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Abstract

In this thesis we study device-independent quantum key distribution based on
energy-time entanglement. This is a method for cryptography that promises
not only perfect secrecy, but also to be a practical method for quantum key dis-
tribution thanks to the reduced complexity when compared to other quantum
key distribution protocols. However, there still exist a number of loopholes that
must be understood and eliminated in order to rule out eavesdroppers. We
study several relevant loopholes and show how they can be used to break the se-
curity of energy-time entangled systems. Attack strategies are reviewed as well
as their countermeasures, and we show how full security can be re-established.

Quantum key distribution is in part based on the profound no-cloning
theorem, which prevents physical states to be copied at a microscopic level.
This important property of quantummechanics can be seen as Nature’s own
copy-protection, and can also be used to create a currency based on quantum
mechanics, i.e., quantum money. Here, the traditional copy-protection mech-
anisms of traditional coins and banknotes can be abandoned in favor of the
laws of quantum physics. Previously, quantum money assumes a traditional
hierarchy where a central, trusted bank controls the economy. We show how
quantum money together with a blockchain allows for Quantum Bitcoin, a
novel hybrid currency that promises fast transactions, extensive scalability, and
full anonymity.
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Abstract

In this thesis we study device-independent quantum key distri-
bution based on energy-time entanglement. This is a method for
cryptography that promises not only perfect secrecy, but also to
be a practical method for quantum key distribution thanks to the
reduced complexity when compared to other quantum key distri-
bution protocols. However, there still exist a number of loopholes
that must be understood and eliminated in order to rule out eaves-
droppers. We study several relevant loopholes and show how they
can be used to break the security of energy-time entangled systems.
Attack strategies are reviewed as well as their countermeasures,
and we show how full security can be re-established.

Quantum key distribution is in part based on the profound
no-cloning theorem, which prevents physical states to be copied
at a microscopic level. This important property of quantum me-
chanics can be seen as Nature’s own copy-protection, and can also
be used to create a currency based on quantum mechanics, i.e.,
quantum money. Here, the traditional copy-protection mecha-
nisms of traditional coins and banknotes can be abandoned in
favor of the laws of quantum physics. Previously, quantum money
assumes a traditional hierarchy where a central, trusted bank
controls the economy. We show how quantum money together
with a blockchain allows for Quantum Bitcoin, a novel hybrid
currency that promises fast transactions, extensive scalability, and
full anonymity.
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Populärvetenskaplig
sammanfattning

En viktig konsekvens av kvantmekaniken är att okända kvanttill-
stånd inte kan klonas. Denna insikt har gett upphov till kvant-
kryptering, en metod för två parter att med perfekt säkerhet kom-
municera hemligheter. Ett komplett bevis för denna säkerhet har
dock låtit vänta på sig eftersom en attackerare i hemlighet kan
manipulera utrustningen så att den läcker information. Som ett
svar på detta utvecklades apparatsoberoende kvantkryptering som
i teorin är immun mot sådana attacker.

Apparatsoberoende kvantkryptering har en mycket högre grad
av säkerhet än vanlig kvantkryptering, men det finns fortfarande
ett par luckor som en attackerare kan utnyttja. Dessa kryphål
har tidigare inte tagits på allvar, men denna avhandling visar hur
även små svagheter i säkerhetsmodellen läcker information till en
attackerare. Vi demonstrerar en praktisk attack där attackeraren
aldrig upptäcks trots att denne helt kontrollerar systemet. Vi visar
också hur kryphålen kan förhindras med starkare säkerhetsbevis.

En annan tillämpning av kvantmekanikens förbud mot klo-
ning är pengar somanvänder detta naturens egna kopieringsskydd.
Dessa kvantpengar har helt andra egenskaper än vanliga mynt,
sedlar eller digitala banköverföringar. Vi visar hurman kan kombi-
nera kvantpengar med en blockkedja, ochman får dåman en slags
“kvant-Bitcoin”. Detta nya betalningsmedel har fördelar över alla
andra betalsystem, men nackdelen är att det krävs en kvantdator.
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Franson interferometer.

𝜆 Hidden variable.

Λ Sample space of hidden variables.

Λ𝑋 Subset of a set Λ, on which the random variable 𝑋 is defined.

𝜔𝐸 Phase shift between the first and second pulse in the Franson
interferometer attack.

𝜔𝐿 Phase shift between the second and third and second pulse in
the Franson interferometer attack.

𝜙𝐴 Measurement angle at Alice’s analysis station.

𝜙𝐵 Measurement angle at Bob’s analysis station.

𝑇𝐴 Detection time at Alice’s analysis station.

𝑇𝐵 Detection time at Bob’s analysis station.

𝜏0 Lifetime of the middle level in a three-level system.

𝜏 Length of the classical pulses of light used in the attack on the
Franson interferometer.

𝑉𝑁 Interferometric (fringe) visibility.
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𝑉critical The minimum interferometric visibility at which 𝑆𝑄𝑀(2),
the Bell value predicted by quantummechanics, coincides
with the local realist Bell bound 𝑆(2).

𝑉critical,𝑁 The minimum interferometric visibility at which
𝑆𝑄𝑀(𝑁), the chained Bell value predicted by quantumme-
chanics, coincides with the local realist Pearle-Braunstein-
Caves (PBC) bound 𝑆(𝑁).

𝑉critical,𝑁,𝐹 The minimum interferometric visibility at which
𝑆𝑄𝑀(𝑁), the chained Bell value predicted by quantumme-
chanics, coincides with the local realist Pearle-Braunstein-
Caves (PBC) bound 𝑆(𝑁) for the Franson interferometer
when using fast switching.

Bell’s Theorem

𝑆(2) Bell value.

𝑆(2)max Trivial, algebraic limit of the Bell value.

𝑆𝑄𝑀(2) Quantum prediction for the Bell value.

𝑆𝐶(2) Bell value, taking only coincident events into account.

𝑁 Number of settings per observer in a bipartite Pearle-
Braunstein-Caves (PBC) experiment.

𝑆(𝑁) Chained Bell value.

𝑆(𝑁)max Trivial, algebraic limit on the chained Bell value.

𝑆𝑄𝑀(𝑁) Quantum prediction for the chained Bell value.

𝑆𝐶(𝑁) Chained Bell value, taking only coincident events into ac-
count.

𝑆𝐵(𝑁) Any local realist bound.

𝑆𝑀(𝑁) Experimentally measured chained Bell value.
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𝑆𝑀(2) Experimentally measured Bell value.

Detection Efficiency

𝜂 Overall detection efficiency in a bipartite Bell experiment.

𝜂𝑁 Overall detection efficiency in a bipartite Pearle-Braunstein-
Caves (PBC) experiment.

𝜂𝐴 The detection efficiency of Alice’s analysis station.

𝜂𝐵 The detection efficiency of Bob’s analysis station.

𝜂critical The minimum detection efficiency at which 𝑆𝑄𝑀(2), the
Bell value predicted by quantum mechanics, coincides with
the local realist detection efficiency Bell bound 𝑆(2).

𝜂critical,N The minimum detection efficiency at which 𝑆𝑄𝑀(𝑁), the
chained Bell value with𝑁 settings per observer predicted by
quantum mechanics, coincides with the local realist detec-
tion efficiency Pearle-Braunstein-Caves (PBC) bound 𝑆(𝑁).

𝜂critical,N,F The minimum detection efficiency at which 𝑆𝑄𝑀(𝑁),
the chained Bell value with𝑁 settings per observer predicted
by quantummechanics, coincides with 𝑆(𝑁), the local realist
detection efficiency Pearle-Braunstein-Caves (PBC) bound
in the Franson interferometer when using fast switching.

𝜂trivial The minimum detection efficiency at which 𝑆(2)max, the
trivial Bell value, coincides with the local realist detection
efficiency Bell bound 𝑆(2).

𝜂trivial,N The minimum detection efficiency at which 𝑆(𝑁)max, the
trivial chained Bell value with 𝑁 settings per observer co-
incides with the local realist detection efficiency Pearle-
Braunstein-Caves (PBC) bound 𝑆(𝑁).

xxxvi



𝜂trivial,N,F Theminimum detection efficiency at which 𝑆𝑄𝑀(𝑁), the
trivial chained Bell value with 𝑁 settings per observer, coin-
cides with 𝑆(𝑁), the local realist detection efficiency Pearle-
Braunstein-Caves (PBC) bound in the Franson interfero-
meter when using fast switching.

Coincidence Probability

𝛾 The probability of coincidence in a bipartite Bell experiment.

𝛾𝑁 The probability of coincidence in a bipartite Pearle-Braunstein-
Caves (PBC) experiment.

𝛾critical The minimum coincidence probability at which 𝑆𝑄𝑀(2),
the Bell value predicted by quantummechanics, coincides
with the local realist coincidence-time Bell bound 𝑆(2).

𝛾critical,𝑁 The minimum coincidence probability at which 𝑆𝑄𝑀(𝑁),
the quantum-mechanical prediction of the chained Bell
value with 𝑁 settings per observer, coincides with the lo-
cal realist coincidence-time Pearle-Braunstein-Caves (PBC)
bound 𝑆(𝑁).

𝛾trivial Theminimum coincidence probability at which 𝑆(2)max, the
trivial Bell value, coincides with the local realist coincidence-
time bound 𝑆(2).

𝛾trivial,𝑁 The minimum coincidence probability at which 𝑆(𝑁)max

the trivial chained Bell value with 𝑁 settings per observer,
coincides with the local realist coincidence-time Pearle-
Braunstein-Caves (PBC) bound 𝑆(𝑁).

Quantum Bitcoin

|| Concatenation of strings.

𝐻 Hash function.
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ℒ Distributed ledger scheme.

ℳ Quantum money mini-scheme.

|$⟩ Quantum money state.

𝑠 Classical serial number.
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There is a remarkably close parallel between the prob-
lems of the physicist and those of the cryptographer.
The system on which a message is enciphered corre-
sponds to the laws of the universe, the intercepted
messages to the evidence available, the keys for a day
or a message to important constants which have yet
to be determined. The correspondence is very close,
but the subject matter of cryptography is very easily
dealt with by discrete machinery, physics not so easily.

— Alan Turing, 1948 [1, p. 9]





Chapter 1

Introduction

This chapter will give a brief, historic overview of how cryptog-
raphy has evolved from ancient Egypt and Greece, all the way to
the modern invention of quantum cryptography. The history of
increasingly sophisticated cryptographic methods will lead up to
our goal of a provably secure cryptographic system. At the same
time, codebreakers have been busy refining their methods, and in
that spirit we will also show how the ostensibly perfect security of
quantum cryptography can be broken in practice.

1.1 History of Cryptography

The art of cryptography, or secret writing, appears to be as old
as writing itself. The ancient Egyptian civilization left behind
documents of hieroglyphs in the Giza pyramids, some of which
are believed to be an early example of secret writing. Before the
Rosetta stone was discovered it was impossible to comprehend
the complicated hieroglyphs, and therefore the script itself can be
seen as an early example of secret writing. Even with the Rosetta
stone, however, there are documents from Giza that still defy
translation [2].

From the very beginning, cryptography has put its mark on
history by influencing major events and especially wars. In an-
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cient Greece the skytalewas used as an early form of transposition
cipher. A piece of parchment, cloth, or leather is wound around a
rod of a certain diameter, and it is then possible to write a message
along the length of the rod. When the parchment is unwound,
it becomes difficult to comprehend the meaning of the letters
that now have moved around, and the recipient can recover the
message by winding around a rod of similar diameter. It is be-
lieved [2] that the Spartan general Lysander used the skytale to
send encrypted messages during a battle against the Persians in
405 BC. His subsequent victory had a lasting impact on early
European history. The idea that the skytale was used as a crypto-
graphic device dates back to Cicero (106–43 BC) [3], however this
has come under scrutiny in recent times. In 1998, after studying
the available Greek source material, Kelly [4] claimed that “the
skytale was nothing more than a piece of leather or parchment
attached to a stick” [4, p. 260].

Closely related to cryptography, the field of cryptanalysis con-
cerns itself with analyzing cryptographic systems in order to find
weaknesses, hidden properties, and even break their security. To-
gether with cryptography, the two fields make up the science of
cryptology.

In contrast to the many other advances the Chinese civiliza-
tion managed to achieve, it did not contribute to the development
of cryptography as their language lacked a simple alphabet [5].
Instead, it was in the Italian city-states of the Renaissance where
the first seeds of modern cryptography were sown. An early ex-
ample of what we now call a substitution cipher can be found in
correspondence between the Vatican and its nuncios some time
after the year 1330 [3, p. 280]. Venice and other Italian city-states
came to possess some cryptological expertise, and a prime example
is the Florentine cryptographer Leon Battista Alberti. His 25-page
manuscript De componendis cyfris from 1466 or 1467 is the oldest
surviving text on cryptanalysis in the western world [3, p. 280],
and Kahn [6, p. 125] described Alberti as the “Father of Western
Cryptology”.

2



1.2. Fundamental Principles of Cryptography

1.2 Fundamental Principles of Cryptography

The word “cryptography” is constructed from Greek, where kryp-
tós means “hidden” and graphein means “writing”. Ever since the
Renaissance, cryptographers have been in a cat-and-mouse game
with cryptanalysts where the former tries to create cryptographic
systems that the latter is unable to break. At the same time, crypt-
analysts attempt to mount better and better attacks in order to
defeat the cryptography and recover the encrypted messages.

While it is debated whether or not the previously-mentioned
skytale was used for cryptography, Herodotus (ca. 486–
425 BC) [7] tells the story of a related cryptographic technique.
Demeratus, a Greek at the Persian court, sent a secret message by
hiding it in a writing tablet. He removed its wax surface, and after
inscribing a secret message on the wooden backing, he applied
a fresh layer of wax. This made the tablet appear blank while
it actually carried a hidden message. According to Herodotus,
the deception was so effective that it fooled not only the Persian
customs, but almost the recipient as well.

This method of Demeratus’, disguising a message where no-
body would look, is called steganography, which should not
to be confused with the handwriting technique of stenography.
There are numerous ways in which steganography has been used
throughout history. Invisible ink and microdots are famous exam-
ples from spy novels, but there are ways of hiding information in
even more plain sight. A digital image can be altered so that the
least significant bits constitute a message without the human eye
noticing, and a carefully written letter can look innocent while,
say, every 21st letter makes up a hidden message. Steganography
is one of three basic types of cryptography and truly lives up to the
description “hidden message”.

The two other basic types of cryptography are codes and ciphers.
Codes are used to replace specific words, names or sentences with
other words or symbols using a code book, and this method was
famously used by Mary, Queen of Scots in a failed attempt to
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conquer the English throne in the late 16th century [8, pp. 32–
44]. Codes and code books are however cumbersome to use, and
in modern times the focus has instead shifted towards ciphers.
While the definition of a cipher partially overlaps with that of
a code, ciphers generally operate on a lower level. The skytale,
for instance, is a cipher that operates on individual letters and
performs a transposition.

As we have seen in these brief examples, cryptography has
historically only been used to ensure secrecy when communicating
over an untrusted channel. This has changed dramatically with
the digital revolution, and new developments in cryptography
have led to applications such as authentication, digital signatures,
secret sharing, and so on. These successes have made technologies
like online banking, credit cards, electronic commerce, etc., to be
secure enough to be appealing to the general public. Cryptography
has also led to the development of decentralized cryptographic
currencies like Bitcoin [9] and Ethereum [10] which offer an
alternative to traditional currencies.

The basic communication scheme for cryptography is depicted
in figure 1.1. Two parties, Alice and Bob, wish to communicate
securely in the presence of an eavesdropper Eve. Alice encrypts her
message, called the plaintext, with a predetermined encryption
algorithm using an encryption key. This turns the plaintext into a
ciphertext, which is transmitted over an untrusted channel to Bob.
During transmission it is assumed that Eve has full knowledge of
the ciphertext. Bob decrypts the ciphertext with the decryption key
and, if the process is performed correctly, recovers the message.

Before any further analysis of cryptography can be made, how-
ever, we must establish a fundamental principle of cryptology
known as Kerckhoff ’s principle: The enemy knows the system.
The importance of this assumption cannot be understated, as the
only way to know that a cryptographic system really is secure is
if it can withstand the best cryptanalysis. Were Alice and Bob to
choose a cryptographic system that in any way relies on Eve not
knowing the inner workings of their system, they will probably
fool themselves. If Eve happens to learn the trick (or several tricks)
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Alice Encryption
Message

Encryption key

Decryption
Ciphertext

Eve

Decryption key

Bob
Message

Figure 1.1: Basic communication scheme for cryptography, adapted
from Trappe and Washington [11, p. 3]. Alice and Bob use cryptography
to communicate securely in the presence of an eavesdropper, Eve. The
message is encrypted using an encryption key, turning the plaintext into
a ciphertext before it is broadcast over a public channel. Bob then uses
the decryption key to recover the message.

Alice and Bob have used, she will instantly be able to break their
security. It is better to let only the key be secret.

In fact, if Alice and Bob invent their own cryptographic al-
gorithms, there is a large probability that their creation will be
insecure. This is encapsulated in Schneier’s law [12], which states
that “anyone, from themost clueless amateur to the best cryptogra-
pher, can create an algorithm that he or she himself cannot break”.
Alice and Bob are therefore best advised to rely on methods and
algorithms that have been tested and tried by repeated cryptanaly-
sis. The temporary gain that might arise from introducing a secret
trick pales in comparison to the permanent damage caused by
an unknown flaw in the design1. Our scheme in figure 1.1 must
therefore be extended with the assumption that the only thing Eve
does not know is the key and the message itself.

Cryptographic systems in violation of Kerckhoff ’s principle are
said to rely on security through obscurity. It should be obvious that

1In contrast to what many designers of quantum key distribution systems
seem to believe, Schneier’s law applies to quantum systems, too. It appears
an addendum to Schneier’s law is called for: “Any physicist can construct
a quantum key distribution system that can be proved secure under some
restrictions the physicist prefers.”
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a cryptographic system that in any way relies on steganography is
guilty of this flawed security practice.

1.3 Public-Key Cryptography

[public-key cryptography] turned out to be the most
important innovation in cryptology since the advent
of the computer and it took only a decade to become
an indispensable technology for the protection of com-
puter networks.

— Karl de Leeuw, 2007 [13, p. 17]

In figure 1.1 there are two keys; one for encryption and one for de-
cryption. Up until the early 1970s, all cryptographic protocols used
symmetric algorithms, i.e., the two keys are identical. Examples
of symmetric algorithms include the Data Encryption Standard
(DES) [14], the Advanced Encryption Standard (AES) [15], and
Blowfish [16]. The invention of asymmetric, or public-key cryp-
tography, revolutionized the field of cryptology by instead using
different keys for encryption and decryption. The two keys are
usually referred to as the public and private keys. The advantage
of public-key cryptography is especially obvious in today’s age of
the Internet, as Alice and Bob can encrypt information without
needing a pre-shared key.

Care must be taken, however, as public-key cryptography does
not solve the problem of authentication. Eve can perform a so-
called man-in-the-middle attack where she impersonates both
Alice and Bob, and the end result is complete information leakage
without leaving a trace. The man-in-the-middle attack is pre-
vented by authenticating both parties before sending information
over the channel, and this requires some form of pre-shared key.
Thus, public-key cryptography should not be described as “not
requiring a pre-shared key”, but rather “requiring less pre-shared
key than symmetric cryptography”.
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The first discovery of a public-key algorithm was long credited
to the groundbreaking work of Diffie and Hellman in 1976 [17].
Their algorithm, Diffie-Hellman (DH) key exchange, allows Alice
and Bob to exchange a key over an untrusted channel. It would
turn out, however, that DH was not the first invention of its kind.
In 1997, the Government CommunicationsHeadquarters (GCHQ)
in the United Kingdom declassified information that revealed a
similar discovery made several years before Diffie and Hellman [8,
pp. 283–290]. Due to the secret nature of intelligence work,
the original inventors at GCHQ had to wait over two decades
before their achievement was publicly recognized. The original
motivation for the research that led to this discovery by the GCHQ
was to reduce the cost of distributing symmetric keys [8, p. 282].

Public-key cryptography can be created from a special type
of mathematical functions that are one-way. This is a function 𝑓
with the property that, given 𝑥, computing 𝑦 = 𝑓(𝑥) is easy while it
is computationally infeasible to find 𝑥 so that 𝑓(𝑥) = 𝑦. If the one-
way function also has a trapdoor there exists a way to find 𝑥, but
only with some extra information, known only to the designer of
said function. It should be computationally infeasible for someone
else to determine this trapdoor information [11, p. 191]. Trapdoor
one-way functions allow us to create algorithms for public-key
cryptography.

From a very large family of such functions, Bob generates one
in such a way that only he has the corresponding trapdoor infor-
mation. He then publishes his function 𝑓 as his public encryption
algorithm. Alice, who wants to send Bob the message 𝑚, com-
putes the ciphertext 𝑐 = 𝑓(𝑚) and sends this to Bob. He can
then compute the message𝑚 using the trapdoor information, but
Eve cannot. Using a one-way trapdoor function, we now create a
public-key cryptosystem where Alice and Bob can communicate
securely without a pre-shared key.

The one-way trapdoor function used in DH is modular expo-
nentiation [17], and in order to reverse the trapdoor one needs
to solve the discrete logarithm problem, which is considered hard.
The GCHQ public-key algorithm, however, uses a different one-
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way trapdoor function based on the factorization problem. Com-
puting 𝑓(𝑚) = 𝑚𝑒 (mod 𝑛) is easy given 𝑒 and 𝑛, but without
knowing the prime factors 𝑝 and 𝑞 of 𝑛 (i.e., the trapdoor infor-
mation), the reverse is computationally infeasible for large 𝑛. The
same method was independently discovered by Rivest et al. [18]
1978, and is named Rivest-Shamir-Adleman (RSA) after the in-
ventors. RSA remains the most popular public-key algorithm in
use today [19, p. 17], although the newer Elliptic-Curve Digital
Signature Algorithm (ECDSA) [20] (based on elliptic curves over
finite fields) is gaining momentum.

It must be pointed out that the difficulty of the discrete log-
arithm problem and the factorization problem has never been
proven. It is unlikely, but theoretically possible, that there will be
a major breakthrough tomorrow that makes these problems easy.
Such a discovery would immediately break the security of RSA.
However, the peculiar properties of prime numbers have been
studied since at least Euclid’s time (300 BC), and it is likely that
prime factors will remain difficult to compute for the foreseeable
future. Another theoretical weakness of public-key algorithms
is that he existence of one-way functions themselves is an open
conjecture.

1.4 Cryptography and the Quantum World

Research into the factorization problem took an unexpected turn
in 1994, when Shor [21] published an efficient quantum algorithm
for finding prime factors. The difference to previous factoring
algorithms is that Shor’s algorithm requires a quantum computer,
a device operating on qubits instead of ordinary, classical bits.
As a consequence, a working quantum computer would break
the security of RSA. In addition, Shor’s algorithm can also break
DH key exchange and ECDSA. Now, the prime factors used in
RSA are very large, typically hundreds of digits long, but today’s
experimental realizations of Shor’s algorithmare only able to factor
small numbers [22–29]. In the near future, Shor’s algorithm
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remains a theoretical rather than practical threat, however the
mere idea of a quantum computer has led researchers to search
for algorithms that remain strong even if a revolution in quantum
computing were to occur.

This relatively new area of research is called Post-Quantum
Cryptography (PQC) and aims to find new cryptographic algo-
rithms safe from Shor’s algorithm. While RSA would be compro-
mised by quantum computers, many cryptographic algorithms
will remain secure [30, pp. 1–2]. Generally, symmetric algorithms
are considered quantum-safe, although the key size must be in-
creased to prevent attacks due toGrover’s quantumalgorithm [31].
However, all public-key cryptosystems in wide use today (RSA,
DH, ECDSA) are easily broken by Shor’s algorithm and, finding
quantum-safe equivalents is of high priority.

There are several proposals for post-quantum cryptosystems.
Lattice-based systems include algorithms based on LearningWith
Errors (LWE) [32] (Frodo [33], Ring-Learning With Errors (R-
LWE) [34], NewHope [35]) and NTRU [36]. Other methods
include Supersingular Isogeny Diffie–Hellman (SIDH) [37], and
McEliece’s code-based crypto [38]. See Bernstein and Lange [39]
for a review of PQC algorithms. In comparison to the “industry-
standard” algorithms of RSA, DH, and ECDSA, the current
quantum-safe counterparts are generally slower, have a large com-
munication overhead, and/or require large keys. In addition, the
new mathematical foundations are relatively new and unproven,
leading to a worry that further developments find weaknesses in
their security.

We will now turn our attention to a cryptosystem that achieves
security without resorting to not-yet-proven assumptions on a
problem being difficult. The One-Time Pad (OTP) has uncondi-
tional security [19, pp. 15–17, 11, pp. 39–41] and no matter what
computing power Eve possesses, she will not be able to break it.
OTP has been described as “the Holy Grail of cryptography” [8,
p. 122], but the disadvantage is that it requires rigorous key man-
agement. For every bit of information to be encrypted, one bit of
key is needed. Add to it the key must be random, secret, and never
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re-used, and it becomes clear that OTP is very costly to use in
practice. Therefore, it has primarily been used in low-bandwidth
applications with ultra-high security requirements [19, p. 17].

It is easy to see why the one-time pad has unconditional secu-
rity. Consider the binary plaintext 10001100 encrypted by taking
bitwise xor with the key 01101100. The resulting ciphertext is
11100000, which can be decrypted by again taking a bitwise xor
with the key. Now, an attacker can try all possible keys (there are
only 28=256 keys to try) and find all possible plaintexts. Unfortu-
nately, all of these plaintexts are equally probable so there is no
way of knowing when the correct plaintext is found.

Unconditional security, as the name implies, is the highest level
of security and resists any attack, even those allowed by quantum
mechanics. It places no further restriction on the attacker who
can be assumed to have unbounded computational resources. As
in the example of OTP, even if Eve can try all combinations of the
key she will not break the cryptosystem. Another name commonly
found in the literature is Information-Theoretic Security (ITS).

If unconditional security cannot be achieved, a lower level of
security can be found in complexity-theoretic security. Here, we
place restrictions on the number of queries that can be performed
by the attacker. Currently, we call a problem intractable when it
requires at least 2128 queries to brute-force. If we further assume
the attacker to have access to a quantum computer, we require
quantum-safe complexity-theoretic security.

If Alice and Bob want to base their security on OTP and trans-
fer, say, a gigabyte of information, they will need a gigabyte of
key. If their key runs out, they cannot reuse any part of it and will
have to negotiate more key bits. It is, of course, possible to use a
public-key algorithm to generate such a key, but the chain cannot
be stronger than the weakest link and this would be a pointless
implementation of OTP. As it stands, Alice and Bob will have to
rely on a trusted courier to exchange keys and let him or her carry
the entire burden of securing their communication.

In the classical world this is as good as it gets. OTP gives ulti-
mate security, but shifts the entire problem of encryption into a
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problem of keymanagement. There is simply no way around it; Al-
ice and Bobmustmeet in person or use a courier. Unless, of course,
they to invoke quantum mechanics. The peculiar properties of a
quantum channel allows Alice and Bob to set up a communica-
tions system where the laws of physics, instead of vague concepts
of “computational complexity” guarantee the security. The same
physical laws also make the system robust against an attacker with
access to a working quantum computer.

The idea is that Alice and Bob use the quantum channel to
randomly, and secretly, generate a key, which then can be used in
OTP. The result is QuantumKey Distribution (QKD), and this key
distribution method can give perfect security. QKD is a field cur-
rently undergoing tremendous development and there are several
working protocols as will be shown later. Recently, research into
so-called Energy-Time Entanglement (ETE) has begun leading
the way towards a practical method for QKD. It has been sug-
gested that a design by Franson [40] could be used to achieve the
same unconditional security as traditional entanglement-based
QKD protocols. Several experiments have evaluated this Franson-
type setup [41–50], however this thesis will point to complications
when basing QKD on Energy-Time Entanglement (ETE).

1.5 Outline

This thesis will present our contributions in quantum cryptogra-
phy given in publications A to F. The chapters leading up to these
six publications are intended to give an overview of the fields of
quantum key distribution, quantum hacking, experimental Bell
testing, quantum money, and the blockchain.

We begin in chapter 2 by establishing notation, followed by
some basic results from linear algebra and probability theory.
These basic results are then used to discuss a few basic postu-
lates in quantum theory, which will have important consequences
for quantum key distribution. We further build on those postu-
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lates and prove the important theorems of no-cloning and non-
distinguishability of non-orthogonal quantum states.

Chapter 3 introduces QKD and presents two major categories
of such protocols: those of the type called “prepare-and-measure”,
and those based on entanglement. We then present, and discuss
the security of, the pioneering BB84 protocol, which uses two sets
of mutually unbiased bases.

Many QKD protocols rely on Bell’s Theorem, and we therefore
dedicate chapter 4 to an introduction of this fundamental result
in quantum theory. We give a historic background, followed by a
first intuitive explanation before stating the theorem itself. Impor-
tant applications include the E91 QKD protocol and the beautiful
theory of Device-Independent (DI) QKD.

Next, chapter 5 discuss a number of loopholes in Bell’s Theo-
rem, which requires us to understand and quantify the amount
by which real-world implementations of QKD deviate from the
ideal situation. We emphasize the detection loophole and the
coincidence-time loopholes, both of which can be used to break
the security assumptions of Device-Independent Quantum Key
Distribution (DI-QKD).

Energy-Time Entanglement (ETE) is introduced in chapter 6,
and we show what advantages this method has over traditional,
polarization-based QKD. We also present the Franson interfero-
meter, a scheme that employs ETE and promises to be a method
for usable quantum cryptography. However, we then reveal a seri-
ous weakness of the Franson setup, and the subsequent exploit is
presented in detail in chapter 7 and publications A and B.

Importantly, our ultimate goal is not to break the security of
QKD. On the contrary, we wish to make the protocols stronger!
Chapter 8 discusses a number of methods for re-establishing se-
curity, some of which are contained in publications A and B. One
method is to invoke a generalized, chained, version of Bell’s Theo-
rem and we show this to be experimentally viable in publication D.
Then, in order to prevent the coincidence-time loophole in this
generalized setting we had to develop new theoretical results given
in publication C.
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1.6. Included Publications

The thesis then takes a detour in order to introduce publi-
cation E and our invention of Quantum Bitcoin. Chapter 9 in-
troduces necessary concepts, including Bitcoin, the blockchain,
quantum money, and finally our construction for a blockchain-
endowed quantum currency.

We conclude the thesis in chapter 10 by returning to the bigger
picture. Here, we show that while the results of publications A
and B have been known for years, there are recent papers that
still ascribe unconditional security to the Franson interferometer.
Publication F is a comment to one such paper, which led to the
authors publishing an errata in the same journal. We end the
chapter by discussing ideas for future work.

1.6 Included Publications

Publications A and B have previously been included in the thesis
author’s Licenciate thesis published in 2015 [51]. The Swedish
Licenciate degree comprises 120ECTS credits of postgraduate
studies.

Publication A: Energy-time entanglement, elements of
reality, and local realism
Published in Journal of Physics A: Mathematical and Theoretical
on the 24th of October 2014 [52].

Authors

Jonathan Jogenfors and Jan-Åke Larsson.

Abstract
The Franson interferometer, proposed in 1989 [J. D. Franson, Phys. Rev. Lett.
62:2205-2208 (1989)], beautifully shows the counter-intuitive nature of light. The
quantum description predicts sinusoidal interference for specific outcomes of the ex-
periment, and these predictions can be verified in experiment. In the spirit of Einstein,
Podolsky, and Rosen it is possible to ask if the quantum-mechanical description (of this
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1. Introduction

setup) can be considered complete. This question will be answered in detail in this pa-
per, by delineating the quite complicated relation between energy-time entanglement
experiments and Einstein-Podolsky-Rosen (EPR) elements of reality. The mentioned
sinusoidal interference pattern is the same as that giving a violation in the usual Bell
experiment. Even so, depending on the precise requirements made on the local realist
model, this can imply a) no violation, b) smaller violation than usual, or c) full violation
of the appropriate statistical bound. Alternatives include a) using only the measure-
ment outcomes as EPR elements of reality, b) using the emission time as EPR element
of reality, c) using path realism, or d) using a modified setup. This paper discusses the
nature of these alternatives and how to choose between them. The subtleties of this
discussion needs to be taken into account when designing and setting up experiments
intended to test local realism. Furthermore, these considerations are also important
for quantum communication, for example in Bell-inequality-based quantum cryptog-
raphy, especially when aiming for device independence.

Contribution

The thesis author performed the theoretical analysis.

Publication B: Hacking the Bell test using classical light
in energy-time entanglement–based quantum key distri-
bution

Published in Science Advances on the 18th of December 2015 [53].
Raw experimental data available online [54].

Authors

Jonathan Jogenfors, Ashraf Mohamed Elhassan, Johan Ahrens,
Mohamed Bourennane, and Jan-Åke Larsson.

Abstract
Photonic systems based on energy-time entanglement have been proposed to test local
realism using the Bell inequality. A violation of this inequality normally also certifies
security of device-independent quantum key distribution (QKD) so that an attacker
cannot eavesdrop or control the system. We show how this security test can be circum-
vented in energy-time entangled systems when using standard avalanche photodetec-
tors, allowing an attacker to compromise the system without leaving a trace. We reach
Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classi-
cal light, which exceeds even the quantum prediction. This is the first demonstration
of a violation-faking source that gives both tunable violation and high faked detector
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1.6. Included Publications

efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt in-
equality cannot be used to show device-independent security for energy-time entangle-
ment setups based on Franson’s configuration. However, device-independent security
can be reestablished, and we conclude by listing a number of improved tests and exper-
imental setups that would protect against all current and future attacks of this type.

Contribution

The thesis author devised the attack, designed the experiment,
performed statistical analysis and post-processed the raw experi-
mental data.

Publication C: Tight Bounds for the Pearle-Braunstein-
Caves Chained Inequality Without the Fair-Coincidence
Assumption
Published in Physical Review A (PRA) on the 1st of August
2017 [55].

Authors

Jonathan Jogenfors and Jan-Åke Larsson.

Abstract
In any Bell test, loopholes can cause issues in the interpretation of the results, since
an apparent violation of the inequality may not correspond to a violation of local re-
alism. An important example is the coincidence-time loophole that arises when de-
tector settings might influence the time when detection will occur. This effect can be
observed in many experiments where measurement outcomes are to be compared be-
tween remote stations because the interpretation of an ostensible Bell violation strongly
depends on themethod used to decide coincidence. The coincidence-time loophole has
previously been studied for the Clauser-Horne-Shimony-Holt and Clauser-Horne in-
equalities, but recent experiments have shown the need for a generalization. Here, we
study the generalized “chained” inequality by Pearle, Braunstein, and Caves (PBC) with
𝑁 ≥ 2 settings per observer. This inequality has applications in, for instance, quantum
key distribution where it has been used to reestablish security. In this paper we give the
minimum coincidence probability for the PBC inequality for all 𝑁 ≥ 2 and show that
this bound is tight for a violation free of the fair-coincidence assumption. Thus, if an
experiment has a coincidence probability exceeding the critical value derived here, the
coincidence-time loophole is eliminated.
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1. Introduction

Contribution

The thesis author performed the theoretical analysis and proved
the theorem.

Publication D: High-visibility time-bin entanglement for
testing chained Bell inequalities

Published in PRA on the 9th of March 2017 [56].

Authors

Marco Tomasin, Elia Mantoan, Jonathan Jogenfors, Giuseppe
Vallone, Jan-Åke Larsson, and Paolo Villoresi.

Abstract
The violation of Bell’s inequality requires a well-designed experiment to validate the re-
sult. In experiments using energy-time and time-bin entanglement, initially proposed
by Franson in 1989, there is an intrinsic loophole due to the high postselection. To ob-
tain a violation in this type of experiment, a chained Bell inequalitymust be used. How-
ever, the local realism bound requires a high visibility in excess of 94.63% in the time-
bin entangled state. In this work, we show how such a high visibility can be reached in
order to violate a chained Bell inequality with six, eight, and ten terms.

Contribution

The thesis author performed the theoretical analysis.

Publication E: Quantum Bitcoin: An Anonymous and Dis-
tributed Currency Secured by the No-Cloning Theorem
of Quantum Mechanics

Preprint submitted to arXiv on the 5th of April 2016 [57].

Author

Jonathan Jogenfors.
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Abstract
The digital currency Bitcoin has had remarkable growth since it was first proposed in
2008. Its distributed nature allows currency transactions without a central authority
by using cryptographic methods and a data structure called the blockchain. Imagine
that you could run the Bitcoin protocol on a quantum computer. What advantages can
be had over classical Bitcoin? This is the questionwe answer here by introducingQuan-
tum Bitcoin which, among other features, has immediate local verification of transac-
tions. This is a major improvement over classical Bitcoin since we no longer need the
computationally-intensive and time-consuming method of recording all transactions
in the blockchain. Quantum Bitcoin is the first distributed quantum currency, and this
paper introduces the necessary tools including a novel two-stage quantummining pro-
cess. In addition, Quantum Bitcoin resist counterfeiting, have fully anonymous and
free transactions, and have a smaller footprint than classical Bitcoin.

Contribution

As this is a single-author publication, the thesis author is the sole
contributor.

Publication F: Comment on “Franson Interference Gener-
ated by a Two-Level System”
This is a comment to a paper by Peiris et al. [58] published by
Physical Review Letters (PRL) on the 19th of January 2017. We
submitted our comment to arXiv and PRL on the 15th of March
2017 [59]. The comment was not accepted by PRL, but our contri-
bution was acknowledged in the form of an erratum to the original
paper published on the 18th of August 2017 [60]. This erratum
references our comment and thanks us for bringing the issues to
their attention.

Authors

Jonathan Jogenfors, Adán Cabello, and Jan-Åke Larsson.

Abstract
In a recent Letter [Phys. Rev. Lett. 118, 030501 (2017)], Peiris, Konthasinghe, and
Muller report a Franson interferometry experiment using pairs of photons generated
from a two-level semiconductor quantum dot. The authors report a visibility of 66%
and claim that this visibility “goes beyond the classical limit of 50% and approaches
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1. Introduction

the limit of violation of Bell’s inequalities (70.7%).” We explain why we do not agree
with this last statement and how to fix the problem.

Contribution

The thesis author performed the theoretical analysis and wrote
the comment.
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Chapter 2

Basic Concepts

The battle between cryptology and cryptanalysis has largely played
out within the field of mathematics. Quantum mechanics, whose
laws have been discovered through experiment and theory, has
led to significant developments in modern society. In order to
understandQKD, one needs to know itsmathematical foundations
and how they apply to our purposes of securing communications.
This chapter will present the notation used in the rest of the thesis
followed by important concepts in linear algebra and probability
theory. Then we move on to discuss a few essential postulates of
quantum theory and their implications.

2.1 Linear Algebra

Linear algebra is used in many applied fields, and the wide variety
of flavors has led different authors to adapt conflicting standards
to how concepts translate into notation. For the rest of this thesis
we will work with the vector space ℂ𝑛 unless otherwise stated. A
vector within this space is written |𝜓⟩, where the 𝜓 is the actual
label of our vector. The entire object is called a ket, and its vector
dual is the bra ⟨𝜓|. This useful bra-ket notation was introduced
by Dirac [61] in 1939.
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2. Basic Concepts

The complex conjugate of 𝑧 is written 𝑧∗. Similarly, the
element-wise complex conjugate of a matrix 𝐴 is 𝐴∗. The identity
matrix is denoted 𝐼, the transpose of a matrix 𝐴 is 𝐴𝑇 and the Her-

mitian conjugate is 𝐴†
def
= (𝐴𝑇)∗. Given a vector |𝜓⟩, its vector dual

⟨𝜓| can be computed as the Hermitian conjugate ⟨𝜓| = (|𝜓⟩)†. This
allows us to elegantly write the inner product of two states in the
bra-ket notation as ⟨𝜙 | 𝜓⟩. We then call an operator 𝐴Hermitian
if it satisfies 𝐴† = 𝐴.

The inner product is a function that takes two vectors on a
Hilbert spaceℋ and produces a complex number. We write this
as (⋅, ⋅): ℋ×ℋ toℂ. We can write the inner product of two vectors
|𝜓1⟩ and |𝜓2⟩ as ⟨𝜓1 | 𝜓2⟩. Two vectors |𝜓1⟩ and |𝜓2⟩ are said to be
orthogonal if their inner product is zero.

Of particular interest is a class of maps that are unitary, that
is, they fulfill

𝑈𝑈† = 𝑈†𝑈 = 𝐼. (2.1)

Later, in Postulate 2.10 we will see that unitary maps play an im-
portant role in quantum mechanics. Next, we have an important
property of the inner product:

Theorem 2.1 (Invariance of Inner Product under Unitary
Transformation) The inner product is invariant under unitary
transformation.

Proof Let |𝜓1⟩ and |𝜓2⟩ be two vectors in a Hilbert space. Then

(𝑈 |𝜓1⟩ , 𝑈 |𝜓2⟩) = ⟨𝜓1| 𝑈†𝑈 |𝜓2⟩ = ⟨𝜓1| 𝐼 |𝜓2⟩ = ⟨𝜓1 | 𝜓2⟩ . (2.2)

This shows us that the inner product between two vectors does
not change if they undergo the same unitary transformation.

2.2 Probability Theory

Next, we need some basic results from probability theory.
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2.3. Fundamental QuantumMechanics

Definition 2.2 (Probability Space) Let Λ be a sample space, ℱ
the corresponding 𝜎-algebra, and

𝑃 ∶ ℱ → [0, 1] (2.3)

a probability measure. Then (Λ,ℱ, 𝑃) is a probability space.

Definition 2.3 (RandomVariable) Let (Λ,ℱ, 𝑃) be a probability
space and 𝑉 a measurable space. Then if

𝑋 ∶ Λ → 𝑉 (2.4)

is a measurable function we call it a random variable defined on a
probability space (Λ,ℱ, 𝑃).

Definition 2.4 (Expected Value) If 𝑋 is an integrable random
variable defined on a probability space (Λ,ℱ, 𝑃), then the expected
value of 𝑋, denoted 𝐸(𝑋), is defined as the Lebesgue integral

𝐸(𝑋)
def
= ∫

Λ
𝑋(𝜔)𝑑𝑃(𝜔). (2.5)

We will sometimes define random variables on subsets of Λ. Then,
in order for the expectation to be well-defined, we condition the
expectation on this subset, which gives us

Definition 2.5 (Conditional Expectation) If 𝑋 is an integrable
random variable defined on a set Λ𝑋 ∈ ℱ in a probability space
(Λ,ℱ, 𝑃), we define the conditional expectation of 𝑋, denoted
𝐸(𝑋|Λ𝑋), as

𝐸(𝑋|Λ𝑋)
def
= ∫

Λ𝑋

𝑋(𝜔)𝑑𝑃(𝜔)𝑃(Λ𝑋)
. (2.6)

2.3 Fundamental Quantum Mechanics

We will now briefly review some important concepts of quantum
mechanics. For a more complete description, see the textbook by
Nielsen and Chuang [62].
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2. Basic Concepts

Postulate 2.6 (State Vector) An isolated physical system is asso-
ciated with a complex Hilbert spaceℋ, known as the state space.
The system is completely described by its state vector, which is a
unit vector in the state space of the system.

The state vector is usually written as the ket vector |𝜓⟩. A quantum
system whose the state is known exactly is said to be in a pure
state. Note that Postulate 2.6 only deals with isolated systems. If
the universe only consisted of isolated systems it would be a very
dull place, so we need a way for them to interact. Therefore, the
next postulate has to do with measurement:

Postulate 2.7 (Quantum Measurement) A collection of mea-
surement operators {𝑀𝑚} operating on the state space make up a
quantum measurement if they satisfy the completeness relation:

∑
𝑚
𝑀†

𝑚𝑀𝑚 = 𝐼. (2.7)

The index𝑚 refers to the possible measurement outcomes, and the
probability of observing outcome𝑚 from a system with state |𝜓⟩ is

𝑝(𝑚) = ⟨𝜓|𝑀†
𝑚𝑀𝑚 |𝜓⟩ . (2.8)

We can also identify a special case of measurements where the𝑀𝑚
are orthogonal projectors, i.e., Hermitian. These measurements
are called projective, and we define a Hermitian operator𝑀 with
the spectral decomposition

𝑀
def
= ∑

𝑚
𝑚𝑃𝑚, (2.9)

where 𝑃𝑚 is the projector onto the eigenspace of𝑀with eigenvalue
𝑚. Equation (2.7) then gives

∑
𝑚
𝑃𝑚 = ∑

𝑚
𝑀†

𝑚𝑀𝑚 = 𝐼. (2.10)

Any quantity measured by a Hermitian operator is called an ob-
servable, and the eigenvalues𝑚 represent the possible outcomes of
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2.3. Fundamental QuantumMechanics

measuring that observable. It is now easy to compute the expected
value of a projective measurement:

𝐸(𝑀) = ∑
𝑚
𝑚𝑝(𝑚)

= ∑
𝑚
𝑚⟨𝜓| 𝑃𝑚 |𝜓⟩

= ⟨𝜓| (∑
𝑚
𝑚𝑃𝑚) |𝜓⟩

= ⟨𝜓|𝑀 |𝜓⟩ .

(2.11)

Note that, in general, quantum measurements do not commute.
In fact, we have the following:

Definition 2.8 (Commutator) The commutator of Hermitian op-
erators 𝐴 and 𝐵 is defined as

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. (2.12)

We can now give an important result by Heisenberg [63] relating
to the precision of quantum measurements:

Theorem 2.9 (Uncertainty Principle) Suppose 𝐴 and 𝐵 are two
Hermitian operators. We then have

Δ(𝐴)Δ(𝐵) ≥ 1
2
||𝐸([𝐴, 𝐵])||. (2.13)

Proof See Nielsen and Chuang [62, p. 89].

Theorem 2.9 gives a lower bound to how precisely we can deter-
mine two non-commuting observables. For instance, the position
and momentum of a particle cannot be determined with certainty.
Another important example of a family of non-commuting Her-
mitian operators are the Pauli matrices:

𝜎𝑥 = (0 1
1 0) ,

𝜎𝑦 = (0 −𝑖
𝑖 0 ) ,

𝜎𝑧 = (1 0
0 −1) .

(2.14)
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2. Basic Concepts

The Pauli matrices are all unitary, have eigenvalues −1 and +1,
and the corresponding normalized eigenvectors are

𝜓𝑥−
def
= 1
√2

( 1−1) , 𝜓𝑥+
def
= 1
√2

(11) ,

𝜓𝑦−
def
= 1
√2

( 1−𝑖) , 𝜓𝑦+
def
= 1
√2

(1𝑖) , (2.15)

𝜓𝑧−
def
= (01) , 𝜓𝑧+

def
= (10) .

We can combine quantum systems by using the tensor product on
their state vectors. The tensor product of the systems |𝜓1⟩ and |𝜓2⟩
is written

|𝜓1⟩⊗ |𝜓2⟩
def
= |𝜓1⟩ |𝜓2⟩

def
= |𝜓1𝜓2⟩ , (2.16)

and we will frequently make use of this shorthand notation. An
important example of states defined using the tensor product are
the four Bell states:

|Φ+⟩
def
= 1
√2

(|00⟩ + |11⟩),

|Φ−⟩
def
= 1
√2

(|00⟩ − |11⟩),

|Ψ+⟩
def
= 1
√2

(|01⟩ + |10⟩),

|Ψ−⟩
def
= 1
√2

(|01⟩ − |10⟩),

(2.17)

where, for example, |01⟩ = |0⟩ ⊗ |1⟩ just like in equation (2.16).
Here, the state vectors |0⟩ and |1⟩make up what we call the com-
putational basis:

|0⟩
def
= (01) = 𝜓𝑧−,

|1⟩
def
= (10) = 𝜓𝑧+.

(2.18)
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2.3. Fundamental QuantumMechanics

Note the equality with some of the eigenvectors in equation (2.15).
We will sometimes refer to the computational basis {|0⟩ , |1⟩} as
the rectilinear basis, denoted +. In contrast, the diagonal basis
is denoted ×, and its basis states {|+⟩, |−⟩} can be expressed in the
computational basis as

|+⟩
def
= 1
√2

(|0⟩ + |1⟩) = 1
√2

(11) = 𝜓𝑥+,

|−⟩
def
= 1
√2

(|0⟩ − |1⟩) = 1
√2

( 1−1) = 𝜓𝑥−.
(2.19)

We previously discussed pure states. The opposite of a pure state
is a mixed state, which is a state consisting of several pure states
in a statistical ensemble. We can describe mixed states using a
density matrix:

𝜌 = ∑
𝑗
𝑝𝑗 ||𝜓𝑗⟩ ⟨𝜓𝑗|| . (2.20)

Here, the 𝑝𝑗 coefficients are probabilities, i.e., 0 ≤ 𝑝𝑗 ≤ 1 for all
𝑗 and they obey ∑𝑗 𝑝𝑗 = 1. Finally we deal with how quantum
systems evolve over time and use the previouslymentioned unitary
maps:

Postulate2.10 (UnitaryEvolution) An isolated quantumsystem
evolves over time by unitary transformation. If the state of a
system at a given point in time is |𝜓⟩, the state at a later time is
𝑈 |𝜓⟩ where 𝑈 is a unitary operator that only depends on the start
and end times.

In the classical world we can use measurements to exactly deter-
mine the state of a system. A simple example is a flipped coin,
where we observe the outcome just by looking at it when it lands.
The quantumworld, however, is not as straightforward. If we have
a collection of possible quantum states {𝜓𝑖} andwant to distinguish
between them, we can only do this reliably when the states are
orthogonal. To see how orthogonal states are distinguished, we
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define measurement operators1 𝑀𝑖
def
= |𝜓𝑖⟩ ⟨𝜓𝑖| for all 𝑖. We can

now see that a state |𝜓𝑖⟩ gives the measurement outcome 𝑖 with
probability 𝑝(𝑖) = ⟨𝜓𝑖|𝑀𝑖 |𝜓𝑖⟩ = 1 because ⟨𝜓𝑖 | 𝜓𝑖⟩ = 1. There-
fore, we can distinguish between orthogonal states with certainty.
Conversely, we have

Theorem 2.11 (Indistinguishability of Non-Orthogonal
States) Non-orthogonal states cannot be reliably distinguished

Proof Proof by contradiction, adapted from Nielsen and
Chuang [62, p. 87]. Suppose |𝜓1⟩ and |𝜓2⟩ are not orthogo-
nal, and that it is possible to distinguish between them. When
distinguishing between these states we perform a quantum mea-
surement {𝑀𝑚} and get an outcome 𝑗. We then use some rule 𝑓
so that, when the state |𝜓1⟩ was prepared, the probability of mea-
suring 𝑗 so that 𝑓(𝑗) = 1 is 1. Similarly, when |𝜓2⟩ was prepared,
we have unity probability of measuring 𝑗 so that 𝑓(𝑗) = 2. Now
define the quantity

𝐸𝑖
def
= ∑

𝑗∶𝑓(𝑗)=𝑖
𝑀†
𝑗𝑀𝑗, (2.21)

and rewrite the rule function 𝑓 as

⟨𝜓1| 𝐸1 |𝜓1⟩ = 1 and ⟨𝜓2| 𝐸2 |𝜓2⟩ = 1. (2.22)

Using the completeness relation ∑𝑖 𝐸𝑖 = 𝐼 we see that
∑𝑖 ⟨𝜓1| 𝐸𝑖 |𝜓1⟩ = 1, and together with equation (2.22) we have

⟨𝜓1| 𝐸2 |𝜓1⟩ = 0, which gives us√𝐸2 |𝜓1⟩ = 0. We now rewrite |𝜓2⟩
as a linear combination of |𝜓1⟩ and some other state vector |𝜙⟩
orthonormal to |𝜓1⟩ in the following way:

|𝜓2⟩ = 𝛼 |𝜓1⟩ + 𝛽 |𝜙⟩ . (2.23)

We know that |𝛼|2 + |𝛽|2 = 1, and since |𝜓1⟩ is not orthogonal to
|𝜓2⟩ we have 𝛽 < 1. We now note that

⟨𝜙| 𝐸2 |𝜙⟩ ≤ ∑
𝑖
⟨𝜙| 𝐸𝑖 |𝜙⟩ = ⟨𝜙|𝜙⟩ = 1, (2.24)

1We also need to define an operator𝑀0 so that the completeness relation
is fulfilled, but we skip this part for brevity.
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2.3. Fundamental QuantumMechanics

and since√𝐸2 |𝜓2⟩ = 𝛽√𝐸2 |𝜙⟩ we get

⟨𝜓2| 𝐸2 |𝜓2⟩ = |𝛽|2 ⟨𝜙| 𝐸2 |𝜙⟩ ≤ |𝛽|2 < 1. (2.25)

Note that equation (2.25) is in contradiction to equation (2.22),
which states that the probability must be 1.

When non-orthogonal states are measured, there will therefore
be a nonzero probability of error. Another important feature of
quantum mechanics is the no-cloning theorem:

Theorem 2.12 (No-Cloning Theorem) It is impossible to make
a copy of an unknown quantum state.

The following proof is adapted from Nielsen and Chuang [62,
p. 532]:

Proof Assume cloning is possible. We can then build a quantum
machine that performs quantum cloning and has one input and
one output slot. We put an unknown, but pure, state |𝜓⟩ into the
input slot, and the machine copies this state into the output slot.
The output slot of the machine is in some state |𝜒⟩ just before the
cloning process starts. We write this as

|𝜓⟩ ⊗ |𝜒⟩ . (2.26)

We now let this system evolve unitarily according to Postulate 2.10,
which gives us

𝑈(|𝜓⟩ ⊗ |𝜒⟩) = |𝜓⟩ ⊗ |𝜓⟩ . (2.27)

In particular, we assume that this general machine copies two pure
states |𝜓⟩ and |𝜙⟩:

𝑈(|𝜓⟩ ⊗ |𝜒⟩) = |𝜓⟩ ⊗ |𝜓⟩ ,
𝑈(|𝜙⟩ ⊗ |𝜒⟩) = |𝜙⟩ ⊗ |𝜙⟩ .

(2.28)

Theorem 2.1 now allows us to compute the following inner product:

⟨𝜙 | 𝜓⟩ = (⟨𝜙| ⊗ ⟨𝜒|)(⟨𝜓| ⊗ ⟨𝜒|)

= (⟨𝜙| ⊗ ⟨𝜙|)(⟨𝜓| ⊗ ⟨𝜓|) = (⟨𝜙 | 𝜓⟩)2.
(2.29)
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The only solutions in ℂ are ⟨𝜙 | 𝜓⟩ = 0 and ⟨𝜙 | 𝜓⟩ = 1. Since a
state vector always has length 1 it, follows that the only time it
is possible to clone an unknown quantum state is when they are
equal or orthogonal.

See section 9.4 for historical notes on the no-cloning theorem.
Quantummechanics therefore only allowsmeasurement outcomes
to be copied, not general states. This will be important for a QKD
system since Eve is prevented from copying the quantum channel.
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Chapter 3

Quantum Key Distribution

One fine afternoon in late October 1979, I was swim-
ming at the beach of a posh hotel in San Juan,
Puerto Rico. Imagine my surprise when this complete
stranger swims up to me and starts telling me, without
apparent provocation on my part, how to use quan-
tummechanics to design unforgeable banknotes! This
was probably the most bizarre, and certainly the most
magical, moment in my professional life. […] Thus
was born a wonderful collaboration that was to spin
out […] quantum cryptography.

— Gilles Brassard, 2005 [64]

As with many other advances in science, the discovery of QKD
beginswith a good story. Five years before theywould publish their
seminal paper that created the field of quantumcryptography [65],
Charles Bennett and Gilles Brassard met while swimming in the
Atlantic Ocean outside of San Juan, and they started thinking
about encoding information sent between Alice and Bob onto
polarized photons. This could prevent Eve from intercepting their
message since a quantum system cannot be measured without
affecting the state, likely in the form of noise. They realized that
this noise would then be detected by Alice and Bob, and they could
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3. Quantum Key Distribution

take appropriate actions to protect their secrets. This mechanism
of using quantummechanics to transfer information could be used
to generate a key for an OTP session.

As shown in chapter 1, OTP is only as secure as its method for
distributing the key. Now follows the motivation for QKD in gen-
eral and this thesis in particular: A quantum system together with
OTP can provide Alice and Bob with a provably secure method of
generating a secret key. Combined with the provably secure OTP,
the result is a provably secure communication method.

We will discuss QKD protocols where Alice and Bob want to
communicate without leaking information to Eve. They share a
device for communication, which in this thesis is called an inter-
ferometer. At each end of this device, Alice and Bob each have an
apparatus for performing measurements on the quantum state,
and this will be called their respective analysis stations.

In addition to the quantum channel, Alice and Bob need an au-
thenticated classical channel to discuss basis choices and perform
OTP encryption after the quantum transmission is complete. This
channel is public, and any transmission is assumed to be known
to Eve. However, since the channel is authenticated, Eve will not
be able to perform a man-in-the-middle attack. Note that the au-
thentication scheme needs unconditional security, and a suitable
scheme is Wegman-Carter Authentication (WCA) [66], which
requires Alice and Bob to have a pre-shared, secret key. Tradi-
tional, “non-unconditionally secure” authentication methods such
as ECDSA, only require a constant amount of key which can be
used for authenticating any amount of data. In comparison, WCA
requires at least log𝑁 bits of key for authenticating a message of
length𝑁. However, as a QKD protocol produces secret key bits by
itself, the initial pre-shared key can be used for authenticating the
initial protocol steps. Next, the logarithmic key consumption of
WCA allows the QKD protocol to be self-sustaining.

TheQKDprotocols discussed in this thesis fall into two general
categories: prepare-and-measure and entanglement-based. In a
prepare-and-measure scheme, Alice prepares a quantum state
and sends it to Bob who then makes an appropriate measurement.
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The entanglement-based protocol is slightly more complex. In
addition to Alice’s and Bob’s analysis stations there is a source
device responsible for generating the quantum states. Some exam-
ples of entanglement-based protocols is Ekert’s E91 protocol (see
section 4.4) and designs based on the Franson interferometer (see
section 6.1). In addition to the above protocols, notable propos-
als are Coherent One-Way (COW) [67], Differential Phase-Shift
(DPS) [68], and Measurement-Device-Independent Quantum
Key Distribution (MDI-QKD) [69].

3.1 The BB84 Protocol

The first published QKD protocol was BB84, named after the
inventors Charles Bennett and Gilles Brassard, and the year it
was first published in print, 1984 [64]. BB84 is a prepare-and-
measure protocol, and the qubits are individual polarized photons.
The following description of the protocol is adapted from the
textbook of Nielsen and Chuang [62, pp. 587–588].

In the preparation phase, Alice prepares photons, each polar-
ized along an angle chosen uniformly at random from the angles
corresponding to basis states of the rectilinear and diagonal bases
defined in equations (2.18) and (2.19):

|𝜓00⟩
def
= |0⟩ , |𝜓10⟩

def
= |1⟩ , (3.1)

|𝜓01⟩
def
= |+⟩ , |𝜓11⟩

def
= |−⟩ . (3.2)

For each state ||𝜓𝑖𝑗⟩, 𝑖 is the bit value and 𝑗 represents the basis in
which the photon is polarized (rectilinear + or diagonal ×). Again,
the basis states coincide with the eigenvectors of the Pauli matrices
𝜎𝑥 and 𝜎𝑧 in equation (2.15).

Since the states in equation (3.1) are not pairwise orthogonal
they cannot be distinguished by quantummeasurements (recall
theorem 2.11). Now let 𝛿 be an integer ≥ 0. Alice randomly gener-
ates two secret bit strings 𝑎 and 𝑏, each of length (4 + 𝛿)𝑛. Next,
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3. Quantum Key Distribution

she prepares the quantum state

|𝜓⟩ =
(4+𝛿)𝑛

⨂
𝑘=1

||𝜓𝑎𝑘𝑏𝑘⟩ , (3.3)

where the subscript 𝑘 is the 𝑘th bit of the strings. The resulting
state |𝜓⟩ is the tensor product of the base states in equation (3.1).
Now Alice sends |𝜓⟩ over the quantum channel to Bob. He will
receive the state, possibly affected by noise and Eve, announces
this to Alice over the public channel, and randomly generates a
bit string 𝑏′ of his own, again of length (4 + 𝛿)𝑛.

Bob performs quantum measurements on his received state
according to these random bits. If the bit value is 0, he measures
𝜎𝑋 and if it is 1 he measures 𝜎𝑍. The measurement result will in
every case be either 0 or 1, and Bob stores this data in a new bit
string 𝑎′. At this point, Alice and Bob have gathered what is called
the raw key. This raw key needs to be processed and analyzed in
several steps before it can be used to encrypt themessage. Bob tells
Alice over a public channel that he has performed his quantum
measurements, and Alice then broadcasts her basis choices 𝑏. Bob
also broadcasts his basis choices 𝑏′. It might seem peculiar that
Alice broadcasts her measurement settings. Could this not be
used by Eve to gather the raw key? The answer is no, because she
does not hold a faithful copy of the quantum state thanks to the
no-cloning theorem. The basis information will not help her gain
information about the key.

The next stage of the protocol is sifting. Alice andBob compare
basis choices, and wherever 𝑏 ≠ 𝑏′ (different bases) they discard
the corresponding key bits from 𝑎 and 𝑎′. On average, half of the
key will be discarded in this step and the result is the sifted key.
We assume that 𝛿 is sufficiently large so that with high probability,
the sifted key is at least 2𝑛 bits long.

Alice’s and Bob’s sifted keys have an important property: they
are equal between Alice and Bob, assuming no influence of noise
or Eve. In theory, this could already be used to perform OTP
encryption as the sifted key (nearly) has all three properties we

32



3.1. The BB84 Protocol

Alice

×/+

Bob

− | � � − | �

Figure 3.1: The BB84 QKD protocol. This is a prepare-and-measure
QKDprotocol, where Alice encodes information using photons polarized
in non-orthogonal bases. Bob randomly chooses from two measurement
settings.

required in section 1.4: It is randomly generated, never reused (a
new key bit can be created for every bit of data to be sent), and
(nearly) secret. The rest of the protocol is dedicated to improving
the secrecy of the key and shut Eve out of the loop.

Still assuming that the sifted key is 2𝑛 bits long, Alice and Bob
agree on a subset of 𝑛 of these bits, broadcast them and compare
values. If more than a predetermined proportion of these check
bits disagree, they abort their transmission. Either Eve is present
or there was noise on the channel, however there is no way of
distinguishing between these possibilities. It can be shown [62,
p. 602] that a necessary condition for security is an error rate
below 11%. To be precise, this limit is on the error rate after two
more steps of the protocol, information reconciliation and privacy
amplification. These steps are important for the security of the
protocol, however a detailed discussion is beyond the scope of this
thesis. Instead we refer to Abidin [70], which also discusses the
authentication step and its key consumption.

The BB84 protocol thus allows Alice and Bob to agree on a
secret key usable in an OTP session. Any attempt by Eve to eaves-
drop will be noticed by Alice and Bob who then abort the protocol.
There is no way for Eve to learn the value of the key, and due to the
provable security of the OTP, the QKD session is perfectly secure.
Of course, Eve could perform a Denial of Service (DoS) attack by
cutting or sabotaging the quantum channel, but such an attack
will not give her any information about the message.

33



3. Quantum Key Distribution

We have now given a short description of the BB84 protocol.
Again, this is a prepare-and-measure setup, so Alice and Bobmust
establish a hierarchy of who is the sender and who is the receiver.
The situationwill be different in the entanglement-based protocols
such as E91 (shown in section 4.4), and protocols based on the
Franson interferometer (section 6.1). These two new protocols
instead rely on a violation of the Bell inequality for security, a
concept we will introduce in chapter 4.

3.2 Security Analysis of BB84

Bennett and Brassard [65] originally proved the security of BB84
against a number of attacks, similar to our discussion in the pre-
vious section. However, unconditional security is much more
stringent and requires a proof of security against any attacker
restricted only by the laws of physics. This section will discuss
security proofs of BB84.

The first full proof is by Mayers [71] (the first version of which
appeared in 1996). This proof is relatively complex (the paper
is 56 pages long) and assumes Alice’s source to be perfect, but
places no constraints on Bob’s detector [72]. Later, Koashi and
Preskill [73] proved security under the converse condition, i.e.,
Bob’s detector being perfect and no constraint on the source as
long as Alice’s basis choice does not leak to Eve.

In 1999, Lo and Chau [74] proved the security even when
the quantum channel is noisy, however this proof assumes fault-
tolerant quantum computers. The proof by Lo and Chau is based
on previous observations by Bennett et al. [75] and Deutsch et
al. [76], both published in 1996. In 2000, Shor and Preskill [77]
proved the security in a new way, this time basing it on the theory
of quantum error correction and the proof by Lo and Chau [74].
This proof is relatively simple compared to previous works, but
still makes assumptions on source and detector flaws [78].

Note the assumptions on perfect or almost perfect devices in
the above security proofs. Alice and Bob therefore must rely on
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their device to function correctly at all times in order to achieve un-
conditional security. This has severe implications for the security
as will be discussed in section 4.5.
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Chapter 4

Bell’s Theorem

The experimental verification of violations of Bell’s
inequality for randomly set measurements at space-
like separation is the most astonishing result in the
history of physics.

— TimMaudlin, 2014 [79]

Bell’s Theorem [80] is of considerable importance when trying to
understand the very fundamentals of quantummechanics. The
theorem has consequences not only for physics, but also leads
to consequences for philosophical interpretations of reality. The
ideas presented in this chapter do in some sense go against human
intuition because we will have to abandon the ideas of “locality”
and “realism”. In 1975, Stapp [81, p. 271] claimed that “Bell’s
theorem is the most profound discovery of science”.

4.1 EPR and Hidden Variables

In 1935, the early days of quantum mechanics, Einstein, Podolsky,
and Rosen (EPR) published a paper [82] where they asked if
quantum mechanics could be considered complete. In the paper,
they started with a few basic assumptions and used the laws of
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4. Bell’s Theorem

quantum mechanics to produce an apparent contradiction. The
argument, which will be presented now, is sometimes referred to
as the “EPR paradox”.

Here, we show a later modification of the EPR paradox de-
scribed by Bohm [83] in 1951. Recall the Bell state |Ψ−⟩ defined
in equation (2.17):

|Ψ−⟩ = 1
√2

(|01⟩ − |10⟩). (4.1)

Again, |01⟩ is the tensor product of the computational basis states
|0⟩ and |1⟩. The Bell state in equation (4.1) can be experimentally
realized in several ways, but we will consider 𝜋meson decay. The
𝜋meson (also called pion) is a subatomic particle that can decay
in several ways. One such way is

𝜋0 → 𝛾0 + 𝑒− + 𝑒+, (4.2)

where the decay products are one gamma photon 𝛾0, one electron
𝑒− and one positron 𝑒+.

If we require the 𝜋meson to be at rest, it will have zero angular
momentum and according to the law of conversation of angular
momentum, the sum of the angular momenta of the particles on
the left-hand side of equation (4.2) must be zero as well. A pho-
ton has zero angular momentum and therefore the electron and
positron will have opposite spin. These particles, whose intrinsic
spin always takes on the values ±ℏ/2, will have two possible con-
figurations: one where the positive spin component is given to the
positron and one where it is given to the electron. We write this as
𝑒+ ↑ and 𝑒− ↓, or conversely, 𝑒+ ↓ and 𝑒− ↑. The basis states are
then |↑⟩ and |↓⟩ and the system will be in the state

1
√2

(|↑⟩𝑒− ⊗ |↓⟩𝑒+ − |↓⟩𝑒− ⊗ |↑⟩𝑒+), (4.3)

which coincides with the Bell state |Ψ−⟩ defined in equation (2.17)
if we let |↑⟩ = |0⟩ and |↓⟩ = |1⟩ for both the electron and positron.
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𝜋0
𝜙𝐴

−ℏ/2

+ℏ/2

𝜙𝐵

−ℏ/2

+ℏ/2

𝑒+ 𝑒−

Figure 4.1: The EPR-Bohm thought experiment. A 𝜋 meson decays
into a positron and electron with opposite spin, and these particles are
measured by Alice and Bob. The spin of the two particles is opposite
to each other, so Alice and Bob’s measurement outcomes will be anti-
correlated.

Now EPR present their argument. Let the electron-positron
pair carefully move very far away from each other in a way that
retains their angular momenta (figure 4.1). Alice receives the
positron and Bob the electron, and if Alice measures the spin of
her positron along the 𝑧 axis she will get either the result +ℏ/2
or −ℏ/2. Spin can be measured along different axes, and accord-
ing to the uncertainty principle in theorem 2.9, the spin along
orthogonal axes cannot be determined with certainty. Therefore,
it is not possible to precisely know the spin along the 𝑧 and 𝑥 axes
simultaneously.

Now Bob can act independently of Alice and measure the spin
of his electron along the 𝑥 axis. But from equation (4.2) this means
Bob can predict the spin of Alice’s electron along the 𝑥 axis since it
will be the opposite of what hemeasured. If Alice and Bob perform
their measurements simultaneously, it will be possible to know the
spin of Alice’s positron along two orthogonal axes with certainty,
a violation of the uncertainty principle. Therefore, according to
EPR, one of the following must be true:

1. The particles are exchanging information faster than the
speed of light, or

2. The behavior of the particles is not predetermined by some
“hidden variables”.
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4. Bell’s Theorem

The first possibility of instantaneous information exchange was
rejected by EPR as it would violate the “principle of locality”. In a
later paper, Einstein wrote [84]

The following idea characterises the relative indepen-
dence of objects far apart in space, 𝐴 and 𝐵: external
influence on 𝐴 has no direct influence on 𝐵; this is
known as the Principle of Local Action1, which is used
consistently only in field theory. If this axiom were to
be completely abolished, the idea of the existence of
quasienclosed systems, and thereby the postulation of
laws which can be checked empirically in the accepted
sense, would become impossible.

EPR therefore concluded that the principle of locality should apply
to their thought experiment and therefore rejected the idea of
“spooky action at a distance” [82]. The logical consequence of this
line of thought is that quantummechanics is somehow incomplete,
since the state vectors do not give a complete description of the
individual particles. But if the state vectors are not a complete
description, we are in violation of Postulate 2.6, which asserts
that an isolated quantum system is described by its state. Per the
previous discussion, the logical conclusionmust be that there exist
some kind of hidden variables, unavailable to the experimenter
that determine the measurement outcomes according to some
pre-determined formula. Baggott [85, p. 107] defines hidden
variables in the following way:

Any theory which rationalizes the behaviour of a sys-
tem in terms of parameters that are for some reason
inaccessible to experiment is a hidden variable theory.

Hidden variable theories have had extraordinary success in the
history of science. For instance, the relation between the volume,
pressure and temperature of a gas is very complicated, but when
taking the individual atoms into account these properties emerge

1The modern term for this principle is Locality.
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naturally from statistical mechanics. In the case of the gas, the
atoms are the hidden variables. Therefore it was no big leap of
imagination for EPR to assume that the resolution of their para-
dox would come in terms of some hidden variable carried by the
particles.

The existence of hidden variables could imply the existence
of deeper, more fundamental laws of physics than quantum me-
chanics. According to Baggott [85, p. 140], Einstein had “hinted
at a statistical interpretation” in a similar spirit to the emergent
gas properties we just described. Perhaps such a theory would
allow for a universe where outcomes are deterministic in contrast
to the quantum-mechanical laws? In any case, hidden variables
are a problem for our goals of secure QKD since it could open
up the possibility for cloning unknown quantum states. With
cloning, Eve can make copies of the qubit sent between Alice and
Bob and then measure the copies in any base she wants. When
they announce the measurement bases, she can select the correct
measurement outcomes and then she has the key.

4.2 Intuitive Explanation

Anyone who is not shocked by quantum theory has
not understood it.

— Niels Bohr, 1934 [86]

No real solution to the EPR paradox was found up in the decades
following the EPR paper. It took until 1964 when Bell published
his celebrated theorem [80], which puts limits on what correla-
tions can be achieved by hidden-variable theories. Bell’s contribu-
tionwas to show thatNature experimentally invalidates EPR’s view
of the world [62, p. 114]. We will now present another thought
experiment, the second so far in this chapter. The current thought
experiment will show how quantummechanics goes against “com-
mon sense” and is adapted from the textbook by Nielsen and
Chuang [62, pp. 114–117].
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Source

𝐴1/𝐴2
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Figure 4.2: A simple thought experiment for deriving Bell’s inequality.
Alice and Bob each randomly choose between twomeasurement settings
for each trial, and they then compute the correlation of their outcomes.

Similar to the EPR experiment in section 4.1, Alice and Bob
each have an analysis station, which receives particles from a
source. The source prepares pairs of particles and sends one to
Alice and one to Bob. Alice has a choice of two settings for her
analysis station, either measure some properties 𝐴1 or 𝐴2 while
Bob can measure some properties 𝐵1 or 𝐵2. For example, we can
choose to measure spin along two different directions, just like in
the EPR example in section 4.1. Note, however, that the reasoning
below will be general to any choice of measurements that gives
outcomes ±1. Alice and Bob randomly determine which of their
two respective measurements they perform, but it is important
that this choice is done at the last possible instant, i.e., when the
particles are received. Otherwise, Alice might be able to see Bob’s
measurement setting in advance and vice versa. We let Alice and
Bob be very far away from each other and arrange the timing
so that the measurements are performed simultaneously. Since
physical influences cannot propagate faster than light, Alice’s mea-
surements cannot influence those made by Bob. The experiment
is depicted in figure 4.2.

Continuing the thought experiment, we write down the quan-
tity |𝐴1𝐵1 + 𝐴2𝐵1| + |𝐴1𝐵2 − 𝐴2𝐵2| and perform some algebraic
manipulations:

||𝐴1𝐵1+𝐴2𝐵1||+||𝐴1𝐵2−𝐴2𝐵2|| = ||(𝐴1+𝐴2)𝐵1||+||(𝐴1−𝐴2)𝐵2||. (4.4)

The only possible values for 𝐴1 and 𝐴2 are +1 or −1. Therefore,
they are either equal or have opposite signs, so either we have
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(𝐴1 + 𝐴2)𝐵1 = 0 or (𝐴1 − 𝐴2)𝐵2 = 0. Either way, the only value
equation (4.4) can attain is 2. If we also let 𝑝(𝑎1, 𝑎2, 𝑏1, 𝑏2) rep-
resent the probability of the particles being in the state 𝐴1 = 𝑎1,
𝐴2 = 𝑎2, 𝐵1 = 𝑏1, and 𝐵2 = 𝑏2 before being measured, we calculate
the expected value of equation (4.4):

𝐸(||𝐴1𝐵1 + 𝐴2𝐵1|| + ||𝐴1𝐵2 − 𝐴2𝐵2||)

= ∑
𝑎1,𝑎2,𝑏1,𝑏2

𝑝(𝑎1, 𝑎2, 𝑏1, 𝑏2)(||𝑎1𝑏1 + 𝑎2𝑏1|| + ||𝑎1𝑏2 − 𝑎2𝑏2||)

≤ ∑
𝑎1,𝑎2,𝑏1,𝑏2

𝑝(𝑎1, 𝑎2, 𝑏1, 𝑏2) × 2 (4.5)

= 2.

Next, we use the linearity of expectation and get

𝐸(||𝐴1𝐵1 + 𝐴2𝐵1|| + ||𝐴1𝐵2 − 𝐴2𝐵2||)

= ||𝐸(𝐴1𝐵1) + 𝐸(𝐴2𝐵1)|| + ||𝐸(𝐴1𝐵2) − 𝐸(𝐴2𝐵2)||,
(4.6)

which works because all outcomes are ±1, and if we put inequal-
ity (4.5) and equation (4.6) together we obtain the Bell inequality

||𝐸(𝐴1𝐵1) + 𝐸(𝐴2𝐵1)||+||𝐸(𝐴1𝐵2) − 𝐸(𝐴2𝐵2)|| ≤ 2. (4.7)

The Bell inequality bounds the correlations obtained from any
“common-sense” system. Now we ask ourselves what predictions
a quantum-mechanical system would give. In this quantum ex-
periment (also depicted in figure 4.2) the source does not prepare
classical particles, but qubits. These qubits are in the Bell state de-
fined in equation (2.17) and just like before, one qubit goes to Alice
and one to Bob. We now define Alice’s and Bob’s measurement
operators in terms of the Pauli matrices introduced in section 2.3:

𝐴1 = 𝜎𝑧,
𝐴2 = 𝜎𝑥,

𝐵1 = − 1
√2

(𝜎𝑍 + 𝜎𝑋),

𝐵2 =
1
√2

(𝜎𝑍 − 𝜎𝑋).

(4.8)
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We now compute the expected values of these observables

𝐸(𝐴1𝐵1) =
1
√2

, 𝐸(𝐴2𝐵1) =
1
√2

,

𝐸(𝐴1𝐵2) = − 1
√2

, 𝐸(𝐴2𝐵2) =
1
√2

,
(4.9)

and summing it all up we get

||𝐸(𝐴1𝐵2) + 𝐸(𝐴2𝐵1)|| + ||𝐸(𝐴1𝐵2) − 𝐸(𝐴2𝐵2)|| = 2√2. (4.10)

This is a profound result. Equation (4.10) is larger than the bound
in inequality (4.7) [62, pp. 114–117] and it would appear that
quantum mechanics is in contradiction with the “common-sense”
rules we previously defined. How is this possible? Surely every
step of our previous thought experiment was correct, right? We
have to scrutinize our intuition of “common sense” and explicitly
write down what we mean by it.

We will find two basic and intuitive ideas [62, p. 117]. So basic
and intuitive, in fact, that EPR rather rejected quantummechanics
than forego them. The two ideas, stated informally, are:

1. Physical properties corresponding to the values 𝐴1, 𝐴2, 𝐵1,
and 𝐵2 exist no matter if we are observing them or not. This
is called realism.

2. Alice’s measurement does not influence the results of Bob’s
measurements and vice versa. This is, as we previously saw
when discussing EPR, called locality.

The next section will give a formal definition of realism and local-
ity and look closely at Bell’s Theorem. Then we will discuss the
consequences of the theorem and put it to use in QKD.

4.3 The Black Box Model

I recall that during one walk Einstein suddenly
stopped, turned to me and asked whether I really be-
lieved that the moon exists only when I look at it. The
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SourceA
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Figure 4.3: The black box model hides the inner workings of the analysis
stations and only dealswith themeasurement settings (twopush buttons)
and measurement outcomes (+1 or−1).

rest of this walk was devoted to a discussion of what a
physicist should mean by the term “to exist”.

— Abraham Pais, 1979 [87, p. 907]

To give a definition of realism and locality, we first begin by ab-
stracting away all device-specific information of the interferometer.
By ignoring everything about the design, we can create a formal
model for measurements and outcomes, which can be applied to
any such setup. The analysis stations will be replaced by black
boxes as shown in figure 4.3, where the interface consists of the
quantum channel, a number of push buttons as input, and an +1
and −1 as output. This black box model simplifies the security
analysis and will be useful for our discussion of Bell’s Theorem.

Weuse the symbol 𝜆 for the hidden variable that can take values
in a sample space Λ. We further assume that Λ has a probability
𝑃, which induces the expectation value from definition 2.5. Next,
we formally define realism and locality:

Definition 4.1 (Realist Systems) A system is said to be realist if
the following is true 𝑃-almost everywhere: The analysis stations
can be described by two families of real-valued random variables.
𝐴𝑖,𝑗 ∶ Λ → ℝ is Alice’s analysis station and 𝐵𝑖,𝑗 ∶ Λ → ℝ is Bob’s
analysis station. 𝐴𝑖,𝑗 maps a hidden variable 𝜆 ∈ Λ to 𝐴𝑖,𝑗(𝜆) and
similarly 𝐵𝑖,𝑗 maps 𝜆 ∈ Λ to 𝐵𝑖,𝑗(𝜆).
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4. Bell’s Theorem

Definition 4.2 (Bounded Systems) A realist system is said to
be bounded if the absolute values of the outcomes are not greater
than 1:

||𝐴𝑖,𝑗(𝜆)|| ≤ 1 and ||𝐵𝑖,𝑗(𝜆)|| ≤ 1. (4.11)

Definition 4.3 (Local Systems) A realist system is said to be
local if the following is true 𝑃-almost everywhere: Outcomes only
depend on the local settings, e.g. for integers 𝑘 ≠ 𝑖, 𝑙 ≠ 𝑗 we have

𝐴𝑖,𝑗(𝜆) = 𝐴𝑖,𝑙(𝜆) and 𝐵𝑖,𝑗(𝜆) = 𝐵𝑘,𝑗(𝜆). (4.12)

As a local system only depends on local settings, so the following
shorthand is useful and well-defined:

𝐴𝑖
def
= 𝐴𝑖,𝑗(𝜆) and 𝐵𝑗

def
= 𝐵𝑖,𝑗(𝜆). (4.13)

We will often study systems that have all three of the above prop-
erties. Therefore the following definition is convenient:

Definition 4.4 (Bounded Local Realist Systems) A bounded
local realist system is a system that fulfills definitions 4.1 to 4.3.

For the rest of this thesis, all systems are assumed to be bounded, so
wewill simply refer to these systems as “local realist”. Looking back
at hidden variables, we see that they (i) are defined as underlying
mechanisms that result in a specific outcome, thereby implying
realism, and they (ii) only affect the local system, thereby implying
locality. This shows that any system described by hidden variables
is a local realist system, so we will refer to such systems as “being
governed by an Local Hidden Variable (LHV) model”.

We now move to the main result of this chapter and present a
modified version of Bell’s Theorem [80]. This modification is due
to Clauser et al. [88] and overcomes the limitation of Bell’s original
theorem where outcomes are only allowed to have the values +1
and −1. In the literature, this modified inequality is referred to
as the Clauser-Horne-Shimony-Holt (CHSH) inequality after the
authors, but for clarity we will refer to it as Bell-CHSH. Here, we
are concerned with the following quantity:
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4.3. The Black Box Model

Definition 4.5 (Bell Value) The Bell value for a system with two
settings per observer is defined as

𝑆(2)
def
= ||𝐸(𝐴1𝐵1) + 𝐸(𝐴2𝐵1)||

+ ||𝐸(𝐴1𝐵2) − 𝐸(𝐴2𝐵2)||.
(4.14)

The reason for this notation will become apparent in section 8.1.
Before we give any further information on the behavior of 𝑆(2),
however, we note the important algebraic bound of the Bell value:

Theorem 4.6 (Trivial Bell Value) Algebraically, the maximum
value of the Bell value in equation (4.14) for a bounded system is

𝑆(2)max = 4. (4.15)

Proof For a bounded system, the absolute values of the outcomes
are not greater than 1. As a consequence, the absolute values of
the expectations 𝐸(𝐴𝑖𝐵𝑗) are bounded by 1, and the result follows
because there are four such expectations.

We now present the Bell-CHSH inequality [80, 88]:

Theorem 4.7 (Bell-CHSH) The Bell value for a local realist sys-
tem with two settings per observer obeys

𝑆(2) ≤ 2. (4.16)

Proof We have essentially given the proof in section 4.2. For a
more formal approach, refer to Bell [80] Clauser et al. [88].

Thanks to the black box formalism we were able to state theo-
rem 4.7 independently of quantum mechanics. What happens if
we take a quantum system and compute its Bell value using the
predictions of quantum mechanics? Refer again to the discussion
in section 4.2, which gives us the following:

Theorem 4.8 (Quantum Prediction of the Bell Value) Quan-
tum mechanics can produce the Bell value

𝑆𝑄𝑀(2) = 2√2. (4.17)
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4. Bell’s Theorem

Proof See section 4.2 and publication A.

In fact, the value given in theorem 4.8 is an upper bound to the
Bells value produced by quantum mechanics. This was shown
in 1980 by Cirel’son [89], and the bound in equation (4.17) is
sometimes referred to as Cirel’son’s bound.

We note that the quantum prediction in theorem 4.8 violates
theorem 4.7. This implies that quantum mechanics is in violation
of the Bell-CHSH inequality, or alternatively, that quantum me-
chanics violates local realism. This insight is usually referred to as
Bell’s Theorem and it rules out all LHV descriptions of quantum
mechanics. Recall from our discussion in section 4.1 that EPR
then argues that we must accept “spooky action at a distance”,
i.e., the existence of a connection between distant particles that
acts faster than the speed of light. Therefore, the paradox of EPR
is resolved by letting go of our implicit assumption that Nature
behaves in the “common-sense” manner of locality and realism.

From the above reasoning wemust conclude that there exists a
phenomenon where distant particles form a system that cannot be
divided into independent subsystems. This is called entanglement.
An example of quantum states exhibiting entanglement are the
Bell states in equation (2.17), because there exist no states |Ψ𝐴⟩
and |Ψ𝐵⟩ so that the tensor product |Ψ𝐴⟩ ⊗ |Ψ𝐵⟩ equals a Bell
state. Conversely, states that can be factored in this way are called
separable. Consider the following:

1
2(
|00⟩ + |01⟩ + |10⟩ + |11⟩)

= 1
√2

(|0⟩ + |1⟩) ⊗ 1
√2

(|0⟩ + |1⟩).
(4.18)

Such a state can be described in terms of its subsystems, and it is
therefore separable.

Entanglement is indeed a peculiar phenomenon that has no
equivalent in the classical world. The human mind is used to
phenomena that are local and realist – which entanglement clearly
is not. Nielsen and Chuangwrite that entanglement can be used to
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𝜋0
𝐴1/𝐴2

−ℏ/2

+ℏ/2

𝐵1/𝐵2

−ℏ/2

+ℏ/2

Figure 4.4: The E91 QKD protocol. A 𝜋 meson decays into two
polarization-correlated entangled particles, which are measured along
different axes by Alice and Bob. The resulting correlations violate Bell’s
inequality.

create other peculiar phenomena, such as quantum teleportation
and quantum error-correcting codes [62, pp. 25–28], all building
blocks for a future quantum computer. We end this section with
the following broad outlook:

Entanglement is a uniquely quantummechanical re-
source that plays a key role in many of the most in-
teresting applications of quantum computation and
quantum information; entanglement is iron to the
classical world’s bronze age.

— Nielsen and Chuang [62, p. 11]

4.4 Ekert’s QKD Protocol

In 1991, Arthur Ekert [90] published a paper that detailed a QKD
protocol that uses entanglement. As this discovery was made
seven years after BB84, it was not the first QKD protocol, however
it was the first protocol based on Bell’s Theorem. In addition,
Ekert was unaware of the work by Bennett and Brassard [65] so
this discovery was made independently of theirs. The protocol is
called E91, and in this setting there there is no hierarchy between
Alice and Bob. Instead, their roles are very similar and the state
preparation task is instead given to a source device.
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4. Bell’s Theorem

E91 works in a similar way to the EPR thought experiment in
section 4.1 and uses the same spin-1/2 particles2. We therefore use
a 𝜋meson as an entanglement source just like EPR, and the setup
is depicted in figure 4.4. An important difference to BB84 is that it
is not a prepare-and-measure protocol. Instead, we refer to it as a
being entanglement-based. Interestingly, an eavesdropper cannot
gain knowledge about the key from eavesdropping on the channel,
as no information is encoded there. In the words of Ekert [90],

The information “comes into being” only after the legit-
imate users performmeasurements and communicate
in public afterwards.

This, of course, relies on the impossibility of faster-than-light
influences [91]. In addition, more significant attacks are possible
such as replacing the source device with a Trojan device of the
attacker’s own making. This Trojan-horse attack, however, will
be detected by Alice and Bob when they test for a violation of
Bell’s inequality. Alice and Bob orient their detectors in order
to measure spin in the plane orthogonal to the spin axis. In this
plane, Alice chooses measurement angles 𝐴1 = 0 and 𝐴2 = 𝜋/2,
while Bob chooses 𝐵1 = 𝜋/4 and 𝐵2 = 3𝜋/4. Again, Alice’s and
Bob’s outcomes are ±1, so for 1 ≤ 𝑖, 𝑗 ≤ 2 we have

𝐸(𝐴𝑖𝐵𝑗) = 𝑃(𝐴𝑖 = +1, 𝐵𝑗 = +1)
−𝑃(𝐴𝑖 = −1, 𝐵𝑗 = +1)
−𝑃(𝐴𝑖 = +1, 𝐵𝑗 = −1)
+𝑃(𝐴𝑖 = −1, 𝐵𝑗 = −1),

(4.19)

which is the correlation between Alice’s and Bob’s measurement
outcomeswhenAlice performsmeasurement𝐴𝑖 andBob performs
𝐵𝑗. Following the method of Ekert [90] we compute

𝐸(𝐴𝑖𝐵𝑗) = − cos(𝜙𝐴 − 𝜙𝐵), (4.20)
2It should be noted that while Ekert’s original paper called for spin-1/2

particles, experimental realizations have instead used polarized photons as they
are easier to handle.
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where 𝜙𝐴 is the angle along which Alice performs measurement
𝐴𝑖, and 𝜙𝐵 is the corresponding angle for Bob’s measurement 𝐵𝑗.
The four correlations are then identical to those in equation (4.9)
so the quantum prediction of the Bell value for the E91 setup is

𝑆𝑄𝑀(2) = ||𝐸(𝐴1𝐵1) + 𝐸(𝐴2𝐵1)||

+ ||𝐸(𝐴1𝐵2) − 𝐸(𝐴2𝐵2)|| = 2√2,
(4.21)

in agreement with theorem 4.8. Alice and Bob now perform a Bell
test, i.e., measure the value 𝑆(2) and compare it with the bound
in theorem 4.7. If there is no violation (i.e., 0 ≤ 𝑆(2) ≤ 2) Eve
might have attempted an attack, and Alice and Bob have to stop
communicating. This is the failure state of the Bell test. If they
instead have 2 < 𝑆(2) ≤ 2√2, the test passes and they can continue
with the rest of the protocol. In other words, the Bell test acts as a
security test that the system must pass before it can be trusted3.

4.5 Device-Independent QKD

The black box model described in section 4.3 allows the designer
of a QKD system to greatly simplify the security analysis. It is a
problem in both prepare-and-measure and entanglement-based
protocols that some kind of trust must be placed in the source and
the analysis stations. What if the analysis station manufacturer is
infiltrated by Eve? Who do we trust?

In our discussion of the BB84 protocol in section 3.1, Alice and
Bob perform measurements on a random subset of the raw bits
and compare these with each other. They will then know [92]
whether or not the communication is to be trusted. A full security
proof of unconditional security in this scenario, however, requires
intimate knowledge of the analysis stations and trust in their man-
ufacturing process. In theory, there do exist proofs for QKD being
unconditionally secure (section 3.2), however the proofs assume

3Note that we have omitted some details in the E91 protocol required to
actually produce a secret key.
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ideal situations that cannot be achieved in the general experimen-
tal case. Scarani [93] describes a number of such complications.

The E91 protocol instead uses a violation of the Bell inequal-
ity to certify the system as secure. Instead of having to perform
tedious proofs that involve the complicated inner workings of the
analysis stations like in BB84, the Bell test only involves measure-
ment outcomes. After Ekert’s initial publication [90], subsequent
works by various authors provided a few more pieces to the puz-
zle [91, 94] but as Acin et al. [95] points out, these results either
did not give the whole picture, nor did they prove the general case
with noise. In 2002, Larsson [96] pointed out that non-ideal
devices is a serious problem for E91 and explicitly showed how
this can be exploited to perform a Trojan-horse attack while still
violating the Bell-CHSH inequality. Instead, a breakthrough came
with the development of device-independent QKD (DI-QKD), a
term coined by Acin et al. [95] in 2007. The history of events that
led up to this new idea is documented by Scarani [93, pp. 56–58].

DI-QKD takes a step back from traditional QKD and only as-
sumes Eve to be constrained by quantum mechanics. This is a
considerable relaxation over traditional QKD protocols thatnot
only assumes hostile control of the source, but also of the quan-
tum channel and the analysis stations. To only be constrained
by quantum mechanics means Eve can do almost anything she
wants with only a few exceptions such as the no signaling princi-
ple, which forbids communication faster than the speed of light.
Acin et al. [95] write:

The only data available to Alice and Bob to bound
Eve’s knowledge are the observed relation between
the measurement settings and outcomes, without any
assumption on how the measurements are actually
carried out or on what system they operate.

In addition to the above security assumption of Eve obeying the
laws of quantum mechanics, Alice and Bob are also assumed to
be free to choose secret measurement settings, and that the out-
comes they measure are kept secret [95]. Usually, these two last
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assumptions are referred to as saying that “no information should
leak out of Alice’s and Bob’s laboratories”. It is also important
that their measurement settings are random, i.e., unpredictable
by Eve, which means that settings must be decided by a Random
Number Generator (RNG). Two approaches are possible here, ei-
ther a Pseudo-Random Number Generator (PRNG), which is a
deterministic algorithm which generates random numbers using
an initial seed, or a True Random Number Generator (TRNG),
which generates truly random numbers. An important type of
TRNG is the Quantum Random Number Generator (QRNG),
which generates true randomness by observing some quantum
phenomenon.

It is important to note that a QKD protocol must rely on a Bell
inequality violation in order to function with DI security assump-
tions. To illustrate this, we study an entanglement-based variant
of BB84 and follow an example adapted from Pironio et al. [92].
This modified BB84 protocol produces only the outcomes +1 and
−1 in a similar way to E91. Alice and Bob perform measurements
on a quantum system, and they randomly choose between mea-
surement operators 𝐴1, 𝐴2, 𝐵1, and 𝐵2 in the usual way. Here, 𝐴1
and 𝐵1 measure 𝜎𝑥 while 𝐴2 and 𝐵2 measure 𝜎𝑧.

Suppose now that Alice and Bob observe perfectly correlated
outcomes if their measurement settings agree, and uncorrelated,
random outcomes if they disagree. Rewriting this in Dirac’s bra-
ket notation we get

⟨𝜓| (𝜎𝑥 ⊗ 𝜎𝑥) |𝜓⟩ = ⟨𝜓| (𝜎𝑧 ⊗ 𝜎𝑧) |𝜓⟩ = 1,

⟨𝜓| (𝜎𝑥 ⊗ 𝜎𝑧) |𝜓⟩ = ⟨𝜓| (𝜎𝑧 ⊗ 𝜎𝑥) |𝜓⟩ = 0,
(4.22)

and the only state fulfilling the requirements of equation (4.22) is
the Bell state |Φ+⟩, which allows Alice and Bob to safely extract a
secret key without the influence of Eve [92].

However, if the same protocol is used with the relaxed security
assumptions of DI-QKD, Alice and Bob will have a problem. They
can no longer assume that their measurement operators corre-
spond to the previously defined Pauli matrices, nor do they know
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what state is actually being measured upon. Remember that DI
security assumptions assume the devices to be under hostile con-
trol. With the conditions favoring her this time, Eve hijacks the
source device and modifies it so it produces a state consisting of
four qubits [97] described by the following density matrix:

𝜌 = 1
4(
|00⟩ ⟨00|𝑧 + |11⟩ ⟨11|𝑥) ⊗ (|00⟩ ⟨00|𝑥 + |11⟩ ⟨11|𝑧). (4.23)

Eve sends the first and third qubits to Alice, and the second and
fourth to Bob. They perform the measurements 𝐴1, 𝐴2, 𝐵1, and
𝐵2, however as Eve manufactured their devices, they do not what
measurements are actually performed. In any way, they find cor-
relations in agreement with equation (4.22), even though they no
longer measure a Bell state. In fact, equation (4.23) is a separable
state, which means that Eve can learn the secret key if Alice and
Bob were to extract it [92, 97]. Specifically, Eve was able to fool
Alice and Bob into using a higher-dimensional system than they
expected, because the DI security assumptions do not guarantee
the dimensionality of the underlying system.

If a suitable protocol is used, DI-QKD does work because any
state producing the Bell value 2√2 is a Bell state or a state isomor-
phic to it [98]. In the words of Pironio et al. [92], non-locality is
“the physical principle on which all DI security proofs are based”.
Indeed, the security assumptions of DI-QKD only work for proto-
cols that violate Bell’s inequality, and BB84 is not such a protocol.

An important fact about Bell’s Theorem is its independence
from the underlying description of the universe. The derivation in
section 4.2 only assumes locality and realism, so the Bell inequality
applies to any “common-sense” system with remote correlations.
We only invoke quantummechanics when we show that quantum
mechanics is in violation of it. Analyzing the Bell value does not in-
volve thinking about “paths in an interferometer”, “Hilbert spaces”,
“photons” and so on. Therefore, if the measurement outcomes
of a QKD system violates the Bell inequality, it follows that the
state is not classical and the corresponding QKD system can be
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certified as secure (bar any loopholes that will be discussed in the
next chapter).

We can conclude that DI-QKD allows Alice and Bob to use
Bell’s inequality as a security test for a whole QKD system without
requiring trust in either the source, quantum channels, or the
analysis stations. As long as they are free to secretly choose settings
for their analysis station and observe a violation of Bell’s inequality,
they can rule out the presence of Eve.
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Chapter 5

Loopholes in Bell Experiments

But power suppliesmake noise, and not the same noise
for the different voltages needed for different polariza-
tions. So, we could literally hear the photons as they
flew, and zeroes and ones made different noises. Thus,
our prototype was unconditionally secure against any
eavesdropper who happened to be deaf!

—Gilles Brassard, 2005 [64, p. 20]

The theory of DI-QKD is appealing due to its elegance and sim-
plicity. In theory, the Bell test works thanks to Bell’s Theorem: no
LHVmodel canmimic Alice’s and Bob’s measurement outcomes if
they measured a quantum system. In practice, however, there will
be complications introduced by the reality of performing delicate
physical experiments in the real world. The above story told by
Gilles Brassard highlights such a reality, where the sound made by
the power supplies controlling the polarizers leaked information
about the setting.

In section 4.5 we stated one of the requirements of DI-QKD—
secrecy of setting. If Eve learns the settings Alice and Bob choose
for the trials (i.e., which button is pressed in the black-boxmodel of
figure 4.3), she can hijack the quantum channel and send tailored
signals to the analysis stations. If done correctly, such an attack
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allows Eve to prescribe the measurement outcomes, and therefore
lets her fake a Bell value that violates the Bell-CHSH inequality
even though the system is classical, i.e., local realist. If Alice and
Bob are attempting QKD, Eve will also know Alice’s and Bob’s
secret key!

Analysis stations that leak setting information therefore break
the security of QKD by allowing LHV models to produce Bell
values in violation of theorem 4.7. Such an undesired condition
is called a loophole, and there are many different ways in which
a Bell test can be subverted. The situation described by Gilles
Brassard in the introduction to this chapter is an example of the
locality loophole, where the noise is a so-called side-channel that
leaks the setting to Eve. Again, the black-box model assumes Alice
and Bob to be able to secretly choose measurement settings, and
noisy power supplies breaks this assumption.

Even worse, the black box model fails even in the absence of an
intentional attacker. The mere hypothetical possibility of source
emissions being affected by the measurement settings is enough
to invalidate the experiment. While we have no model to describe
how Nature would tailor the source emissions, we do not want to
assume that Nature behaves in a certain way. Rather, we want to
test the Bell inequality in an experiment where the no-signaling
principle light rules out communication from the analysis station
to the source. By eliminating the locality loophole, we rule out
both intentional attackers, and tricks played by Nature herself.

A sufficient condition for closing the locality loophole is to
spatially separate the event of choosing the measurement setting
from the source device. If the separation is large enough, the
emission event of the source is outside of the forward light cone
of the setting choice. This way, any signal travelling from the
analysis station to the source will arrive after the source emission
has occurred. The rest of this chapter will discuss a number of
loopholes that affect the interpretation of Bell experiments.

58



5.1. The Detection Loophole

5.1 The Detection Loophole

Closing the locality loophole needs a system that is
easy to transport while keeping entanglement intact.
The system of choice is photons, and photon detectors
are inefficient—more accurately, photon correlation
experiments are inefficient.

— Jan-Åke Larsson, 2014 [99, p. 16]

The first study of a loophole in the context of Bell’s Theorem was
made in 1970, when Pearle [100] realized that an ostensible vio-
lation of the Bell-CHSH inequality can be fabricated from a local
realist system. Pearle discovered that by carefully excluding some
of the events from being counted towards the Bell value, it can
be artificially inflated. Pearle’s example shows that care must be
takenwhenever implementing a Bell test as losing toomany events
causes a “fake” violation. This loophole, the detection loophole, is
an inherent problem in any experimental Bell test as optical fibers,
beam splitters, and detectors have inherent losses. If losses are too
high, the experimenter must make the fair-sampling assumption:
that the statistical distribution of lost events is identical to those
that are detected. This is a dangerous assumption to make as
there is no way of proving its correctness, possibly opening up the
system to attack. In some cases, the experimental design itself
causes losses even when using ideal components, as will be shown
in the case of the Franson interferometer in section 6.1.

Whenever we are dealing with a lossy system, the losses must
be quantified and studied. Next, we must find an upper bound to
the losses, i.e. when does the quantum-mechanical prediction in
equation (4.17) no longer violate the bound in theorem 4.7? This
question was formally answered by Larsson [101] andmodels non-
detections as the random variables𝐴 and 𝐵 being undefined at the
respective points in Λ. Consequently, we now work on subspaces
of Λ, and in general these subspaces will not be independent of
the measurement settings 𝑖 and 𝑗:
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Definition 5.1 (Subsets of the Sample Space) We define Λ𝑋 as
the subset of Λ where the random variable 𝑋 is defined.

Wenow use conditional expectations from definition 2.5 to restrict
the expected value onto these subsets. This is needed because the
expectation values 𝐸(𝐴𝑖𝐵𝑗) in definition 4.5 are no longer well-
defined. Instead, we define new random variables

(𝐴𝑖𝐵𝑗)(𝜆)
def
= 𝐴𝑖(𝜆) ×𝐵𝑗(𝜆) (5.1)

for 1 ≤ 𝑖, 𝑗 ≤ 2, and note that they are defined on Λ𝐴𝑖𝐵𝑗⊂Λ.
We now give the Bell value for a system under the influence of

detector losses. Therefore, we modify definition 4.5 by replacing
all 𝐸(𝐴𝑖𝐵𝑗) with expectation values conditioned on subsets of Λ
where 𝐴 and 𝐵 are defined, i.e., 𝐸(𝐴𝑖𝐵𝑗|Λ𝐴𝑖𝐵𝑗). We then get

Definition 5.2 (Bell Value, Conditioned on Coincidence) The
Bell value for a system with two settings per observer is defined as

𝑆𝐶(2)
def
= ||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+ ||𝐸(𝐴1𝐵2|Λ𝐴1𝐵2) − 𝐸(𝐴2𝐵2|Λ𝐴2𝐵2)||.
(5.2)

if only coincident events are considered.

Note that definition 5.2 coincides with definition 4.5 if the random
variables 𝐴 and 𝐵 are defined for all 𝜆 ∈ Λ.

Our new framework allows us to take non-detections into ac-
count and therefore is more flexible than our previous definitions
in section 4.3. Next, we quantify the non-detections using condi-
tional probabilities and adopt the notation of Cabello et al. [102]:

Definition 5.3 (Detection Efficiency) The detection efficiencies
at the individual analysis stations are

𝜂𝐴
def
= min

𝑖,𝑗,𝑘,𝑙
𝑃 (Λ𝐴𝑖,𝑘

|Λ𝐵𝑙,𝑗) ,

𝜂𝐵
def
= min

𝑖,𝑗,𝑘,𝑙
𝑃 (Λ𝐵𝑙,𝑗|Λ𝐴𝑖,𝑘

) ,
(5.3)
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and the overall efficiency is

𝜂
def
= min 𝜂𝐴, 𝜂𝐵. (5.4)

Note that when we define Λ𝐴𝑖𝐵𝑗 in terms of detection efficiency, it
can be factored because detection is a local process:

Λ𝐴𝑖𝐵𝑗 = Λ𝐴𝑖
∩Λ𝐵𝑗. (5.5)

We now get the following:

Theorem5.4 (DetectionEfficiency forLocalRealist Systems)
For local realist systems, definition 5.3 reduces to

𝜂𝐴
def
= min

𝑖,𝑗
𝑃 (Λ𝐴𝑖

|Λ𝐵𝑗) ,

𝜂𝐵
def
= min

𝑖,𝑗
𝑃 (Λ𝐵𝑗|Λ𝐴𝑖) .

(5.6)

Proof Realism implies that measurement outcomes can be de-
scribed by random variables 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗. Definition 4.3 shows
that locality impliesΛ𝐴𝑖,𝑗

= Λ𝐴𝑖,𝑙
andΛ𝐵𝑖,𝑗 = Λ𝐵𝑘,𝑙 for all 𝑘 ≠ 𝑖 and

𝑙 ≠ 𝑗. Therefore, we can drop the 𝑗 index for the random variable
𝐴 and the 𝑖 index for the random variable 𝐵.

The question now is if theorem 4.7 still applies to the Bell value
in definition 5.2. The answer is no, because when we attempt to
use the proof for theorem 4.7 we quickly run into the following
expression:

||𝐸(𝐴1𝐵1) + 𝐸(𝐴2𝐵1)||

=
|
|
|
∫
Λ𝐴1𝐵1

𝐴1(𝜆)𝐵1(𝜆)𝑑𝑃(𝜆) +∫
Λ𝐴2𝐵1

𝐴2(𝜆)𝐵1(𝜆)𝑑𝑃(𝜆)
|
|
|
.

(5.7)

The next step is to rewrite the integrals as one, but this cannot
be done because Λ𝐴1𝐵1 ≠ Λ𝐴2𝐵1 in general. We must therefore
generalize theorem 4.7 in order to take these coincident subspaces
into account. We have the following result:
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Theorem 5.5 (Bell-CHSH with Detection Efficiency) A local
realist system with two settings per observer and detection effi-
ciency 0 < 𝜂 ≤ 1 obeys

𝑆𝐶(2) ≤
4
𝜂 − 2. (5.8)

Proof See Larsson [101].

In the beginning of this section we noted that the Bell value can
be artificially inflated by removing events from the statistical en-
semble. Thanks to theorem 5.5 we can now take these losses into
account and compare this inflated value with the new bound in
inequality (5.8). Importantly, the right-hand side of the inequality
goes up as the detection efficiency goes down. For 𝜂 = 1we recover
theorem 4.7, but even small losses will have dramatic effects for
the interpretation of an experiment.

Let us compare the right-hand value of inequality (5.8) with
other bounds previously discussed in section 4.3. First is the trivial,
algebraic limit in theorem 4.6. We want to solve the equation
where the algebraic maximum 𝑆(2)max in theorem 4.6 coincides
with the right-hand-side of inequality (5.8) and solve for 𝜂:

4 = 4
𝜂 − 2. (5.9)

We then get the following:

Remark 5.6 (Trivial Detection Efficiency for Bell-CHSH) For
0 < 𝜂 ≤ 1, equation (5.9) has a unique solution in

𝜂trivial
def
= 2
3 ≈ 0.6667. (5.10)

In other words, a detection efficiency below 66.67% will lead to
an experiment where it is impossible for 𝑆𝐶(2) to violate inequal-
ity (5.8), no matter what physical reality governs our universe.

Of greater importance is the efficiency threshold where the
right-hand side of inequality (5.8) coincides with 𝑆𝑄𝑀(2) – the
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prediction of quantum mechanics given in theorem 4.8. We solve
the following equation for 𝜂:

2√2 = 4
𝜂 − 2. (5.11)

We then get the following:

Remark5.7 (CriticalDetectionEfficiency forBell-CHSH) For
0 < 𝜂 ≤ 1, equation (5.11) has a unique solution in

𝜂critical
def
= 2 (√2 − 1) ≈ 0.8284. (5.12)

This is the minimum detection efficiency, below which even the
quantum-mechanical prediction does not violate local realism.
Any experiment that intends to violate the Bell-CHSH inequality
without the detection loophole must have a detection efficiency of
at least 𝜂critical=82.84%.

Note that there exists an equivalent Bell-type inequality that
allows a lower level of detection efficiency than theorem 4.7.
The 1974 Clauser-Horne (CH) inequality [103] works down to
𝜂critical =2/3≈66.67% if a non-maximally entangled state is used.
The drawback of CH compared to Bell-CHSH is the need to esti-
mate probabilities, which is more difficult than simply measuring
the correlations 𝐸(𝐴𝑖𝐵𝑗).

5.2 The Coincidence-Time Loophole

Our rigorous study of the detection loophole gave us the mini-
mum detection efficiency required to close the detection loophole.
However, as previously mentioned, there still remain a number of
loopholes that can lead to alternate explanations for an ostensible
Bell violation. See Larsson [99] for a review of loopholes in Bell
experiments.

We next study another important effect that arises in many ex-
periments. The expectations in definitions 4.5 and 5.2 are taken of
products of random variables, which implies they are to be studied
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as pairs. In the ideal case this is simple, but most detectors have
dark counts, a property makes them click even when no input has
been given. In addition to dark counts, there are non-detections
(compare the detection loophole), and jitter, all of which turns
pair-determination into a non-trivial problem.

This practical consideration of Bell testing is compounded
by the discovery of Hess and Philipp [104] that there exists a
tacit assumption of time invariance in the Bell value, which is not
sufficiently motivated. In fact, Hess and Philipp argue that the
time of detection can be dependent on the setting of the analysis
station.

During an experimental run, Alice’s and Bob’s detectors record
a stream of clicks. These clicks must then be reconciled in order
to compute the pairwise expectations 𝐸(𝐴𝑖𝐵𝑗). A commonmethod
is to fix a time window1 Δ𝜏 centered around Alice’s click, and
a detection event on Bob’s side that falls within this window is
considered coincident. The larger the window, the better the
chance that both detections belonging to a pair are coincident.
However, this also increases noise as spurious detections within
the window count towards the expectation. Noise is easy to notice,
while non-detections happen silently. Therefore, experimenters
are usually biased to choose a very small time window as this
excludes noise and leads to a larger Bell value.

However, a small time window can also exclude truly coinci-
dent events from the Bell measurement. This effect is essentially
the same as discussed in section 5.1, where removing events from
the statistical ensemble skews the results. In fact, if coincidences
are lost, it must be assumed that the output statistics are not af-
fected. This is the “fair-coincidence” assumption [105] and it is
argued by Larsson et al. [105] that this assumption has beenmade,
consciously or not, by virtually every reported Bell experiment up
to at least 2014.

1Commonly, Δ𝑇 is the preferred symbol for the time window size, however
we use Δ𝜏 here in order to prevent confusion with the Franson interferometer
time difference in section 6.1.
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If an experiment is performed where coincidences are incor-
rectly assumed to be fair, themeasured Bell value can be artificially
inflated, which leads to a new loophole, called the coincidence-
time loophole. Some experimental configurations are more af-
fected than others, for instance Spontaneous Parametric Down-
Conversion (SPDC) has a large variance in emission time and
must take this loophole into account. Experiments that are opti-
cally pulsed [56] or use ion traps [106], however, are generally
immune.

A formal treatment of the coincidence-time loophole for the
Bell-CHSH inequality was performed by Larsson and Gill [107]
in 2004, who treated the lost coincidences in a similar way to the
lost detections in section 5.1. Here, Alice’s arrival time 𝑇𝐴 and
Bob’s arrival time 𝑇𝐵 are random variables that depend on the
hidden variable 𝜆:

𝑇𝐴
𝑖,𝑗 ∶ Λ →ℝ

𝜆 ↦𝑇𝐴
𝑖,𝑗(𝜆),

𝑇𝐵
𝑖,𝑗 ∶ Λ →ℝ

𝜆 ↦𝑇𝐵
𝑖,𝑗(𝜆).

(5.13)

Using the time-window approach, a coincidence occurs when the
arrival times differ by at most Δ𝜏. This allows us to define subsets
of Λ as the sets on which Alice’s and Bob’s measurement settings
give coincident outcomes. We define

Λ𝑖,𝑗
def
= {𝜆 ∶ ||𝑇𝐴

𝑖,𝑗(𝜆) − 𝑇𝐵
𝑖,𝑗(𝜆)|| < Δ𝜏}, (5.14)

which allows us to quantify the coincidence probability:

Definition 5.8 (Probability of Coincidence) The probability of
coincidence of a Bell experiment

𝛾
def
= inf

𝑖,𝑗
𝑃(Λ𝑖,𝑗). (5.15)

Note that, in contrast to the detection loophole, the coincidence
probability is a non-local property of the experiment. In other
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words, the coincidence probability cannot be determined by Al-
ice and Bob alone; the property applies to the system as a whole.
Therefore, the subsets of coincidence probability cannot be fac-
tored in a way analogous to equation (5.5).

Next, we modify theorem 4.7 to depend on the coincidence
probability. We can reuse definition 5.2 for the Bell value 𝑆𝐶(2)
and get [107]

Theorem 5.9 (Bell-CHSHwith Coincidence Probability) A lo-
cal realist system with two settings per observer and probability
of coincidence 0 < 𝛾 ≤ 1 obeys

𝑆𝐶(2) ≤
6
𝛾 − 4, (5.16)

where 𝑆𝐶(2) corresponds to the Bell value in definition 5.2.

Proof See Larsson and Gill [107].

Just as for the detection efficiency case, theorem 5.9 reduces to
theorem 4.7 when 𝛾 = 1. What bounds can be placed on the
coincidence probability? Again, we first compare the left-hand
side of inequality (5.16) with the trivial bound in theorem 4.6. The
condition is

4 = 6
𝛾 − 4. (5.17)

Remark 5.10 (Trivial Coincidence Probability for Bell-
CHSH) For 0 < 𝛾 ≤ 1, equation (5.17) has a unique solution
in

𝛾trivial
def
= 3
4 = 0.75. (5.18)

Just like the detection efficiency case, a coincidence probability be-
low 75% makes it impossible for 𝑆𝐶(2) to violate inequality (5.16),
with or without quantum mechanics. Next, we solve the following
equation for 𝛾:

2√2 = 6
𝛾 − 4. (5.19)
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Remark 5.11 (Critical Coincidence Probability for Bell-
CHSH) For 0 < 𝛾 ≤ 1, equation (5.19) has a unique solution
in

𝛾critical
def
= 3 − 3

√2
≈ 0.8787. (5.20)

Therefore, for the quantum-mechanical prediction to violate local
realism, the coincidence probability must be at least 87.87%.

5.3 Experimental Bell testing

Eight years after Bell’s initial paper [80] in 1964, the first prelimi-
nary experimental trial of a Bell-type inequality was reported by
Freedman and Clauser [108] in 1972. Freedman did not perform
a full Bell test, but instead tested Freedman’s inequality, a “single-
channel” variant that uses only one detector each for Alice and
Bob.

In the following years, a number of Bell experiments were
reported [109–115], however the results were inconclusive (see
section 8.2). It took until the early 1980s and the celebrated three
experiments by Alain Aspect’s group in Orsay, Paris for the first
reasonably convincing indication that Bell’s Theorem was indeed
true. This was the start of a decades-long hunt for a conclusive
test of local realism by a number of research groups worldwide.

The three Aspect experiments used a photon source consisting
of 40Ca atoms undergoing cascade transitions. The first experi-
ment [116] was similar to that of Freedman and Clauser in that
only a single-channel Bell inequality was tested. Here, a viola-
tion of nine standard deviations was shown. The second experi-
ment [117] tested the full Bell-CHSH inequality and measured a
Bell value of 2.697 ± 0.015. This experiment is interesting because
the authors explicitly make the fair-coincidence assumption and
give a motivation as to why it is applicable. The corresponding
coincidence-time loophole was only discovered 22 years later, in
2004 [107]!
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The third [118] experiment by Aspect’s group was published
in 1982, and according to Gilder [119, p. 285], this experiment
was so difficult to perform that Aspect put the machinist Gérard
Roger on the author list. Importantly, the locality loophole was
closed by separating the analysis stations by a spatial distance of
13m, or 43ns at the speed of light. However, Alice’s and Bob’s
measurement settings were sinusoidally switched, which allows
them to be predicted. In addition, the detection loophole remained
open:

…the detection efficiency in each channel is well below
unity […] . An advocate of hidden variable theories
could then argue that we are not sure that the sample
on which the measurement bears, remains the same
when the orientations of the polarimeters are changed.

— Alain Aspect, 2002 [120, p. 23]

In 1998, Weihs et al. [121] were able to close the locality loophole
by an experiment performed in Innsbruck, Austria. While the
detection efficiency was at a mere 5%, the spatial separation was
400m, corresponding to a 1.3 µs time window in which measure-
ment settings had to be (and were!) chosen. Notably, settings
were chosen randomly using a QRNG in order to make them un-
predictable.

The detection loophole was first closed by Rowe et al. [106]
in their 2001 experiment where 9Be+ ions were trapped in a dy-
namic electrical field trap [122]. As ions are heavy, and therefore
much less fragile than photons, a very high detection efficiency
was achieved. However, the separation of a mere 3 µm only corre-
sponds to 10 fs at the speed of light, which opens up the locality
loophole.

For photons, the detection loophole was finally closed in May
of 2013 by Giustina et al. [123]. Similarly, the first closure of
the coincidence-time loophole with photons was performed by
Christensen et al. [124] in September of 2013. One year later, in
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September of 2014, Larsson et al. [105] derived a modified Bell
inequality that allowed previous experiments to be analyzed in
greater detail. With these new statistical tools it could be seen
that also the 2013 experiment by Giustina et al. [123] closed the
coincidence-time loophole.

So far, experiments closing one loophole had to make a trade-
off that opens up another loophole. Individually, all significant
loopholes had been closed in separate experiments, however no
individual experiment was able to simultaneously close all at once.
This changed in 2015 when three separate groups, Giustina et
al. [125], Shalm et al. [126], and Hensen et al. [127] indepen-
dently verified violations of the Bell-CHSH inequality, free of all
significant loopholes. It should be noted that while the results
of Hensen et al. were published three months before the other
two, that experiment only achieved a 𝑝 value as high as 3.9% and
thus had a relatively high chance of being a statistical anomaly.
In contrast, the 𝑝 value of Giustina et al. [125] is no greater than
3.74 × 10−31.

The experiments from 2015 provide near-irrefutable proof
that Bell’s Theorem is correct, i.e., that quantum mechanics is
incompatible with local realism. Only the most exotic of hypothe-
ses remain for an explanation of why these empirical results still
should be bounded by a Bell-like inequality.

Thus, to maintain a local hidden-variable theory in
the face of the existing experiments would appear
to require belief in a very peculiar conspiracy of nature.

—Anthony James Leggett, 2003 [128, pp. 1469–1470]

This conspiracy described by Leggett is a hypothetical class of
theories known as superdeterminism [129]. According to Bell,
“…it involves absolute determinism in the universe, the complete
absence of free will” [130]. In superdeterminism, all processes
that appear random have really been determined back when the
universe came into existence. The experimenter did not choose
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to perform an experiment testing Bell’s Theorem — rather, it was
fate.

5.4 Conclusions

Bell’s Theorem, that no physical theory of local hidden variables
can reproduce all of the predictions of quantummechanics, can
be algebraically proven in a few simple steps as we found in sec-
tion 4.2. However, the delicate nature of qubits made it difficult to
find experimental evidence, and it took 51 years for the profound
theorem to be confirmed. By simultaneously closing all significant
loopholes there is no way to explain the results in any other way
than by rejecting local realism. For the purposes of our thesis this
is good news as DI-QKD is possible only when the Bell test can
distinguish between local realist states and those who are not. In
a later chapter, we will push the Bell inequality to the limit by
exploring a number of ways to circumvent the security test. This
is what we call quantum hacking.
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Chapter 6

Energy-Time Entanglement

Even before unconditional security was technically
proved, “security based on the laws of physics” became
the selling slogan of QKD. […] Of course, a pause of
reflection shows that the statement cannot possibly
be as strong as that. For instance, the laws of physics
do not prevent someone from reading the outcomes
of a detector; however, if the adversary has access to
that information, security is clearly compromised! But
many people were just carried away by the power of
the slogan – fair enough, this does not happen only
with QKD.

— Scarani and Kurtsiefer, 2014 [131, p. 28]

Up to this point we have discussed entanglement by means of po-
larization as seen in the E91 protocol of section 4.4. Even though
this method is a viable building block for QKD, we need protocols
that are robust not only in a laboratory, but over long distances
and in tough conditions as well. Polarization-based protocols have
drawbacks because that the degree of polarization through an
optical fiber is heavily dependent on environmental factors [132].
Changes in temperature [133], magnetic field [134], and mechan-
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ical stress [135] influence the relative polarization as photons
travel through the fiber.

In an uncontrolled environment, these changesmust be quanti-
fied and compensated for. Otherwise, the measurement outcomes
for Alice and Bob will drift and give rise to errors in the data. The
standard way of correcting polarization drift is through a mechan-
ical stretcher, where an optical fiber is stretched by a piezo-electric
device [132]. Unfortunately, this compensator is a device that
requires moving parts, and would be complicated and expensive
to manufacture and maintain in the field.

In recent years there has been an increase in interest for re-
placing polarization with a method not requiring expensive com-
pensating equipment. This chapter will discuss one such proposal
where the non-commuting observables of energy and time are used
instead of non-orthogonal polarization states. This method can
be used with entanglement and is therefore called Energy-Time
Entanglement (ETE). Originally, the idea was unintentionally in-
troduced by Einstein in the clock-in-a-box thought experiment
as early as 1930 [85, pp. 94–97, 136]. The thought experiment
was intended to find a contradiction in quantum mechanics, but
Bohr was famously able to resolve Einstein’s riddle by showing
that energy and time are non-commuting observables just like
position and momentum.

6.1 The Franson Interferometer

The first proposal for a device based on ETEwas published in 1989
by Franson [40]. This device, depicted in figure 6.1, consists of the
usual parts found in an entanglement-based QKD interferometer:
a source and two analysis stations. Franson’s original proposal
described the source as follows: An excited atom is in a relatively
stable high-energy state at time 𝑡 = 0with a relatively long average
lifetime Δ𝑇. A photon is emitted, which brings the atom to a
middle level with a short lifetime 𝜏0 ≪ Δ𝑇. When the atom goes
back to the ground state, a second photon is emitted. The atom is
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Source

−1
+1

−1
+1

𝜙𝐴 𝜙𝐵

Figure 6.1: The Franson interferometer. The source emits time-
correlated photons, which are sent to Alice and Bob. At their respective
analysis stations, they perform measurements along angles 𝜙𝐴 and 𝜙𝐵,
respectively, and record the outcome as well as time of detection.

therefore a three-level system with two photons emitted within a
small time window 𝜏0. The source will therefore emit two photons
almost simultaneously, but the time of emission is uncertain over
a long timescale Δ𝑇.

Alice and Bob each have identical analysis stations consist-
ing of unbalanced Mach-Zehnder (MZ) interferometers, i.e., two
optical paths of different length. The upper path is longer than
the lower by a path difference 𝑐Δ𝑇 and also contains a variable
phase modulator (setting) 𝜙. The beam is split into the two paths
by a 50:50 beam splitter and they are intermixed using another
one. The second beam splitter does not combine the beams into
one, but has two outputs. Each of these beam splitter outputs is
connected to one of the two photodetectors +1 or −1.

This device is referred to as the Franson interferometer and
Alice and Bob use it in the following way: The three-level atom in
the source is excited to the semi-stable high-energy state described
above. An unknown moment in time later (standard deviation
Δ𝑇), the two photons are emitted and are sent to Alice and Bob,
who randomly choose the settings 𝜙 for their analysis stations.

The path difference of the analysis station results in a possible
delay to the photon, and the phase modulator setting 𝜙 affects the
way the paths combine at the second beam splitter. Remember

73



6. Energy-Time Entanglement

that photons are quantum objects and do not take a specific “path”
through the analysis station. At the end of the analysis station
the photon is detected by one of the two detectors, resulting in a
measurement outcome of +1 or −1. When registering these detec-
tions, Alice and Bob also record the time at which the detection
occurred.

If the detection times at Alice’s and Bob’s detectors are equal,
there is quantum-mechanical interference between the two cases
(i) early source emission, photons were delayed by both Alice’s
and Bob’s analysis stations, and (ii) late source emission, neither
analysis station caused a delay. Alice and Bob will not know which
of the two cases actually occurred, however if there is a detection
time mismatch, calculating the emission time is trivial (publica-
tion A) and there will be no quantum interference. Alice and Bob
must therefore remove all events with differing detection times
in order to force interference and this is called postselection. On
average, postselection discards half of all events.

The photons created at the source have now been measured,
and one trial of the Franson interferometer is therefore complete.
This process is repeated a number of times, so that Alice and
Bob each have a list of measurement outcomes and detection
times. They compute the correlation between the postselected
(coincident) measurement outcomes, which is

𝐸(𝐴(𝜙𝐴)𝐵(𝜙𝐵)| coincidence ) = cos(𝜙𝐴 + 𝜙𝐵). (6.1)

Note that equation (6.1) is the expectation value conditioned on
coincidence for the setting 𝜙𝐴, 𝜙𝐵. Also note the difference be-
tween equation (6.1) and the corresponding correlation found in
E91, equation (4.20). In the Franson setup, the angles are added
together while other systems depend on their difference.

Alice and Bob now test the Bell-CHSH inequality in the usual
way. After publicly announcing the measurement settings 𝜙𝐴 and
𝜙𝐵, they postselect, and then compute the correlation for each
setting pair by using equation (6.1). In order to maximise the
Bell value, they picked measurement angles 𝜋/4 apart when the
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experiment started. This way, the correlations will coincide with
those in equation (4.9), so the result will be a Bell value of 2√2
in agreement with theorem 4.8 and equation (4.21). Now, in the
words of Franson [40, p. 2207],

[…] the quantum-mechanical predictions violate
Bell’s inequality and are inconsistent with any local
hidden-variable theory.

Alice and Bob use the Bell-CHSH inequality as a test for DI se-
curity. If they measure 𝑆(2) > 2, the test passes, and they can
continue their QKD session. However, the aforementioned post-
selection is an important difference to the traditional BB84 and
E91 protocols. In those protocols, sifting can be performed imme-
diately after receiving the raw key, while the Franson schememust
postselect before this can be done. Postselection will have serious
and far-reaching consequences to the security of Franson-based
QKD, andwewill discuss this in depth in section 6.2 and chapter 7.

Equation (6.1) shows that, if Alice’s and Bob’s measurement
angle are opposite (𝜙𝐴 + 𝜙𝐵 = 0), the measurement outcomes are
perfectly correlated. Similarly, for settings 𝜙𝐴 + 𝜙𝐵 = (2𝑛 + 1)𝜋
where 𝑛 is an integer, Alice’s outcomes will be opposite (that is,
anti-correlated) to Bob’s. Therefore, Alice performs a bit flip on
the anti-correlated bits and then Alice and Bob essentially share
a randomly generated bit string (modulo noise and the presence
of Eve). They then continue with the next steps of the protocol:
information reconciliation and privacy amplification, in order to
generate a secret key.

Again, it is impossible to distinguish between an eavesdropper
and experimental noise, and both will have the effect of lowering
the measured Bell value (see section 8.2). For the duration of the
QKD session, Alice and Bob constantly monitor the Bell value,
and if it ever falls to 2 or lower, they must abort the transmission.

We have now shown a way to test the Bell-CHSH inequality
using energy and time instead of polarization. Since Franson’s
publication in 1989, the device has been experimentally tested by
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several groups [41–50], and it is often assumed to be a workable
proposal for QKD. Again, we stress that the Franson scheme re-
quires a postselection step. On average, this postselection discards
50% of the events, which is a significant amount.

6.2 The Postselection Loophole

We have now seen that the Franson interferometer is believed
(i) to violate local realism, and (ii) to allow secure ETE DI-QKD.
However, as discussed in chapter 5, the Bell test must always
be viewed in the context of loopholes, and a special case of the
detection loophole has particular consequences for the Franson
setup as is shown in publication A.

Theorem 5.5 showed that the lower bound on detection effi-
ciency is 82.83% when using the original CHSH inequality. This
percentage does not only include actual experimental losses in
fiber couplings and photon detectors, but in fact any loss incurred
by either experiment or protocol. Needless to say, the 50% post-
selection step must also be included and as a consequence, not
even an ideally constructed Franson experiment can reliably test
the Bell-CHSH inequality!

This loophole, a special case of the detection loophole of sec-
tion 5.1, is referred to as the postselection loophole to stress that it
originates from the core design of the experiment and not from
experimental losses. In fact, we have the following result:

Theorem 6.1 (Bell-CHSH for the Franson Interferometer)
The outcomes from a local realist system with two settings per
observer in the Franson interferometer obey

||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+ ||𝐸(𝐴1𝐵2|Λ𝐴1𝐵2) − 𝐸(𝐴2𝐵2|Λ𝐴2𝐵2)|| ≤ 4.
(6.2)

The outcomes are therefore not bounded by the Bell-CHSH inequal-
ity.
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Proof We will assume no experimental losses. Therefore we have
𝜂 = 0.5 due to the postselection step alone. Any local realist model
with losses is governed by theorem 5.5, which for the given 𝜂 gives

𝑆𝐶(2) ≤ 6. (6.3)

However, theorem 4.6 states that the algebraic maximum value
of 𝑆𝐶(2) is 4, so we modify the right-hand side of inequality (6.3)
accordingly. The proof now follows from definition 5.2.

Theorem 6.1 shows that the Bell-CHSH inequality for the Fran-
son interferometer is trivial. Therefore, even though any system
– whether quantum or classical – can give any violation of the
Bell-CHSH inequality in the Franson interferometer, no system
actually violate local realism! This is an undesirable situation,
as ETE gives us hope for a practical way of achieving QKD. The
Bell-CHSH security test is therefore unable to provide DI-QKD in
the Franson interferometer. Obviously, we must try to remedy the
problem, and this will be discussed in detail in chapter 8. However,
one countermeasure, fast switching of analysis station settings, is
of immediate relevance and will be presented now.

In the introduction to chapter 5, we briefly mentioned the lo-
cality loophole and the importance of putting the event of source
emission outside of the forward light cone of the choice of mea-
surement setting at the analysis station. This is still true in the
Franson setup, however there is an extra complication because
the emission time is randomly chosen to be either early or late,
a difference of Δ𝑇. Now, if Alice and Bob randomly select new
settings for their analysis stations faster than 1/Δ𝑇, it is possible
that the (hypothetical) early and late events encounter different
measurement settings.

Without loss of generality we can assume that the event in
question will be recorded as coincident, i.e., Alice’s and Bob’s de-
tection times agree. This implies that Alice’s and Bob’s analysis
stations either both “caused a delay” or both “did not cause a de-
lay”, although there is nomethod for discerning between these two
cases. Therefore, either the early event occurred and the analysis
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station had a corresponding setting, or the late event occurred
with another, possibly different measurement setting.

Publication A discusses fast switching in greater detail and
mentions a number of precautions that must be observed for it to
actually occur, but the following observation is important: The
setting of the analysis station determines whether a delay occurs
or not, but only for the early setting. When the late setting is read
off, time cannot be reversed, so the late event cannot be turned
into an early one. The consequence is that we have two governing
equations when fast switching is used: one for early events, and
one for late.

Lemma 6.2 (Outcomes from Early Events) When using fast
switching, outcomes from early events in a local realist model in
the Franson interferometer are only bounded by the trivial Bell
inequality.

Proof The early events behave in the exact same way as in theo-
rem 6.1.

Lemma 6.3 (Outcomes from Late Events) When using fast
switching, outcomes from late events in a local realist model in the
Franson interferometer obey

||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+||𝐸(𝐴1𝐵2|Λ𝐴1𝐵2) + 𝐸(𝐴2𝐵2|Λ𝐴2𝐵2)|| ≤ 2.
(6.4)

Proof Late events fulfilling the prerequisites for fast switching
described in publication A cannot be turned into early detections.
Therefore, late events are always detected as late, both for Alice and
Bob. Consequently, there will be no postselection, so theorem 5.5
applies with 𝜂 = 1 (assuming no experimental losses). The proof
follows from definition 5.2.

We are now ready to conclude this section about fast switching
with the full theorem:
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Theorem 6.4 (Bell-CHSH for the Franson Interferometer
with Fast Switching) When using fast switching, the outcomes
from any local realist model in the Franson interferometer with
two settings per observer obey

||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+||𝐸(𝐴1𝐵2|Λ𝐴1𝐵2) + 𝐸(𝐴2𝐵2|Λ𝐴2𝐵2)|| ≤ 3.
(6.5)

Proof Half of all source emissions are early and half are late, so we
take average of the Bell-CHSH inequalities in lemmas 6.2 and 6.3.

Adopting the method of fast switching in the Franson interfero-
meter strengthens the local realist bound from 4 down to 3. The
reason is the mix-in of 50% of events that are not affected by
postselection (lemma 6.3).

Still, after all this work, the quantum prediction 2√2 (theo-
rem 4.8) falls short of the local realist bound 3 (theorem 6.4), so
Franson interferometer is insecure even when using fast switch-
ing. So far we have failed in re-establishing a violation of local
realism, but we will show additional methods in chapter 8. In
the meantime, the next chapter shows how an attacker can break
the security of systems that lack a proper violation in order to to
obtain Alice’s and Bob’s secret key.
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Chapter 7

Quantum Hacking

[…] what is proved by impossibility proofs is lack of
imagination.

— John Stewart Bell, 1982 [137, p. 997]

The postselection loophole causes the local realist bound in the
Franson interferometer to weaken to the extent that not even the
quantum-mechanical prediction gives a violation. This chapter
will show how far-reaching the consequences can be for appli-
cations such as QKD, and detail how an insecure system can be
exploited in practice. Whenever we turn theoretical weaknesses
of QKD devices into practical exploits, we engage in quantum
hacking.

If a loophole is discovered in a system relying on a Bell inequal-
ity violation, the first step for an attacker is to verify the loophole
by creating an LHV model that mimics all behaviors of quantum
mechanics, including the produced Bell value. An LHV model is
a list of a priori outcomes that are to be produced by the analysis
stations in order to reach that goal. Just as the name suggests,
such a pre-recorded list of measurements implies locality and re-
alism, and all such outcomes are governed by a relevant Bell-type
inequality.
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7. Quantum Hacking

7.1 The LHV Attack

An LHV attack is an attack on an interferometer that implements
an LHV model in order to contradict the corresponding security
proof. It is a powerful method for exploiting loopholes, and allows
for a simple way to predict correlations 𝐸(𝐴𝑖𝐵𝑗). For the Franson
interferometer, an initial LHV model was introduced by Aerts et
al. [138] in 1999 and is depicted in figure 7.1. This model consists
of two two-dimensional probability distributions: one for Alice
and one for Bob. The source device picks hidden variables 𝜃 and 𝑟
uniformly at random from the sets 0 ≤ 𝜃 < 2𝜋 and 0 ≤ 𝑟 < 1, and
then computes 𝜃𝐴 = 𝜃 − 𝜙𝐴 (mod 2𝜋) and 𝜃𝐵 = 𝜃 + 𝜙𝐵 (mod 2𝜋),
where 𝜙𝐴 and 𝜙𝐵 are Alice’s and Bob’s local settings, respectively.
Alice’s measurement outcome can now be predicted at coordinate
(𝜃𝐴, 𝑟) in her probability distribution, Bob’s outcome is predicted
at (𝜃𝐵, 𝑟) in his.

Note that the LHV model by Aerts et al. not only prescribes
the sign of the measurement outcome (±1) but also the arrival
time, early/late. This is important as Alice and Bob postselect
their outcomes depending on the arrival time before computing
the conditional expectation values of definition 5.2. Cleverly, the
LHV model exploits postselection so that Alice and Bob measure
𝑆𝐶(2) = 2√2, an exact mimic of the quantum prediction. Without
postselection, the LHV attack would be impossible.

Let us briefly review what just happened. A local realist system
(the LHV model in figure 7.1) was able to prescribe measurement
outcomes of distant analysis stations, so that themeasured correla-
tions coincide with those produced by an entangled system. Given
any (expensive) experiment involving delicate free-space photons,
trapped ions, or optical fibers, an attacker can then construct a
machine indistinguishable from that experiment, using only a
(cheap) classical system. Remember: we are still in the black-
box model, so systems are only evaluated by their measurement
outcomes, not the way they are built.
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Figure 7.1: LHV model by Aerts et al. [138] for faking a Bell-CHSH
violation in the Franson interferometer. These models take as input the
hidden variables 𝑟 and 𝜃, and analysis station settings 𝜙𝐴 and 𝜙𝐵. The
upper graph shows Alice’s prescribed measurement outcomes (𝐴) while
the lower shows Bob’s (𝐵). The LHV model returns the sign (+1 or−1)
and timeslot (E for early and L for late).
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The consequences for QKD are even more sinister. A suc-
cessful LHV attack not only allows a faked Bell value, but also a
subversion of the security test. On the surface, Alice and Bob see
nothing wrongwith their device— all measurements they perform
at their analysis stations have exactly the statistical distributions
they expect. However, with a compromised security test, Eve can
perform additional attacks that either leak the secret key, or allows
her to control the key bit generation. In publication B we experi-
mentally mounted an LHV attack on the Franson interferometer
that resulted in full freedom for Eve to decide the secret key.

7.2 The Blinding Attack

In order to turn the LHV attack into a practical exploit, publica-
tion B uses a technique called blinding. An optical QKD imple-
mentation is very sensitive to variations in photon counts because
if the source accidentally generates two identical photons instead
of one, Eve can keep one and send the other to Alice/Bob. This is
called the photon-number-splitting attack. Measurements on the
extra photon can then be performed without influencing the noise
rate, and therefore Eve breaks the security but remains undetected.
As a consequence, it is important to build source devices that are
very accurate in sending precisely one single photon each to Alice
and Bob.

Naturally, single-photon sources require Alice and Bob to use
very sensitive detection equipment, i.e., Single Photon Detectors
(SPD:s). A common type of SPD is the Avalanche Photo-Diode
(APD), which according to Lydersen et al. [139] is used in most
QKD implementations today. It was discovered byMakarov [140]
that APD:s are vulnerable to a side-channel attack that allows
an attacker to remotely control how and when the detector gives
a click. Normally, an APD is supposed to react to even a single
incoming photon, but by studying the quenching mechanisms of
commonly used APD:s, Makarov found that these detectors are
vulnerable to blinding.
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Figure 7.2: Part of the equipment used by Gerhardt et al. [141] to break
the security of a commercial QKD system. Depicted here is Eve’s photon
detection unit and the faked-state generator, which contains semicon-
ductor lasers, polarization controllers, and control electronics. Note the
|Φ⟩ Jolly Roger logo for quantum hacking. Photo copyright © 2009
VadimMakarov, reused with permission.

By shining a strong Continuous-Wave (CW) laser into the APD,
the quenching circuit becomes overloaded and has to re-charge
before being able to react to a single photon. In the meantime (ap-
proximately 1 µs [140]), the detector will not function as intended.
The practical consequence is that the CW laser turns the detector
into linear mode, allowing attacker to control when and how the
detector should click. Linear mode means the detector clicks only
above a certain optical intensity 𝐼𝑇, and not below. In other words,
it is possible for a nonzero number of photons to enter the detector
without it clicking. Obviously, this is not how a SPD is supposed
to work – even a single incoming photon should be detected.

While illuminating the detector with the blinding CW beam,
the attacker can input additional pulses of light into the detector.
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If these pulses are strong enough to exceed the threshold 𝐼𝑇, the
detector will finally click. This attack vector was soon exploited
to mount a full attack on commercial QKD implementations. In
2010, Lydersen et al. [139] gave a proof of concept for controlling
detectors in two commercial QKD solutions, and the next year,
Gerhardt et al. [141] developed the concept into a full attack. This
full attack uses the intercept-resend method, where Eve cuts the
fiber between Alice and Bob and measures the photons before
sending a faked state to Bob. Thanks to blinding, these faked
states stop Bob from receiving data sent in the incorrect basis, and
therefore Alice and Bob never notice the attack. Eve’s faked-state
generator is depicted in figure 7.2, and this device was able to
intercept the entire secret key in a commercial QKD device.

The same year, 2011, Gerhardt et al. [142] blinded detectors
in an E91 setup and used classical pulses of light to produce a
faked Bell value. A classical pulse of light is always local and
realist, so as previously discussed, the corresponding Bell value
should be bounded by 2. Still, the attack resulted in Alice and
Bob measuring a Bell value of 2.381 ± 0.036 and this makes them
believe the system passes the security test even though Eve has
intercepted their key.

7.3 Optical Considerations

In publication B we adopted the blinding attack to the Franson
interferometer in order to control the measurement outputs of Al-
ice’s and Bob’s detectors. Normally, Alice and Bob defend against
Trojan-horse attacks with a Bell test, but if the Bell test is sub-
verted, an attack can be made without raising the alarm. Our
Trojan source sends input time-delayed pulses of classical light
overlaid on a bright CW blinding laser to Alice and Bob, and in or-
der to produce the correct pulses one needs a good understanding
of how the analysis stations work.

The most important part of a Franson analysis station is the
beam splitter, sometimes called a “half-silvered mirror”, which
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Figure 7.3: Schematic of a beam splitter manufactured by joining two
triangular prisms with different refractive indices. The beam splitter
depicted here has a high refractive index in the lower left region and a
low refractive index in the top right. Two incident beams are combined
into two output beams. The beam from the left receives no phase shift,
but the beam from the top receives a 𝜋 phase shift when reflected off the
higher refractive index region.

splits and combines light beams. Here, each analysis station con-
tains two beam splitters, so the total number of beam splitters in
the Franson interferometer is four. Beam splitters can be manu-
factured in a variety of ways, but the operation is the same. Two
edges are inputs and two are outputs, and along the diagonal line
there is a mirror-like interface. Each input beam is split into the
two output beams, however the output intensity also depends on
interference, which in turn depends on the relative phases of the
incident beams. The easiest way to understand how beam splitters
affect the phase is to consider a beam splitter consisting of two
triangular pieces of glass with different indices of refraction as
depicted in figure 7.3.

We let the first incident beam have intensity 𝐼0/2 and enter the
region with higher refractive index from left. The second incident
beam, also with intensity 𝐼0/2, enters from the top. Assuming we
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are dealing with an ideal 50 ∶ 50 beam splitter, each beam is split
into two at the interface without loss. According to Träger [143,
pp. 124–125], the total intensity of all output beams remains 𝐼0 so
conservation of energy is fulfilled. For the first beam there is no
reflection off a transition from low to high refractive index, so no
phase shift occurs. The second beam also gets no phase shift when
transmitted into the high refractive index region, however the
component that is reflected has its phase shifted by 𝜋. Therefore,
three of the output beams have no change in phase while the
fourth has. At each output port (right and bottom) the beams now
interfere. The output intensities 𝐼𝑅 (right exit) and 𝐼𝐵 (bottom
exit) then depend on the phases 𝜙1 and 𝜙2 of the input beams in
the following way:

𝐼𝑅 =
𝐼0
2 (1 + cos(𝜙1 − 𝜙2 + 𝜋)),

𝐼𝐵 =
𝐼0
2 (1 + cos(𝜙1 − 𝜙2)).

(7.1)

We see that the total output intensity 𝐼𝑅+𝐼𝐵 sums to 𝐼0 for all phases
𝜙1 and 𝜙2, which shows that equation (7.1) conserves energy. In
order to control the constructive and destructive interference at
the output ports we therefore must produce beams of light with a
relative phase of either 0 or 𝜋/2. The first case, zero relative phase,
directs all incoming light out of the bottom port, while a relative
phase of 𝜋/2 directs all incoming light out of the right port.

We have now shown that the optical intensities exiting the
beam splitter depends on the relative phase of the incoming beams.
In the Franson interferometer, the output intensity of the second
beam splitter in the analysis station can therefore be manipulated
with the local phase setting 𝜙𝐴 or 𝜙𝐵. We call the first beam splitter
the splitter and the second one the combiner, see figure 7.4 for
a close-up of Bob’s analysis station. If we input a strong pulse
of classical light with intensity 𝐼0 into the analysis station, the
pulse will divide in two pulses at the first beam splitter. The pulse
taking the upper path will be delayed by Δ𝑇 and phase shifted by
𝜙𝐵 before being combined with the lower path at the second beam
splitter.
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𝜙𝐵

Figure 7.4: Close-up of figure 6.1, which shows Bob’s analysis station in
the Franson interferometer. The left beam splitter is the splitter wile the
right beam splitter is the combiner.

Assuming the pulses have a pulse length of 𝜏 ≪ Δ𝑇, there will
be no first-order interference at the combiner. Therefore, two
pulses of intensity 𝐼0/2 separated by Δ𝑇 will enter the detectors,
independently of the phase setting 𝜙𝐵. If we instead input three
short pulses separated by Δ𝑇, pulses will interfere at the combiner,
so the output will be the following four pulses:

1. One pulse with fixed intensity 𝐼0/4.

2. One pulse whose intensity depends on 𝜙𝐴 and the relative
phase between the first and second incoming pulses. “Early”.

3. One pulse whose intensity depends on 𝜙𝐴 and the relative
phase between the second and third incoming pulses. “Late”.

4. One pulse with fixed intensity 𝐼0/4.
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Pulses 2 and 3 are the important ones, and we refer to these as the
middle pulses. Specifically, pulse 2 is the early pulse, and pulse 3
the late. If we define 𝜔𝐸 as the relative phase difference between
the first and second incoming pulse and 𝜔𝐿 as the difference be-
tween the second and third, we can derive intensities of all four
middle pulses from equation (7.1) as shown in publication B:

𝐼+𝐸 (𝜙𝐵, 𝜔𝐸) = 𝐼0 cos2 (
𝜙𝐵 + 𝜔𝐸

2 ) ,

𝐼−𝐸 (𝜙𝐵, 𝜔𝐸) = 𝐼0 sin
2 (
𝜙𝐵 + 𝜔𝐸

2 ) ,

𝐼+𝐿 (𝜙𝐵, 𝜔𝐿) = 𝐼0 cos2 (
𝜙𝐵 + 𝜔𝐿

2 ) ,

𝐼−𝐿 (𝜙𝐵, 𝜔𝐿) = 𝐼0 sin
2 (
𝜙𝐵 + 𝜔𝐿

2 ) .

(7.2)

Again, note that 𝜔𝐸 and 𝜔𝐿 depend on the pulses that are sent
into the analysis station, not the pulses that leave it. Eve now
tweaks the intensity of the incoming pulses so that 𝐼0/4 is just
below the linear mode threshold 𝐼𝑇 of the detectors. This way,
the first and last pulses are not detected by the blinded APD, and
we can control the clicks of the middle pulses by varying 𝜔𝐸 and
𝜔𝐿 according to equation (7.2). With this information, Eve can
control not only which detector is supposed to click, but also in
which which timeslot the click should occur. In order to produce a
faked Bell value that violates the Bell-CHSHbound in theorem 4.7,
she uses the recipe given in the LHV model of section 7.1.

That model mimics the quantum-mechanical Bell value pre-
diction 𝑆𝑄𝑀(2) = 2√2 from theorem 4.8. Therefore, Eve can

make Alice and Bob measure exactly 𝑆𝐶(2) = 2√2. However, the
sinusoidal patterns of the LHV model in figure 7.1 cannot be re-
produced with a finite number of trials, so a real attack will have
a small deviation from 2√2. This is of no concern as this error
can be made arbitrarily small, and the discretized LHV model in
publication B is indistinguishable from a quantum experiment
because of noise.
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Figure 7.5: Experimental setup for hacking the Franson interferometer
as done in publication B. In the back is the mechanically dampened
optical table with optical components on top of it. The white polystyrene
boxes are for thermal insulation of the components inside, and the com-
ponents are connected with optical fibers. To the right is a rack with
four InGaAs avalanche photodiodes from Princeton Lightwave. Picture
taken at AlbaNova, Stockholm University.

7.4 Experimental Demonstration

Our attack in publication B was experimentally verified at Alba-
Nova at Stockholm University using passive fiber-optic compo-
nents. We used commercial InGaAs APD:s from Princeton Light-
wave with a detection wavelength range of 1300nm to 1500nm
and dark count rate of 5 × 10−5 ns−1 at the operating temperature
218K. These detectors, depicted in figure 7.5, have a maximum
detection efficiency 𝜂 = 20% and were attacked by blinding them
with a CW laser with overlaid attack pulses as chosen from the
LHV model. Interestingly, publication B appears to be the first
publication that reproduced the blinding attack in section 7.2
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where no author is affiliated with the researchers that first discov-
ered the effect [139, 140, 142].

In the first step of the attack, Alice and Bob measured a faked
Bell value of 2.5615 ± 0.0064, which violates the Bell-CHSH in-
equality (see figure 7.6). The raw experimental data is available
online [54], but this Bell value is somewhat lower than what we
aimed for (see section 8.2 for an explanation why). We can, how-
ever, raise it higher in the next step. If the experimental noise is
fixed and known to Eve, she can tune the LHV attack in order
to compensate. Recall from theorem 6.1 that the governing Bell
inequality in the Franson interferometer is trivial, so any system
should be able to produce any Bell value between 0 and 4. Exact
details are given in publication B, but the end result is a Bell value
up to 3.6386 ± 0.0096, which even happens to violate Cirel’son’s
bound in theorem 4.8!

We do not recommend an attacker to aim for a Bell value as
high as 3.6, as it would leave Alice and Bob very suspicious. In
theory, the only known way to produce the Bell value 4 is with a
Popsecu-Rohrlich (PR) box [144], however this device is forbidden
by the laws of quantumphysics. The point is instead that our attack
is tunable, which allows a Bell-CHSH violation to be produced
even in the presence of high levels of experimental noise.
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Figure 7.6: Experimentally measured faked Bell values 𝑆𝑀(2) in our
attack on the Franson interferometer compared to the Bell-CHSHbound
(theorem 4.7), Cirel’son’s bound (theorem 4.8), and the trivial Bell value
(theorem 4.6). Each measurement run is 27 s long. When aiming for
the quantum prediction 2√2, the produced Bell value is averages to
2.5615 ± 0.0064 (solid black line). It is possible to boost the faked Bell
value as high as 3.6386 ± 0.0096 (dotted blue line).

93





Chapter 8

Countermeasures to Quantum
Hacking

Suppose for a moment that all the possible issues re-
lated to the implementation are under control. Can
one finally rest in peace and trust the laws of physics?
In principle one can, provided all the assumptions,
under which the security bounds were derived, are ful-
filled by the implementation. Indeed, another danger-
ous shortcut consists in associating “unconditional se-
curity” with “no assumptions”: no assumptions should
be made on the power of the eavesdropper, but as-
sumptions must be made on what Alice and Bob are
doing.

— Scarani and Kurtsiefer, 2014 [131, p. 29]

Chapter 7 listed techniques for hacking QKD setups in general,
and the Franson interferometer in particular. By now it should be
well-established that the Bell-CHSH inequality is insufficient as
a security test for devices with high postselection. In the present
chapter we will discuss countermeasures that can be used to re-
establish unconditional security in such devices.
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However, before suggesting patches and hotfixes for the secu-
rity of QKDdevices, we have to go back to section 1.2 and re-iterate
some basic fundamentals about designing cryptosystems. We al-
ways have to assume that the enemy knows the system (Kerckhoff ’s
principle), so any reliance on security by obscurity puts us in peril.
In addition, the selling point of QKD is unconditional security, so
security must be based on stringent proofs and not assumptions
on what an attacker can or cannot do (except follow the laws of
quantum physics!).

For an enlightening example, consider the blinding attack by
Lydersen et al. [139]. As a countermeasure, Yuan et al. [145]
suggested using a monitoring device to sound an alarm if bright
illumination entered the detector. The idea is to eliminate the
blinding attack by simply looking for it; if the incoming light is
too bright, the device is under attack and the communication is
aborted. As a QKD device produces a secret key for later use in
an OTP system, early warning systems can alert the user before
any ciphertext encrypted with that key is sent over an untrusted
channel.

At first glance, amonitoring device is appealing since the short-
term consequence is that the BB84 and E91 protocols become
immune to precisely the attack described by Makarov [140] and
Lydersen et al. [139]. However, adding specific countermeasures
to individual attacks introduces extra, unproven assumptions into
the security model [146]. Unless the security theorem itself is
corrected to factor in (and prove!) these assumptions, counter-
measures will not provide unconditional security of the modified
system. In a follow-up correspondence, Lydersen et al. [147] re-
sponded to the suggestion of a monitoring device as follows:

It seems that the countermeasure proposed by Yuan
et al. [148] does not prevent our general attack of tai-
lored bright illumination. So far, we have been able to
blind and control every APD-based detector that we
have looked at thoroughly (albeit with different tech-
niques), including three different passively quenched
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detectors [140], one actively quenched detector [149]
and two different gated detectors [139, 150, 151].

Please note the crucial “not” in the second row of the above quote.
As it happened, a practical attack on these pulse monitoring de-
vices was later demonstrated by Sajeed et al. [152]. There, a pulse
train was input to a detector in such a way that blinding occurred,
even though themonitor never reported an intrusion. Themonitor
itself is a device with imperfections, and it was discovered that a
design flaw allowed very short blinding pulses to go by undetected.
Just as predicted, a previously unknown attack not covered by a
countermeasure was able to induce unexpected behavior, which
in turn compromised the system.

Again, it could be argued that the design flaw in themonitoring
device can be fixed, which eliminates the specific attack by Sajeed
et al. [152]. Quickly, however, this would turn into the same type
of cat-and-mouse-game so common in, for example, classical in-
formation security, where hackers try to find flaws and exploits in
software that developers attempt to fix. We must instead remind
ourselves that QKD plays a completely different game. Uncondi-
tional security requires stringent proofs, and unless QKD (which
is very expensive and complicated!) can be formally proven secure,
there will never be demand for it.

Our attack in publication B uses blinding as a vector to gain
access to Alice’s and Bob’s measurement outcomes, so the same
discussion applies here. However, while the attacks of Lydersen
et al. [139] and Gerhardt et al. [142] broke the security of “proven”
systems, our attack is on a system with a flawed proof. It can cer-
tainly be argued that the Franson interferometer can be attacked
without the need for blinding, which is a refinement of the at-
tack in publication B that certainly should be attempted in future
works.

The rest of this chapter is dedicated to methods that re-
establish unconditional security in the Franson setup without
relying on simple countermeasures such as the aforementioned
monitoring device. We will discuss modified Bell inequalities and
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… …

SourceA

1 2 𝑁

−1

+1
B

1 2 𝑁

−1

+1

Figure 8.1: The black box method for𝑁 ≥ 2 settings per observer. This
is a generalization of figure 4.3 that instead uses𝑁 push buttons. The
analysis stations still return the outcomes+1 or−1.

variations in interferometer design in our quest for true violations
of local realism.

8.1 Chaining the Bell Inequality

The first technique for correcting the security proof is a technique
called chaining. The standard Bell-CHSH inequality assumes
Alice and Bob to each have two measurement settings to choose
from. Chaining, however, generalizes the number of settings to
any 𝑁 ≥ 2. As will be shown later on, chained Bell inequalities
have more stringent experimental requirements than the stan-
dard version, but remember that Bell-CHSH is insufficient for
the Franson setup anyway. Therefore, if a chained inequality can
re-establish unconditional security it will be worth the cost.

The idea of chaining Bell inequalities came from Pearle [100]
in 1970, however the concept was developed into usable inequal-
ities by Braunstein and Caves [153] twenty years later. In re-
cent works, the chained inequality has usually been referred to as
the “Braunstein-Caves” inequality, however a more correct name
would be Pearle-Braunstein-Caves (PBC) as this acknowledges
the contribution of Pearle.

We will now formally define the PBC inequality, generaliz-
ing the black-box model from section 4.3. This time, the black
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8.1. Chaining the Bell Inequality

boxes have 𝑁 push buttons each, as shown in figure 8.1. Just like
before, the black boxes hide the inner workings of the analysis
stations, and we will only care about measurement settings (i.e.
push buttons) and their corresponding outcomes (+1 and −1).
Alice chooses measurement settings uniformly at random from
the set {𝐴𝑖}

𝑁
𝑖=1, while Bob does the same from {𝐵𝑗}

𝑁
𝑗=1

. We can now

define the new, chained Bell value:

Definition 8.1 (Chained Bell Value) The Bell value for a system
with 𝑁 ≥ 2 settings per observer is defined as

𝑆(𝑁)
def
= ||𝐸(𝐴1𝐵1) + 𝐸(𝐴2𝐵1)|| + ||𝐸(𝐴2𝐵2) + 𝐸(𝐴3𝐵2)||

+⋯ + ||𝐸(𝐴𝑁𝐵𝑁) − 𝐸(𝐴1𝐵𝑁)||.
(8.1)

Note that equation (8.1) with 𝑁 = 2 reduces to equation (4.14) as
we expect.

Theorem 8.2 (Trivial Chained Bell Value) Algebraically, the
maximum value Bell value 𝑆(𝑁)max for a bounded system is

𝑆(𝑁)max = 2𝑁. (8.2)

Proof Each expected value 𝐸(𝐴𝑖𝐵𝑗) in a bounded system is
bounded in magnitude by 1. There are 2𝑁 expectations in equa-
tion (8.1), so the algebraic maximum of 𝑆(𝑁) is 2𝑁.

Definitions 4.1 to 4.4 still apply to the PBC case, so we are ready
to formally define the PBC theorem [153]:

Theorem 8.3 (Pearle-Braunstein-Caves) The Bell value for a
local realist system with 𝑁 settings per observer obeys

𝑆(𝑁) ≤ 2𝑁 − 2. (8.3)

Proof See Braunstein and Caves [153].

Note that in their original paper, Braunstein and Caves [153] de-
fined 𝑁 as the number of summation terms in the chained Bell
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value. More recent works have switched to the more flexible con-
vention of defining 𝑁 as the number of settings. We will use this
modern convention. Next, we find the maximum value of the
chained Bell value predicted by quantum mechanics.

Theorem 8.4 (Quantum Prediction of the Chained Bell
Value) Quantum theory can produce the Bell value

𝑆𝑄𝑀(𝑁) = 2𝑁 cos
𝜋
2𝑁 (8.4)

for any 𝑁 ≥ 2.

Proof See publication A.

Again, if 𝑁 = 2 is inserted in equation (8.4) we recover equa-
tion (4.17). As will be shown now, the PBC inequality can re-
establish unconditional security in the Franson interferometer.
To see this, we must first investigate the effect of the detection effi-
ciency in section 5.1 to the chained inequality. We can immediately
generalize definition 5.2 to the PBC case which gives

Definition 8.5 (Chained Bell Value, Conditioned on Coinci-
dence) The Bell value for a systemwith𝑁 ≥ 2 settings per observer
is defined as

𝑆𝐶(𝑁)
def
= ||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+ ||𝐸(𝐴2𝐵2|Λ𝐴2𝐵2) + 𝐸(𝐴3𝐵2|Λ𝐴3𝐵2)|| +⋯

+ ||𝐸(𝐴𝑁𝐵𝑁|Λ𝐴𝑁𝐵𝑁) − 𝐸(𝐴1𝐵𝑁|Λ𝐴1𝐵𝑁)||,

(8.5)

if only coincident events are considered.

Next, we study the effect of losses by generalizing theorem 5.5 to
𝑁 settings per observer.

Theorem 8.6 (Pearle-Braunstein-Caves with Detection Effi-
ciency) A local realist system with 𝑁 ≥ 2 settings per observer
and detection efficiency 0 < 𝜂𝑁 ≤ 1 obeys

𝑆(𝑁) ≤ 2(𝑁 − 1) ( 2
𝜂𝑁

− 1) . (8.6)
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Proof See Cabello et al. [102].

Note that theorem 8.6 with 𝑁 = 2 reduces to theorem 5.5. We
continue by finding the trivial and critical detection efficiencies
for all 𝑁 ≥ 2:

Remark 8.7 (Trivial Detection Efficiency for Pearle-
Braunstein-Caves) For 0 < 𝜂𝑁 ≤ 1 and every 𝑁 ≥ 2, the
equation

2𝑁 = 2(𝑁 − 1) ( 2
𝜂𝑁

− 1) (8.7)

has a unique solution in

𝜂trivial,N
def
= 2𝑁 − 2
2𝑁 − 1. (8.8)

Remark 8.8 (Critical Detection Efficiency for Pearle-
Braunstein-Caves) For 0 < 𝜂𝑁 ≤ 1 and every 𝑁 ≥ 2, the
equation

2𝑁 cos
𝜋
2𝑁 = 2(𝑁 − 1) ( 2

𝜂𝑁
− 1) (8.9)

has a unique solution in

𝜂critical,N
def
= 2

𝑁

𝑁−1
cos ( 𝜋

2𝑁
) + 1

. (8.10)

The next step is to investigate the effect of postselection on the
Franson interferometer with the PBC inequality. Formally, we
have

Theorem8.9 (Pearle-Braunstein-Caves for theFranson Inter-
ferometer) When using the Franson interferometer, the corre-
sponding PBC inequality is trivial for all 𝑁 ≥ 2.

Proof The effect of postselection in the Franson interferometer is
modelled as 𝜂 =0.5 in theorem 8.6. This gives

𝑆𝐶(𝑁) ≤ 6𝑁 − 6. (8.11)

This bound, however, is weaker than the trivial bound in theo-
rem 8.2 so the proof follows.
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Unfortunately, chaining the Bell inequality did not immediately
give unconditional security to the Franson interferometer as the
governing inequality remains trivial. However, we will now em-
ploy the fast switching method introduced in section 6.2. Recall
that in this setting and 𝑁 = 2, half of all events are bounded by
the standard Bell-CHSH inequality, while the other half is unre-
stricted (theorem 6.4). This gives us the chained theorem for fast
switching:

Theorem 8.10 (Pearle-Braunstein-Caves for the Franson
Interferometer with Fast Switching) When using fast switch-
ing, the outcomes from any local realist model in the Franson
interferometer with 𝑁 ≥ 2 settings per observer obey

||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+ ||𝐸(𝐴2𝐵2|Λ𝐴2𝐵2) + 𝐸(𝐴3𝐵2|Λ𝐴3𝐵2)|| +⋯

+ ||𝐸(𝐴𝑁𝐵𝑁|Λ𝐴𝑁𝐵𝑁) − 𝐸(𝐴1𝐵𝑁|Λ𝐴1𝐵𝑁)|| ≤ 2𝑁 − 1.

(8.12)

Proof Half of all source emissions are early and half are late, so we
take the average of the trivial and standard PBC inequality (8.3)
and equation (8.2).

This bound is stronger than theorem 8.9, so fast switching has
made a difference. Let us see if it this new bound strong enough
by comparing it with the quantum prediction 𝑆𝑄𝑀(𝑁) in theo-
rem 8.4. Table 8.1 lists the bounds and quantum predictions for
all 2 ≤ 𝑁 ≤ 6 and we see that fast switching allows the quan-
tum correlation to be in violation for 𝑁 ≥ 3. In other words, the
postselection loophole has been eliminated, and unconditional
security the Franson interferometer has been re-established – all
by modifying the security proof!

We now investigate theminimumdetection efficiency required
in the Franson interferometer when fast switching is used.

Theorem 8.11 (Pearle-Braunstein-Caves with Detection Effi-
ciency for the Franson Interferometer with Fast Switching)
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Number PBC Quantum
of settings bound prediction

2 3 4 cos(𝜋/4) ≈ 2.828
3 5 6 cos(𝜋/6) ≈ 5.196
4 7 8 cos(𝜋/4) ≈ 7.391
5 9 10 cos(𝜋/10) ≈ 9.511
6 11 12 cos(𝜋/12) ≈ 11.59

𝑁 ≥ 7 2𝑁 − 1 2𝑁 cos(𝜋/2𝑁)

Table 8.1: Comparison of quantum prediction 𝑆𝑄𝑀(𝑁) vs. the PBC
bound 𝑆𝐶(𝑁) for the Franson interferometer with fast switching and
𝑁 ≥ 2 settings per observer.

When using fast switching, the outcomes from any local realist
model in the Franson interferometer with 𝑁 ≥ 2 settings per ob-
server and detection efficiency 0 < 𝜂𝑁 ≤ 1 obeys

||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+ ||𝐸(𝐴2𝐵2|Λ𝐴2𝐵2) + 𝐸(𝐴3𝐵2|Λ𝐴3𝐵2)|| +⋯

+ ||𝐸(𝐴𝑁𝐵𝑁|Λ𝐴𝑁𝐵𝑁) − 𝐸(𝐴1𝐵𝑁|Λ𝐴1𝐵𝑁)||

≤ 𝑁 + (𝑁 − 1) ( 2
𝜂𝑁

− 1) .

(8.13)

Proof Half of all events are early, for which only the trivial PBC
inequality from theorem 8.9 applies. The other events are late and
are governed by the PBC inequality with detection efficiency 𝜂𝑁
from inequality (8.6). The average of these two inequalities gives
the result.

Note that the bound in inequality (8.13) depends on the detection
efficiency that remains after the 50%postselection has been taken
into account. We can now find the critical and trivial bounds:

Remark 8.12 (Trivial Chained Detection Efficiency for the
Franson Interferometer with Fast Switching) For 0 < 𝜂𝑁 ≤ 1
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and every 𝑁 ≥ 2, the equation

2𝑁 = 𝑁 + (𝑁 − 1) ( 2
𝜂𝑁

− 1) (8.14)

has a unique solution in

𝜂trivial,N,F
def
= 2𝑁
2𝑁 − 1. (8.15)

Remark 8.13 (Critical Chained Detection Efficiency for the
Franson Interferometer with Fast Switching) For 0 < 𝜂𝑁 ≤ 1
and every 𝑁 ≥ 2, the equation

2𝑁 cos
𝜋
2𝑁 = 𝑁 + (𝑁 − 1) ( 2

𝜂𝑁
− 1) (8.16)

has a unique solution

𝜂critical,N,F
def
= 2𝑁 − 2

2𝑁 cos ( 𝜋

2𝑁
) − 1

. (8.17)

Even if the detection and postselection loopholes are closed, the
coincidence-time loophole must also be considered. Just as in the
case of detection efficiency, theorem 5.9 must be generalized to all
𝑁 ≥ 2. This will allow us to find the trivial and critical coincidence
probabilities required for a violation of the PBC inequality.

The definitions in section 5.2 are general enough to allow for
adding more measurement settings. We can therefore present
publication C, where a full derivation of the PBC inequality with
coincidence probability was performed. The main result is the
following:

Theorem 8.14 (Pearle-Braunstein-Caves with Coincidence
Probability) A local realist system with 𝑁 ≥ 2 settings per ob-
server and coincidence probability 0 < 𝛾𝑁 ≤ 1 obeys

𝑆𝐶(𝑁) ≤
4𝑁 − 2
𝛾𝑁

− 2𝑁. (8.18)

Proof See publication C.
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Analogous to previous results, we derive trivial and critical coinci-
dence probabilities for all 𝑁 ≥ 2.

Remark 8.15 (Trivial Coincidence Probability for Pearle-
Braunstein-Caves) For 0 < 𝛾𝑁 ≤ 1 and every𝑁 ≥ 2, the equation

2𝑁 = 4𝑁 − 2
𝛾𝑁

− 2𝑁 (8.19)

has a unique solution in

𝛾trivial,𝑁
def
= 4𝑁 − 2

4𝑁 . (8.20)

Remark 8.16 (Critical Coincidence Probability for Pearle-
Braunstein-Caves) For 0 < 𝛾𝑁 ≤ 1 and every𝑁 ≥ 2, the equation

2𝑁 cos
𝜋
2𝑁 = 4𝑁 − 2

𝛾𝑁
− 2𝑁 (8.21)

has a unique solution in

𝛾critical,𝑁
def
= 2𝑁 − 1

2𝑁 (1 + tan2 ( 𝜋4𝑁)). (8.22)

Publication C showed that the bound in theorem 8.14 is tight,
which means that any coincidence probability below 𝛾critical,𝑁 al-
lows for an LHV attack. We prove this constructively, i.e., by
explicitly giving an LHV model that reproduces the same output
statistics as a quantum system would.

This concludes our discussion on chaining the Bell inequality.
Note that the PBC inequality is more difficult to test in experiment,
compared to the Bell-CHSH case. This will be discussed in the
next section.

8.2 Interferometric Visibility

Unfortunately, with this experiment, whenever you’re
looking for a stronger correlation, any kind of system-
atic error you can imagine typically weakens it and

105



8. Countermeasures to Quantum Hacking

moves it toward the hidden-variable range. It was a
hard experiment. In those days, at any rate, with the
kind of equipment I had, and …well, what can I say?
[…] I screwed up.

The above anecdote is told by physicist Richard Holt [119, p. 286]
and refers to his 1973 attempt [109] at an experimental test of
Bell’s then-new theorem. The result of the experiment was nega-
tive, i.e., that the Bell inequality was indeed not violated by quan-
tum mechanics. As Holt explains, it was later shown that sys-
tematic errors artificially reduced the measured Bell value in this
experiment and made the conclusion incorrect. Specifically, one
of several such errors was “found in the form of stresses in the
walls of the Pyrex bulb used to contain the electron gun and mer-
cury vapour” [154, p. 1910]. The effect of general experimental
effects (systematic errors, dark counts, detector noise) on the in-
terpretation of a measured Bell value will be discussed in this
section.

Using the chained PBC inequality as a security test will, in
theory, prevent the postselection loophole by allowing quantum
mechanics to violate local realism even with 50% postselection.
As just shown, experimental errors can skew the outcome to the
point where an incorrect conclusion is drawn, similar to the de-
tection loophole. While a low detection efficiency leads to lost
events (i.e., 𝐴𝑖 and/or 𝐵𝑗 undefined), a low interferometric visibil-
ity, sometimes called fringe visibility, is more general and can
cause spurious detections. For example, an event that should give
−1 can instead be recorded as +1.

The lower the experimental visibility, the lower the measured
Bell value [120, p. 17], so we must quantify it before interpreting
the results of a Bell test:
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Definition 8.17 (Visibility) The visibility of a Bell experiment
with 𝑁 settings per observer is defined as

𝑉𝑁
def
= 𝑆𝑀(𝑁)
𝑆𝑄𝑀(𝑁)

, (8.23)

where 𝑆𝑀(𝑁) is the experimentally measured Bell value.

Visibility therefore represents the experimental deviation from
the desired (and possibly chained) Bell value. Analogous to the
previously discussed imperfections, we can find a critical visibility:

Definition 8.18 (Critical Visibility) There exists a unique visi-
bility 0 < 𝑉𝑁 ≤ 1 so that the measured Bell value with 𝑁 settings
per observer will not exceed the bound in theorem 8.3. This critical
visibility is defined as

𝑉critical,𝑁
def
= 𝑆𝐵(𝑁)
𝑆𝑄𝑀(𝑁)

, (8.24)

where 𝑆𝐵(𝑁) is the relevant local realist bound.

When using the standard Bell-CHSH inequality, that is, 𝑁 = 2
settings per observer, the critical visibility reduces to

Remark 8.19 (Critical Visibility for Bell-CHSH) The critical
visibility for the Bell-CHSH inequality is

𝑉critical
def
= 1
√2

≈ 70.71%. (8.25)

In experimental papers, the threshold in remark 8.19 is often [155–
157] correctly used as a sufficient condition for violating local real-
ism. The same assertion is made in a recent publication by Peiris
et al. [58], which states that their achieved visibilities of 66% in
a Franson setup “approach the visibility required to violate Bell’s
inequalities (70.7%)”. However, this conclusion is inaccurate for
the Franson interferometer, as our discussion on the postselection
loophole in section 6.2 shows. When using the Bell-CHSH in-
equality in this setting, there is no way to violate local realism, so
the critical visibility exceeds 100%.
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In order to notify the authors of this observation we prepared
a comment paper, publication F, and sent it to the journal, Physi-
cal Review Letters (PRL). There, we briefly reviewed the compli-
cations of measuring the Bell value in a system with 50% post-
selection and interpreting the results as a violation of local realism.
While our paper was not accepted by PRL for publication, the au-
thors published an erratum [60] to their paper where the quote in
the previous paragraph was replaced with “with improved experi-
mental capabilities our approach can lead to a violation of Bell’s
inequalities”. The erratum references our comment (as published
on arXiv) and thanks us for bringing the issue to their attention.

Continuing on our discussion on visibility, the next step is the
critical visibility for the chained PBC inequality:

Theorem 8.20 (Critical Visibility for Pearle-Braunstein-
Caves) The critical visibility when using 𝑁 ≥ 2 settings per
observer is

𝑉critical,𝑁 = 2𝑁 − 2
2𝑁 cos 𝜋

2𝑁

. (8.26)

Proof The local realist bound for the PBC inequality, 2𝑁 − 2 is
found in theorem 8.3. Therefore, we put 𝑆𝐵(𝑁) = 2𝑁 − 2 and
𝑆𝑄𝑀(𝑁) from theorem 8.4 into definition 8.18 and the result fol-
lows.

Let us now find the critical visibility that must be achieved when
performing the PBC security test in the Franson interferometer
with fast switching.

Theorem 8.21 (Critical Visibility for the Franson Interfero-
meterwithFastSwitching) The critical visibility for theFranson
interferometer when using fast switching and 𝑁 ≥ 2 settings per
observer is

𝑉critical,𝑁,𝐹
def
= 2𝑁 − 1
2𝑁 cos 𝜋

2𝑁

. (8.27)

Proof With fast switching, the local realist bound for the PBC
inequality in the Franson interferometer is 2𝑁 − 1 as shown in
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𝑁 𝑉critical,𝑁,𝐹 Note

2 >100% No security

3 96.23%
4 94.71%
5 94.63% Least restrictive

6 94.90%
𝑁 ≥ 7 increasing with 𝑁

Table 8.2: Minimum visibility required in order for the quantum-
mechanical prediction 𝑆𝑄𝑀(𝑁) to violate the PBC inequality in the
Franson interferometer when using fast switching. Note that the case
𝑁 = 2 (Bell-CHSH) does not allow for a violation of local realism while
all𝑁 ≥ 3 do. In fact, the least restrictive number of settings is𝑁 = 5
where the critical visibility is 94.63%.

theorem 8.10. Therefore, we put 𝑆𝐵(𝑁) = 2𝑁 −1 and 𝑆𝑄𝑀(𝑁) from
theorem 8.4 into definition 8.18 and the result follows.

The quantity𝑉critical,𝑁,𝐹 depends on𝑁 and encapsulates the degree
of violation produced by the PBC inequality. At 𝑁 = 2, the critical
visibility is 106%, which obviously exceeds 100% and therefore is
unattainable. Table 8.2 lists the critical visibilities for 2 ≤ 𝑁 ≤ 6,
and it can be seen that the minima is attained at 𝑁 = 5. As the
number of settings increase beyond this point,𝑉critical,𝑁,𝐹 is strictly
increasing and approaches 1 as 𝑁 → ∞.

Let us compare table 8.2 with the critical visibility required in
a traditional Bell-CHSH experiment (remark 8.19). The lowest
critical visibility, 94.63%, is much higher in the Franson setting
than in traditional experiments, where only 70.71% is required.
Compared to traditional devices, it is therefore more difficult to
reach the required experimental visibility in the Franson inter-
ferometer. At the time of writing publication A, the visibilities in
table 8.2 were believed to be too difficult to attain.

However, in 2017 we published publication D, which disproves
this belief. This publication reports of an experiment at the Uni-
versity of Padova, Italy, which did attain very high visibilities in the
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Franson interferometer using the PBC inequality. Naturally, such
high visibilities require a very stable setup, and we achieved this
by independently stabilizing the analysis stations, which allows
both phase mismatch due to the path and phase mismatch due to
the pump laser to be minimized. This negates environmental dis-
turbances such as temperature variations, which in turn stabilizes
the wavelength of the laser, keeping the phase stable and visibility
high.

Very high visibilities (up to 99%) were achieved for 𝑁 = 3, 4,
and 5 settings per observer, which would be enough to close the
postselection loophole in a full experiment. However, fast switch-
ing was not used, and we therefore did not truly violate local
realism in the Franson interferometer. Still, it shows that high
enough visibilities can be achieved experimentally and paves the
way for future, loophole-free Franson experiments. As of yet, no
experimental realization of the Franson interferometer has closed
the postselection loophole and this remains an important goal for
the future.

Before December 2016, no experimental test of the PBC in-
equality had been announced, and publication D was very close
to being the first of its kind when it was uploaded to arXiv on
December 12th. As it turns out, Tan et al. [158] had performed a
related experiment where trapped 9Be+ ions were used to test the
PBC inequality for all 2 ≤ 𝑁 ≤ 15 with a high detection efficiency.
That paper was submitted to PRL on the 5th of December, exactly
one week before we publicly announced publication D. Still, our
experiment was the first test of a chained Bell inequality using
photons.

8.3 Modified Franson Setups

We have now seen how chaining the Bell inequality opens up the
possibility for secure QKD based on the Franson interferometer.
By combining fast switching with three to five settings per ob-
server in a high-visibility experiment, the postselection loophole
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is nearly closed. However, there are other possibilities worth men-
tioning that potentially re-establish security. In this section we
will not focus on modifying the security proof, but instead discuss
these options for modifying the setup of the Franson interfero-
meter. It must be pointed out that these modifications deviate
significantly from the original proposal by Franson [40], and they
must therefore be considered to be separate devices altogether.
A more extensive discussion on modified setups can be found in
publication A.

Path Realism
We begin with a possibility that does not require physical mod-
ifications to the Franson setup, yet immediately closes the post-
selection loophole. In theory, it is possible to re-establish security
by discarding the DI security assumptions and instead require
that paths inside the analysis stations be realist properties. This
concept is referred to as path realism, and essentially forces the
photons to behave like particles. When a photon enters an anal-
ysis station it will encounter the first beam splitter and “decide”
whether to “take” the long path or the short path. Such a “decision”
must occur before it can “read” the setting of the phase modulator,
which, in turn, forces it to be independent of the local setting.
Compare to standard Bell experiments, where only independence
of the remote setting is required.

With path realism, there is no difference between the cases
“both photons taking the short path” and “both photons taking the
long path” as the existence of delay cannot depend on the local
setting. Therefore, even thoughwemust condition on coincidence,
the standard Bell-CHSH bound in theorem 4.7 applies separately
to both paths. With path realism we therefore have

Theorem 8.22 (Bell-CHSH with Path Realism) The out-
comes from a local realist system with path as a realist, setting-
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Source

−1
+1

−1

+1

𝜙𝐴

𝜙𝐵

Figure 8.2: Hugging interferometers, or Genuine Energy-Time Entan-
glement (GETE). This setup has many of the properties of the original
Franson setup but allows the postselection loophole to be closed.

independent property and two settings per observer obey

||𝐸(𝐴1𝐵1|Λ𝐴1𝐵1) + 𝐸(𝐴2𝐵1|Λ𝐴2𝐵1)||

+ ||𝐸(𝐴1𝐵2|Λ𝐴1𝐵2) + 𝐸(𝐴2𝐵2|Λ𝐴2𝐵2)|| ≤ 2.
(8.28)

Proof See publication A.

Note that with path realism, quantum mechanics can violate the
local realist bound, even when we take postselection into account.
Can this be used to re-establish unconditional security in the Fran-
son interferometer? No, not by itself. Recall that path realism
discards the DI security assumptions, and therefore a Bell inequal-
ity no longer qualifies as a security proof. Instead, the situation is
closer to traditional DI setups, like BB84, where security depends
on low-level properties. We discuss path realism in detail in pub-
lication A, but the conclusion must be that it is not a way forward
for practical QKD.

Genuine Energy-Time Entanglement
Another countermeasure discussed in publications A and B con-
sists of installing a second quantum channel between the source
device and Alice’s and Bob’s analysis stations (figure 8.2). This is
the “hugging” configuration and was first suggested by Cabello

112



8.3. Modified Franson Setups
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Figure 8.3: Energy-Time Entanglement (ETE) with optical switches
synchronized with the source. An early photon would take the long,
delayed, path while a late photon is immediately detected. This results
in a setup without the postselection loophole.

et al. [159] in 2009. This device is often referred to as Genuine
Energy-Time Entanglement (GETE) and requires postselection
just like the Franson setup. Here, a local measurement can predict
the path taken in the remote analysis station. As a consequence,
theorem 8.22 applies, the quantum prediction violates the local
realist bound, and we can prove DI security even in the face of
postselection.

The drawback of GETE is the added cost of an extra quantum
channel. However, the combination of a quantum violation of
local realism and a DI security proof without relying on delicate
polarization states, has led to increased interest from experimen-
talists. The first experimental violation of Bell-CHSH using GETE
was reported in 2013 by Cuevas et al. [160], where Alice and Bob
were separated by 1 km. Later, Carvacho et al. [161] used an ex-
isting optical fiber network with a total length 3.7 km to close the
postselection loophole in a similar experiment.

Switched Interferometer
Another setup discussed in publication A is a proposal by Brendel
et al. [162] from 1999 where the first beam splitter is replaced
by an electrically controlled switch, see figure 8.3. The source
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device is an unbalanced MZ interferometer where a pulsed single-
photon laser pumps a nonlinear crystal in order to produce a
pair of time-entangled photons in either the early or late timeslot.
This is called time-bin encoding. The time difference between
the early and late timeslots is Δ𝑇, which precisely matches the
time difference between the short and long paths in the analysis
stations.

An early photon arriving at the analysis station will be routed
into the long path by the optical switch, which is synchronizedwith
the pump. The optical switch is then fast enough to switch to the
other position, in order to route the inoming late photon into the
short path. As the path differenceΔ𝑇matches theΔ𝑇 of the source,
the two possible photons will interfere at the “combiner” beam
splitter before detection. As shown in publication A, there will be
no need for postselection, so the standard Bell-CHSH inequality
in theorem 4.7 applies without the need for conditioning.

The challenge for the switched interferometer is the need for a
very fast and controllable optical switch. In their proposal, Brendel
et al. [162] use a time difference Δ𝑇 as small as 1.2 ns. With the
exception for the switch, the rest of the proposal is relatively simple
to construct, needs only one quantum channel, does not need
polarization, has an attractively simple security proof and only
needs the standard Bell-CHSH visibility of 70.71% (remark 8.19).

Seeing as the optical switch is the Achilles heel of the switched
interferometer, we want to propose a novel, and previously un-
published, modification to the setup that retains the advantages
but allows for cheaper, more slow-moving switches to be used.
By making the time difference Δ𝑇 very large, the switch will have
more time to operate. However, merely increasing the time dif-
ference will adversely affect the key rate as the bit rate is at most
1/Δ𝑇. The following trick, however, allows fast key rates with a
large Δ𝑇: The pump emits 𝑘 photons at a rate much faster than
𝑘/Δ𝑇 before turning off until the cycle repeats.

The optical switch still switches between the two paths in uni-
son with the source, so all early photons are routed into the long
path, while the late photons take the short path. The key rate
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therefore increases by a factor of 𝑘 compared to only sending one
photon per cycle. The drawback is that the three optical delay
paths of length Δ𝑇 become more difficult to stabilize as they are
long. Still, this approach allows the designer to make a trade-
off between difficulty of stabilization and, the cost of the optical
switches while maintaining key rate.

8.4 Conclusions

We have reviewed a number of options for re-establishing uncon-
ditional security in the Franson interferometer. Importantly, the
security must stem from a correct security proof and not ad hoc
countermeasures to specific known attacks.

Chaining the Bell inequality together with fast switching al-
lows the postselection loophole to be closed, however the cost
is a marked increase in required visibility, detection efficiency,
and coincidence probability. Modified setups such as the hugging
configuration or using optical switches also provide testable secu-
rity guarantees and appear experimentally viable. Publication A
discusses an additional modified Franson setup.
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Chapter 9

Quantum Bitcoin

So maybe that’s the reason for No-Cloning: because
God wanted us to have e-commerce, and didn’t want
us to have to bother with blockchains (and certainly
not with credit card numbers).

— Scott Aaronson, 2016 [163]

The goal of this chapter is to present publication E, a contri-
bution that for the first time combines the two research areas
of quantum money and blockchain technology. We begin with a
short history of computer networks and build up to themotivation
for Quantum Bitcoin.

Packet-switching networks made their breakthrough with the
advent of ARPANET, the first predecessor of what we today call
the Internet [164]. Packet switching allows digital information
to be grouped into distinct blocks, or packets, which can then be
transmitted over a medium together with other packets to and
from other applications and/or users. This method is different
from circuit switching, where two peers connect by allocating a
dedicated point-to-point connection [165].

With packet switching, different traffic flows can be routed
independently of each other as they are traverse a network. If
the network topology changes, routing protocols automatically
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update, ensuring uninterrupted traffic flow. Lost packets can
be detected and, if needed, re-transmitted transparently to the
user. Packet switching and automatic routing protocols gives the
Internet a high degree of tolerance against random faults and the
semi-decentralized design of applications such as web browsing
and e-mail, make them highly resilient and difficult to censor.
Even the loss of a large number of nodes is unlikely to disrupt all
providers simultaneously.

For the end user, these developments allowed cheap and re-
liable means of communication. Anybody can send messages to
anybody else as long as they use the same protocol. E-mail servers
listen for incoming connections on open ports exposed to the In-
ternet, facilitating delivery no matter where the sender is located.
However, communications became so cheap that it also became
easy to send unsolicited messages, which is popularly known as
spam. This was first recognized in a Request For Comments (RFC)
as early as 1975 [166], and Denning [167] called it “Receiver’s
Plight” in 1982.

9.1 Hashcash

As the Internet grew more and more popular, so did spam. By
2010, it was estimated that 89% of all email messages on the
Internet could be attributed to spam [168]. In comparison, a
study from 1997 estimated the spam volume at that time to be
between 2% to 10%, so there was a remarkable increase during
the 2000s. One contributing factor to the spam problem was
identified by Cranor and LaMacchia [169] to be the low cost of
sending large volumes of e-mail. They argued that a bulk mailer
can send hundreds of thousands of messages every day and turn a
profit “even if only a tiny fraction of the messages they send out
result in sales” [169].

Dwork and Naor [170] suggested a system of usage fees as
a prevention method for increasing sender cost, which in turn
discourages spam. In their paper, published as early as 1992, we
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can identify the first trace of a method that today is a cornerstone
of the Bitcoin protocol: By requiring a sender to compute a “mod-
erately easy” function 𝑓(𝑥) for every e-mail to be sent, legitimate
usage remains cheap. Unsolicited bulk e-mail, however, becomes
expensive enough to prevent abuse. The function argument 𝑥 de-
pends on the contents of the e-mail to be sent, in order to force a
new computation for every recipient. This idea was independently
invented by Back [171] who developed Hashcash in 1997 (paper
published in 2002).

Hashcash is a refinement of the above idea of a “moderately
easy” function. In order to send an e-mail, the sender has to solve a
Proof of Work (PoW) puzzle in order to prove to the recipient that
a certain amount of computing power (or equivalently, energy)
has been spent to send it. In other words, the client has to pay to
send messages! More precisely, we want a PoW puzzle to have the
following properties:

Definition 9.1 (Properties of Proof-of-Work Puzzles) A PoW
puzzle must have the following four properties:

• Difficult to find a solution.

• Easy to verify (or disqualify) a solution.

• The difficulty of finding a solution should be scalable.

• The problem depends on the message to be sent.

When sending a message to a server using Hashcash, the server
responds with a puzzle. This puzzle depends on the message,
and possibly some additional data such as a timestamp and a
random number. The client will then have to find a solution,
send the solution, puzzle1, and message back to the server. The

1In order to prevent against flooding, the server never stores the puzzle.
Instead, the client must include the original puzzle in the response and the
server can verify the authenticity with, for instance, a symmetric key. A similar
method is used in the Transmission Control Protocol (TCP) to prevent an
attacker from using up all resources of another peer on the network.
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server can compare the given puzzle with the solution provided
by the client, and if the solution is correct it means the client
has spent energy to find it. In that case, the server delivers the
message to the recipient. If the solution is incorrect, the message
is simply discarded. In times of heavy load, the server can scale
the difficulty for the client in order to reduce load and further
discourage unsolicited messages.

Back [171] introduced a PoW scheme based on hash functions.
A hash function is a map from 𝑘 to 𝑛 bits where 𝑛 is fixed:

𝐻 ∶ 𝔽𝑘2 → 𝔽𝑛2
𝑚 ↦ 𝐻(𝑚).

(9.1)

Normally, 𝑘 is much greater than 𝑛. In other words, a hash func-
tion takes any binary string as input and outputs a fixed-length
binary string. In addition, Hashcash requires the hash function
to be cryptographically secure, which means hash function must
be pre-image resistant and collision resistant. Pre-image resis-
tance is the requirement that the hash function is one-way, that
is, given a hash value ℎ it should be difficult to find 𝑚 so that
𝐻(𝑚) = ℎ (see section 1.3). Collision resistance means it should
be difficult to find messages with the same hash value, i.e., given
𝑚 with the hash value 𝐻(𝑚), it should be difficult to find𝑚′ ≠ 𝑚
such that𝐻(𝑚′) = 𝐻(𝑚). Note that because the hash function has
a fixed-length output but takes arbitrary length inputs, it is not
injective.

The Hashcash PoW puzzle uses partial hash collisions: Let
𝐻 be a public, cryptographically secure hash function with fixed
output length 𝑛. Given a message 𝑚, the server can compute
a challenge in the form of a binary string 𝑐 and a threshold 𝑘.
Normally 𝑐 depends on not only𝑚, but also on a timestamp and
some random number, in order to make 𝑐 unpredictable. The
puzzle is to find a binary string 𝑥 so that 𝐻(𝑐||𝑥) is smaller than
the threshold 𝑘. Here, the || indicates concatenation of strings.

Since𝐻 is a cryptographically secure hash function, the output
is unpredictable, and the only method for finding a solution 𝑥 is
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a costly exhaustive search. Note that because a hash function is
not injective, several solutions are possible, but when a solution is
found, it takes just one hash operation (𝐻(𝑐||𝑥) to verify that the
solution is correct. In addition, the threshold 𝑘 allows dynamic
scaling of the difficulty. Therefore, finding partial hash collisions
is a PoW puzzle that fulfills all requirements of definition 9.1.

While Hashcash never found success as an anti-spammeasure-
ment for e-mail, PoW was found to be useful to protect against
a Sybil attack. An attacker performing a Sybil attack presents
multiple identities to the network [172]. For example, the afore-
mentioned problem of spam is a simple example of a Sybil attack
because one spammer usually pretends to be a different sender for
each message sent. A more complex example is an online voting
system, or even a poll on a website. If the authentication is weak,
an attacker may cast several votes instead of just one, thereby
gaining an inflated amount of power.

9.2 Bitcoin

Another application of PoW is in cryptographic currencies, of
which Bitcoin [9] is the most prominent example. Bitcoin is a
peer-to-peer currency where transactions are verified by a net-
work of users instead of an intermediator. Here, a Sybil attack is a
serious threat, but we will show how this is prevented with a PoW
mechanism. The mystery surrounding the identity of Bitcoin’s
pseudonymous inventor Satoshi Nakamoto is the fuel for legends,
but since the 2008 whitepaper was published the currency has
seen remarkable adoption. At the heart of the protocol is a consen-
sus mechanism, where a heterogenous and dynamically changing
group of peers agree on the state of the system without a central
clearing house.

This consensus mechanism is used by Bitcoin to prevent the
problem of doublespending, i.e., spending the same unit of cur-
rency twice. Doublespending is probably the most serious concern
in any digital currency, since digital information in contrast to
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physical banknotes and coins can be copied at will. If a single
peer is able to perform a doublespend, it is safe to assume that the
currency will fail completely.

The consensus mechanism in Bitcoin, reminiscent of a tradi-
tional voting system, therefore introduces a significant amount
of complexity in preventing such doublespends. If a peer an-
nounces a new state transition (i.e., currency transaction), the
other peers either accept or refuse this new state. Note that these
other peers cannot be trusted on an individual basis, and there is
no way of knowing the number of peers in such a heterogenous
and dynamically-changing network as that of Bitcoin. Therefore,
it is impossible to use traditional majority voting since there is
no way of knowing when a majority is achieved. In addition, an
attacker can perform a Sybil attack and flood the network with
invalid confirmations in order to make it accept a doublespend.

Bitcoin uses a variant on the PoW puzzle in Hashcash to pre-
vent these invalid votes. No traditional authentication method
of the voting peer is satisfactory, however a proof of spent energy
is an authentication method in itself. If a confirmation is paired
with such a proof, the rest of the peers can verify the difficulty
of casting that vote. In contrast to Hashcash, the PoW puzzle in
Bitcoin is designed to be extremely difficult to solve. For example,
in July 2017 the Bitcoin network required the first 68 bits of the
hash value to be zero. As the hash algorithm 𝐻 is SHA-256 [173],
and assuming this to be a cryptographically secure hash algorithm,
all output values are equally probable. The success probability of
a single trial is then 2–68 ≈ 3.39 × 10−21.

A reasonable performance figure for a powerful, generic
computer is ten million SHA-256 hashes per second, or
10Mhash s−1 [174]. With such hardware it will, on average, re-
quire a million years to solve the PoW puzzle once. A special-
ized state-of-the art machine is much faster, but still requires
large amounts of energy to succeed. In Bitcoin today, peers
use Application-Specific Integrated Circuit (ASIC) computers
and achieve hash rates of approximately 1012 hashes per sec-
ond [174]. ASIC computers are highly energy efficient and use
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1.5Ghash J−1 [174]. On average, an ASIC will therefore require
63MWh to solve the PoW puzzle, which is equivalent to the en-
ergy released by burning 42 barrels of crude oil!

Clearly, the PoWpuzzle in Bitcoin ismuchmore difficult than a
practical e-mail spam prevention system could ever be. However,
because those who solve Bitcoin PoW puzzles are rewarded, it
has become a lucrative enterprise to spend energy to do so. In
July 2017, the global hash rate of the Bitcoin network exceeded
7 × 1018 hashes per second, and it has been estimated [175] that
the corresponding energy consumption is 14TWh per year, which
is more than the entire country of Slovenia in 2016 [176].

Note that Bitcoin has no explicit mechanism for “voting
against” a transition. Instead, peers who disagree explicitly con-
firm their own version of the new block (Bitcoin jargon for a state
transition), and whoever solves the PoW puzzle first has the de-
ciding vote. In addition, each block is numbered, and the puzzle
for block 𝑛 + 1 depends on the hash value of block 𝑛. Therefore, a
confirmation implicitly confirms all prior blocks, and the blocks
form a long chain (“blockchain”) leading back all the way to the
initial “genesis” block.

The protection against a Sybil attack in Bitcoin therefore works
as follows: An attacker must spend a large amount of resources in
order to solve the current PoW puzzle. This is done in competi-
tion with other peers on the network who also solve puzzles. Not
only must the attacker solve the puzzle faster than the rest of the
network, he or she must do so several times in a row. In Bitcoin,
clients typically require a block to have been confirmed six times
by new, consecutive blocks, so an attacker controlling as much as
1% of the global hashing power has a success probability of only
0.016 = 10−12.

Nakamoto [9] showed that, as long as a majority of hashing
power is controlled by “honest” peers (i.e., they only confirm “valid”
blocks), the success probability of the attacker is exponentially
small in the number of required confirmations. In addition, peers
are only rewarded for successful PoW solutions after 50 consec-
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utive blocks, so there is a strong economic incentive in place to
reward miners who stay hones.

In Bitcoin, new transactions are initiated by a peer by broad-
casting signed transaction messages that indicate to and from
which accounts the funds are to be transferred. Accounts are ran-
domly generated and identified by their hash values. The digital
signature algorithm is ECDSA, and the public-private key pair
is related to the address of the account. We will not give further
details of the Bitcoin protocol – a more detailed account is given
in Nakamoto [9].

9.3 Further Blockchain Developments

Nakamoto invented the blockchain and used it to construct a
digital currency. It was later discovered that this type of dis-
tributed, tamper-proof database is useful for other purposes than
just money. Of particular note is Ethereum, published by Bu-
terin [10] in 2013. Here, the blockchain is used as envisioned in
section 9.2: as a state machine where transactions provide transi-
tions between states. Importantly, Ethereum combines this state
machine with a Turing-complete programming language to al-
low this “blockchain computer” to run computer programs called
smart contracts.

Smart contracts, just like computer programs, can be pro-
grammed for a wide variety of applications. Examples include dis-
tributed data storage [177], voting and governance systems [178],
supply chain management [179], and financial technology (fin-
tech) [180].

For the purposes of this thesis we are primarily interested
in storing small amounts of data with very high integrity re-
quirements. Publication E introduces the following model for
a blockchain-based storage system:

Definition 9.2 (Distributed Ledger Scheme) A distributed
ledger scheme ℒ consists of the following classical algorithms:
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• Appendℒ is an algorithm that takes some key-value pair
(𝑘, 𝑑) as input. The algorithm fails if the key 𝑘 is already in
the blockchain, and stores (𝑘, 𝑑) otherwise.

• Lookupℒ is a polynomial-time algorithm that takes as input
a key 𝑘′ and returns 𝑑 if there exists a key-value pair (𝑘, 𝑑)
such that 𝑘 = 𝑘′. If not, the algorithm fails.

We end this section with a short discussion on the security of
blockchain architectures. Bitcoin uses ECDSA with the elliptic
curve secp256k1, and most blockchain systems have followed the
same path. However, as mentioned in section 1.4, Shor’s algorithm
can defeat ECDSA, so Bitcoin and blockchain systems are gen-
erally not quantum-safe. The obvious solution is to use a PQC
digital signature scheme, however Kiktenko et al. [181] proposed
a different solution where a blockchain is implemented over QKD
links. As QKD supposedly resists any attack, this would make
the system secure even if quantum computers become a reality.
However, as we have discussed in this thesis, the security of QKD
is not as clear-cut as some it is sometimes described.

9.4 Quantum Money

Until recently, the no-cloning theorem was attributed to the 1982
paper by Wootters and Zurek [182]. Recently, however, an ob-
scure paper by Park [183] has been discovered, where an explicit
proof of the theorem was given as early as 1970 [184]. An even
earlier allusion can be traced back to 1968, when Wiesner [185]
described “conjugate coding”, i.e., the coding of classical infor-
mation onto quantum basis states that cannot simultaneously be
measured. Wiesner, however, did not publish this manuscript
until 1983 [186].

Wiesner’s paper is groundbreaking because it is the first appli-
cation of quantum information to cryptography, predating even
the 1984 paper on BB84 by Bennett and Brassard [65]. In ad-
dition, it started the field of quantum money, which uses the
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Figure 9.1: Quantum banknote in Wiesner’s quantum money scheme
with 20 qubits as depicted by Bennett [187]. Note the classical serial
number printed on the bottom of the banknote. Image copyright© 1992
The American Association for the Advancement of Science, reused with
permission2.

no-cloning theorem to create money tokens that are impossible
to forge. Wiesner’s quantum money scheme consists of quantum
banknotes with a number of qubits and ostensibly has uncondi-
tional security. The mint is a trusted entity who creates banknotes
by randomly selecting a public serial number 𝑠. Next, it chooses a
private key 𝑘(𝑠) ∈ {0, 1, +,−}𝑛 and creates a quantum money state

|$⟩
def
= ||𝑘

(𝑠)
1 ⟩ ⊗ ||𝑘

(𝑠)
2 ⟩ ⊗⋯⊗ ||𝑘

(𝑠)
𝑛 ⟩ , (9.2)

where |0⟩, |1⟩, |−⟩, and |+⟩ are the computational and diagonal
bases defined in equations (2.18) and (2.19). The pair (𝑠, |$⟩) is the
quantum banknote and the bank stores a list of all issued serial
numbers and corresponding private keys. Figure 9.1 shows an
artist’s depiction of a quantum banknote in Wiesner’s scheme.

2RightsLink license number 4174141186211.
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If Alice wants to spend aWiesner banknote, she must go to the
bank, as it is the only entity able to perform verification. Therefore,
let Alice send a (potentially forged) Wiesner banknote (𝑠, |𝜓⟩) to
the bank. The bank will measure each qubit in the banknote in a
basis that depends on the private key. The 𝑖th qubit is measured
in the {|0⟩ , |1⟩} basis if the corresponding private key 𝑘(𝑠)𝑖 is 0 or 1.
Conversely, if 𝑘(𝑠)𝑖 is + or −, the measurement will be performed
in the {|+⟩ , |−⟩} basis. If all measurement outcomes agree with
the private key, the banknote is deemed valid.

A counterfeiter wanting to duplicate the banknote cannot
straight up copy the qubits due to the no-cloning theorem. Instead,
the qubits can be prepared randomly, and the success probabil-
ity will be (3/4)𝑛. According to Aaronson and Christiano [188],
Wiesner’s scheme suffers from three distinct drawbacks:

1. The “Verifiability Problem”: Only the bank can verify ban-
knotes.

2. The “Online Attack Problem”: A bank that returns invalid
banknotes to the sender allows a counterfeiter to break the
system [188–190].

3. The “Giant Database Problem”: The bank must store the
serial numbers and private keys for all banknotes in circula-
tion.

In 1982, Bennett, Brassard, Breidbart, andWiesner (BBBW) [191]
proposed a modification to Wiesner’s scheme that eliminated the
giant database problem, at the cost of the scheme no longer be-
ing unconditionally secure. However, both these protocols were
broken in 2014 by Brodutch et al. [192]. Another protocol was
published by Mosca and Stebila [193] in 2009, where all tokens
for a given denomination are identical, and the scheme is therefore
called quantum coins in contrast to banknotes. Several other pro-
tocols and attacks have been published in the last decade, [194–
196] and the common feature of most of these protocols is that
they are private-key. Private-key quantum money means that
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the bank must be involved whenever a banknote is to be verified
(compare with the “Verifiability Problem” above). Of course, re-
quiring the bank to take part in every transaction is clumsy, so
private-key money becomes cumbersome to use. Compare this to
“classical” banknotes where the security features are made to be
easily verified to a high degree by anyone.

The drawbacks of private-key money has led to an interest
in public-key quantum money, where the bank only deals with
creating the money states – verification can be done by anyone.
Quoting Aaronson and Christiano [188, p. 4]:

As with public-key cryptography in the 1970s, it is
far from obvious a priori whether public-key quan-
tum money is possible at all. Can a bank publish a
description of a quantum circuit that lets people feasi-
bly recognize a state |𝜓⟩, but does not let them feasibly
prepare or even copy |𝜓⟩?

This question has not been satisfactorily answered. The first at-
tempt at a public-key quantum money system was due to Aaron-
son [189] in 2009, but this scheme was broken by Lutomirski
et al. [197] within a few months. Another approach by Farhi et
al. [198] uses knot theory, and while this system is unbroken a
complete security proof remains elusive.

An important contribution to public-key quantum money
is the reduction scheme [197, 198], where the quantum money
scheme is constructed in a two-step process. The first step is a
mini-schemeℳ, which can mint and verify one single unit of cur-
rency. Together with a digital signature scheme, the mini-scheme
can then be extended to a fully-fledged currency that handles any
finite amount ofmoney. The reason for a two-step construction is a
security reduction: If the mini-scheme can be proven secure, then
the full quantum money system is secure given a secure digital
signature scheme [188]. Aaronson and Christiano [188] intro-
duced three proposals for public-key quantum money. The first is
an abstract scheme, which uses a random oracle and is proven se-
cure. The second and third schemes are explicit and are based on
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multivariate polynomials but lack a security proof. Consequently,
the noiseless version was broken by Pena et al. [199] but the noisy
version remains unbroken for the time being.

Up until this point, all proposed quantummoney schemes have
had the same underlying topology: a central bank that issues (and
possibly verifies) quantum money states, and users who perform
transactions and possibly perform verification. This is similar
to what digital money looked like before the advent of Bitcoin,
with central points of authority having almost ultimate power and
responsibility. The first proposal to break this topology came in
2016 with our introduction of Quantum Bitcoin in publication E,
which is the first attempt at a quantum money scheme with a
distributed trust model.

Quantum Bitcoin can either be seen as a blockchain-powered
quantum money scheme, or a quantum version of Bitcoin. Either
way, publication E shows how any secure public-key quantum
money scheme can be used to construct a distributed (bitcoin-
like) quantum money scheme. The basic idea is not complicated:
Allow anybody to mint new quantummoney, but for the money to
be valid its serial number must be registered in a blockchain. This
mechanism ensures only a fixed rate of new currency is added,
similar to the way inflation is controlled in Bitcoin. In contrast to
Bitcoin, however, the quantum version does not need to record
transactions in order to prevent doublespending as this is already
prevented by the no-cloning theorem.

QuantumBitcoin can therefore be argued to have less complex-
ity than classical Bitcoin, as doublespend protection is a significant
part of the latter protocol. The only part of Quantum Bitcoin that
requires an expensive, slow call to Appendℒ, is when newmoney is
issued. As this happens very rarely in comparison to transactions,
the protocol is highly efficienct. Peers not performing minting
only need to call Lookupℒ, which in contrast is a very fast operation.
The consequence is instant transactions. Furthermore, as trans-
actions are never recorded, there is no paper trail which makes
the currency fully anonymous and untraceable. A more complete
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review of differences between Quantum Bitcoin, Bitcoin and other
money schemes is given in publication E.

The security analysis of Quantum Bitcoin shows it to be secure
if at most 15% ofminers are dishonest. This level is lower than the
corresponding 50% limit of classical Bitcoin and is the primary
technical challenge faced by the proposal. In addition, Quantum
Bitcoin, just like the public-key quantummoney scheme by Aaron-
son and Christiano [188], is not unconditionally secure. Instead,
counterfeiting resistance is complexity-theoretic and is shown to
require an exponential number of oracle queries in the number of
qubits 𝑛.

Quantum Bitcoin is the first proposal for a decentralized quan-
tum money system and introduced a number of new ideas and
concepts. A follow-up work by Ikeda [200] in 2017 introduced
another scheme, dubbed “qBitcoin”, which uses a “quantum chain”
instead of the classical blockchain of Quantum Bitcoin. We hope
that distributed quantum money schemes will be subject to more
research in the future as there are interesting applications.
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Conclusions

This thesis has briefly outlined the history of cryptography leading
up to the modern developments of Device-Independent Quan-
tum Key Distribution (DI-QKD) and Energy-Time Entanglement
(ETE). In essence, QKD is the ultimate method for communi-
cating secret information as it, in theory, remains secure to any
eavesdropper – even in a future where quantum computers are a
reality. The slogan of QKD has been “security based on the laws of
physics” [93], but as pointed out by Scarani and Kurtsiefer [131],
the same laws “do not prevent someone from reading the out-
comes of a detector”. Just because unconditional security can be
proved in theory, it does not mean the system is immune to real-
life attacks such as those mentioned in chapter 7. We reiterate the
quote by Bell: “what is proved by impossibility proofs is lack of
imagination.” [137, p. 997].

In chapter 1 we mentioned Schneier’s law, which states that
cryptographic systems must be exposed to cryptanalysis and ex-
tensively tested before they can be trusted to secure sensitive in-
formation. Schneier’s law also applies to QKD, and as the field
is relatively new there is a chance (or risk!) that wonderful dis-
coveries will be made in the near future. Such discoveries could
either mean better, improved protocols – but also new avenues
for quantum hackers to find exploits. As we are unable to tell
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the future, we must subject QKD devices and protocols to great
scrutiny before marketing them to a wider audience.

It is difficult to prove the security of traditional QKD proto-
cols such as BB84. Even the slightest imperfection can lead to
security problems, which ultimately allow an attacker to break
the security. As shown in publication A, a security proof based on
incorrect assumptions allows an attacker to exploit the system. In
contrast, the security test in DI-QKD certifies the whole system in
a single step, and by combining DI-QKD with ETE we get a more
robust setup compared to systems using polarized photons. As
we have conclusively shown in this thesis and publication B, the
Franson interferometer together with the Bell-CHSH inequality
has a serious weakness that allows Eve to break the security and
gain knowledge of Alice’s and Bob’s secret key.

It is interesting to note that the insufficiency of the original
Franson setup has been known for almost 20 years. The first
evidence can be found in 1999 when the effect of postselection
on the Bell-CHSH inequality in the Franson interferometer was
studied by Aerts et al. [138]. Still, the same security test has been
used in numerous experiments ever since [41–50]. We consider
the lack of security in the standard Franson interferometric setup
to be proven beyond doubt, but it is obvious we still have ways
to go in educating the scientific community on this issue. In fact,
publication F is a comment on an experimental paper that was
published as recently as 2017 [58].

In order to make the Franson interferometer immune to our
attack, a QKD designer might be tempted to simply add a mon-
itoring device in order to detect bright incoming light. Such a
modification would certainly make the specific method in publi-
cation B impossible, but it only gives a temporary gain in security.
We show in chapter 8 that there is nothing stopping an attacker
frommodifying modify the attack in order to circumvent the mon-
itoring device. The result is a never-ending cat-and-mouse game
no better than the situation of classical cryptography. Instead, a
correct security proof relies on a violation of the Bell inequality
and cannot be substituted by any patchwork of systems looking
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for specific attacks. Indeed, we must rely on primitives that can
be proven secure and make them robust enough to work in exper-
imental, non-ideal conditions.

There are several ways to construct better primitives, and we
have extensively reviewed such methods in chapter 8, including
modifying the physical setup and improving the security test. Of
particular note is the Pearle-Braunstein-Caves (PBC) inequality,
a chained version of the Bell-CHSH inequality, which in publi-
cation A was shown to allow a true violation of local realism in
the Franson scheme. Testing the PBC inequality, just like any
Bell inequality, requires eliminating a number of loopholes. The
coincidence-time loophole is a significant consideration in most
experimental settings, but its effect on the PBC inequality was
not known before publication C. Here, we derived necessary and
sufficient conditions for a chained experiment, free of the fair-
coincidence assumption. In addition, the PBC inequality has
stricter requirements on interferometric visibility than the Bell-
CHSH version. In fact, we first believed these requirements were
too strict to ever be tested in experiment, but fortunately we were
wrong and publication D is exactly such an experiment. Here, we
achieved visibilities up to 99% when testing three different PBC
inequalities.

Bridging the gap between the research topics of quantum me-
chanics and Bitcoin is not a trivial task. Nevertheless, our proposal
of Quantum Bitcoin in publication E is the first ever attempt at
such a combination. The results are still early, with a relatively
weak security proof, but nevertheless a number of advantages over
classical Bitcoin can be identified. In fact, publication E argues
that, if the proposal can be implemented, the advantages over
other forms of currency are significant. Counterfeiting is prohib-
ited by the laws of Nature via the no-cloning theorem, new money
can be minted in a transparent, distributed fashion, transactions
are instant, and the system can scale to any transaction volume.
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10.1 Future Work

In our discussion of loopholes in Bell’s Theorem we have reviewed
the detection, coincidence-time, and postselection loopholes as
well as the effect of visibility. We have provided tight bounds on
how far we can stray from the ideal situation before the quantum
prediction stops violating local realism. The limitation is that
we only studied the different effects individually, and not their
joint impact. An experiment with detection efficiency and coin-
cidence probability just above the respective critical limits will
probably be vulnerable to an attack as the actual local realist bound
is higher than expected. We do expect a real-world experiment to
be influenced by visibility, detection efficiency, and coincidence
probability all at once, and we should strive towards a general
bound taking all this into account. Naturally, the behaviour will
probably be complicated and will possibly require numerical com-
putation, but results like these would be of immense help for an
experimenter to understand if a trial did show a correct violation.

As discussed in section 8.2, no full experiment that closes the
postselection loophole in the Franson interferometer has ever been
reported. Publication D comes close, but lacks the necessary fast
switching. In the near future, it should be possible to combine
high visibilities with fast switching, so we have high hopes for this
future work.

We have also assumed Alice and Bob to have access to a perfect
RNG for choosingmeasurement settings. However, non-ideal ran-
domness might allow Eve to predict their choice, thereby allowing
an intercept-resend attack. We previously mentioned the use of
QRNGs in Bell tests [201, 202], but these cannot be assumed
perfect just because they are based on quantum phenomena. In
recent years, flaws have been found in popularQRNGs [203, 204],
which motivates further study into the effect of bad randomness
on the local realist bound. As a first step, we could, for instance,
construct a simple model that introduces a certain level of ran-
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domness bias. What is the critical bias level where a violation of
local realism is no longer possible?

We want to end this thesis by emphasizing that we believe
the Franson design to be the way forward for achieving practical
QKD. Energy-Time Entanglement allows for a robust physical
foundation that requires fewer moving parts than other methods,
and by combining this with a Device-Independent security proof
we can rule out eavesdroppers more effectively. Short-term, the
next step is a full security proof of ETE DI-QKD. Long-term,
the recent loophole-free Bell experiments [125–127] is a major
breakthrough in our understanding of physics that puts DI-QKD
on a solid theoretical foundation. In the future we believe the
same level of loophole elimination to be possible on a massive
scale in commercial QKD devices.
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Hacking the Bell test using classical light in
energy-time entanglement–based quantum
key distribution
Jonathan Jogenfors,1* Ashraf Mohamed Elhassan,2* Johan Ahrens,2 Mohamed Bourennane,2 Jan-Åke Larsson1†

Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell
inequality. A violation of this inequality normally also certifies security of device-independent quantum key
distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test
can be circumvented in energy-time entangled systems when using standard avalanche photodetectors,
allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at
97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum pre-
diction. This is the first demonstration of a violation-faking source that gives both tunable violation and high
faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality can-
not be used to show device-independent security for energy-time entanglement setups based on Franson’s
configuration. However, device-independent security can be reestablished, and we conclude by listing a number
of improved tests and experimental setups that would protect against all current and future attacks of this type.

INTRODUCTION

A Bell experiment (1) is a bipartite experiment that can be used to test
for preexisting properties that are independent of the measurement
choice at each site. Formally speaking, the experiment tests if there is
a “local realist” description of the experiment that contains these preex-
isting properties. Such a test can be used as the basis for security of quan-
tum key distribution (QKD) (2, 3). QKD uses a bipartite quantum
system shared between two parties (Alice and Bob) that allows them
to secretly share a cryptographic key. The first QKD protocol (BB84)
(2) is based on quantum uncertainty (4) between noncommuting
measurements, usually of photon polarization. The Ekert protocol
(E91) (3) bases security on a Bell test instead of the uncertainty relation.
Sucha test indicates, throughviolationof the correspondingBell inequality,
a secure key distribution system. This requires quantum entanglement,
and because of this, E91 is also called entanglement-based QKD.

To properly show that an E91 cryptographic system is secure or, al-
ternatively, that no local realist description exists of an experiment, a
proper violation of the associated Bell inequality is needed. As soon
as a proper violation is achieved, the inner workings of the system is
not important anymore, a fact known as device-independent security
(5, 6) or a loophole-free test of local realism (7). In the security context,
the size of the violation is related to the amount of key that can be se-
curely extracted from the system. However, a proper (loophole-free) vi-
olation is difficult to achieve. For long-distance experiments, photons
are the system of choice and one particularly difficult problem is to de-
tect enough of the photon pairs; this is known as the efficiency loophole
(8–10).

If the violation is not good enough, there may be a local realist de-
scription of the experiment, giving an insecure QKD system. Even
worse, an attacker could control the QKD system in this case. One par-
ticular example of this occurs when using avalanche photodetectors

(APDs), which are the most commonly used detectors in commercial
QKD systems: these detectors can be controlled by a process called
“blinding” (11), which enables control via classical light pulses. When
using photon polarization in the system, and if the efficiency is low
enough in the Bell test, the quantum-mechanical prediction can be
faked in such a controlled system (12, 13). This means that the (appar-
ent) Bell inequality violation can be faked, making a QKD system seem
secure while it is not. Note that a proper (loophole-free) violation can-
not be faked in this manner.

Here, we investigate energy-time entanglement–based systems in
general and the Franson interferometer (14) in particular. Traditional
polarization coding is sensitive to polarization effects caused by optical
fibers (15), whereas energy-time entanglement is more robust against
this type of disturbance. This property has led to an increased attention
to systems based on energy-time entanglement because it allows a de-
sign without moving mechanical parts, which reduces complexity in
practical implementations. Anumber of applications of energy-time en-
tanglement, such asQKD, quantum teleportation, and quantum repeat-
ers are described by Gisin and Thew (16). In particular, Franson-based
QKD has been tested experimentally by a number of research groups
(17–22).

It is already known that a proper Bell test is more demanding to
achieve in energy-time entanglement systems with postselection
(23, 24), but certain assumptions on the properties of photons also re-
duce the demands to the same level as for a photon polarization–based
test (25, 26). The property in question is the particle-like behavior of the
photon: it does not “jump” fromone armof an interferometer to the other.
Clearly, classical light pulses cannot jump from one arm to the other, so
the question arises: Is it at all possible to control the output of the de-
tectors using classical light pulses to make them fake the quantum cor-
relations? Below, we answer this question in the positive and give the
details of such an attack and its experimental implementation.

Moreover, not only are faked quantum correlations possible to reach
at a faked detector efficiency of 100%, but also, it is even possible to fake
the extreme predictions of nonlocal Popescu-Rohrlich (PR) boxes (27)
at this high detector efficiency. These predictions reach the algebraic
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2Department of Physics, Stockholm University, 106 91 Stockholm, Sweden.
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maximum 4 of the CHSH (Clauser-Horne-Shimony-Holt) inequality
and would make a QKD system user suspicious; an attacker would,
of course, not attempt to exceed the quantum bound 2

ffiffiffi
2

p
(28). Finally,

there are countermeasures that reestablish unconditional security, and
we list a few examples, see the study of Jogenfors and Larsson (24) for a
more complete list.

A Bell test of device-independent security, alternatively local realism,
is always associated with a Bell inequality. The relevant part of the E91
QKD protocol up to and including the Bell test looks as follows. The
general setup is a central source connected to two measurement sites,
one at Alice and the other at Bob. The source prepares an entangled
quantum state and distributes it to Alice and Bob, who each can choose
between a number of measurement settings for their devices. The
output can take the values −1, 0, or +1, denoting, for example, horizon-
tal polarization, nondetection, and vertical polarization. Here, we are
considering a pulsed source so that there are well-defined experimental
runs and, therefore, also well-defined nondetection events. Alice selects
a random integer j ∈ {1, 2, 3} and performs the correspondingmeasure-
ment Aj. Bob does the same with a random number k ∈ {2, 3, 4} and
measurement Bk. The quantum state andmeasurements are such that if
j = k, then the outcomes are highly (anti-)correlated. This preparation
and measurement process is performed over and over again until
enough data have been gathered.

After a measurement batch has been completed, Alice and Bob
publicly announce which settings j and k were used (but not the cor-
responding outcomes). They can then determine which measurements
used the same settings j = k and use the highly (anti-)correlated
outcomes for key generation. The remaining outcomes correspond-
ing to j ≠ k can be used for security testing in the Bell-CHSH (1, 29)
inequality

S2 ¼ jEðA1B2Þ þ EðA3B2Þj þ
jEðA3B4Þ − EðA1B4Þj ≤ 2

ð1Þ

where E (AjBk) is the expected value of the product, often called “cor-
relation” in this context. If the experimental S2 is larger than 2, then
there is a violation and the system is secure; there can be no local realist
description of the experiment. The size of the violation is related to the
output key rate; the maximal quantum prediction is 2

ffiffiffi
2

p
.

However, a proper violation is difficult to achieve. There are a
number of ways that the test can give S2 > 2 but still fail, known
as loopholes (7). The most serious one is the detector efficiency loop-
hole, wherein nondetections or zeros are not properly taken into ac-
count. If the zeros are ignored, conditioning on detection at both
sites gives the conditional correlation E(AjBk|coinc.) and a modified
bound (9, 10)

S2;c ¼ jEðA1B2jcoinc:Þ þ EðA3B2jcoinc:Þj þ
jEðA3B4jcoinc:Þ − EðA1B4jcoinc:Þj≤ 4

h
− 2

ð2Þ

The efficiency h is the ratio of coincidences to local detections (10)
and needs to be above 82% for the quantum value to give a violation.
This is ignored in current experiments, with almost no exception (30–32).
In the context of QKD, ignoring the zeros is allowed only if the attacker
(Eve) cannot control the detectors to make no-detections depend on the
local settings j and k. Unfortunately, the commonly used APDs can be
controlled (11, 13) unless extra precautions are taken.

For this study, we have investigated a quantum device based on
energy-time entanglement with postselection. Although the results
presented below are acquired from this particular device, the results ap-
ply to any such system. The Franson interferometer (14) is shown in
Fig. 1 and is built arounda source emitting time-correlatedphotons to both
Alice and Bob. The unbalanced Mach-Zehnder interferometers have a
time difference DT between the paths. In our pulsed setting, the time
difference between a late and an early source emission is DT, giving rise
to interference between the cases “early source emission, photons take
the long path” and “late source emission, photons take the short path.”
There will be no interference if the photons “take different paths”
through the analysis stations, and those events are discarded as non-
coincident in a later step.

The analysis stations have variable phase modulators, and the
setting choices are fAj for measuring Aj at Alice and fBk for measuring
Bk at Bob. The quantum state is such that, given coincident detection,
the correlation between Aj and Bk is high if fAj þ fBk ¼ 0. In the
absence of noise, the correlation between Alice’s and Bob’s outcomes
will be (14)

EðAjBk jcoinc:Þ ¼ cos ðfAj þ fBk Þ ð3Þ

This again violates the CHSH inequality (1), but only if the post-
selection is ignored (23). When postselection is taken into account,
one arrives at the inequality (2) with h = 50%, giving a bound of 6,
which is no restriction. The question now is if Eve can control the
system and fake the violation.

RESULTS

Using classical pulses of light as described in theMaterials andMethods
section, Alice and Bob measure a Bell value of

S2 ¼ 2:5615 T 0:0064 ð4Þ

which clearly violates the Bell bound 2. Figure 2 shows the variation of
S2 over 27 s as a solid black line. The stand-alone detectors have a faked
efficiency of 100% when blinded; however, the detectors do not have
identical optical and electrical properties. A slight adjustment of optical
blinding power has therefore been used to avoid having both detectors

Fig. 1. Experimental setup of the Franson interferometer. The setup
consists of a source, 2 × 2 couplers (C), delay loops (DT), phase modulators
fA and fB, and detectors (D).
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click simultaneously. This gives a slight reduction in efficiency. Our
source has a repetition rate of 5 kHz, and the average rate of clicks is
4.88 kHz, giving an average faked efficiency of 97.6%. The experimental
Bell value is lower than the quantum prediction 2

ffiffiffi
2

p
because of noise,

most of which is due to unwanted clicks because pulses below the
threshold are close to the threshold and are thus sensitive to small-
intensity variations of the lasers.

Adjusting the source to produce fake nonlocal PR boxes (27) gives a
faked Bell value of

S2 ¼ 3:6386 T 0:0096 ð5Þ
which is even beyond the quantum bound 2

ffiffiffi
2

p
. This is plotted in Fig. 2

as a dotted blue line. The faked efficiency remains at 97.6%, and noise
still lowers the value from the ideal 4. As previously mentioned, Eve is
free to combine pulses and phases at will to produce any Bell value be-
tween 0 and the above value 3.63. If the noise rate of the system is
known, she can compensate by aiming for a higher Bell value and letting
the noise bring it back down. This allows her to reach a faked Bell value
that is indistinguishable from 2

ffiffiffi
2

p
.

DISCUSSION

Our faked Bell value seemingly violates the Bell-CHSH inequality, even
thoughwe are dealing with outcomes produced by classical light, that is,
a local realist model. The more appropriate Bell inequality (2) for
conditional correlations is clearly ineffective as a test of device-
independent security with energy-time entanglement that uses postse-
lection. The bound is too high.We need to improve the security tests in
such a way that they unequivocally show security so that they can give a
loophole-free violation of local realism.

An intuitive countermeasure to our attack is to add a powermonitor
to the analysis station that detects if the incoming light is too bright. If
such an anomaly is detected, Alice and/or Bob are alerted and discard
the relevant measurement outcomes. This modified Franson interfer-
ometer would not be vulnerable to the specific attack as described so
far; however, it does not solve the postselection loophole, which is the
actual issue at hand. Intuitive countermeasures such as powermonitors
were discussed by Lydersen et al. (33), who note that attacks can be
adapted to such modifications (“a power meter at Bob’s entrance…will
not reveal the after-gate attack”). A similar argument already appears in
the study of Lydersen et al. (11). In addition, Lydersen et al. (34) argue
that loopholes should be countered by modifying the security proofs,
and not by requiring manufacturers to make “frequent, possibly costly
upgrades to their systems.”

If we want keep the Franson interferometer unchanged, we need to
use “fast switching” (23, 24) and Pearle-Braunstein-Caves chained Bell
inequalities (8, 35)modified to apply under postselection. Fast switching
refers to changing the phase setting so frequently that it is possible to
have different phase settings for the two possible time delays, see Jogenfors
and Larsson (24) for details. The chained inequalities are weakened
but still produce a usable bound even after postselection on coincidence

SN ;F ¼ jEðA1B2jcoinc:Þ þ EðA3B2jcoinc:Þj þ
jEðA3B4jcoinc:Þ þ EðA5B4jcoinc:Þj þ
⋯ þ
jEðA2N−1B2N jcoinc:Þ−EðA1B2N jcoinc:Þj ≤
2N−1:

ð6Þ

The standard inequalities do not condition on coincidence as is needed
here, and they also have the bound 2N – 2, which is more restrictive. In-
equality (6) only gives the upper bound S2,F≤ 3 for the Bell-CHSH value,
so the standard test is not useful even with fast switching. However, the
quantum-mechanical prediction SN,F = 2N cos(p∕ 2N) does violate this if
N ≥ 3, even though the violation is smaller than the standard Bell test.
This reestablishes device-independent security for energy-time entangled
QKD. In practice, though, the experimental requirements are high be-
cause the lowest acceptable visibility is 94.64% (24).

A better solution would be to eliminate the core problem: the post-
selection loophole. One alternative is the use of “hugging” interferom-
eters (24, 36) that gives an energy-time entangled interferometer with
postselection, but without a postselection loophole. This setup is often
referred to as “genuine energy-time entanglement.”The drawback is the
requirement of not one, but two fiber links each toAlice and Bob. A Bell
violation has been shown experimentally (37), even with 1-km fiber
length (38). Another alternative is to replace the first beam splitter of
the analysis station with a movable mirror (24, 39, 40). This setup does
not require postselection at all, and therefore, the original CHSH in-
equality is applicable.

In conclusion, we reiterate that Bell tests are a cornerstone of
QKD and are necessary for device-independent security. Device-
independent Bell inequality violation must be performed with care to
avoid loopholes. Energy-time entanglement has the distinct advantage
over polarization in that time and energy aremore easily communicated
over long distances than polarization. Therefore, energy-time entangle-
ment may be preferable as a quantum resource to perform reliable key
distribution.

Here, we have shown that QKD systems based on energy-time entan-
glement with postselection are vulnerable to attack if the corresponding
security tests use the original CHSH inequality. Eve blinds the detectors
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Fig. 2. The fakedBell value of our source is 2.5615+−0.0064 (solid black
line), which clearly violates the CHSH inequality S2 <− 2. It is possible to
increase the faked Bell value up to 3.6386 T 0.0096 (dotted blue line, data for
time slots where p≤ r< 1/2− p or 1/2 + p≤ r< 1− p). In both cases, the faked
efficiency is 97.6%. Each point in the diagram corresponds to the S2 value for
1 s worth of data.
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and uses a local hidden variable (LHV) model to fool Alice and Bob into
thinking that their system violates Bell’s inequality even though there is
no entanglement. Eve only needs access to the source device, not Alice’s
or Bob’s measurement devices or laboratory equipment (including
computers). Still, she fully controls the key output and breaks the secu-
rity of the Franson system without Alice or Bob noticing.

Our attack has been performed with a faked detector efficiency of
97.6%, which is high enough to avoid the fair sampling assumption. It
also shows that our Bell violation is not due to an artificially low
detector efficiency apart from the inherent postselection. We can
compare this to the study of Gerhardt et al. (13), where the faked de-
tector efficiency was 50% when using active basis choice; that attack
has an upper limit of 82.8% (9, 10). Even if the faked detection effi-
ciency in our experiment were 100%, our attack would work because
the inherent postselection of the Franson interferometer removes
half of the events.

In addition, our attack can produce a Bell value S2 = 4 at any effi-
ciency. Given the noise rate of a QKD device, Eve can fine-tune the at-
tack to imitate the quantum prediction to any accuracy, therefore
evading detection in a simple and effective way. It remains a fact that
fast switching will restrict the Bell value to be below 3, but this fine-
tuning ability shows the level of control an attacker can exert onto
the system.

To build a device-independent QKD system based on energy-time
entanglement, the designer will either have to use fast switching and re-
place the CHSH inequality with stronger tests such as modified Pearle-
Braunstein-Caves inequalities, or use a system that does not exhibit the
postselection loophole. These suggested improvements both have the
essential property of establishing device independence without requir-
ing additional assumptions and thereby maintain the powerful simpli-
city of device-independent QKD.

MATERIALS AND METHODS

Eve performs the attack by replacing the source with a faked-state
generator that blinds the APDs (see Fig. 3) andmakes them click at cho-
sen instants in time. The blinding is accomplished using classical
light pulses superimposed over continuous-wave (CW) illumination
(11). In normal operation, an APD reacts to even a single incoming
photon. A photon that enters the detector will create an avalanche of elec-
trical current, which results in a signal, or “click,” when the current
crosses a certain threshold. The avalanche current is then quenched
by lowering the APD bias voltage to below the breakdown voltage,
making the detector ready for another photon and resulting in the so-
called Geiger mode operation.

Under the influence of CW illumination, the quenching circuitry
will make the current through the APDs proportional to the power of
the incoming light. This will change the behavior of the APD into the
so-called linear mode, more similar to a classical photodiode. It will no
longer react to single photons, nor register clicks in the usual Geiger-like
way and is therefore said to be “blind.” The appropriate choice of CW
illumination intensity will make the APD insensitive to single photons,
yet still register a click when a bright pulse of classical light is
superimposed over the CW illumination (11).

What remains is to construct classical light pulses that will give clicks
in the way that Eve desires, violating the Bell inequality test for the Fran-
son interferometer. Eve uses pulses with intensity I and pulse length t≪
DT intermingled with the CW light that blinds the APDs. A single pulse
emitted by the sourcewill be split when traveling through the interferom-
eter, resulting in two pulses in each output port with intensity I ∕4 each.
Alternatively, if two pulses are emitted, separated by DT and with phase
difference w, these two pulses will split to three. The middle pulse of the
three is built up by two parts, so that the T1 outputs show interference

A Constructive interference at the + output gives a
large early time slot intensity and a corresponding click.

B Destructive interference at the – output gives a
small early time slot intensity and no corresponding
click.

τ τ

N

Fig. 3. The blinding attack causes the detector to click only for pulses of greater intensity than IT. If Eve sends three pulses of equal intensity I,
theywill arrive as four after the interferometer. By changing the phase shiftswE andwL between the pulses at the source, she can control the intensity of
the early and latemiddle pulses at the ± output ports, giving clicks as desired. Here, f= 0,wE = p/8, andwL = p/4. The first and last pulses have a constant
intensity of I/4.
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Iþ f;wð Þ ¼ I cos2
fþ w
2

� �

I− f;wð Þ ¼ I sin2
fþ w
2

� � ð7Þ

where f is the phase setting of the local analysis station. The chosen w
controls the f dependence of the output. For example, if I is just less than
2IT and w = 0, there will be a +1 click for |f| < p∕2 and a −1 click otherwise.

However, this is not enough to fake the Bell violation, because the
detection time needs to depend on the local setting (23). To enable
this, Eve makes the source emit a group of three pulses separated
by DT, with phase difference wE between the first and second pulse,
and wL between the second and third pulse. When this pulse train
passes through the interferometer, the output is four pulses, where
the two center pulses have controllable intensity because of interfer-
ence. The intensities for these two (early/late) pulses are

IþE fwEð Þ ¼ I cos2
fþ wE

2

� �

I−E fwEð Þ ¼ I sin2
fþ wE

2

� �

IþL fwLð Þ ¼ I cos2
fþ wL

2

� �

I−L fwLð Þ ¼ I sin2
fþ wL

2

� �
ð8Þ

For example, with the same choice of I as above, wE = 0, and wL = p ∕2,
there will be an early +1 click if f = 0, and a late −1 click if f = p ∕2. Note
that the pulse trains to Alice and Bob can be chosen independently.

The last step of the attack is to use the LHVmodel in Fig. 4, which is
a discretized version of an earlier known model (23). This LHV model
prescribes the distribution of the sign and time slot of outcomes for
Alice and Bob given local settings fA and fB. Single-particle outcomes
obtained in this way follow the quantumpredictions (23). The parameter
p controls the desired level of violation, and q and r are hidden variables
that are chosen randomly for each experimental trial.

For the purposes of our attack, we choose to focus on the present Bell
test: fA1 ¼ 0, fA3 ¼ p=2, fB2 ¼ −p=4, and fB4 ¼ −3p=4, so that the hidden

variableq is amultipleofp/4.Eve randomlychooseshiddenvariables randq
as stated inFig. 4, andreadsoff thedesired results for the twosettingsatAlice.

If the results are in the same time slot, she uses two pulses and can
directly calculate the needed phase difference. If the results are in different
time slots (this only happens for Alice), Eve uses three pulses and calcu-
lates the two phase differences. The same r and q are used to calculate the
phase difference for Bob. Repeating this procedure will produce random
outcomes (to Alice and Bob) that give exactly the quantum predictions
for the mentioned settings, violating the Bell-CHSH inequality.

Joint Alice-Bob trials were performed with the pulse amplitudes as
described in Eqs. 7 and 8 and depicted in Fig. 3. At the desired detector
and time slot, a “click” will be forced (Fig. 3A) by constructive interfer-
ence, whereas destructive interference causes “no click” (Fig. 3B). The
sampling timeusedwas 1 s, and each experimentwas run for at least 27 s
(see Fig. 2). At each point in time, the joint probabilities of Alice’s and
Bob’s outcomes are computed from the detector counts, and these were
then used to determine the Bell value. Note that the early and late time
slots are measured in different experimental runs.

By adjusting the parameter p of the LHV model, we can go even
further and produce Bell values up to and including the value 4 (see
Fig. 4). Of course, Alice and Bob would be suspicious if they measured
this value because their experiment does not contain nonlocal PR boxes
(27). Eve would instead tune the Bell violation to compensate for inher-
ent noise by raising the value just enough to reach 2

ffiffiffi
2

p
.

EXPERIMENTAL SETUP

The attack was experimentally implemented as shown in Fig. 5 and is
built using standard fiber optic components. The CW is produced by a
CW laser, whereas the pulses are created by a pulsed laser. These two
light sources are combined at a fiber optic 2 × 2 coupler and then split
into one beam for Alice and one for Bob. Each of these beams is then
sent into a fiber optic 3 × 3 coupler (tritters) that equally divides them
into three arms. The first arm consists of a DT delay loop and a phase
modulator wE, the second arm has two DT delay loops and a phase
modulator wM (so that wL = wM − wE), whereas the third arm performs

Fig. 4. Discretized LHVmodel (23) that can give any Bell value between 2 and 4. The hidden variables are 0 ≤ r < 1 (a real number in the unit interval)
and q = n

p
4
, where 0≤ n≤ 7 is an integer. The parameter 0≤ p≤ 1/4 can be chosen freely, and the output Bell value is S2= 4− 8p, so that the “classical” S2= 2 is

obtainedwith p = 1/4, the “quantum” S2 ¼ 2
ffiffiffi
2

p
is obtainedwith p = (2 −

ffiffiffi
2

p
)/4 (as in the figure), and the “nonlocal box” S2 = 4 is obtainedwith p = 0, all at

100% faked efficiency and 50% postselection.
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noaction.The three armsare thencombinedbya second3×3coupler into
one output port that creates the output of the faked-state source generator.

The source sends bright light pulses with the setting and phase
difference(s) to Alice’s and Bob’s analysis stations in the Franson inter-
ferometer. Each of the two analysis stations is constructed in a similar
fashion: two fiber optic 2 × 2 couplers and one delay loop DT and a
phase modulator fA (Alice’s side) or fB (Bob’s side).

The detectors used in the experiment are commercial products from
Princeton Lightwave. These detectors are InGaAs avalanche photodiodes
that useGeiger andbiasedpulsemodes at the operating temperature218K.
The detection wavelength range is 1300 to 1550 nm, giving a maximum
detection efficiencyof 20%at 1550nm.Thedark count rate is 5×10−5ns−1.
Although the attack isdemonstratedon this specific detector, otherdetector
types using similar devices and circuitry are vulnerable as well.

Because the CW power becomes unevenly distributed between de-
tectors, the efficiency of the blinding was affected. This imbalance was
avoided by installing digital variable attenuators at the output ports. In
addition, optical isolators were placed in front of the detectors to pre-
vent crosstalk. The interferometers are passively stabilized and placed in
a thermally and mechanically isolated environment in the form of a
metal enclosure lined with styrofoam. This isolation has the effect of
reducing phase drift, giving a 30-s timewindow inwhichmeasurements
can be performed before a manual recalibration is required.
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Abstract

The digital currency Bitcoin has had remarkable growth since it was first proposed in
2008. Its distributed nature allows currency transactions without a central authority by
using cryptographic methods and a data structure called the blockchain. Imagine that you
could run the Bitcoin protocol on a quantum computer. What advantages can be had over
classical Bitcoin? This is the question we answer here by introducing Quantum Bitcoin
which, among other features, has immediate local verification of transactions. This is a major
improvement over classical Bitcoin since we no longer need the computationally-intensive and
time-consuming method of recording all transactions in the blockchain. Quantum Bitcoin
is the first distributed quantum currency, and this paper introduces the necessary tools
including a novel two-stage quantum mining process. In addition, Quantum Bitcoin resist
counterfeiting, have fully anonymous and free transactions, and have a smaller footprint than
classical Bitcoin.

1 Introduction
Modern society relies on money to function. Trade and commerce is performed using physical
tokens (coins, banknotes) or electronically (credit cards, bank transfers, securities). Recently,
cryptographic currencies such as Bitcoin has emerged as a new method to facilitate trade
in a purely digital environment, without the need for a backing financial institution. Com-
mon to all functioning currencies is demand together with a controlled supply. Traditional,
government-backed currencies mint currency according to rules decided by politics while Bitcoin
works according to pre-defined mathematical rules. The currencies are then protected from
counterfeiting either by physical copy-protection in the case of coins, banknotes and cashier’s
checks, or in Bitcoin by applying cryptography.

The laws of quantum mechanics have given rise to interesting applications in computer
science. From the quadratic speedup of unstructured database search due to Grover [1] to the
polynomial-time algorithm for integer factorization by Shor [2], some computing problems can
be solved faster if a classical computer is replaced by a quantum one. In addition, quantum
states are disturbed when measured, which has given rise to to quantum cryptography protocols
such as BB84 [3] and E91 [4].

This begs the question: can quantum mechanics help us design new, improved money systems?
The answer is yes. Starting with Wiesner [5], it has been shown that the no-cloning theorem [6]
provides an effective basis for copy protection. See section 2.4 for a more detailed history of
quantum money.

∗Institutionen för Systemteknik, Linköpings Universitet, 581 83 Linköping, Sweden. Electronic address:
jonathan.jogenfors@liu.se
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Ideally we would like a payment system to have the following four properties (adapted from
Mosca and Stebila [7]):

Anonymity. It should be difficult for any party to trace money, both where it came from and
where it goes in the future.

Efficient local verification. There should be an efficient algorithm that can determine with
high accuracy whether money is valid or not. This should be done without communicating
to other peers.

Resistance against counterfeiting. It should be difficult for a counterfeiter to produce money
that pass the verification procedure with non-negligible probability.

Transferable. Money should be unchanged by the verification procedure, and thus can be
transferred and reused in a subsequent verification procedure.

We will make the formal definition of counterfeiting resistance in section 4.1.
In this paper, we construct Quantum Bitcoin, a novel currency that draws its inspiration

from both Bitcoin and quantum mechanics. As we later show, our new currency fulfills all above
requirements and has several advantages over existing payment systems, quantum or classical.
The paper is organized as follows: Section 2 gives the background and concepts which are used
in Quantum Bitcoin. In section 2.1 we discuss hash functions and digital signatures, section 2.3
introduces a model for the blockchain followed by a history of quantum money schemes in
section 2.4.

Our main contribution is presented in section 3 where we give explicit protocols and algorithms
for verifying and minting Quantum Bitcoin. Next, in section 4 we show that our protocol is
secure and prevents counterfeiting.

2 Background
Quantum Bitcoin is for the most part based on existing technology, putting them together in a
novel way to create the quantum currency.

2.1 Classical Cryptography

Hash functions, digital signatures.

Definition 1 A classical public-key digital signature scheme D consists of three probabilistic
polynomial-time classical algorithms [8]:

1. KeyGenD which takes as input a security parameter n and randomly generates a key pair
(kprivate, kpublic).

2. SignD which takes as input a private key kprivate and a message M and generates a (possibly
randomized) signature SignD(kprivate,M).

3. VerifyD, which takes as input kpublic, a message M , and a claimed signature ω, and either
accepts or rejects.

2.2 The Bitcoin protocol

The Bitcoin protocol was proposed in 2008 by Nakamoto [9]. The true identity behind that
pseudonym still remains a mystery, but the concepts introduced in the original whitepaper have
proven themselves by giving rise to a currency with a market cap exceeding 6 billion USD as of
March 2016.

2
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In order for a currency to function, there must be a finite amount in circulation as well as a
controlled supply of new currency. Traditional currencies such as USD and EUR are controlled
by a central organization, usually called the central bank. Bitcoin instead uses cryptography to
distribute this task over a peer-to-peer network of users on the Internet.

Central to Bitcoin is the blockchain, which is a distributed ledger that records all transactions
of every user. Using the blockchain, a user can compute his or her account balance by summing
over all transactions to and from that account. A transaction is initiated by the sending party by
digitally signing and then broadcasting a transaction message. The receiver of the transaction
sees the transaction message, but is advised to wait until third parties, miners independently
verify its validity. Otherwise, the sender could perform double-spending, where the same unit of
currency is simultaneously and fraudulently sent to several receivers without them noticing.

A miner receives the broadcast transaction message and checks his or her local copy of the
blockchain to check the transaction against the miner’s local policy [10]. Usually, this means
that the sender of the transaction must prove that he or she has knowledge of the private key
corresponding to the public key of the originating account by using a signature. Also, the miner
checks that the transferred bitcoin have not been spent. If the transaction is valid, the miner
wants to append it to the blockchain.

Appending new data to the blockchain is the critical part of the Bitcoin protocol, and it
requires some sort of authentication of the appended data. Otherwise, malicious miners could
add invalid transactions to the blockchain, thereby defrauding users. Traditional authentication
methods cannot be used for this purpose, as Bitcoin miners are loosely organized, anonymous
and untrusted. Instead, Nakamoto [9] uses a proof-of-work puzzle, an idea introduced by Back
[11]. Here, miners authenticate their verification by proving that they have spent computing
power, and therefore energy. This prevents the Sybil attack [12], in which an attacker can flood
a hypothetical voting mechanism. Such an attack becomes prohibitively expensive since each
“vote” must be accompanied by a proof of spent energy.

The essentials of a proof-of-work puzzle is as follows: The data d is appended to a random
nonce value r to produce r + d. This is fed to a cryptographically secure hash function f to
produce the hash value h = f(r + d). Next, the hash value is compared to a certain threshold.
If h (interpreted as an integer on hexadecimal form) is smaller than the threshold value, the
transaction is verified and d together with r is then broadcast to the network. The nonce value r
can be seen as a solution to the proof-of-work puzzle d. The solution is easily verified, as it only
requires one hashing operation f . If the nonce r is not a solution to the proof-of-work puzzle, the
miner will have to try a new random nonce r and the process repeats. In fact, finding pre-images
to secure hash functions is computationally difficult and requires a large number of trials.

Bitcoin implements the proof-of-work puzzle by packing a number of transactions into
something called a block. Each block contains, among other things, a timestamp, the nonce,
the hash value of the previous block, and the transactions [10]. The previous hash value fulfills
an important function, as it prevents the data in previous blocks being modified. This imposes
a chronological order of blocks, and the first Bitcoin block, called the Genesis block and was
mined on January 3rd 2009.

Bitcoin miners are rewarded for their work by giving them newly minted Bitcoin. In fact,
this is the only way in which new Bitcoin are added to the network. This is implemented as a
special type of transaction, called a coinbase [10] which is added to the block by the miner. The
reward size was originally 50 bitcoin, and is halved every 210000 transactions or approximately
four years. At the time of writing this, the reward amounts to 12.5 bitcoin.

Further technical details such as forks, difficulty and confirmations are not discussed in this
paper but are essential for the system to function. The end result is a system that rejects invalid
data and adds correct data to an ever-growing list. The high level of data duplication makes
attacks difficult as an attacker will have to compute hashes faster than the rest of the network
combined.

3 221



According to Nakamoto [9] the probability for a malicious miner to succeed in verifying an
invalid transaction is exponentially small in the number of confirmations as as long as a majority
of miners (i.e. computing power) is used for benevolent purposes. This implies that the Bitcoin
protocol is resistant to double-spending attacks. However, each confirmation takes 10 minutes to
finish, so those six confirmations need one hour to finish, making transactions slow. In addition,
Karame, Androulaki, and Capkun [13] found considerable variance in the time it takes to mine
a block; they measured a standard deviation of mining time of almost 15 minutes. Bitcoin users
must therefore make a decision between increased security and faster transaction times.

2.3 A Model of the Blockchain

For the purposes of Quantum Bitcoin, we model the blockchain as an random-access ordered
array with timestamped dictionary entries. Blocks can be added to the end of the chain by
solving a proof-of-work puzzle, and blocks in the chain can be read using a lookup function. In
Quantum Bitcoin, the blocks do not contain standard transactions, only classical descriptors
of the newly minted Quantum Bitcoin (and shards, discussed later). Therefore, blocks in the
Quantum Bitcoin blockchain should be seen as general-purpose dictionaries that match serial
numbers s to public keys1 kpublic.

We will use the following abstract definition:

Definition 2 A classical distributed ledger scheme L consists of the following classical algo-
rithms:

• AppendL is an algorithm which takes (s, kpublic) as input, where s is a classical serial
number and kpublic a classical public key. The algorithm fails if the serial number already
exists in a block in the ledger. Otherwise, it begins to solve a proof-of-work puzzle by
repeated trials of random nonce values. The algorithm succeeds if the puzzle is solved, at
which time the ledger pair (s, kpublic) is added as a new block.

• LookupL is a polynomial-time algorithm that takes as input a serial number s and outputs
the corresponding public key kpublic if it is found in the ledger. Otherwise, the algorithm
fails.

Our formal definition is independent of the underlying block format and ruleset, so any secure
blockchain implementation can be used. Note that AppendL runs continuously until it succeeds –
if another miner solves a proof-of-work puzzle it simply restarts the process transparently to the
caller.

2.4 Previous Proposals for Quantum Money

As early as around 1970, Wiesner [5] and Broadbent and Schaffner [14] proposed a scheme that
uses the no-cloning theorem to produce unforgeable quantum banknotes, however it took time
for this result to be published. The paper was initially rejected [15] and according to Aaronson
and Christiano [8] it took 13 years until it was finally published [5] in 1983. In the same year,
BBBW [16] made improvements to Wiesner’s scheme, such as an efficient way to keep track of
every banknote in circulation. Another, more recent, extension by Pastawski et al. [17] increases
the tolerance against noise. Even more recently, Brodutch et al. [18] presented an attack on the
Wiesner and BBBW schemes.

After BBBW, quantum money received less attention due to the seminal 1984 paper by
Bennett and Brassard [3] that created the field of quantum key distribution (QKD). Following
two decades where virtually no work was done on quantum money, Mosca and Stebila [7, 19, 20]

1Do not confuse the public key kpublic with the key of the dictionary
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proposed quantum coins around ten years ago. In contrast to quantum banknotes (where each
banknote is unique), quantum coins are all identical.

We distinguish between private key and public-key quantum money systems. In a private-key
system, only the bank that minted the quantum money can verify it as genuine, while a public-key
system allows anyone to perform this verification. The advantage of a public-key system over
a private-key are obvious as long as it is just as secure. Until recently, all quantum money
proposals were private-key, however in 2009 Aaronson [21] proposed the first public-key quantum
money system. While this first public-key system was broken in a short time by Lutomirski et al.
[22], it inspired others to re-establish security. A novel proposal by Farhi et al. [23] produced
a public-key system using knot theory and superpositions of link diagrams, and this idea was
further developed by Lutomirski [24].

In 2012, public-key quantum money based on hiding subspaces was introduced by Aaronson
and Christiano [8]. The contribution consists first of an implicit scheme based on random oracles
and then an explicit version based on multivariate polynomials. Further work by Pena, Faugère,
and Perret [25] showed that this explicit scheme is insecure in the noiseless case, however the
security of the noisy scheme remains unknown.

Another important distinction is between systems that are information-theoretically secure
(ITS) and those secure under computational hardness assumptions. In an ITS quantum money
scheme, no attacker can break the system even when given exponential computation time. For
instance, Wiesner’s scheme is ITS while BBBW is not. According to Farhi et al. [23], public-key
quantum money cannot be ITS. Instead, the proposals by Aaronson and Christiano [8], Aaronson
[21], and Farhi et al. [23] all rely on computational hardness assumptions, as will ours.

Common to all proposals discussed above is a centralized topology, with a number of users
and one “bank” that issues (and possibly verifies) money. This requires all users to fully trust
this bank, as a malevolent bank can perform fraud and revoke existing currency. This is true for
both private-key and public-key schemes.

3 Our Contribution: Quantum Bitcoin
Our contribution is a modified quantum money scheme that removes trust from a central bank
and instead uses an analogue to the Bitcoin miner. In our trust model we do not have to assume
every single miner to be trustworthy, the system works as long as a certain percentage remains
honest.

In this section we present the inner workings of Quantum Bitcoin. As with most quantum
money schemes the central idea is the no-cloning theorem [6] which shows that it is impossible
to copy an arbitrary quantum state |ψ〉. Quantum mechanics therefore provides an excellent
basis on which to build a currency, as copy-protection is “built in”. In section 4 we quantify the
level of security the no-cloning theorem gives, and show that our Quantum Bitcoin are secure
against counterfeiting.

We will use a quantum state as the unit of currency and endow it with classical information
to facilitate verification. We then add a blockchain data structure which allows us to combine
the quantum state with a distributed minting process, relinquishing trust in the central bank
normally required by the security model in traditional quantum currencies.

In order to simplify the security analysis, we will construct a small “mini-scheme” [8, 23]
which is then generalized to a full distributed Quantum Bitcoin scheme. The mini-schemeM
does not use a blockchain and can only mint and verify one single Quantum Bitcoin. We then
combine M with a digital signature scheme D and a distributed ledger scheme L to get the
full-fledged Quantum Bitcoin description. In section 4 we will see that proving the security of
M and D implies the security of the complete system Q.

Intuitively we want the Quantum Bitcoin scheme Q to have the following properties:
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1. a controlled method to feasibly generate an unlimited number of Quantum Bitcoin no
faster than a given rate,

2. a verification procedure,

3. protection against forgery, so that the only way to map a polynomial number of Quantum
Bitcoin to a larger number of Quantum Bitcoin with non-negligible success probability is
the aforementioned generation process.

Here, we call a function f(n) negligible if f(n) = o(1/p(n)) for every polynomial p(n).

3.1 The Hidden Subspace Mini-Scheme

We adopt the Hidden Subspace mini-scheme system introduced by Aaronson and Christiano [8].
Let Fn2 be the space of binary sequences of length n, equipped with the standard inner product

〈u, v〉 =
∑

(u)i(v)i (mod 2). (1)

We define A as a (secretly chosen) n/2-dimensional subspace of Fn2 . In addition, let A⊥ be the
n/2-dimensional orthogonal complement to A, that is, the set of y ∈ Fn2 such that 〈x, y〉 = 0 for
all x ∈ A.

In the Mini-Scheme we create “quantum Bitcoin states” |A〉 in the following way:

|A〉 = 1√
|A|

∑
x∈A
|x〉 . (2)

It is easy to prepare 〈A〉, a classical description of A which consists of n/2 generators. From
this classical description one can create the quantum state in equation (2). Next, we define a
public membership oracle UA that is used to decide membership in A:

UA |x〉 =
{
− |x〉 if x ∈ A
|x〉 otherwise,

(3)

The membership oracle allows anybody to decide if a given, alleged quantum Bitcoin state
corresponds to the subspace A. Note the parallel to classical digital signatures.

The unitary gate UA is assumed to be a random oracle, but explicit methods are available,
such as the (noisy) multivariate polynomial scheme by Aaronson and Christiano [8]. Using UA,
we can build a quantum circuit PA that projects onto the basis states of |A〉 (figure 1).

1. Initiate a control qubit |0〉

2. Apply H to the control qubit

3. Apply UA to |x〉 conditioned on the control qubit being in state |1〉

4. Apply H to the control qubit

5. Measure the control qubit and postselect on the outcome |1〉.

Note that the above algorithm maps |x〉 to |1〉 |x〉 if x ∈ A and |0〉 |x〉 otherwise. Therefore,
when measurement and postselection is performed, the algorithm returns 0 if and only if |x〉 /∈ A
and |1〉 |x〉 otherwise.

We define UA⊥ and PA⊥ in a similar way as above, except we instead operate on A⊥. Together
with the projectors PA and PA⊥ we can create a unitary operator

VA = H⊗n2 PA⊥H⊗n2 PA, (4)
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|0〉 H H

|x〉 UA

Figure 1: Quantum circuit PA.

where H denotes the Hadamard transform. We will use VA to verify Quantum Bitcoin states,
where we interpret VA |ψ〉 = |A〉 as passing and VA |ψ〉 = 0 as failing. Aaronson and Christiano
[8, p. 28] show that VA is a projector onto A, and that VA accepts an arbitrary state |ψ〉 with
probability | 〈ψ|A〉 |2.

Recall that a mini-scheme only mints and verifies one single Quantum Bitcoin. We can now
give the formal definition:

Definition 3 The Hidden Subspace mini-schemeM consist of two polynomial-time algorithms
MintM and VerifyM.

Next, we set the requirements for the algorithm that generates the secret subspace Ar of Fn2 .

Definition 4 A Subspace Generator G(r) takes a secret n-bit string r and returns (sr, 〈Ar〉),
where sr is a 3n-bit string and 〈Ar〉 is a set of linearly independent secret generators {x1, . . . , xn/2}
for a subspace Ar ≤ Fn2 . We require that the serial numbers are distinct for every r.

The subspace generator is the first step in minting a Quantum Bitcoin as it generates the secret,
random subspace necessary for state generation (Ar) as well as the public serial number sr. In
addition,

Definition 5 A Serial Number Verifier H(s) takes a serial number s and passes if it is a
valid serial number s = sr for some 〈Ar〉 and fails otherwise.

The above definitions are mere skeletons and must be explicitly implemented. For the security
analysis we will assume the subspace generator and serial number verifier to be random oracles,
however explicit schemes are available such as the (noisy) multivariate polynomial scheme
introduced by Aaronson and Christiano [8, pp. 32–38]. We now complete the mini-scheme with
explicit minting and verification algorithms:

Definition 6 MintM(n) takes as input a security parameter n. It then randomly generates a
secret n-bit key r which it passes to the Subspace Generator G(r) which returns the serial number
sr and a classical description 〈Ar〉 of the subspace A. Next, it prepares the quantum state |Ar〉
given in equation (2). The returned value is (sr, |Ar〉).

Definition 7 VerifyM(/c) takes as input an alleged Quantum Bitcoin /c and performs the following
checks, in order:

1. Form check: Accept if and only if /c has the form (s, ρ), where s is a classical serial number
and ρ is a quantum state.

2. Serial number check: Accept if and only if the Serial Number Verifier H(s) accepts

3. Apply VAr = H⊗2
2 PA⊥

r
H⊗2

2 PAr to ρ and accept if and only if VAr (ρ) 6= 0

Note that the verification procedure immediately terminates if any of the above steps fail.
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3.2 The Standard Construction of Quantum Bitcoin

The mini-schemeM can only mint and verify one single Quantum Bitcoin, so to build a usable
Quantum Bitcoin ecosystem we need to extend the model with a mechanism for minting any
amount of currency. For this purpose we will define the full Quantum Bitcoin scheme, Q, and
implement it as an extension of the mini-scheme M. The connection between M and Q is
derived from the “standard construction” by Aaronson and Christiano [8], Lutomirski et al. [22],
and Farhi et al. [23].

Definition 8 A public-key distributed Quantum Bitcoin scheme Q consists of the following
algorithms:

• KeyGenQ, a polynomial-time algorithm which takes as input a security parameter n and
randomly generates a key pair (kprivate, kpublic).

• MintQ which takes a security parameter n and produces a quantum bitcoin $.

• VerifyQ, a polynomial-time algorithm which takes as input an alleged quantum bitcoin /c
and a corresponding public key kpublic and either accepts or rejects.

Given a mini-schemeM = (MintM,VerifyM), a digital signature schemeD = (KeyGenD, SignD,VerifyD)
and a distributed ledger scheme D = (KeyGenL,AppendL, LookupL), we will construct an initial,
naive, version of the Quantum Bitcoin scheme S = (KeyGenQ,SignQ,VerifyQ). Later, we extend
this standard construction to protect against a special type of attack.

First, KeyGenQ is KeyGenD from the digital signature scheme. Next, we define the algorithm
for VerifyQ for an alleged Quantum Bitcoin /c:

1. Check that /c is on the form (s, ρ, σ), where the s is a classical serial number, ρ a quantum
state, and σ a classical digital signature.

2. Call LookupL(s) to retrieve the public key kpublic associated with the serial number s.

3. Call VerifyD(kpublic, s, σ) to verify the digital signature of the Quantum Bitcoin.

4. Call VerifyM(s, ρ) from the mini-scheme.

The main challenge of constructing Quantum Bitcoin is that the miners are untrusted which is
in contrast to previous schemes where minting is done by a trusted entity such as a bank. In the
same spirit as Bitcoin, the intention is to take individually untrusted miners and still be able to
trust them as a group [9]. Our first, Bitcoin-inspired attempt at the MintQ algorithm therefore
becomes the following:

1. Call KeyGenD to randomly generate a key pair (kprivate, kpublic).

2. Generate a Quantum Bitcoin candidate by calling MintM, which returns (s, ρ), where s is
a classical serial number and ρ is a quantum state.

3. Sign the serial number: σ = SignD(kprivate, s)

4. Call AppendL(s, kpublic) to attempt to append the serial number s and the public key kpublic
to the ledger.

5. If AppendL failed, start again from step 2

6. If the serial number was successfully appended, put the serial number, quantum state and
signature together to create the Quantum Bitcoin $ = (s, ρ, σ).
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Here we identify the first major advantage of Quantum Bitcoin. Whereas Bitcoin requires each
transaction to be recorded into the blockchain – a time-consuming process, Quantum Bitcoin
transactions finalize immediately. Due to the no-cloning theorem of quantum mechanics, the
underlying quantum state in the Quantum Bitcoin cannot be duplicated, thereby preventing
counterfeiting in itself (see section 4). The only step of the protocol that uses AppendL is minting,
which “normal” users don’t have to worry about and therefore reduces end-user complexity.

3.3 Preventing Quantum Double-Mining

Our naive attempt at algorithms for VerifyQ and MintQ seems to work, but there is a problem.
In Quantum Bitcoin there is no implicit trust in the minters. This leads to a phenomena we
call quantum double-mining. Ideally, MintM should be an algorithm that generates unique
quantum states every time it is called, similarly to a random oracle. However, a malicious miner
could generate a Quantum Bitcoin, append it to the blockchain, and then covertly reuse kprivate
to produce any number of identical Quantum Bitcoin. This is a serious problem, since it allows
a miner to undermine the payment system at any time.

Compare this with classical Bitcoin. There, the blockchain records all transactions and a
miner therefore relinquishes control over the mined bitcoin as soon as it is handed over to a
recipient. In Quantum Bitcoin, however, there is no record of who owns what, so nobody would
notice counterfeit, doubly-mined Quantum Bitcoin.

The incentives for the double-mining attack are huge. Reusing the private key allows them
to duplicate the quantum bitcoin they just created, leading to an easy double-spend. Another
more sinister strategy by the attacker is to mine a large number of quantum bitcoin, wait until
these have circulated to other users, and then create a large amount of duplicate coins. Surely,
such an attack would have detrimental effects on the currency as a whole.

The double-mining attack is prevented in a similar way as the double-spending problem
is prevented in classical Bitcoin. However, while Bitcoin introduced the blockchain for all
transactions, we only need to modify the minting end in the Quantum Bitcoin protocol. The
advantage is that day-to-day use of the currency is only negligibly affected and in section 4.2 we
show that this countermeasure is effective.

We add a secondary stage to the minting process where data is also appended to a new
ledger L′. For the secondary mining step, we introduce security parameters m ≥ 1 and Tmax > 0
and the algorithm is as follows:

1. A miner (this time called a Quantum Shard Miner) uses the above “naive” minting
scheme, but the finished product (s, ρ, σ) is instead called a Quantum Shard.

2. Quantum Shard miners sell the Quantum Shards on a marketplace.

3. A miner (called aQuantum Bitcoin Miner) purchasesmQuantum Shards {(s, ρi, σi)}1≤i≤m
on the marketplace that, for all 1 ≤ i ≤ m, fulfill the following conditions:

• VerifyQ((s, ρi, σi)) accepts
• The timestamp T of the Quantum Shard in the Quantum Shard ledger L fulfills
t− T ≤ Tmax, where t is the current time.

4. The Quantum Bitcoin miner calls KeyGenQ to randomly generate a key pair (kprivate, kpublic).

5. The Quantum Bitcoin miner takes the serial numbers of the m Quantum Shards and
compiles the classical descriptor s = (s1, . . . , sm) and signs it as σ0 = SignD(kprivate, s).

6. The Quantum Bitcoin miner takes the m Quantum Shards and, together with σ0, produces
a Quantum Bitcoin Candidate: (s1, ρ1, σ1, . . . , sm, ρm, σm, σ0).
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7. The Quantum Bitcoin miner calls AppendL′(s, kpublic) to attempt to pair the Quantum
Bitcoin Miner’s public key kpublic with the classical descriptor s in the ledger. Here, we
require that Append fails if any of the m Quantum Shards already have been combined
into a Quantum Bitcoin that exists in the ledger L′.

This process is the complete quantum mining protocol, and it works because each participant
is incentivized: Quantum Shard miners invest computing power to produce Quantum Shards,
which Quantum Bitcoin Miners want for Quantum Bitcoin production. As there is only a finite
number of Quantum Shards, they will have monetary value, thus rewarding the Quantum Shard
miners. In turn, Quantum Bitcoin miners invest computing power to mint Quantum Bitcoin from
Quantum Shards. The Quantum Bitcoin miners are rewarded with a valid Quantum Bitcoin,
which, due to their limited supply, can be expected to have monetary value.

According to Nakamoto [9], such incentives “may help nodes to stay honest” and an attacker
who has access to more computing power than the rest of the network combined finds that it
is more rewarding to play by the rules than commit fraud. Also, quantum double-mining is
prevented because two-stage mining makes it overwhelmingly difficult for a single entity to first
produce m Quantum Shards and secondly combine them to a Quantum Bitcoin.

This construction assumes that a majority of miners are honest, i.e. discard private keys
after mining (for details see section 4.2). Note the requirement that the quantum shards are less
than Tmax old. This is needed because the probability of successfully mining a single quantum
shards approaches 1 as time goes by. Therefore, given enough time, a malicious miner can
produce m valid quantum shards which it then could combine into a valid Quantum Bitcoin.
The parameter Tmax prevents this from happening by forcing expiry of old shards. An attacker
must therefore compete against the rest of the network in a similar way way as in Bitcoin.

What remains is to slightly modify VerifyQ to take two-stage mining into account:

1. Check that /c is on the form (s1, ρ1, σ1, . . . , sm, ρm, σm, σ0), where the si are classical serial
numbers, ρi are quantum states, and σi (including σ0) are digital signatures.

2. Call LookupL′((s1, . . . , sm)) to retrieve the public key kpublic of the Quantum Bitcoin Miner
associated with the classical descriptor (s1, . . . , sm).

3. Call VerifyD(kpublic, (s1, . . . , sm), σ0) to verify the digital signature of the Quantum Bitcoin.

4. For each 1 ≤ i ≤ m, call LookupL(si) in order to retrieve the corresponding public keys
kpublic,i from the Quantum Shard miners.

5. For each 1 ≤ i ≤ m, call VerifyD(kpublic,i, si, σi) to verify the digital signatures of each of
the Quantum Shards.

6. For 1 ≤ i ≤ m, call VerifyM(si, ρi).

The verification passes if and only if all of the above steps succeed. This method checks the
digital signatures of both the Quantum Bitcoin and all its Quantum Shards before calling the
verification procedure of the mini-schemeM.

4 Security Analysis
In this section we perform the security analysis of Quantum Bitcoin and show that it is secure
against counterfeiting. Here, we reap the benefits of the mini-scheme setup as the proof becomes
relatively easy. We begin by quantifying the probability of false negatives and false positives
in the verification process and then we show that the mini-scheme is secure, followed by the
observation that a secure mini-scheme implies security of the full system Q.
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4.1 Counterfeiting

Our formal security analysis begins by modeling a counterfeiter, which is a quantum circuit that
produces new, valid, Quantum Bitcoin outside of the normal minting procedure.

Definition 9 A counterfeiter C is a quantum circuit of polynomial size (in n) which maps
a polynomial (in n) number of valid Quantum Bitcoin to a polynomial number (in n) of new,
possibly entangled alleged Quantum Bitcoin.

We next need to quantify the probability of a counterfeit Quantum Bitcoin to be accepted by
the verification procedure. This is the probability of a false positive:

Definition 10 A Quantum Bitcoin scheme Q has soundness error δ if, given any counter-
feiter C and a collection of q valid Quantum Bitcoin $1, . . . , $q we have

Pr(Count(C($1, . . . , $q)) > q) ≤ δ, (5)

where Count is a counter that takes as input a collection of (possibly-entangled) alleged Quantum
Bitcoin $1, . . . , $r and outpts the number of indices 0 ≤ i ≤ r such that Verify($i) accepts

Conversely, we quantify the probability of false negative, i.e. the probability that a valid
Quantum Bitcoin is rejected by the verification procedure:

Definition 11 A Quantum Bitcoin scheme Q has completeness error ε if Verify($) accepts
with probability at least 1 − ε for all valid Quantum Bitcoin $. If ε = 0 then Q has perfect
completeness.

We call a Quantum Bitcoin scheme Q secure if it has completeness error ε ≤ 1/3 and negligible
soundness error. Next, we continue with analyzing the mini-scheme. Recall that a mini-scheme
only mints and verifies one single Quantum Bitcoin, so that a mini-scheme counterfeiter only
takes the single valid Quantum Bitcoin as input. To perform this analysis, we need a technical
tool, the double verifier:

Definition 12 For a mini-schemeM, we define the double verifier Verify2 as a polynomial-
time algorithm that takes as input a single serial number s and two (possibly-entangled) quantum
states ρ1 and ρ2 and accepts if and only if VerifyM(s, σ1) and VerifyM(s, σ2) both accept.

Now, we define the soundness and completeness error for the mini-scheme:

Definition 13 A mini-scheme M has soundness error δ if, given any quantum circuit C
(the counterfeiter), Verify2(s, C($)) accepts with probability at most δ. Here the probability is
over the Quantum Bitcoin $ output by MintM as well as the behavior of Verify2 and C.

Definition 14 A mini-schemeM has completeness error ε if Verify($) accepts with proba-
bility at least 1− ε for all valid Quantum Bitcoin or Quantum Shards $. If ε = 0 then Q has
perfect completeness.

As for the Quantum Bitcoin scheme Q, we call a mini-schemeM secure if it has completeness
error ε ≤ 1/3 and negligible soundness error. While 1/3 sounds like a high error probability,
Aaronson and Christiano [8, pp. 42–43] show that the completeness error ε of a secure system
can be made exponentially small in n at the cost of only a modest increase in the soundness
error δ.

What remains is to show that the Quantum Bitcoin system Q is, in fact, secure. This would
be difficult had we not used the mini-scheme model, but now we can do this in a single step.
The following theorem is adapted from Aaronson and Christiano [8, p. 20]:
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Theorem 1 If there exists a secure mini-schemeM, then there also exists a secure Quantum
Bitcoin scheme Q.

Proof We use the Subspace Generator G(r) from definition 4 as a one-way function: given a
n-bit string r, G(r) outputs (among others) an unique 3n-bit serial number sr. If there exists a
polynomial-time quantum algorithm to recover r from sr it would be possible for a counterfeiter
to copy Quantum Bitcoin, which is a contradicts the security of the mini-scheme. Therefore,
G(r) is a one-way function secure against quantum attack. Since such one-way functions are
necessary and sufficient for secure digital signature schemes [26], we immediately get a digital
signature scheme D secure against quantum chosen-plaintext attacks. The final step is to show
thatM and D together produce a secure Quantum Bitcoin system Q, which is done in Aaronson
and Christiano [8, p. 20].

This is the elegance of the mini-scheme model, where a secure mini-scheme immediately gives us
the full, secure system. Therefore, a counterfeiter who wants to break Q is forced to break the
security ofM. Therefore, if we show thatM is indeed secure we are finished:

Theorem 2 The mini-schemeM = (MintM,VerifyM), which is defined relative to the classical
oracle U , has zero completeness and 1/ exp(n) soundness error.

Proof The Inner-Product Adversary Method by Aaronson and Christiano [8, p. 31] gives an
upper bound to the information gained by a single oracle query. Theorem 1 then shows that
the mini-scheme M is secure since a valid Quantum Bitcoin always passes verification (zero
completeness error), and counterfeit Quantum Bitcoin pass with only an exponentially small
probability (negligible soundness error).

This ties together the security of the mini-scheme M and the Quantum Bitcoin scheme
Q. Theorem 2 shows that M is secure, and from theorem 1 it then follows that Q is secure.
Explicitly, any counterfeiter must make Ω(2n/4) queries to successfully copy a Quantum Bitcoin.
For large enough n, this is computationally infeasible. Specifically, n = 512 requires at least 2128

oracle queries.
Note that Quantum Bitcoin are not information-theoretically secure. Therefore, it is con-

jectured that a hypothetical attacker without access to an exponentially fast computer cannot
perform the exponential number of queries required to perform counterfeiting. Recall from
section 2.4 that public-key quantum money cannot be information-theoretically secure as shown
by Farhi et al. [23], so this should not come as a surprise.

4.2 Quantum Double-Mining

Now we analyze the effect of the security parameters m and Tmax on the probability of quantum
double-mining. Quantum double-mining is when the same entity first mines a number of Quantum
Shards, then combines them into a Quantum Bitcoin. The security parameter m controls the
number of Quantum Shards required per Quantum Bitcoin, and Tmax is the maximum age of
the Quantum Shards.

For an attacker to perform quantum double-mining, he or she must therefore mine m− 1
Quantum Shards in Tmax seconds after a first quantum shard has been mined. Remember that
Quantum Shards expire after Tmax seconds. In reality the attacker must both mint Quantum
Shards and combine them into Quantum Bitcoin before Tmax runs out. We simplify the analysis,
however, by making it easier for the attacker and allow Tmax time to mine Quantum Shards,
and then again Tmax time to mine Quantum Bitcoin.

We model our attack by assigning the probability p to the probability of an attacker
mining the next block in either the Quantum Shard or Quantum Bitcoin blockchain. p can be
understood as the proportion of the world’s computing power controlled by the attacker. We

12

E. Quantum Bitcoin

230



define k := bTmax/Tblockc ≥ 2 as the average number of blocks mined before Tmax runs out, where
Tblock is the average time between mined blocks. Bitcoin uses Tblock = 600 s, although empirical
research by Karame, Androulaki, and Capkun [13] suggests that the distribution of mining times
corresponds to a shifted geometric distribution with parameter 0.19. The probability of the
attacker mining mining m− 1 of these k Quantum Shards is then

η1 =
(

k

m− 1

)
pm−1(1− p)k−m+1. (6)

Next, the attacker must combine these Quantum Shards into a Quantum Bitcoin before another
Tmax runs out. The probability for this is the probability of mining a single block:

η2 =
(
k

1

)
p(1− p)k−1 = kp(1− p)k−1. (7)

The total probability of quantum double-mining η is then

η = η1η2 =
(

k

m− 1

)
k

(
p

1− p

)m
(1− p)2k. (8)

We bound the binomial coefficient by above using the formula(
n

k

)
<

(
ne

k

)k
for 1 ≤ k ≤ n, (9)

which gives

η <

(
ke

m− 1

)m−1
k

(
p

1− p

)m
(1− p)2k for 2 ≤ m ≤ k + 1. (10)

We set m− 1 = γk which for 1/k < γ < 1 gives

η < k

(
e

γ
· p

1− p

)γk ( p

1− p

)
(1− p)2k. (11)

We note that
e

γ
· p

1− p <
1
2 ⇔ 0 ≤ p < γ

2e+ γ
, (12)

where the upper bound of p approaches 1/(2e + 1) ≈ 15.5 % as γ goes to 1. Under those
constraints we get sup p/(1− p) = 1/2e and (1− p)2k ≤ 1. Plugging in all this in equation (11)
we get the following worst-case upper limit for the double-mining probability:

η <
k

2e2−γk. (13)

In other words, the probability of quantum double-mining is exponentially small in k as long
as the attacker controls less than 15 % of the computing power. Note that equation (13) is the
worst-case approximation and we should expect a much lower probability in a real scenario. What
remains is to determine the parameter γ. Too large, and it will be difficult for any Quantum
Bitcoin to be mined as every single Quantum Shard must be sold to a Quantum Bitcoin miner
before Tmax runs out. Too small, and the bound in equation (13) is weakened, making it easier
for a malicious miner to perform double-mining. The smaller we make γ, the larger we must
make k to achieve the required security.
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4.3 Quantum Bitcoin Longevity

What remains is to show that a Quantum Bitcoin does not wear out too quickly, i.e. that they
can be verified enough number of time and can be considered money. We will make use of the
“Almost As Good As New Lemma” [8, 27] which is as follows:

Lemma 1 Suppose a measurement on a mixed state ρ yields a particular outcome with probability
1− ε. Then after the measurement, one can recover a state ρ̃ such that ‖ρ̃− ρ‖tr ≤

√
ε

Since we can make the completeness error exponentially small in n, this means we can make
Verify($) accept a valid Quantum Bitcoin with exponentially large probability in n. Lemma 1
therefore says that we can reconstruct a Quantum Bitcoin $̃ such that

∥∥∥$̃− $
∥∥∥
tr

is exponentially
small in n as well. In other words, a Quantum Bitcoin $ can be verified expn times.

This exponential number of verifications before “wearing out” means that our Quantum
Bitcoin will be usable for a long enough time to be considered “money”. This is directly analogous
to traditional, physical banknotes which are expected to last for a large enough number of
transactions before wearing out.

5 Comparison to Classical Bitcoin
We will now compare Quantum Bitcoin to the classical Bitcoin protocol by Nakamoto [9] and
show that Quantum Bitcoin has several advantages. Bitcoin transactions must be verified by
third-party miners which, on average, takes 60 minutes but has considerable variance [13]. Bitcoin
transactions are therefore slow. In contrast, Quantum Bitcoin transactions are immediate and
only requires the receiver to have read-only access to a reasonably recent copy of the blockchain.
In addition, the transactions are local, so that no blockchain must be updated, nor does it
require a third party to know of the transaction.

Local transactions are also independent of network access. Bitcoin requires two-way com-
munication with the Internet, while Quantum Bitcoin transactions can be performed in remote
areas, including in space. The read-only blockchain access requirement makes it possible to store
a local offline blockchain copy in, for example, a book. A user only needs to consult this book to
perform transactions, given that the Quantum Bitcoin in question were minted before the book
was printed.

Another performance advantage is scalability. According to Garzik [28], Bitcoin as originally
proposed by Nakamoto [9] has an estimated global limit of seven transactions per second. In
comparison, the local transactions of Quantum Bitcoin implies that there is no upper limit to the
transaction rate. It should be noted, however, that the minting rate is limited by the capacity of
the Quantum Shard and Quantum Bitcoin blockchains. By placing the performance restriction
only in the minting procedure, the bottleneck should be much less noticeable than if it were in
the transaction rate as well.

Local transactions also mean anonymity, since only the sender and receiver are aware of
the transaction even occurring. No record, and therefore no paper trail, is created. In essence,
a Quantum Bitcoin transaction is similar to that of ordinary banknotes and coins, except no
central point of authority has to be trusted. Classical Bitcoin, on the other hand, records all
transactions in the blockchain which allows anybody with a copy to trace transaction flows, even
well after the fact. This has been used by several authors [29–34] to de-anonymize Bitcoin users.

Another advantage of Quantum Bitcoin is that transactions are free. Classical Bitcoin
transactions usually require a small fee [9] to be paid to miners in order to prevent transaction
spam and provide additional incentive. It is also envisioned [9, 35] that fees will allow mining
to continue past the year 2140, when the last new bitcoin is expected to be mined. In Bitcoin,
mining is required for transactions to work. None of this is needed in Quantum Bitcoin as local
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transactions require no fees. Even a hypothetical inflation control scheme, similar to that of
Bitcoin, will make mining stop completely as it no longer will be necessary at all.

Compared to Bitcoin, the blockchain of Quantum Bitcoin is smaller and grows at a more
predictable rate. By nature, data added to a blockchain can never be removed, and as of March
2016 the size of the Bitcoin blockchain exceeds 60 GB. Quantum Bitcoin also has a growing
blockchain, however it only grows when minting currency, not due to transactions.

Per the discussion in the previous paragraph, Quantum Bitcoin mining could become
superfluous so that the Quantum Bitcoin blockchain only grows to a given size. For example, if
we limit the number of Quantum Bitcoin to 21 million (just like in Bitcoin) and choose 512-bit
serial numbers and a 256-bit digital signature scheme D, the Quantum Bitcoin blockchain will
only ever grow to roughly 2 GB in size plus some overhead.

6 Conclusion
Quantum Bitcoin is a tangible application of quantum mechanics where we construct the ideal
distributed, publicly-verifiable payment system. The no-cloning theorem provides the foundation
of an unforgeable item, and the addition of a blockchain allows us to produce currency without
trusting a central entity. Quantum Bitcoin is the first example of a secure, distributed payment
system with local transactions.

Two parties can transfer Quantum Bitcoin by transferring a quantum state over a suitable
channel and reading off a publicly-available blockchain. Transactions are settled immediately
without having to wait for confirmation from miners, and the Quantum Bitcoin can be used and
re-constructed an exponential number of times before they wear out. There is no transaction
fee, yet the system can scale to allow an unlimited rate of transactions.

In section 1, we set up four goals that our distributed money scheme should fulfill. Let’s see
how well Quantum Bitcoin does:

Anonymity. Transactions are local and there is no paper trail for a transaction.

Resistance against counterfeiting. We showed in section 4 that it is computationally un-
feasible for any quantum counterfeiter to forge Quantum Bitcoin.

Efficient local verification. The verification algorithms are polynomial-time and do not re-
quire communication with third parties.

Transferable. Quantum Bitcoin can be transferred through quantum channels, and after
verification they can be reconstructed to its original state with high probability.

Note that while Quantum Bitcoin is secure against a counterfeiter with access to a quantum
computer, the protocol is not information-theoretically secure. The corresponding security proofs
must therefore place the standard complexity assumptions on the attacker.

We invite further study of our proposal, including security aspects related to counterfeiting
and two-stage mining. In addition, there are a few issues that should be addressed. First, there
is an issue of atomicity, as there is no obvious way to Quantum Bitcoin into smaller units like
the change mechanism in Bitcoin.
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In a recent Letter [Phys. Rev. Lett. 118, 030501 (2017)], Peiris, Konthasinghe, and Muller report a Franson

interferometry experiment using pairs of photons generated from a two-level semiconductor quantum dot. The

authors report a visibility of 66% and claim that this visibility “goes beyond the classical limit of 50% and

approaches the limit of violation of Bell’s inequalities (70.7%).” We explain why we do not agree with this last

statement and how to fix the problem.

In a recent Letter [1], Peiris, Konthasinghe, and Muller re-

port a Franson interferometry experiment using pairs of pho-

tons generated via frequency-filtered scattered light from a

two-level semiconductor quantum dot. The authors report a

visibility of 66% and claim that this visibility “goes beyond

the classical limit of 50% and approaches the limit of viola-

tion of Bell’s inequalities (70.7%).” In the following we ex-

plain why we do not agree with this last statement.

A violation of the Clauser-Horne-Shimony-Holt (CHSH)

Bell inequality [2] without supplementary assumptions (so

that it is loophole-free and therefore potentially usable for

device-independent applications) is only possible in a very

small region of values of the overall detection efficiency η
and the visibility V . Specifically, it must occur that V ≥
(2/η−1)/

√
2 [3]. Therefore, the 70.7% visibility bound men-

tioned by Peiris, Konthasinghe, and Muller only holds under

the assumption that η = 1.

The problem is that this value is impossible to achieve in the

Franson interferometer, even ideally. As the authors correctly

point out, in the Franson interferometer there is a crucial post-

selection step which requires discarding, on average, 50% of

the recorded photons. Therefore, even in the ideal case that

the detectors and couplings were perfect, the effective η falls

to 50%. This implies that it is possible to produce a classical

local hidden variable models while retaining the same output

statistics as predicted by quantum theory [4–6].

In fact, the above problem has recently been exploited to

experimentally show that the security proof in Franson-based

quantum key distribution schemes can be circumvented, ex-

posing its users to eavesdropping [7]. In these attacks, tailored

pulses of classical light are used, which indicates that the 50%
“classical limit” can be beat even in a purely classical setting.

However, as described in [4], there is a possibility of detect-

ing a genuine violation of a Bell inequality in the setting of

Peiris, Konthasinghe, and Muller. It requires using a different

Bell inequality, namely, a three-setting chained Bell inequal-

ity introduced by Pearle [8]. This modification allows for a

genuine violation of local realism, but requires a higher visi-

bility: At least, 94.63% [4, 6]. Although demanding, a recent

work [9] shows that such an experiment is feasible.

In conclusion, while the setup in [1] is promising, the exper-

imental data does not rule out all classical descriptions. A test

of the three-setting chained Bell inequality could be a more

suitable application for this correlated photon pair source.

However, the corresponding experiment would be much more

challenging as it requires a visibility of, at least, 94.63%.
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