corresponding argumentation can be used for (7.12¢) and (7.12d) to
introduce the two additional constraints

gOmti 4 gUmash < 1 4 (1 - Z/(ei)) (7.15)
gCmiri) 4 gUmard 5 91 - Z/(ei)) (7.16)

The constraints (7.13) - (7.16) concern relations in one MPC constraint, i, but
as stated in (7.11) there exist relations also between different MPC constraints.
This gives additional relationships between the different binary variables which
we encode as the following constraints

g < 1-2z) (7.17)
g@) < 1-2z) (7.18)
gCmirD 4 glna+h) 5 2Z/(ef) (7.19)
gt <1 - z/(;) (7.20)
g@t) <1 - Z/ii) (7.21)
gD 4 gl > 221(;) (7.22)

The stability analysis optimization problem to be solved thus consists of the
problem (7.10) with the additional constraints (7.11) and (7.13) - (7.22). Note
that the added binary constraints are redundant in the original problem and
do not affect the optimal solution. They are only added to cut off binary
combinations in order to possibly increase the performance of the solver.

Note that nowhere in the derivation of the algorithm do we use the fact that
it is the MPC controller objective function that we have as candidate Lyapunov
function, V,. Hence we can generalize the algorithm to the use of any other
positive definite V}, by appropriately modifying the matrix H.

In the next sections we will look at three examples and try to illustrate some
properties and performance of the proposed algorithm.

All examples have been implemented in MATLAB using YALMIP, Lotberg
[2004]. The MILP problems have been solved using the solver Gurobi 5.6.2,
Inc. [2014] and the LMI problems have been solved using MOSEK 7.1, ApS

[2015].
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7.2.2 A sufficient but not necessary condition

The first example is taken from Lofberg [2003] where we consider the following
unstable, non minimum phase system

_[1.216 -0.055 0.02763
Xk+17 10221 0.9947 | *F T |0.002673 | “*

which we control using an unconstrained finite time MPC controller with the
objective function
N-—
e T ) 2
V., = minimize Z xp,;Qxpy; + Ruy .

Hle+i

—_

1=

and Q =10/ and R = 1. Since the controller is unconstrained we can easily
calculate for which prediction horizon length, N, the closed loop system is
stable by looking at the eigenvalues of the closed loop system matrix, A — BL.
In the range N =1,...,50 we calculate the eigenvalues of the closed loop
system and can conclude that it is stable for N > 8. When we use the
algorithm derived in Section 7.2 to test for stability we obtain the result that
the system is stable for N > 21. Running the LMI algorithm from Primbs
[2001] we obtain the same results.

Here we clearly see that the test is only a sufficient, but not necessary,
condition for stability since apparently there exists a set of 8 < N <20 where
the system is stable but the objective function does not constitute a valid
Lyapunov function for the closed loop system.

7.2.3 Computational complexity of the stability test
Let us now consider a more realistic example taken from the aircraft industry.

We consider the stabilization of the short period dynamics of the ADMIRE
aircraft [Forssell and Nilsson, 2005] and we have linearized the system at Mach
0.6 and altitude 4km. This results in the system

~10.9798 0.0158 N 0.0106 (7.23)
The1 = 01449 0.9787| 7% T |0.4878] “* 723
This system is controlled with an input constrained MPC controller with
objective function

N-1

T 2 T
x/e+ika+i + R%k+i + xk+Nka+N
1=0
10 1

with Q=1, R=10 zmsz[1 )

] and the constraints =5 < #;,; < 5.

To investigate the computational complexity of the algorithm we have compared
our developed MILP algorithm to the LMI algorithm developed in Primbs
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[2001]. Note that the system is open loop unstable and hence is the method
developed by Lennox et al. [2008] not applicable.

Both algorithms verify that the closed loop system is stable for all tested
prediction horizon lengths but the computational time differs significantly
between the two algorithms.

The following table shows the solvers computational time in seconds for the
two methods as a function of prediction horizon.

(N [ 2] 4[] 6] 8 [ 1]

LMI 0.03 | 0.52 | 5.36 | 22.42 | 80.06
MILP || c.06 | 0.17 | 0.28 | 0.42 | 0.61

As can be seen from the table the computation time grows very rapidly with
increasing prediction horizon for the LMI algorithm while it remains relatively
small for the MILP approach.

7.2.4 Move blocking and no stabilizing constraints
Let us again consider the ADMIRE aircraft model (7.23).

This time we design a stabilizing MPC controller of the form (7.1) where the
objective is a quadratic function
N-1
T 2 T
X i Qi + Rty +xp  PXpyn

1=0

with Q = [g Ool}’ R =10 and P is the associated LQ cost. The constraints

are upper and lower bounds on the states and control

-10 10
[_50} <xp < [50], -20<u, <20

Since the system is unstable and constrained it is “generally necessary” to have
a final state constraint, Mayne et al. [2000]. We select the final state constraint
set to the invariant set of the associated LQ controller, see e.g., Rawlings and
Mayne [2009] for more details.

Let us first consider the statement that it is necessary to have a terminal state
constraint. The MPC controller is by construction stabilizing and when we
test the stability of the closed loop system with the algorithm derived in the
previous section we see that it indeed is stable for all N in the tested range
(N =2,...,10). The question is, is it still stable if we would remove the
terminal state constraint set?

Running the algorithm again, now without the terminal constraint set in the
controller, the test indicates that the controller still is stable for all tested
prediction horizons. To verify this result we select 1000 random initial
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conditions and simulate the closed loop system with prediction horizon, N =5.
As shown in Figure 7.1 all initial conditions that are within the initially feasible
set are stable.

60
40 | habeiE

20 &

=20

—40

-60
-10 -5 0 5 10

Figure 7.1. A simulation of the closed loop system from 1000 different initial
conditions for the MPC controller without terminal constraint. The blue circles
are the initial conditions, red lines are the trajectories and the black squares are
the final states. The cyan polytope is the set of initially feasible states.

Now, simplify the MPC controller even more by introducing move blocking
and analyze the stability of the resulting closed loop system. We select the
prediction horizon N =4 and introduce the move blocking structure

0
A 0
U=TO, T=|y ;
1

1
1
0
0

A . . . . .
where U, is the new reduced set of input signals. This blocking structure
gives a controller where the sampling time of the controller output is half the
internal sampling time used in the predictions.

As pointed out in Cagienard et al. [2007] the standard feasibility and stability
arguments can not be used to prove stability for this move blocking strategy.
Instead we aim to prove stability by using our MILP test.

When applying the MILP algorithm it returns a sufficient condition certificate
that the move blocking MPC design is stabilizing. To verify this result we
again simulate a set of 1000 random initial conditions, now with horizon
N =4, throughout the state constraint set, see Figure 7.2. It is clear from this
figure that for all initially feasible points the move blocking MPC controller
remains feasible and stabilizes the system, as proven by the MILP test.
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Figure 7.2. A simulation of the closed loop system from 1000 different initial
conditions for the move blocking MPC controller.

7.3 Testing for robust stability

In the previous sections we have considered only nominal stability of the
closed loop system. However in any real cases there will be disturbances and
model errors acting on the system. In this section we will make a rather
straightforward extension of the nominal stability test to a robust stability test
for systems subject to additive disturbances.

7.31 Minimal robust invariant set

Consider the case when the linear system is subject to an additive disturbance,
wg, le.,

Xpt1 = Axk + Buk + wp, w € w

The disturbance w; is unknown but bounded to some known set W. It is
obvious that the state in this case will not converge to the origin since close
enough to the origin a disturbance can push the state away from the origin.
But we know that given a stabilizing control law there exist a positively
invariant set around the origin such that if the state enters this set it will
remain within this set for all bounded disturbances [Kolmanovsky and Gilbert,
1998]. This set is known as the minimal robust positively invariant set, R7".
In order to formally define this set we first need to define a robust positively
invariant set.

Definition 7.1. (RPI set) [Rakovic et al., 2005] The set Roo € R” is a
robust positively invariant set (RPI) of the stable system xj,; = Axp + w if
Axp + wp, € Reo for all x;, € Reo and all w, € W.
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We can now define the minimal robust positively invariant set as follows.

Definition 7.2. (minimal RPI set) [Rakovic et al., 2005] The minimal RPI
set, R7", of the system x;,; = Axp + wp, is the robust positively invariant set
in R” that is contained in every closed robust positively invariant set of the

system.

For general linear stable systems there is no known way to calculate an
exact representation of the minimal RPI set but in Rakovic et al. [2005] the
authors develop an algorithm for calculating an invariant outer approximation
of the minimal RPI set. Furthermore the algorithm gives a measure of the
approximation error.

—— Example 7.3
Let us illustrate the RPI set calculations with a simple example. Consider the
same aircraft model as in the example from section 7.2.4 and let the system
be subject to a bounded disturbance, —0.43 < w; < 0.43, on both states. If we
calculate the approximation of the minimal RPI set for the system using the
unconstrained MPC solution (i.e., the LQ feedback) with the penalty matrices.

100 O} 658.765 9.912 ]

Q= [ R=1 P= [ 9912 26816
In Figure 7.3 we plot the outer RPI approximation (cyan) together with an
inner approximation. Note that the inner approximation is not an invariant

app roximation.

20

T
__/.

-20

Figure 7.3. An example of the inner (yellow) and outer (cyan) minimal RPI set
approximation calculated with an approximation error of e =0.5.
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7.3.2 The robust stability condition

Since the Lyapunov function candidate from the previous section will not have
a negative time difference within the minimal RPI set we need to formulate
the robust stability test as a convergence test to the minimal RPI set instead.
Therefore let us define d; to be the distance from a given x; to the minimal
RPI set, ie., dj = n}llkn lIxr — agll, subj. to a, € RZ™.

In order for us to prove that the system is stable and that the states
asymptotically converges to the minimal RPI we want the distance to the
minimal RPI set to monotonically decrease over time, so we require that

dy—d; 2ed] Vx,eX wpeW
Since d},. > 0Vx; we can just as well show that

(1-ed?-d? >0

This means that

in,(1-e)d;>-d;2, >0
min, (1 =€e)d” —ap, =

and we can in the same way as in previous section formulate the following
indefinite bilevel optimization problem.

minimize ((1 — ) llxe - arll — e - af ||2) (7.242)
XXkt 10koths .U 0 2 ke1ll2
subj. to (7.24b)
Xgp41 = Axp + Buy + Dwy (7.24¢)
), = argmin U/eTHU/e + U]eTGx+/e (7.24d)
U

subj.to Exp + FU, <b

. 1 ,
ap,.q =argmin o [[xgy 1 — apll (7.24€)
Ak+1
subj. to  ap,q € R77"
wp €W (7.24f)
ap € 7%2”01" (7.248)

Note that in this case, our Lyapunov function candidate is simply d;* but noth-

ing prevents the user from proposing other, perhaps more suitable, Lyapunov
functions.

At this point we need to make some remarks about the above formulation.
First we can note that comparing (7.4) with the formulation (7.24) only the
MPC formulation at time % remain, this is because now the MPC problem at
time k + 1 does not affect the solution (U, does not appear in the objective
function). Further, the closest point in RZ” at time k, ap, does not need
to be explicitly stated as the optimal minimum distance point with a separate
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subproblem, since the objective function guarantees that the minimum distance
point at time k is selected automatically (which is not the case for the point,
ap.1). The disturbance, w;, will also be optimized such that x;,; is as far
away as possible from RZ", ie., the worst case scenario, since this is what
minimizes the objective function. Finally we should also note that, as we
discussed in the previous section, we can not calculate the exact representation
of R7” and hence we use the outer approximation, which we will denote
Rmin from Rakovic et al. [2005].

7.3.3 Reformulation into a MILP

Define y = [Uy, xg, ap, A, Wp, X 41> 44 +1,¥] Where A is the dual variable related to
(7.24d) and y the dual variable related to (7.24¢). We can then, by replacing
(7.24d) and (7.24e) with their KKT conditions, formulate the robust stability
test in the same form as the nominal stability test (7.7).

PP S
minimize —yTHy
z 2

s
subj.to Ey =0
Ay <b +dz
where
0 0 0 0 0 O 0 0
o I, -I. 0 0 O 0 0
o -1, I. 0 0 O 0 0
= 0 © 0 0 0 O 0 O
10 0 0 0 0 O 0 0
0 O 0 00 -1 I O0
0 O o 00 I -I 0
0 O 0 0 0 O 0 0

and we have used I, to denote (1 —€)I. Furthermore
_[B A0 0O D -1 0 O
E=|H G FT'. 0 0 0 O
0 00 0 0 -I I F}

o

F E 0 0O 0 0 0 0]
F -E 0 0 0 0 0 0
O 0 Fr O 0 0O 0 O
o 0 0 -I 0 0 0 O
j_lo o 0o 1 0o 0 0o o0
O 0 0 0 Fy 0O 0 O
o 0 0 0 0 0 Fr O
O 0 0 0 0 0 -Fg O
o 0 0 0 0 0 0 -JI
o o 0o o o 0 0 ]
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This is equivalent to the formulation (7.7) and from this point on we can
apply the derivation from previous section and end up with in the feasibility
test (7.10) that now test for robust stability. The details are omitted for
brevity.

7.3.4 Robust stability of an agile fighter aircraft

Let us now apply the robust stability test on the aircraft model in Section 7.2.4.
The dynamics are

0.9798 0.0158 0.0106
xp + up + wy (7.25)

”“zbmw 0.9787 0.4878

This system is controlled with the MPC controller

N-1
. T T T
rr)lcimr;uze Xy, QXpy; +uy Rupy;i +x, Pxpyn
+isMk+i -1
suby. to

Xpy14i = AxXpy; + Bugy;
-10 10
=50 50

~20< up,; <20
where P, Q and R are defined as in Example 7.3 and N =5.

S Xy S

We utilize the test for recursive feasibility in Lofberg [2012] to calculate the
maximal disturbance for which the system still is recursively feasible. The test
results in that the maximum disturbance is given by

|||l < 0.4308

We now formulate the robust stability test as defined above for convergence of
the state into the outer approximation of the minimal RPI set. This is the set
from Example 7.3 but now we use the approximation error bound € =5-107>.

The test show that the system is robustly stable in the sense that it converges
into the outer approximation of the minimal RPI set when controlled with the
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MPC controller. If we instead would have used the standard stability test from
Section 7.2 it would have failed to prove stability and pointed out a state, x,
within the minimal RPI set as a point where the difference in the Lyapunov
function increases.

To verify the result we generate a set of 500 random feasible initial conditions
on the state and simulate the closed loop system for 20 time steps. The results
from the simulations are shown in Figure 7.4 and it is possible to verify that
all the trajectories converge into the minimal RPI set, as predicted by our test.

20 -

_20 -
—40|

-60 |
-15 -10 -5 0 5 10 15

Figure 7.4. The state trajectory of the closed loop system from 500 randomly chosen
feasible initial conditions. The cyan polytope is the initially feasible set, the yellow
polytope is the minimal RPI set.
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Industrial implementation of an MPC
controller for a fighter aircraft

8.1 Introduction

In previous chapters we have mainly focused on theoretical problems that have
a great relevance for the aeronautical industry. However it is equally important
to review the practical implementation aspects and tuning strategies of real
world flight control design problems in order to evaluate the applicability of
MPC within the aeronautical industry and to identify new research directions.

We will therefore focus on the practical aspects of model predictive controllers
for flight control design in this chapter. We will describe the design, tuning
and implementation of a model predictive controller as the main flight control
system for an agile fighter aircraft. The controller has been implemented in
Saab’s main simulation environment, ARES, and tested both using desktop
simulations with virtual pilots and simulator testing using real human pilots.
The main objective of this chapter is to give a proof of concept of MPC as
a design technique for advanced flight control systems for agile fighter aircraft.
The secondary objective is to describe a design and tuning methodology of
MPC controllers suitable for flight control design.

As we discussed in the introduction there exist much research relating model
predictive control to aeronautical applications and there exists a wide variety
of applications and theory. However, research that is within the scope of this
thesis, maneuver limiting of fighter aircraft, is more scarce. Great examples of
the topic of maneuver limiting can be found in papers such as Falkena et al.
[2011], Gros et al. [2012] and Hartley [2015]. In Falkena et al. [2011] they
compare MPC with other control strategies to achieve envelope protection for
small personal transport air vehicles. The authors compare MPC with a PID
based approach, a command limiting approach and a virtual control limiting

131
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approach. The MPC controller is applied in combination with a nonlinear
dynamic inversion controller. Hartley [2015] develop a stall protection system
for undetected ice build up based on an MPC controller and an adaptive
prediction model that is measured online while Gros et al. [2012] applies
nonlinear MPC to control a generic aircraft model during extreme maneuvering
without breaking any flight envelop limitations.

In this chapter we implement a gain scheduled linear MPC controller structure
with an internal sample interval that is different from the closed loop imple-
mentation sampling. We propose a tuning methodology based on classical LQ
tuning methodology that has been used for decades at Saab for flight control
design. Finally we demonstrate the performance and validity of the proposed
design with the implementation in the main flight mechanical simulator at
Saab Aeronautics, which is also used for the JAS 39 Gripen fighter aircraft
development.

8.2 The MPC controller structure

The MPC controller we have designed is an inner loop controller for the
unstable pitch dynamics of the ARES aircraft model (see Section 3.4). The
controller for the lateral dynamics is the baseline gain scheduled LQ controller
of the ARES model.

We have selected to use an MPC controller with a linear prediction model
scheduled over Mach number and altitude. As pointed out in Keviczky
and Balas [2006a] a gain scheduled controller often performs sufficiently well
compared to a full nonlinear MPC for these type of applications. As we will
see later in this chapter the nonlinearities in the dynamics over the range of
angle of attack can be handled with great performance using linear models
and the integral action scheme explained in Section 4.2.3. The nonlinear pitch
dynamics has been linearized around level trimmed flight at different Mach and
altitude points in the subsonic region.

The MPC controller structure that has been chosen is the basic linear MPC
structure (4.4) but without any terminal state constraints and with slack added.

N-1
P . T T T
minimize Z (xpyi = %) QUpy; —xy) + (upy; —uy) R(upy; —uy) + yE; &

Xk+ishk+i =0
+ (pan — %) P(xpen — x7) (8.12)
suby. to
Xpyiv1 = AXpy; + Bupy; + Dx (8.1b)
Xmin —€i S Xpyi S Xmax +& Y1=0,..., N (8.1¢)
Upin < Upy; < tmay YVi=0,...,N -1 (8.1d)

xp = x(tg) (8.1¢)
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The state of the system is chosen to be x = [6. 6. a g1, where 6. is the
canard control surface angle, . is the elevon control surface angle!, @ is the
angle of attack and finally ¢ is the pitch rate. In other words the model used
here is the short period dynamics (3.8) augmented with the control surface
actuator dynamics. One reason to augment the short period dynamics with the
actuator dynamics is that it reduces the phase lag in the closed loop system
compared to just ignoring the fast actuator dynamics and hence increases the
performance. The control inputs # are the commanded canard control surface
angle and the commanded elevon control surface angle.

Since the variables in a linearized model is deviations from the linearization
point we have rewritten the prediction model (8.1b) to be expressed in the
actual values, which then includes the trim state, x. The matrix D in (8.1b)
can easily be derived from linear model expression as

(Xpe1—%X) =A(xp —x) + B(up, — n)
Xbi1 ZADC/e + Bup + (I —A)x + Bu
=Ax, + Bup, + { —A)x + [B Q]x
=Ax, + Bup, + (I - A) +[B 0]Dx
D

In the third equality we have used the assumption that the control surface
command in trim, 7%, is equal to the control surface angles, i.e., the states &,
and &,.

The main frequency of the flight control system is 120 Hz and hence the MPC
problem (8.1) solved in a receding horizon fashion at 120 Hz. However since
we want the prediction horizon to be long enough to cover at least the most
part of the step response of the closed loop system, which is approximately 2
seconds, this would require a long prediction horizon and hence a very large
QP to solve. Therefore we instead discretize the prediction model and the
MPC controller in 10 Hz yielding a prediction horizon of N = 20.

Note that this approach, with defining the MPC controller in one frequency
and running it in another, higher, frequency, can be viewed as a type of move
blocking. The MPC controller assumes the control signal is updated only every
0.1 seconds which can be viewed as the control is kept constant for 12 samples
(in the 120 Hz implementation) in a row while in reality it updates every
1/120 th second. One important implication of this is that as for any move
blocking approach the standard recursive feasibility and stability proofs from
Section 4.2.1 do not apply.

There are some important subtle implications when we have one internal
frequency in the MPC controller and another in which the MPC controller is
run and we will discuss these further in the next sections on tuning of the
MPC controller.

Isee Section 3.4 for explanation of the canard and elevon control surfaces.
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In the objective (8.1a) we have penalized the deviations from the target steady
state, x,, and control, #,. These are calculated as in Section 4.2.2 as the

solution to
A-1 B||[x,| [-Dx-Ed
P M R ®2)

This equation does not have a unique solution unless there are as many rows
in C as there are columns in B, 1ie., the matrix on the left hand side is
invertible. Using a (weighted) pseudo inverse is equivalent to use the (weighted)
minimum norm solution on the control signal #,. We tried this approach but
could not find a suitable tuning such that the controller has good performance
both at trimmed level flight as well as for various pilot commands. Instead
we chose to use two different versions of (8.2), one when the pilot command
is equal to zero and one when the pilot command is not equal to zero. The
pilot commands an angle of attack deviation, Ae,,,,, from the angle of attack
for trimmed flight, @. When the pilot’s command is zero, Aa,,,q =0, the
reference is set to
_ |
a8

and the matrix

but when Aa,,,q #0
r=a&+Adg, C=[0 0 1 0]

The variable, deR in (8.2), which is the integral term as described in
Section 4.2.3, is estimated using a Kalman filter and the model
Akr  Exr Bkr

Xk+1| _ el 4
A1 0 I dy, 0
Vi =X + Vg (8.4)
Even though the matrices Axr, Bxkr and Egr represent the same continuous
time system as the matrices A, B and E in the MPC controller we denote
them differently since the Kalman filter is discretized in 120 Hz and the MPC

controller in 10 Hz. The E.-matrix in the continuous time system, from which
the E and Exy matrices are calculated, has the form

0

up + Gw,, (8.3)

0

0
Ec=|]
1

0
1
0
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The matrix G in the Kalman filter has been chosen to

0000
0000
1 000

G=lo 1 0 0
0010
00 0 1

This means that we assume to have a perfect model of the actuator dynamics
and that there are no disturbances and errors entering that dynamic.

The states and controls are constrained by upper and lower limits on each
variable. The state constraints are softened using slack variables, &;, and our
experience is that one slack variable per state and time step is required to
obtain good performance. We have chosen to use a quadratic penalty on the
slack variables even though this causes the active constraints to be violated to
some small extent also in cases when it is not necessary [Maciejowski, 2002].
The reason for this is that in earlier projects we have experienced difficulties
in achieving excellent tuning and smooth control signals using linear penalty
functions.

The MPC controller is rewritten into a quadratic program of the form

minimize z' Hz + z7 Gxy,
z

subj. to
bin < Az < byyay

Zmin £ Z = Zmax

where z7 = [up, sy i1 #ps2r. > Up e N—1,€0:E15---,En] and solved online using
the solver qpOASES [Ferreau et al., 2014].

At this point it is probably good to highlight that in the MPC formulation
(8.1) we have not used any terminal state constraint, which we know from
Section 4.2.1 is in general necessary to guarantee stability when the system is
unstable and constrained. There are several reasons for this. The first one
is that the multifrequency approach we have taken with the MPC controller
derived in one frequency and implemented in another makes it impossible to
prove recursive feasibility and hence also stability using standard approaches.
Secondly, even if we could prove stability for every linearized prediction model
the controller is gain scheduled over the flight envelope and to the authors
knowledge there does not exist any systematic ways to guarantee stability for
this kind of setup.

8.3 Tuning of the MPC controller

In this section we will concentrate on the methodology we have used to tune
the MPC controller (8.1). The parameters to tune are the penalty matrices,
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P, Q and R, of the objective function (8.1a), the prediction horizon, N, and
prediction model discretization time step as well as the penalty matrices, Qgr
and Rgr, in the Kalman filter.

The constraints in the MPC controller are given by external requirements as

-10° <a <18°, -75°/s<q<75°s, -28°<¢,<28°, —50°<é,<25°

The standard tool for flight control law design at Saab has for a long time been
LQ control and an extensive and proven methodology exists for tuning LQ
controllers. Additionally many of the design requirements for flight control
systems are formulated either in continuous time or in frequency domain.
Therefore the approach taken here is to perform an LQ design in continuous
time for each of the design points in the flight envelope and then when we
have satisfactory linear properties translate the design into MPC equivalent
penalty matrices.

We have chosen to perform the LQ design in 18 envelope points in the
subsonic region up to an altitude of 6 kilometers. The speeds have been
chosen to Mach o.2, 0.3, 0.4, 0.6, 0.8 and 0.9 and the altitudes 1 km 3 km
and 6 km.

In each envelope point a continuous time LQ controller is tuned that meets the
basic performance requirements for category IV aircraft in MIL-F-8785C [1980].
If the discretized equivalent penalty matrices Qg, R; and the Ricatti solution,
Py, were to be implemented in a standard MPC controller we would regain
the performance of the LQ controller when no constraints on the system are
active. However since we use a multi frequency approach and have designed
the MPC controller in a lower frequency (10 Hz) than it is implemented in
(120 Hz) this will no longer hold. An example of this is shown in Figure 8.1.
In the figure we compare the continuous time response of an LQ controller
with different discrete implementations and we can see that if we implement
the continuous LQ feedback in 120 Hz (the magenta lines) the response is
basically the same as the continuous time response. We also obtain the same
response if we design a discrete LQ controller with the same penalty matrices
for a sample time of 0.1 s and implement it at 10 Hz (cyan lines). Note
though that the control signal is different because it is now piecewise constant
in 10 Hz.

If we now take the discrete LQ controller designed for a sample time of o.1 s
and implement it at 120 Hz we will obtain the response corresponding to
the green lines in figure 8.1. We clearly see that the response is slower than
the original continuous time design and the explanation is straightforward. It
is because the magnitude of the control signal is smaller in the discrete time
case and it needs to be active for the longer sampling time for it to have the
intended effect on the system. When implemented in a much higher frequency
the effect of each control action is much smaller and hence the response
becomes slower.
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Figure 8.1. An example of the response of a continuous time LQ controller (blue),
its discrete implementation at 120 Hz (magenta), a discrete time LQ controller at
10 Hz (red) and the 10 Hz discrete LQ implemented at 120 Hz (green).

If we want to be able to use the LQ design methodology together with the
multi frequency approach in the MPC implementation we need to compute
new penalty matrices such that the unconstrained closed loop response of the
MPC controller running at 120 Hz but using a discrete time model based on
10 Hz sampling is equal to that of the continuous time LQ design.

What we would like is to find if there exist a set of penalty matrices P, Q
and R such that the 10 Hz discrete time LQ feedback gain, K , is equal to
the continuous time feedback gain, K, calculated using the penalty matrices
Qrq and R;q. If the feedback gains are equal then the discrete time controller
will result in the same closed loop response as the continuous time controller
when implemented in 120 Hz. As it turns out we can in fact formulate this
problem as an optimization problem, which is linear in the decision variables
P, Q and R.

To see this we first note that the optimal discrete time LQ feedback is given
by [Astrém and Wittenmark, 1996]

K, =B'PB + R)"'B'PA (8.5)
where P is the solution to the discrete time Riccati equation
P=ATPA + ATPB(B'PB + R)"'BTPA + Q (8.6)

Now, if we want the feedback gain, K, to be equal to a previously designed
continuous time feedback, K, we have

K - Kd =0
K-B'PB+R)'B'PA=0o
(BTPB + R)K -BTPA=0
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Furthermore we can rewrite the Riccati equation (8.6) using (8.5) as

P=ATPA+ ATPB(BTPB + R)"'BTPA+Q
Kq

=ATPA+ ATPBK,; + Q
=ATPA+ KI(R + B'PB)K,; + Q
where we in the last equality have used that
ATPB=A"PB(R + B'PB)""(R + B'PB) =K. (R + B'PB)
since (R + BTPB) is symmetric. If we now have K; = K we finally obtain
P=ATPA+K"(R+B"PB)K +Q

To find the suitable penalty matrices we thus need to solve the following
system of equations

(B"PB + R)K —B"PA=0 (8.7)
ATPA+K" (R+B"PB)K + Q=P (8.8)
Q=0 (8.9)

P>0 (8.10)

R>0 (8.11)

However, there might not exist a solution to these equations and hence we
make try to find the best possible choice by minimizing the two-norm of (8.7)
subject to the constraints (8.8) - (8.11).

minimize |(R + B"PB) K - B"PA|, (8.12a)
subj. to

P=Q+A"PA-K" (R +B"PB)K (8.12b)

Q=0 (8.12¢)

P=0 (8.12d)

R=R;q (8.12¢)

The first thing we can note about the problem (8.12) is that it is linear in
the unknown matrices, P, Q and R. Secondly, in order to set the scaling of
the solution we need to fix one of the elements in one of the variables and
since we penalize the both control commands equally we can thus introduce
the constraint (8.12e).

To summarize the above discussion we have tuned the MPC controller by first
tuning a continuous time LQ controller in each envelope point. Then found
suitable penalty matrices for the MPC controller by solving the optimization
problem (8.12) to ensure the MPC controller acts as the LQ controller when
no constraints are active, despite being designed in 10 Hz but running in
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Figure 8.2. Comparison of angle of attack response and control surface commands
of the proposed MPC controller and the baseline LQ controller at Mach 0.6 and
altitude 2 km.

120 Hz. The matrices are then scheduled over the entire flight envelope
together with the system dynamics A, B and E.

The penalty on the slack variables has been chosen to be constant over the
entire flight envelope and to be significantly larger than the other penalty
matrices. We have without any closer analysis manually tuned the penalty
to y = 10° in order to have good constraint satisfaction but not an overly
aggressive controller.

The tuning of the Kalman filter has been a bit more ad hoc. We have simply
fixed the penalty matrix for the measurement noise, Rgr = I, and tuned the
penalty matrix for the process noise, Qxr, until the filter was fast enough and
the controller achieved integral action. The penalty matrices were also chosen
constant over the flight envelope.

8.4 Simulator testing

The MPC controller derived in the previous sections has been implemented
and tested in Saabs in-house simulation environment ARES, both in desktop
simulations with a virtual pilot and in a real simulator with human pilots.

Let us start by comparing the response of the MPC controller derived in
the previous sections with the ARES baseline LQ controller (see Section 3.4.1)
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with the same tuning using the virtual pilot. We evaluated the performance
by looking at a maximum performance turns performed by a virtual pilot in
different parts of the flight envelope. The angle of attack response for a turn
from Mach 0.6 and altitude 2 km is shown in Figure 8.2.

The upper part of the figure shows the angle of attack response of the MPC
controller (blue solid line) and the LQ controller (blue dashed line), the angle
of attack limit (red dashed line) and pilot angle of attack command (green).
In the lower part of the figure the control surface commands for the canards
(blue) and the elevons (green) are shown. In the figure we can clearly see
that even though the LQ controller is tuned to not give any overshoot of the
angle of attack limit it can not manage to keep the angle of attack within
the prescribed limit. The main reason for this is that Mach 0.6 and altitude
2 km is in between two envelope points where the LQ controller has been
tuned and the nonlinearities and model errors that are present in the true
aircraft dynamics makes the performance in between the design points worse.
The overshoot of the angle of attack limit is almost one degree for the LQ
controller while the MPC controller on the other hand manages to keep the
limit very well.

If we look at the control surface commands (the lower part of Figure 8.2) at
time five seconds, we can see that the MPC controller react with spikes in
the two control commands. This is resulting from that the angle of attack
prediction surpasses the limit and the slack penalty kicks in.

The above results show the performance of the MPC controller in one envelope
point. To evaluate a more dynamical scenario we perform the same maneuver
starting from a high-speed point, see Figure 8.3. In this case the speed drops
from the initial Mach 0.9 almost down to Mach o.45 which means that the
MPC controller changes throughout almost its entire scheduling envelope in
speed. In the first part of the maneuver the command is not at the maximum
angle of attack because here at higher speeds the command is set to a maximum
load factor command (which corresponds to a lower angle of attack). But as
the speed reduces the angle of attack increases to reach its maximum value at
corner speed, i.e., when the angle of attack and load factor both are at their
respective maximum values. We can see that even for this more dynamical case
the MPC controller works well and manages to limit the angle of attack more
effectively than the standard LQ controller.

Considering also the same maneuver in a low speed and low altitude case we
obtain the results in figure 8.4.

In the above cases the maneuvers are either very dynamical in the sense that
the maneuver ranges over a large range of speeds or they are initiated in
envelope points that are not tuning points of the controller. This means that
the prediction model is less accurate and the performance of the controller is
not optimized. If we instead look at the performance close to a design point
we can see that the performance of the MPC controller and LQ controller is
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Figure 8.3. The corresponding simulation as in Figure 8.2 but now starting at Mach
0.9 and altitude 6 km.

as expected very similar, see Figure 8.5. From this simulation we can see that
when the aircraft response is not affected by the constraints and the response
of the MPC controller is identical to that of the LQ controller. Hence our
tuning strategy of calculating equivalent MPC penalty matrices makes the closed
loop system behave just like the linear design in the unconstrained cases.

To obtain a real proof of concept for the performance of the proposed
controller we have implemented the MPC controller also in Saab’s main flight
mechanical simulator. This simulator is a realtime software simulator that uses
software models to simulate all aircraft sensors, actuators and computer systems.
The simulator has a real cockpit with control stick, throttle lever and rudder
pedals in a dome like projector environment.

The controller is executed on a Linux operating system and the maximum
execution time has been measured to approximately 5 ms using the qpOASES
solver. For a final implementation off-the-shelf software for solving the QP
should not be used but instead tailor made software for fast solution of MPC
problems such as, e.g., Wang and Boyd [2010] should be utilized. One could
also consider approaches such as those found in Gibbens and Medagoda [2011],
Richards et al. [2009], Zavala and Biegler [2009] or Hartley et al. [2012] to
improve the realtime implementation.

To evaluate the performance of the MPC controller a series of high angle of
attack maneuvers have been performed. One such maneuver is the so called
bleed off turn (BOT) which is a decelerating turn at maximum available angle
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Figure 8.4. The corresponding simulation as in Figure 8.2 but now starting at Mach
0.4 and altitude 1 km.

of attack. Figure 8.6 shows a BOT starting from Mach 0.6 at altitude 5 km.

Figure 8.7 shows another BOT maneuver now starting from Mach o.5 and at
an altitude of 1 km.

Both these figures verifies the MPC controllers ability to maintain the angle
of attack limit throughout the whole BOT maneuver. If we compare the
performance achieved in the simulator with the desktop simulations we can see
that it is very similar. There are no overshoot of the angle of attack limit
in any of the performed maneuvers. In the maneuvers in Figure 8.6 and 8.7
we can see on the control surface deflections that the MPC controller reacts
when the angle of attack is approaching the limit as two spikes in the control
surface deflections around 2.5 seconds.

Note that the plotted pilot angle of attack command is not the internal
command in the controller since this was not available to measure but an
offline reconstruction of the command from the control stick input.

Figure 8.8 shows the angle of attack response and control surface deflections
to a pitch input command. Also in this maneuver the MPC controller
exhibits very good performance and it limits the angle of attack very well. In
this maneuver we can discern small chattering in the control surface deflections.
This chatter comes from the MPC controller and it comes from the fact that in
the simulator implementation of the MPC controller we updated the prediction
model and penalty matrices only every tenth iteration of the controller. This
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Figure 8.5. The corresponding simulation as in Figure 8.2 but now starting at Mach
0.4 and altitude 3 km.

lead to a small jump in the control signal, which becomes larger the more
seldom the prediction model is updated. Vibrations of this kind is of course
not desirable and needs to be handled if one wants to implement a lower
update rate of the prediction model.
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Figure 8.6. A BOT starting at Mach 0.6 and altitude 5 km performed in the
simulator. Upper figure shows the angle of attack response (blue), pilot command
(green) and the angle of attack limit (red). Lower figure shows the canard (blue)
and elevon (green) control surface deflections.
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Figure 8.7. The corresponding maneuver as in Figure 8.6, now starting at Mach o.5
and altitude 1 km.
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Figure 8.8. A pitch up command from Mach o.3 and altitude 1 km. Upper figure
shows the angle of attack response (blue), pilot command (green) and the angle of
attack limit (red). Lower figure shows the canard (blue) and elevon (green) control
surface deflections.






Aircraft maneuver limiting using
command governors

In this final chapter we will take a slightly different approach to the concept
of maneuver limiting and envelope protection. As discussed in the introduction
there exist several different ways of handling constraints on the system and
model predictive control is only one of those. In this chapter we will instead
investigate a closely related method called reference governor, or command
governor, as a method for maneuver limiting in a realistic fighter aircraft
simulation environment. We will apply the command governor design to the
flight dynamical simulation environment, ARES, and we will augment the
ARES baseline LQ controller, as described in Section 3.4.1, with a command
governor to limit any angle of attack and load factor limit overshoots.

This chapter is based on the journal paper

Daniel Simon, Ola Hirkegird, and Johan Lofberg. Command Gov-
ernor Approach to Maneuver Limiting in Fighter Aircraft. Journal
of Guidance, Control, and Dynamics, 40(6):1514-1527, 2017b.

which also has been published as the conference paper

Daniel Simon, Ola Hirkegird, and Johan Lofberg. Angle of At-
tack and Load Factor Limiting in Fighter Aircraft using Command
Governors. In AIAA Guidance, Navigation, and Control Conference,
AIAA Scilech Forum, 2017a.

91 Introduction

Due to different uncertainties, model errors and disturbances on the real
aircraft, the true closed loop response is never the ideal response that we

147



148 9 Aircraft maneuver limiting using command governors

designed the controller for (see Section 3.4.1). Throughout the flight envelope
the actual closed loop response can have an overshoot of the design limits.
This overshoot is highly undesirable since it can over stress the aircraft or
put it into an unsafe state. Therefore we will add a command governor to
the pilot commanded A#n,,,,; which alters the command to a new reference
command that, as far as possible, will ensure that the design limits on the
angle of attack and normal load factor are not exceeded.

There can be several benefits from using reference and command governors
for the maneuver limiting task compared to using model predictive controllers.
First, the governors can be used as add-ons to existing legacy controllers so
there is no need to redo the complete design. Furthermore the nominal inner
loop controller can be tuned to achieve good performance in the nominal
case, e.g., use nonlinear feedbacks to linearize the closed loop system, and
the governor can focus on the maneuver limiting task. It also gives a good
modularity such that one can replace parts of the control system without
the need to redo all of the design. Last but not least from a flight safety
perspective it might be easier to certify optimization algorithms running in
an outer loop, which can be turned off in case of failures without affecting
stability.

While model predictive controllers have been extensively investigated for flight
control applications, see Chapter 8 and the references in it, very little re-
search has been performed on applying reference and command governors to
flight control design and maneuver limiting, see e.g., Famularo et al. [2008],
Kolmanovsky and Kahveci [2009], Martino [2008], Petersen et al. [2013], Ye
et al. [2015], Zinnecker et al. [2009]. Most of these papers consider simplified
conditions with simpler linear or nonlinear system and no complex, full scale,
nonlinear and time varying simulation environments.

In the papers by Petersen et al. [2013] and Zinnecker et al. [2009] the authors
apply reference governors to the control of hypersonic vehicles. In the paper
by Zinnecker the focus is mainly on input constraints. Kolmanovsky and
Kahveci [2009] uses a reference governor to handle control actuator limitations
of a UAV glider and compare this to an adaptive anti-windup scheme, and in
the paper by Martino [2008] the author investigates command governors for
handling amplitude and rate constraints on a small commercial aircraft. Ye
et al. [2015] investigate reference governors for maneuver limiting in high angle
of attack maneuvers. They investigate and compare static and dynamic reference
governors with a reference governor structure based on a step response model
of the closed loop system. The different reference governors are evaluated on a
linear aircraft model and the conclusion is that the dynamic reference governor
performs much better than the static reference governor but it has a complex
maximal output admissible set. The governor structure with a step response
model has comparable performance with the dynamic reference governor but
the complex admissible set is replaced with a finite horizon approximation
which is much simpler to implement. Famularo et al. [2008] thoroughly
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investigate a robust command governor approach for constrained control of
aircraft. They apply the robust command governor to one fighter aircraft and
one small commercial aircraft with both input and output constraints. The
results are promising but the simulations are only done in one envelope point
and thus lack the added complexity of changing dynamics over the envelope.

The drawback with robust command governor designs is that there must be a
margin to the constraint at all times to account for disturbances. In our case,
when we want to use the command governor to achieve maneuver limiting,
this is not an acceptable solution. Instead we need to consider soft constraints,
achieved using slack variables. An example of a command governor structure
utilizing soft constraints via slack variables are given in Kalabic et al. [2013].
Here the authors utilize the slack variables and their penalties to prioritize
between various important constraints.

An interesting approach to command governor structure is proposed in Li
et al. [2014]. The authors consider only second-order systems with input time
delays and show that for these systems it is sufficient to consider only four
distinct time points per output in the prediction horizon to guarantee constraint
satisfaction. This reduces the computational complexity of the online solution
of the resulting quadratic program, however it requires that the reference is
kept constant over the prediction horizon.

In this chapter we extend the previous research and go beyond what has been
done before. We implement and analyze command governors for maneuver
limiting in ARES (see section 3.4), the most complex aircraft models available
at Saab Aeronautics, surpassed only by real flight testing. Due to the changing
dynamics of the aircraft over the flight envelope, we can not use the classical
structure of the command governor. Instead we have to adopt command
governor structure much like the reference governor based on a step response
model in Ye et al. [2015].

We will start by giving a brief introduction to reference and command
governors in Section 9.2 and then in Section 9.3 we discuss the different
architectural design choices we have investigated. The final design and some
examples from the simulations are presented and discussed in Section 9.4.

9.2 Reference and command governors

A command governor, or reference governor, is a device that takes the reference
input and alters it based on the current estimate of the system state, £(¢), such
that the output from the system remains within certain limits. The general
structure of the closed loop system, from Figure 3.4, and command governor
is shown in Figure 9.1.

The simplest form of a reference governor is the static reference gover-
nor Gilbert et al. [1994], Gilbert and Tan [1991], Gilbert et al. [1995] which
optimizes a scalar gain, y, such that when 7(k) = yr(k) is applied to the
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Figure 9.1. The reference governor general structure.

system the output constraints, y(k) € ), are satisfied. This is done by solving
the optimization problem Gilbert et al. [1995]

max%gr}%ze y subj.to Ax(k) + Byr(k) € Ow, Cx(k)+Dyr(k)edy  (9.1)
velo,

where O is the maximal output admissible set Kolmanovsky and Gilbert
[1998] and where x(k) = %(¢).The maximal output admissible set for a system
x(k + 1) = Ax(k) + Bw(k), y(k) = Cx(k) + Dw(k) is formally defined as

O ={x(k) eR" |yk+i)eY Yw(k+i)eWieZ} (9.2)
This can easily be generalized to a definition where the combination of x(k)

and a constant reference, 7, is such that y(k) € Y for all future time steps.

Since the static reference governor can suffer from oscillations a dynamic
reference governor was developed Gilbert et al. [1995] in which the reference
was parameterized as

7k + 1) =7k) +y(rk) - 7(k) (9:3)

and the optimization maximizes y € [0,1] such that the successor state is in
the admissible set.

The dynamic reference governor is closely related to the more flexible command
governor Bemporad et al. [1997] where the reference 7 instead is parameterized
as

7k +i)=7uk) + v(k) (9-4)

where y is a fixed constant y € [0,1) and the optimization variables are u(z)
and v(z). The optimization problem is now formulated as

(1", v*) = argmin ||,u||2Q + v - 7(k)||§g + Z lly(k + 1) — v||%;,
Y i=0
subj.to y(k+i)eYVieZ*

where p € R? and v shall be selected from the set of constant signals such that
the output in equilibrium is y € Y.

A generalization of the command governor is the extended command gover-
nor Gilbert and Ong [2011], Kalabic et al. [2011] in which the decaying se-
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quence y'u(k) in the parameterization of 7(k) is replaced by a fictitious system
output, Cx(k), where the fictitious state evolve according to x(k + 1) = Ax(k).
The matrix A should be stable but otherwise the matrices A and C can
be chosen arbitrarily and it is easy to see that with a certain choice of A
and C we recover the original command governor formulation. Gilbert and
Ong Gilbert and Ong [2011] propose a shift sequence for the fictitious system,

1e.,

07 0 ..
001 O
A= 0 - . C=[1 00 ..]
0 I
0 0

while Kalabic et al. Kalabic et al. [2011] propose to use Laguerre sequences.

These basic principles discussed above have been extended to cover, e.g.,
nonlinear systems, robust reference governors and other types of structures.
An excellent survey of the different types of reference and command governors
is given in the paper by Kolmanovsky et al. [2014].

9.3 Command governor design

Let us start by discussing the different architectural choices that we have to
make in order to find a suitable command governor design for the maneuver
limiting application.

9.3.1 N-step prediction approach

The use of an output admissible set, O, in our implementation of the
command governor is not suitable since the dynamics of the aircraft varies over
the altitude and speed envelope. The output admissible set, which is calculated
based on the dynamics has to be either calculated offline in advance based on a
set of design points and then switched between online, or recalculated in every
iteration of the command governor. The approach with online recalculation is
to complex since it would require to much computational power in the iterative
procedure of determining the polytopic shape of the set. In fact, as discussed
earlier, the number of inequalities describing the polytopic set might not even
be finitely determined [Kolmanovsky and Gilbert, 1998]. The first approach
would not require the extensive online calculations but instead the sets must be
robust output admissible with respect to the model errors that come from the
changing dynamics in between the design points and this defeats the purpose
of our implementation. Furthermore no theoretical stability guarantees can be
made when changing, or recalculating, the admissible set second order between
two iterations of the controller.
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An alternative approach is similar to the one in reference Ye et al. [2015].
Simply constrain the N-step forward predictions of the model output, i.e.,

Z—s(k+i)§y(/€+i)§3’1+a(/e+i), Yi=1...,N (9.5)

where y and § are the upper and lower limits for the output and e(k + ) >0

is a slack variable added to soften the constraints. This of course does not give
any guarantees that the constraints can be fulfilled for all future time steps,
but it serves our purpose since we want to use it as a soft maneuver limit.
The approach discussed in Li et al. [2014] would also be an alternative that is
more theoretically motivated but, as discussed later in this section, it requires
a constant input reference which we decided not to adopt.

9.3.2 Selection of discretization technique

The use of the N-step prediction as constraints requires that the prediction
model is explicitly implemented in the command governor. A very simple
choice is to use a discrete time implementation of the desired closed loop
response of the aircraft with the nominal controller.

Gon(s) “%
m(s) = —m—
2 2
57+ 2{wos + wy
From the nominal controller we obtain, in each sample time, the current
desired damping, ¢, and frequency, wo. The discretization can be done
in several different ways, e.g., using Euler forward, s = Ti(q — 1), Tustin’s
s

approximation, s = %EZ:;, or zero-order-hold. Euler forward gives very simple

analytical expressions for how the coeflicients, 4, b and ¢ in the discrete time
step response model, y(k + 1) = ay(k) + by(k — 1) + cu(k — 1), depend on the
current damping and frequency, which are frequently updated.

a=201-Twy), b=2lwiTs-1 —szSZ, c= wOTZ

However the Euler discretization requires a sufficiently high samphng rate to
be accurate enough, see Figure 9.2. A high sampling rate requires a large
number of prediction steps, N, to achieve a sufficiently long prediction time.

The objective of having a long prediction time is that we want the command
governor to react earlier when a constraint violation is predicted.

If we instead use Tustin’s approximation or zero-order-hold discretization we
can implement a lower sampling rate in the prediction model and thus reduce
the number of prediction steps required to achieve the same prediction time.
Although the zero-order-hold is the most accurate approximation, it is exact in
the sampling instants, it doesn’t have the simple analytical expressions for the
dependence of damping and frequency in the model coeflicients.

Implementing both the Euler forward discretization and Tustin’s approximation
reveals that the longer prediction time that can be achieved with Tustin (with
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Figure 9.2. The step response for a second order continuous time system (blue line)
with ¢ = 0.6 and wp = 2.3 together with the corresponding discrete time system
using Euler forward discretization with sampling time 7; = 0.01 s (green line) and
T; =0.1 s (red line).

the same number of prediction steps as with Euler forward) does not give any
improvement in the performance of the command governor compared to the
Euler approximation, see Figure 9.3. In this figure we can see that the load
factor responses are almost identical for the two discretization methods. The
reason for this is probably that the desired closed loop response model, G,,(q),
that we use as prediction model, does not accurately enough model the true
closed loop system to benefit from the longer prediction time that we obtain
with Tustin’s approximation.

9.3.3 Model error correction term

An attempt to solve the above problem can be to add a model correction term,

a?, to the prediction model

Ym (k) = G ()7 (k) + d(k)

and then estimate the correction term online. A simple way to do this has
been suggested in literature to handle nonlinear systems Kolmanovsky et al.
[2014]. This technique uses the output from the linear prediction model of
the system

ylinear(k) =Gy, (Q)f(k)

and compare that to the true closed loop system output, y(k), to estimate a
constant model correction term

Ak + i) = y(k) = Yiinear (k) Vi=0,...,N

and then add this to the prediction model output.
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Figure 9.3. Load factor response for the command governor with Euler discretization
of the response model (solid blue line) and with the Tustin discretization (dashed
blue line). Green line is pilot commanded load factor and the red dashed line is
the load factor limit.

However when implementing this model error estimation in the simulation
environment only very little performance is gained, see Figure 9.4.

For our transfer function model the correction factor, a?, adds a constant offset
correction to the predictions and does not capture dynamical model errors
such as e.g., errors in the damping. Since the nominal closed loop system
has integral action the steady state error is minimal and the true model error
probably comes from dynamical properties.

9.3.4 Selection of objective function and parameterization of the
reference

As discussed in the beginning of this section, there exist several different
possibilities to parameterize the command governor output 7(k) and to formu-
late the objective function. An intuitive and straight forward formulation of
the objective function is to simply penalize the difference between the pilot
commanded reference, r(k), and the applied reference, 7(k), as

N
DGk + i) = r (k) (9-6)
1=0

This objective function can be used with both static and dynamic reference
governor formulations. However for our purposes the standard formulation of
the dynamic reference governor (9.3) is not suitable since it requires that the
governor be robustly designed with respect to constraint violations. If, e.g., a
disturbance enters the system at time k the parameterization of 7 does not
allow it to be reduced from the value at time k, since y > 0, and hence
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Figure 9.4. Load factor response for the command governor with model error
estimator (dashed blue line) and without the model error estimator (solid blue
line). Green line is pilot commanded load factor and the red dashed line is the
load factor limit.

cannot counteract the disturbance. In our application of maneuver limiting we
want the reference governor to allow the output y(k) to reach the limit, but
as far as possible not overshoot it. Therefore do we want to allow the applied
reference 7 to be reduced if disturbances or model errors predict an overshoot.

If we instead choose to use a static reference governor, then 7(k) € J with
7(k+1)=7(k)VYi=1...,N. This is a very attractive choice since the
optimization problem then only has one free variable to optimize over and it
becomes almost trivial to solve. However the static reference governor might
suffer from oscillations in the closed loop response Gilbert et al. [1995]. Even
though our simulations do not indicate that oscillations could arise this study
is not enough to make conclusive statements about that.

An alternative is to let 7(k + i) be a sequence of free optimization variables
in an MPC like fashion. This gives the algorithm maximum flexibility in
the choice of future applied reference inputs but with the cost of increasing
the dimension of the optimization variable from 1 to N. The simulations of
the command governor do not indicate a large enough performance gain to
motivate such an increase in complex1ty In fact for some simulations there is
no performance increase by using a sequence of reference signals in comparison
to using a constant reference, see Figure 9.5.

A flexible but yet simple alternative is also the command governor Bemporad
et al. [1997] or the extended command governor Gilbert and Ong [2011]
parameterization of 7. The command governor gives the algorithm good
flexibility but with limited complexity increase. For the command governor
approach with 7(k + i) = y'u(k) + v(k) we can adopt a similar formulation of



156 9 Aircraft maneuver limiting using command governors

0 | | | | | | | | |

0 2 4 6 8 10 12 14 16 18
Time [s]

Figure 9.5. A comparison between a command governor with a constant reference
signal and one with a sequence of reference signals in the prediction model. Blue
dashed line is the command governor with a reference sequence and the solid
blue line is the command governor with a constant reference over the prediction
horizon. Green line is pilot commanded load factor and the red dashed line is the
load factor limit.

the objective as in Bemporad Bemporad et al. [1997] and formulate it such as
minimize Biu(k)? + Ba(v (k) — 7 (k))? (9.7)

where the first term can be viewed as a penalty on the changes in the sequence
of 7 and the second term is penalty on the stationary deviation from desired
reference.

Finally the objective function must also include some penalty on the slack
variables, s(k + i), used to soften the constraints (9.5). The most common
choices are to use a quadratic or a linear penalty. The linear penalty has the
advantage that if it is high enough it will force the slack to be zero if there
exist such a feasible solution and only non-zero otherwise. On the other hand
with a linear penalty the control signal has a tendency to have more abrupt
changes while it is fairly smooth with quadratic penalty on the slack.

9.4 Simulation results

In this section we will discuss the achieved simulation results when implement-
ing an outer loop command governor in the ARES simulation environment at
Saab Aeronautics for maneuver limiting. The implemented command governor
is formulated as the minimization problem

N
minimize Biu(k)? + Ba(v(k) —Anz,cmd(/@))z + Z(ea(/@ +i) + e, (k+ 1)) (9.8)

MHV.EqEny -
=1
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subject to the following constraints

atk +1) = Gu(q)acpna(k + 1) (9.92)
nz(k +1) = G (@), cmalk + 1) (9-9b)
ema(k + 1) = Kajn, (/' (k) + v(R)) + @rim (9.9¢)
Arcmd(k +1) = (' (k) + v(k)) + cos @ (9.9d)
Umin — €alb +1) <alk +1) + (2(1 < Upax + ok + 1) (9.9¢)
Nymin — €n, (B + 1) <n,(k +1) + ailz < Nymax + En, (B + 1) (9.9f)
galk +1) 20 (9:98)
&, (k+1)>0 (9.9h)
where the constraints are for =1, ..., N.

We have used the Euler forward discretization for the response model, G, (q),
which gives the following relation between the time steps of the predicted
outputs

ak +1)=aak) + ba(k - 1) + ca,,, (k- 1)

with @ = 2(1-T;{wo), b = 2{woT;—1-wiT?, and ¢ = w3T?, and similar for the
load factor model. To simplify the implementation we select the same sampling
time for the command governor as for the nominal controller, 7, = 1/60 s.
The input to the command governor is the measured angle of attack and load
factor at the current time step and the previous time step as well as the
current delta load factor command.

The selection of prediction horizon is a tradeoff between performance of the
command governor and size of optimization problem to be solved. The rise
time for the step response of the nominal controller, in well tuned design
points, is approximately 2 seconds and it would be reasonable to include at
least half of that, i.e., N =50 samples, in the prediction horizon. However,
from simulations we experienced no noticeable increase in performance of the
command governor for prediction horizons above approximately 40 samples
and hence that was chosen as prediction horizon.

Several different objective function penalties were tested. The B-penalties were
changed with a factor of ten from small penalties up to penalties larger than
the slack penalty. In general we also wanted a larger penalty on the deviation
from the pilots reference input, ie., B2, than on the transient behavior of
the reference, i.e., Bi. In Figure 9.6 the load factor step response of the
closed loop system is shown for several different B-tunings. From this we
can conclude that too small penalties will cause a very bad response. This is
due to the shortcomings in the prediction model combined with an excessive
penalty on the constraint violations. If the penalties are selected larger than
one, ie., larger than the slack penalty, the command governor will not have
any measurable effect on the closed loop system. The ideal penalties from the
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Figure 9.6. The normal load factor response of the closed loop system for different
penalty combinations in the command governor objective function. The solid blue
line is the penalties B; = 0.01, B, = 0.1. The dashed and dash-dotted lines are
B1 =0.001, By =0.01 and By =0.01, B = 0.001 respectively and the dotted line
are the tuning with By =10, B, = 100.

simulations have been selected as
B1 =001, B,=0.1

The formulation (9.8) and (9.9) is a standard quadratic program and it has been
implemented using the QP solver qpOASES Ferreau et al. [2014]. Extensive
research has been performed to develop fast, real-time solvers for quadratic
programs Jerez et al. [2014], Jones et al. [2012], Richter et al. [2012] enabling
real-time implementation in aircraft computer systems. Additionally if we take
a closer look at the problem (9.8) and (9.9) we can see that it in fact only
has the two free variables, x4 and v, to optimize. These two implicitly give all
other variables. This mean that we can perform a simple bisection search in
the two variables to solve the problem in micro seconds or solve the problem
parametrically off-line and make an explicit implementation of the command
governor.

To illustrate the achieved performance of the command governor implementa-
tion in ARES we have made a series of bleed off turns at different Mach and
altitude points. If the maneuver is initiated at speeds above corner speed then
the load factor limit will be the most limiting constraint and as the speed
reduces the angle of attack limit will become the active constraint.

In Figure 9.7 we have plotted the angle of attack and load factor responses
from a bleed off turn initiated at Mach o.75 and altitude 1000 m.

The upper figure shows the load factor response and the load factor command
with and without the command governor. The lower figure shows the angle
of attack response and the angle of attack commands. The green lines are
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Figure 9.7. An ARES simulation of a bleed off turn from Mach o.75 and altitude
1000 m. Green lines are commanded angle of attack and load factor, blue lines are
the aircraft response and the red lines are the corresponding limits. Dashed lines
are response without command governor and solid lines are the response with the
command governor.

the commanded angle of attack and load factor, the blue lines are the actual
aircraft response and the red dashed lines are the load factor and angle of attack
limits. The dashed lines are the command and response without the command
governor and the solid lines are the responses with the command governor.
In this simulation the command governor achieves a distinct reduction in the
maneuver limit overshoot, from about 0.6 g to 0.1 g overshoot in load factor
and 1.2 degrees to o.2 degrees in angle of attack.

We can also see that at the beginning of the maneuver the command governor
does not interfere with the pilots command, but as soon as the command
governor predicts an overshoot of the maneuver limit it modifies the com-
manded load factor change, An,,,;, which is used to calculate the commands,
Nyemd and @g,g. By more closely examining the figures one can see that
the command governor reacts fairly late, approximately 0.1 second before the
overshoot, compared to the prediction horizon, which is 0.67 second long. We
have tried several different ways to have the command governor react earlier
but without success. Our conclusion is, as discussed in the previous section,
that this is a result of imperfect model knowledge of the closed loop system.

One other drawback is that when the angle of attack is at the limit value,
1.e., from 11 seconds and onwards, there are small oscillations in the calculated
command. Since this is not present at other envelope points such as in



160 9 Aircraft maneuver limiting using command governors

Figure 9.8 and 9.9, this is most likely an affect of improper tuning.

At lower speeds, when the nominal maneuver limit overshoot is even bigger,
the short reaction time of the command governor result in quite aggressive
reference adjustment, see Figure 9.8. This aggressive adjustment causes a small
oscillation in the angle of attack response. This is most likely a result of
the tuning of the command governor, which is constant throughout the flight
envelope. In a final implementation it is suggested to schedule the objective
function penalties, B;, as a function of speed and altitude, just as is done in
the design of the nominal controller.
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Figure 9.8. An ARES simulation of a bleed off turn from Mach o.4 and altitude
1000 m. Green lines are commanded angle of attack and load factor, blue lines are
the aircraft response and the red lines are the corresponding limits. Dashed lines
are response without command governor and solid lines are the response with the
command governor.

It should be noted here that the two illustrated maneuvers in figures 9.7 and
9.8 are initiated at speeds and altitude points that are not design points of the
nominal controller. This means that the true closed loop response might not
be as close to the desired closed loop response as it is if the maneuvers were
initiated closer to the design points. Also the speed retardation throughout
the maneuver will affect the model error. This means that the angle of attack
and load factor limit overshoot will be bigger here and at the same time
the command governor will have more difhiculties predicting it, ie., we are
studying the hard cases here.

If we instead investigate the response starting from on of the envelope points
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where the nominal controller has been tuned we can see that the command
governor makes only minimal adjustments to the reference command and there
is in principle no difference between the responses, see Figure 9.9. In this
case the dynamics probably does not change that much during the transient of
the step response and hence the closed loop dynamics are more similar to the
desired dynamics.
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Figure 9.9. An ARES simulation of a bleed off turn from Mach 0.6 and altitude
6000 m. Green lines are commanded angle of attack and load factor, blue lines are
the aircraft response and the red lines are the corresponding limits. Dashed lines
are response without command governor and solid lines are the response with the
command governor.

In conclusion we can say that the feature that the command governor can
be used as add-on functionality to existing control system architecture makes
it an attractive choice for future industrial applications. However, in spite of
the attractive add-on feature of the command governor, the simple structure
and tuning that are presented in literature is not as straightforward in a real
application. In fact if we compare the design and tuning of the command
governor to the MPC controller developed in Chapter 8 it is the authors
opinion that the MPC controller in fact is easier to tune.

The implemented command governor gives a significant reduction in the angle
of attack and load factor limit overshoot in most cases. It improves the
design in envelope points where the nominal controller due to model errors
or tuning does not sat1sfy the output constraints. However in these areas the
used prediction model is not as accurate as desired. Methods to overcome
the model errors in the prediction model showed to be insufficient. A more
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advanced scheme for estimating the model error that has a better potential
of capturing the relevant dynamics should be developed before putting the
command governor into production use.



Conclusions and future work

The overall objective of this thesis has been to investigate Model Predictive
Control and its applicability to the aeronautical industry and especially to the
task of achieving carefree maneuvering in fighter aircraft. We have investigated
both theoretical aspects as guaranteed stability for reference tracking in linear
MPC and for nonlinear MPC and practical aspects as controller structure and
tuning.

In Chapter 5 we studied the topic of reference tracking. Although reference
tracking is a relatively mature topic in MPC, very little has been published
regarding stability properties when the terminal constraint set depends on the
current reference, especially stability when the reference approaches the border
of the feasible set. The successful research that has been performed within this
area is based on lifting the problem of calculating the terminal constraint set
into a higher dimension in which the terminal constraint set is constant for
an arbitrary reference. The main drawback with these algorithms is increased
complexity of the resulting optimization problem.

In this thesis we instead made a simple extension to the standard dual mode
MPC algorithm to allow for tracking arbitrary setpoints that approaches the
boundary of the feasible set. This allows for, e.g., maneuver load limiting in
fighter aircraft design. We proved that by translating and scaling the terminal
state constraint set with a positive scalar A such that it is a subset of the
feasible set for arbitrary references, both stability and recursive feasibility can
be guaranteed. The performance and robustness of the proposed algorithm
is comparable to the existing methods while the complexity of the proposed
controller can be significantly reduced. The complexity reduction partly comes
from the fact that we utilize duality theory to rewrite a complex set of
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constraints into a much simpler form and partly from the fact that the
terminal constraint set is in a lower dimension.

In Chapter 6 we addressed the problem of nonlinear aircraft dynamics while
trying to avoid complicated nonconvex optimization. We developed a new
method of model predictive control for nonlinear systems based on feedback
linearization and local convex approximations of the control constraints. We
have shown that the proposed method can guarantee recursive feasibility and
convergence to the origin. An example from the aircraft industry shows that
good performance can be attained and that the loss of optimality can be small
with reasonably simple computational efforts.

The methods described in Chapter 5 and 6 both utilize the standard approach to
prove recursive feasibility and stability as described in Chapter 4.2.1. However
there are many MPC formulations where this standard approach does not work.
In Chapter 7 we stated a problem formulation giving a suflicient condition
for stability and developed an algorithm for testing stability for linear MPC
formulations.  The approach is based on formulating an indefinite bilevel
programming problem in which the MPC optimization problem is a constraint.
We then use the KKT conditions of the MPC optimization problem and big-M
reformulation to rewrite the indefinite bilevel problem into a mixed integer
linear program. The main benefits of this approach is that we can verify
stability of MPC formulations for which the standard approach of proving
stability fails and doing so at a reasonable computational time. It is also
fairly straightforward to extend the stability test to also test for robust stability,
which we also showed in Section 7.3 for additive set bounded disturbances.

The main drawback of the approach is that it relies on the big-M formulation
and it can be difficult to correctly select the big M parameters. If they are
selected poorly the method will not perform well and can even fail.

The second part of the thesis is devoted to more application-oriented work.
Here we have implemented an MPC controller and a command governor in
the main flight mechanical simulation environment (ARES) at Saab Aeronautics.

In Chapter 8 we implemented a basic gain scheduled linear MPC controller
and investigated the performance that can be achieved for an advanced fighter
aircraft. The objective was to implement maneuver limitation of the angle
of attack for a fighter aircraft using an MPC controller and to investigate a
suitable structure and tuning methodology.

The proposed MPC controller used a lower internal prediction time step
than the actual online closed loop update frequency. This can be viewed
as an engineering approach to move blocking. We have used Saab’s tuning
methodology for LQ controllers and applied that for the tuning of the MPC
controller. In order to achieve the same linear performance of the MPC
controller and the LQ tuning when the MPC controller has a different internal
prediction frequency we needed to recalculate equivalent penalty matrices for
the MPC problem from the LQ penalty matrices and showed that this can be



done using convex optimization.

The achieved performance of the MPC controller is very good, we recover
the performance of the LQ design when no constraints are active and the
MPC controller manages to limit the maximum angle of attack within specified
maneuver limits. The realtime simulations in Saab’s flight mechanical simulator
show promising results for future development of MPC controllers for advanced
fighter aircraft.

Since much of the flight control design methodology works in an iterative
manner we also wanted to investigate the possibility of an add-on feature for
the maneuver limiting task. For this purpose we investigated in Chapter 9
command governors as an alternative for maneuver limiting. We implemented
an MPC inspired command governor in the ARES simulation environment and
investigated different structures and tuning aspects. Although the command
governor is a simpler form of controller and appears to be simpler to tune
than an MPC controller it is our conclusion that this was not the case, in fact
adopting the LQ tuning methodology for the MPC controller makes that much
simpler to tune and the performance of the MPC controller is superior to the
command governor. The main difficulties for the command governor was to
accurately enough predict the response of the aircraft to have a comparable
performance to the more advanced MPC structures.

There are still numerous of things that are open topics for research that are
important for the use of MPC in aeronautical applications. These concerns
areas such as robustness to model errors, stability of gain scheduled MPC
controllers and realtime implementations.

One research direction that we find interesting is to continue on the stability
test outlined in Chapter 7. Interesting topics to investigate are, e.g., adapting
the test for robustness against parametric model errors and testing for stability
of gain scheduled MPC controllers. Also if one can reduce the sensitiveness
of the approach to the selection of big-M parameters this would be a big step
forward. It can also be interesting to look at runtime assurance algorithms for
MPC controllers as a complement to the stability test.

In this thesis we have used off-the-shelf QP solvers for the implementation of
the MPC controllers. We therefore think it is important to investigate imple-
mentation aspects such as custom-made QP solvers and realtime requirements.
For example, how will performance and stability be affected if the solver is
forced to terminate before the optimum is found?

Looking at the combined control of the pitch and lateral dynamics and the
interconnection between them is also an interesting future research topic. How
should the structure of the controller be and how should it be tuned to
achieve the desired characteristics? Also, investigating further how to adapt and
combine the MPC controller methodology with industry know-how and design
features as described in Section 3.3.
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