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Abstract

Models are commonly used to simulate events and processes, and can be con-
structed from measured data using system identification. The common way is to
model the system from input to output, but in this thesis we want to obtain the
inverse of the system.

Power amplifiers (pas) used in communication devices can be nonlinear, and
this causes interference in adjacent transmitting channels. A prefilter, called pre-
distorter, can be used to invert the effects of the pa, such that the combination of
predistorter and pa reconstructs an amplified version of the input signal. In this
thesis, the predistortion problem has been investigated for outphasing power am-
plifiers, where the input signal is decomposed into two branches that are ampli-
fied separately by highly efficient nonlinear amplifiers and then recombined. We
have formulated a model structure describing the imperfections in an outphas-
ing pa and the matching ideal predistorter. The predistorter can be estimated
from measured data in different ways. Here, the initially nonconvex optimiza-
tion problem has been developed into a convex problem. The predistorters have
been evaluated in measurements.

The goal with the inverse models analyzed in this thesis is to use them in
cascade with the systems to reconstruct the original input. It is shown that the
problems of identifying a model of a preinverse and a postinverse are fundamen-
tally different. It turns out that the true inverse is not necessarily the best one
when noise is present, and that other models and structures can lead to better
inversion results.

To construct a predistorter (for a pa, for example), a model of the inverse is
used, and different methods can be used for the estimation. One common method
is to estimate a postinverse, and then using it as a preinverse, making it straight-
forward to try out different model structures. Another is to construct a model of
the system and then use it to estimate a preinverse in a second step. This method
identifies the inverse in the setup it will be used, but leads to a complicated opti-
mization problem. A third option is to model the forward system and then invert
it. This method can be understood using standard identification theory in con-
trast to the ones above, but the model is tuned for the forward system, not the
inverse. Models obtained using the various methods capture different properties
of the system, and a more detailed analysis of the methods is presented for lin-
ear time-invariant systems and linear approximations of block-oriented systems.
The theory is also illustrated in examples.

When a preinverse is used, the input to the system will be changed, and typ-
ically the input data will be different than the original input. This is why the
estimation for preinverses is more complicated than for postinverses, and one
set of experimental data is not enough. Here, we have shown that identifying
a preinverse in series with the system in repeated experiments can improve the
inversion performance.
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Populärvetenskaplig sammanfattning

Tänk dig att du är på plats A och vill ta dig till plats B. Du frågar tre olika per-
soner om vägen, och får tre olika svar. Den första pekar dig i rätt riktning och
förklarar att det är skyltat, och bara att följa skyltningen. Den andra berättar vil-
ka gator och vägar du ska köra för att komma fram. Den tredje ger dig en karta.
Alla tre sätten gör att du kommer fram till plats B utan problem. Sedan vill du
åka tillbaka – är alla vägbeskrivningar lika bra nu?

Matematiska beskrivningar, kallade modeller, används i många tekniska till-
lämpningar. Ett exempel är utveckling av bilar, där man med simuleringar kan ut-
värdera olika designval på ett kostnadseffektivt sätt. Ett annat är flygtillämpning-
ar där riktiga tester på flygplanet skulle kunna leda till fara för piloten. Model-
lerna kan skattas med hjälp av uppmätt data från systemet, vilket kallas system-
identifiering. Ett system är den avgränsade del av världen som vi är intresserade
av, i exemplen ovan bilen och flygplanet. I systemidentifiering är målet att finna
en matematisk modell som så bra som möjligt beskriver systemets beteende.

I denna avhandling undersöks hur inversa modeller kan skattas. Här menas
med invers att vi bildligt sett ska gå baklänges genom systemet. I bilen är gas-
pådraget något vi kan påverka, och beroende på många olika faktorer (såsom
växel, lutning på vägbanan och vind) så kommer detta att resultera i att bilen
får en viss hastighet. Om vi istället vill ha inversen, skulle man kunna utgå från
att vi vill ligga i 70 km/h, och därifrån beräkna vilket gaspådrag som behövs. I
vägbeskrivningsexemplet är inversen en mer bokstavlig tolkning, där vi faktiskt
vill åka tillbaka längs samma väg. Det är tydligt att en bra modell/beskrivning
hänger ihop med hur den ska användas.

Skattning av inversa system kan göras på flera sätt. Inversen kan exempelvis
baseras på en modell av systemet som sedan inverteras, eller skattas direkt som
en invers. Hur inversen skattas påverkar modellen genom att olika egenskaper
hos systemet fångas, och detta kan därför ha en stor inverkan på slutresultatet.
De olika metoderna analyseras i avhandlingens första del. Även ordningen på
systemet och inversen spelar roll för hur lätt det är att hitta en invers. Det visar
sig vara mer rättframt att skatta en invers som ska användas efter systemet än då
inversen skall ligga före systemet, som en förinvers.

Linjärisering av effektförstärkare är ett exempel där inversa modeller utnytt-
jas. Effektförstärkare används i många tillämpningar, bland annat mobiltelefoni,
och deras uppgift är att förstärka en signal vilket är ett steg i överföringen av
information. I exemplet med mobiltelefoner kan det exempelvis vara en persons
röst som är signalen, vilken ska överföras från telefonen via luften och vidare
till mottagaren. Om effektförstärkaren inte är perfekt kan detta medföra att den
sprider effekt till närliggande frekvensband. För den som ska använda dessa fre-
kvensband uppfattas detta som en störning, och det finns därför gränser för hur
mycket spridning som får ske. För att uppfylla dessa krav på spridning krävs att
man förändrar signalen på något sätt. Genom att modellera vad som händer i
förstärkaren och invertera detta kan man få ett system som inte sprider effekt i
angränsande frekvensband. I detta sammanhang säger man att en förkompense-
ring, även kallad fördistorsion, används.
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viii Populärvetenskaplig sammanfattning

I outphasing-förstärkare, som har en olinjär effektförstärkarstruktur, delas
signalen upp i två delar och varje del förstärks separat för att sedan adderas.
Fördelen med denna uppdelning är att dessa effektförstärkare kan göras väldigt
effektsnåla, vilket direkt speglas i exempelvis batteritiden för en mobiltelefon.
Om denna uppdelning och addition inte är perfekt uppstår olinjäriteter, och för-
distorsion krävs. I avhandlingen presenteras flera olika metoder för att ta fram
fördistorsion för outphasingförstärkare. En första metod baseras på en ny mo-
dellstruktur som fångar förstärkarens beteende väl och sedan kan användas för
fördistorsion. Denna metod är dålig ur beräkningssynpunkt och har därför vida-
reutvecklats, och vi visar hur de nya metoderna baseras på en teoretiskt ideal
förinvers. Metoderna har utvärderats på fysiska förstärkare, och resultaten visar
att en förbättring uppnås vid användning av fördistorsion.
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Notation

Outphasing Amplifiers

Notation Meaning

∆ψ(s1, s2) arg(s1) − arg(s2), angle difference between outphasing
signals, defined on page 129

∆ψ same as ∆ψ(s1, s2)
∆ψ(s1,P , s2,P ) angle difference between predistorted outphasing in-

put signals
∆ψ(y1,P , y2,P ) angle difference between predistorted outphasing out-

put signals
ξk angle difference between s̃k and sk , defined in (9.6)-

(9.7), page 131, and Figure 9.1, page 130
fk phase distortion in the amplifier branch k, defined

in (9.9)
g1, g2 gain factors of each branch in pa, should ideally be

g1 = g2 = g0
hk phase predistorter functions in the amplifier branch k,

defined in (10.1)
sk outphasing input signals, decomposed in standard

way (8.11)
sk,P predistorted outphasing input signal in branch k, de-

composed with identical gain factors using (8.11)
s̃k outphasing input signal in branch k, decomposed with

nonidentical gain factors using (9.3)
yk outphasing output signal in branch k, decomposed

with nonidentical gain factors using (9.3)
yk,P predistorted outphasing output signal in branch k, de-

composed with nonidentical gain factors using (9.3)
x̂ an estimate of the value of x

xv
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Power Amplifier Glossary

Notation Definition

aclr, acpr adjacent channel leakage (power) ratio, a linearity
measure that describes the amount of power spread
to neighboring channels, page 114.

am-am,
am-pm

amplitude modulation to amplitude modulation or
phase modulation, respectively, a plot mapping the
output amplitude (or phase distortion) to the input
amplitude to determine the distortion induced by the
circuit, for example a power amplifier, page 114.

combiner the circuit that handles the addition of signals in, for
example, Figure 8.13, page 121.

dBc decibel to carrier, the power ratio of a signal to a car-
rier signal, expressed in decibels.

dBm power level expressed in dB referenced to one milli-
watt, so that zero dBm equals one mW and one dBm is
one decibel greater (about 1.259 mW).

de, pae drain efficiency and power added efficiency are effi-
ciency measures for power amplifiers, page 113.

dla, ila direct and indirect learning architectures are two ap-
proaches to estimate a power amplifier predistorter,
see Method B and Method C on page 58.

dpd digital predistortion, a linearization technique for
power amplifiers that modifies the input to counteract
power amplifier distortion from nonlinearities and dy-
namics, page 123.

dr dynamic range, defining the ratio of the maximum and
minimum output amplitudes an amplifier can achieve,
page 122.

iq a signal separation into an imaginary part (quadrature,
q) vs real part (in-phase, i), page 110.

lo local oscillator, a circuit that produces a continuous
sine wave. Usually drives a mixer in a transmit-
ter/receiver, page 110.

mixer translates the signal up or down to another frequency,
page 110 and Figure 8.2.

outphasing,
linc

an outphasing amplifier, also called linear amplifica-
tion with nonlinear components, is a nonlinear ampli-
fier structure.

pa power amplifier, used to increase the power of a signal,
so that the output is a magnified replica of the input.

rf radio frequency, ranging between 3 kHz and 300 GHz.
scs signal component separator, (here) decomposes the

signal into outphasing signals according to (8.11).



Notation xvii

Abbreviations A-O

Abbreviation Meaning

ac Alternating current
aclr Adjacent channel leakage ratio
acpr Adjacent channel power ratio
am Amplitude modulation
am-am Amplitude modulation to amplitude modulation
am-pm Amplitude modulation to phase modulation
bjt Bipolar junction transistor
cmos Complementary metal-oxide-semiconductor
dac Digital-to-analog converter
db Digital baseband
dc Direct current
de Drain efficiency
dla Direct learning architecture
dpd Digital predistortion or predistorter
dr Dynamic range
edge Enhanced data rates for gsm evolution
evm Error vector magnitude
fpga Field programmable gate array
fet Field-effect transistor
fir Finite impulse response
fm Frequency modulation
gsm Global system for mobile communications
gprs General packet radio service
iir Infinite impulse response
ila Indirect learning architecture
ilc Iterative learning control
iq in-phase component (i, real part) vs quadrature com-

ponent (q, imaginary part)
iv Instrumental variables
linc Linear amplification with nonlinear components
lms Least mean squares
lo Local oscillator
ls Least squares
lte Long term evolution
lti Linear time invariant
lut Look-up table
mimo Multiple-input multiple-output
mosfet Metal-oxide-semiconductor field-effect transistor
mse Mean square error
nmos N-channel metal-oxide-semiconductor



xviii Notation

Abbreviations P-Z

Abbreviation Meaning

pa Power amplifier
pae Power added efficiency
papr Peak-to-average power ratio
pd Predistortion or predistorter
pem Prediction-error (identification) method
pm Phase modulation
pmos P-channel metal-oxide-semiconductor
pvt Process, voltage and temperature
pwm Pulse-width modulated
rbw Resolution bandwidth
rf Radio frequency
rls Recursive least squares
rms Root mean square
rx Receiver
scs Signal component separator
siso Single-input single-output
sls Separable least-squares
tx Transmitter

wcdma Wideband code-division multiple access



1
Introduction

Modeling of inverse systems might seem like a very narrow field of research, be-
cause when would you really need it? The answer is Quite often actually!

Inverse systems and models thereof show up in numerous applications, more
or less visibly. This results in a need for methods to estimate the models and eval-
uate the performance. The concept of building models based on measured data
is called system identification, and there are many theoretical results concerning
the properties of the estimated models. However, when the goal is to estimate
an inverse model, less work has been done. There are different options to esti-
mate such an inverse model, and the resulting model and its properties will be
impacted by the choice.

In this chapter, a short research motivation will be given, followed by an out-
line of the thesis. Then follows an overview of the contributions of the thesis, and
some clarifications of the author’s role in the work.

1.1 Research motivation

Power amplifiers (pas) are often used in communication devices, such as mobile
phones and base stations. In a hand-held device (such as a mobile phone), the
power efficiency is an important property as it will reflect directly on the battery
time. Higher demands on high efficiency has pushed the development towards
nonlinear devices, which are more power efficient, but also introduce new prob-
lems. A nonlinear device will not only transmit power in the frequency band
where the input signal is, but also risks spreading power to neighboring trans-
mitting channels. For anyone transmitting in these frequency bands, this will
be perceived as noise. Therefore, there are standards describing the amount of
power that is allowed to be spread to adjacent frequencies. This nonlinear spread-
ing of energy can be reduced by linearization of the power amplifier, limiting the

1



2 1 Introduction

interference in the neighboring channels. Since it is preferable to work with the
non-amplified signal, this is often done by adding an extra prefilter in series with
the amplifier. This block is called a predistorter. More on power amplifier pre-
distortion can be found in the second part of this thesis.

The problem in loudspeaker linearization is similar to that of power amplifier
predistortion. Classical loudspeakers are large to allow for a large movement of
the cone, to be able to produce sound of different frequencies. Today, there is a
large demand for smaller loudspeakers, both for aesthetic reasons (they should
not be visible and big as old loudspeakers) and a demand for better loudspeak-
ers in smartphones, tablets and laptops. Small loudspeakers, in mobile phones
for example, can show a nonlinear behavior due to limitations in the movement
of the cone. This will distort the sound and make listening to music less agree-
able [Björk and Wilhelmsson, 2014]. Cheaper material and components in combi-
nation with a smaller size make it harder to produce sound in the whole audible
frequency range. The goal here is to create a better sound using digital signal pro-
cessing, to reduce the effects of the nonlinearities introduced by the smaller size.
For this application, the output is air pressure in the form of sound waves and
once the signal has been converted to sound, it cannot be altered. It is of course
possible to use microphones in the tuning of this linearizing block, but having
a setup using a feedback loop with a microphone in daily use is not a desirable
option. Hence, the need for a preinverter is clear.

The need for calibration is also relevant in other applications, for example
sensors. One type of sensor is the analog-to-digital converter (adc) where an
analog (continuous) input signal is converted to a digital output, which is limited
to a number of discrete values. A small error in the analog input risks causing
a larger error in the output, since the discrete signal is limited to certain values.
There are different implementation techniques for the adc, and similarly to the
pas, the demand for higher speed has inspired new techniques. This has reduced
the linearity, and increased the need for linearization. Also other types of sensors
can be dynamic or nonlinear which will distort the measurement, and if we know
how, we can obtain a better estimate of the original (measured) signal. Feedback
in this setup would perturb the original signal we want to measure. So for sensor
calibration, a postinverse is desired.

Inversion of systems also appear in other areas, not directly connected to pre-
or postinversion. One application where models of both the system S and its
inverse S−1 are used is robotics. The forward kinematics, describing how to com-
pute the robot tool pose as a function of the joint variables, are used for control as
well as the inverse kinematics, how to compute joint configuration from a given
tool pose. In feedforward control, a common choice for the controller is a modi-
fication of the plant inverse (where the modification could be a softening of the
behavior). The idea with feedforward control is that the feedforward controller
should counteract the future effects of the plant, and it is often combined with
feedback control to be able to handle model errors and disturbances. See for ex-
ample Boeren et al. [2014] where feedback and feedforward control are combined
with input shaping.

The same idea can be used when you want an internal signal that is impossi-
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SS−1
p uR yR

S S−1u y yT

Figure 1.1: An inverse S−1 is used to undo the effects of the system S . The
top figure shows a preinverse, where the inverse S−1 is applied before the
system S , and the bottom figure shows a postinverse where the system is
followed by an inverse. For a preinverse, the preinverted signal uR should
make the output yR the same as the reference p, yR = p. For a postinverse,
the output yT should be altered to be the same as the input u, yT = u.

ble or hard to obtain or measure. This could be medical applications where some
substances are hard to measure, and the concentration of one substance will tell
you about the value of another. Kawato et al. [1987] explains voluntary move-
ments in the brain with a full feedback loop and then model the inverse dynam-
ics to reduce the time and the need for a longer feedback loop. The similiarities
to robotics has been explored in Tavan et al. [2011]. Difficulties to measure the
real value of course also occur in other areas, for example in the process indus-
try where sensors in very harsh environments such as hot or acid places can be
hard to use. The sensor needs to be placed somewhere else, and the better the
connection (forwards or backwards) is modeled, the better. One way to improve
the estimation of ship dynamics, where a lot of input signals/disturbances are un-
known (such as wind and water conditions) is to use alternative measurements,
which also includes using inverse systems [Linder and Enqvist, 2017].

In all of the above applications, the question is how to find an inverse S−1 to
the system S . The application will determine if it is a preinverse or a post inverse
that is desired. In Figure 1.1, the two different utilizations are illustrated.

One common way to find or construct a model is through model estimation
using data. This opens up for questions regarding this inverse estimation. Differ-
ent methods can be applied. For example it can be based on an inverted model of
the system itself, or the method can estimate the inverse directly. That the choice
of estimation method matters is motivated by Example 1.1. Example 1.2 illus-
trates that a model that is good for a forward purpose is not necessarily useful in
the inverse case.

Example 1.1: Introductory example
Consider a linear time-invariant (lti) system. The goal is to reconstruct the input
by modifying the input signal. When the structure of the inverse is set, in this
case to a finite impulse response (fir) system, what is the best way to estimate
it? Should the inverse be estimated directly or should an inverted model of the
system itself be used? These two approaches have been applied to noise-free data,
and the results are presented in Figure 1.2. We see here that the two models, both
descriptions of the system inverse, capture very different aspects of the system,
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Figure 1.2: The input u (black solid line), and the reconstructed input yR us-
ing an inverted estimated forward model (black dashed line) and the inverse
model estimated directly (gray solid line) in Example 1.1. The estimation of
the inverse (gray) cannot perfectly reconstruct the input (black solid), but is
clearly better than the inverted forward model (dashed).

and that the method chosen can have a large impact. This example is described
in more detail in Example 6.1, page 78.

Example 1.2: Driving instructions
You are at the Town square in Granville, Ohio. You have tickets to see the Buck-
eyes play football at the Shoe (The Ohio Stadium) at The Ohio State University in
Columbus, Ohio. You ask someone for directions and you get one of the following
driving instructions.

1. Take S Main Street, then follow signs for Columbus/OSU/Ohio Stadium. . .

2. Take S Main Street south, turn west on OH-16 W/OH-37 W and continue
on OH/37 W for 21 miles . . .

3. They give you a map.

Either option will get you to the game in time. Now if you want to go back –
which one would you prefer?

The first one gives you the information needed, but nothing more. The second
one can be made more or less explicit (the distance traveled on each road, the
exit number, etc.) and will then be easier or harder to follow/invert on the way
back. The third one, the map, is the most complex, but you can use it in any
situation (going back, traveling to a different location, . . . ) A map of the area
with a suggested itinerary is presented in Figure 1.3.

It is thus clear that a forward model that works great in that setting might not
be optimal once you try to go backwards.
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Figure 1.3: A map of a suggested itinerary from Granville Town square to
the Shoe at The Ohio State University, Columbus, OH, USA, as discussed in
Example 1.2. Map data ©2018 Google.

1.2 Outline

The thesis is divided into two parts. The first introduces system inversion and the
estimation of inverse models. The second part concerns using estimated inverse
models for power amplifier predistortion. Outside of the two parts of the thesis
containing mainly new results are this chapter (with problem formulation and
contributions) and Chapter 2 with a short introduction to model estimation using
system identification.

Part I – Estimation of inverse systems contains results on the identification
of inverse systems. Chapter 3 presents methods of inversion, used throughout
literature. In Chapter 4, the inversion is expanded to include stochasticity such
as noise. It also includes notation, a discussion on optimality and some examples.
The identification of these inverse models is discussed in Chapter 5 along with
method descriptions and analysis of some special cases: linear, time-invariant
systems and block-oriented systems. The discussion is followed by examples in
Chapters 6 and 7. In Chapter 6 model approximations in a noise-free setting are
presented and in Chapter 7 a small case study with process noise and measure-
ment noise is evaluated using different identification methods. Chapter 7 also
contains an example of identification of a Hirschorn preinverse and a discussion
on inverse system identification, concluding the first part of the thesis.

In Part II – Power amplifier predistortion, the estimation of inverse models
is applied to outphasing power amplifiers. Here, the goal is to find an inverse
such that the output of the power amplifier is an amplified replica of the input,
counteracting the distortion caused by the amplifier. An introduction to power
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amplifier functionality and characterization is given in Chapter 8 as well as an
overview of common predistortion methods. This chapter also contains a descrip-
tion of the outphasing power amplifier, which is a nonlinear amplifier structure
that needs predistortion, and for which the predistorter methods in this thesis
were produced. Modeling approaches for the power amplifier are presented in
Chapter 9 and methods for finding a predistorter in Chapter 10. The predistor-
tion methods are evaluated in measurements on real power amplifiers in Chap-
ter 11.

The thesis is concluded by Chapter 12 where some conclusions and a discus-
sion on ideas for future research are presented. Some additional information
about the power amplifiers used is given in the appendix.

1.3 Contributions

The contributions in this thesis are in two areas; model estimation of inverse
systems and the application thereof in power amplifier predistortion. The main
contributions are highlighted here.

1. A formulation of the estimation goals for preinversion and postinversion
and an explanation why they are principally different. When there is noise
present, the true inverse will not be the best inverse, since the noise contri-
butions need to be taken into consideration.

2. A classification of different identification methods for inverse system iden-
tification and the description of an iterative method that uses the system
during repeated experiments to construct a preinverse.

3. The analysis of inverse identification methods for the special cases linear
time-invariant systems and block-oriented systems.

4. A model structure that can describe both an outphasing power amplifier
and a predistorter, and that only changes the phases of the outphasing sig-
nals.

5. The description of an ideal predistorter for outphasing amplifiers and dif-
ferent convex approaches to obtain an approximation of the predistorter
based on measured data.

The contributions are further discussed below.

Inverse system identification Estimation of inverse models (inverse system
identification), treats the problem of finding a good model when the end goal
is to use not a model of the system itself, but the inverse. The inverse could
be used as a preinverse or a postinverse. The first contribution is the formula-
tion of the estimation goals for preinversion and postinversion in Chapter 4 and
showing that they are principally different. For the estimation of the postinverse,
measured data of input and output are sufficient to find the optimal inverse. For
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the estimation of a preinverse in a general setting, this is no longer the case and
multiple measurements are needed, since the preinverse will change the input
signal to the system. In system identification, it is common to use the idea of a
true system, which is assumed to have produced the data, and when the data is
noise-free and the system is invertible, the true inverse will be the best pre- or
postinverse. However, when there is noise present, we have shown that the true
inverse will no longer be the best inverse, since the noise contributions need to
be taken into consideration. This is valid for a preinverse and a postinverse.

There are multiple ways to estimate a preinverse or postinverse. Inverse mod-
els can, for example, be estimated directly as a preinverse or postinverse, or
based on a model of the forward system. The second contribution is the different
approaches, discussed in Chapter 5, along with a classification of the different
model estimation approaches used in literature. In this thesis we investigate the
different methods to improve the knowledge of the inverse estimation methods.

The third contribution is the analysis of the two special cases linear time-
invariant (lti) systems and linear approximations of block-oriented systems. In-
verse modeling of lti systems was presented at the 52nd IEEE Conference on
Decision and Control (CDC) in

Ylva Jung and Martin Enqvist. Estimating models of inverse systems.
In 52nd IEEE Conference on Decision and Control (CDC), pages 7143–
7148, Florence, Italy, December 2013. ©2013 IEEE

For linear systems, the frequency weighting of the identified models differ de-
pending on whether the inverse is based on a forward model or an inverse is
estimated directly, and the models capture quite different properties of the sys-
tem. The theory is presented in Chapter 5 and an example in Chapter 6. In this
paper a postinverse application of Hirschorn’s method presented in Section 3.3.2
is also shown.

A common way to represent nonlinear systems is to use block-oriented sys-
tems, consisting of static nonlinear blocks and linear dynamic blocks. The mod-
eling of this type of systems is a well-explored field, but the inverse estimation
has not been done before, to the authors’ knowledge. The results were presented
at the 17th IFAC Symposium on System Identification (SYSID) in

Ylva Jung and Martin Enqvist. On estimation of approximate inverse
models of block-oriented systems. In 17th IFAC Symposium on Sys-
tem Identification (SYSID), pages 1226–1231, Beijing, China, October
2015

describing the estimation of approximate inverse models of block-oriented sys-
tems. For a Hammerstein system with a white input signal, estimating a forward
model and inverting it will result in the same model as if the inverse is estimated
directly. For a colored input or a Wiener system, this is not true. The theory is
presented in Chapter 5 and examples in Chapter 6.

As mentioned above, multiple measurements should be used for the estima-
tion of a preinverse. A modification of the predistortion estimation method direct
learning architecture (dla) is formulated in which the modeling is performed
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with a predistorter present in the measurement collection. In the standard dla,
the system is replaced by a model thereof. Since the preinverse will change the
characteristics of the input signal to the system and the system contains noise, re-
peated measurements should be used. This expansion is denoted Method B2. A
simple implementation of the iterative method is shown to improve the preinver-
sion results. Method B2 is presented in Chapter 5 and evaluated in simulations
in Chapter 7.

Power amplifier predistortion A preinverse, which is also called a predistorter,
can be used to counteract the imperfections of a power amplifier. The outphasing
power amplifier predistortion described in Chapter 10 was first presented in

Jonas Fritzin, Ylva Jung, Per N. Landin, Peter Händel, Martin Enqvist,
and Atila Alvandpour. Phase predistortion of a Class-D outphasing
RF amplifier in 90nm CMOS. IEEE Transactions on Circuits and
Systems-II: Express Briefs, 58(10):642–646, October 2011a ©2011 IEEE

where a novel model structure for outphasing power amplifiers was used. The
contribution here is the model structure that works for the pa and a predistorter
that changes only the phases of the outphasing signals and was shown to success-
fully reduce the distortion introduced by the power amplifier. Measurements
and evaluation are presented in Chapter 11. The proposed model and predis-
torter structures were produced in close collaboration between the paper’s first
three authors. The theoretical motivation of the predistorter model has been de-
veloped by the author of this thesis.

The nonconvex predistortion method presented in the publication above was
developed into a method that explores the structure of the outphasing power
amplifier, which is also discussed in Chapters 10 and 11. It basically consists of
solving least-squares problems, which are convex, and performing an analytical
inversion, and it is suitable for online implementation. This is presented in

Ylva Jung, Jonas Fritzin, Martin Enqvist, and Atila Alvandpour. Least-
squares phase predistortion of a +30dbm Class-D outphasing RF PA
in 65nm CMOS. IEEE Transactions on Circuits and Systems-I: Regular
papers, 60(7):1915–1928, July 2013. ©2013 IEEE

The derivation of this least-squares predistortion method has mainly been done
by the author of this thesis, whereas the paper’s second author has been respon-
sible for the power amplifier and hardware issues. In addition to the reformula-
tion of the nonconvex problem, the paper provides a theoretical description of
an ideal outphasing predistorter, that is, one that does not change neither the
amplitude nor the phase of the output. This involves a mathematical description
of the branch decomposition and the impact of unbalanced amplification in the
two branches. This is described in more detail in Chapter 10 with measurement
results in Chapter 11. The fifth large contribution in this thesis is the description
of the ideal predistorter and the different approaches to obtain an approximation
of it based on measured data.
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The contents of Appendix A are included here for the sake of completeness
and are not part of the contributions of this thesis. The power amplifiers and the
characterization thereof were done at the Division of Electronic Devices, Depart-
ment of Electrical Engineering at Linköping University, Linköping, Sweden, by
Jonas Fritzin, Christer Svensson and Atila Alvandpour.

The author was also involved in other publications, unrelated to the main
research interests. The work in

André Carvalho Bittencourt, Patrik Axelsson, Ylva Jung, and Torgny
Brogårdh. Modeling and identification of wear in a robot joint un-
der temperature uncertainties. In 18th IFAC World Congress, pages
10293–10299, Milan, Italy, August 2011

is based on a project work carried out jointly by the first three authors. The first
author came up with the idea, related to his research, and has continued to work
with the results. Discussions regarding teaching aspects of an applied control
systems course are presented in

Svante Gunnarsson, Ylva Jung, Clas Veibäck, and Torkel Glad. Io (im-
plement and operate) first in an automatic control context. In 12th
International CDIO Conference, pages 238–249, Turku, Finland, June
2016

where the author has contributed through discussions during development and
teaching of the course.





2
Introduction to system identification

In many cases it is costly, tedious or dangerous to perform real experiments on
a physical phenomenon, but we still want to extract information somehow about
its behavior. The limited part of the world that we are interested in is called a
system. This system can be pretty much anything. It can for example be inter-
esting for a car manufacturer to know how the car will react to a change in the
accelerator, depending on different design choices in the engine. Or in a paper
mill, how the moist content of the wood will affect the quality of the paper. For
a diabetic it is essential to know how the blood sugar (glucose) level depends on
food intake, exercise and insulin doses. A pilot needs to know how an airplane
reacts to the control of different rudders, and in economics it is necessary to know
how a change in the interest rate will influence the customers’ willingness to bor-
row or save money. What we see as a system depends on the application. In the
car analogy, the system can be only the engine, or the whole car. For the blood
sugar levels we can for example be interested only in how food intake affects the
blood glucose, or how exercise contributes.

In many of these applications one does not want to perform experiments di-
rectly, but instead start the evaluation using simulations. This leads to a need for
models of the systems. One way is to use physical modeling where the models
are based on what we know of the system by using the knowledge of, for example,
the forces, moments, flows, etc. In the engine example, it is possible to calculate
the output and the connection between the accelerator and the engine torque.
Another modeling approach is to gather data from the system and construct a
model based on this information. This approach is called system identification
and will be presented in this chapter.

11
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S
u y

v

Figure 2.1: A system S with input u, output y, and disturbance v. For the
blood glucose example, the system S is the patient, or rather a part of the
body’s metabolism system, the input u could represent food intake, the out-
put y is the measured blood glucose level and the disturbance v is for exam-
ple an infection that affects the body’s insulin sensitivity.

2.1 System identification

System identification deals with the problem of identifying properties of a sys-
tem. More specifically, it treats the problem of using measured data to extract
a mathematical model of a system we are interested in. The introduction and
notation presented here is based on Ljung [1999], but other standard references
include Pintelon and Schoukens [2012] and Söderström and Stoica [1989]. Since
we are dealing with sampled data, t will be used to denote the time index. Also,
for notational convenience, the sample time Ts will be assumed to be one time

unit, so that y(tTs)
∆= y(t) and y((t + 1)Ts)

∆= y(t + 1) is the measurement after y(t),
but this can of course easily be adapted to other choices of Ts.

The observable signals that we are interested in are called outputs, denoted
y(t), and in the examples above this can be the car speed/engine velocity, or the
glucose level in the blood for a diabetic. The system can also be affected by differ-
ent sources that we are in control of – the accelerator or the food intake – called
inputs, u(t). Other external sources of stimuli that we cannot control or manip-
ulate are called disturbances, v(t), – such as a steep uphill affecting the car or
a fever or infection which affect the insulin sensitivity. Some disturbances are
measurable and for others the effects can be noted, but the signal itself cannot be
measured. The different concepts are illustrated in a block-diagram in Figure 2.1.

A system has a number of properties connected to it. A system is linear if its
output response to a linear combination of inputs is the same linear combination
of the output responses of the individual inputs. That is

f (αx1 + βx2) = f (αx1) + f (βx2) = αf (x1) + βf (x2),

with x and y independent variables and α and β real-valued scalars. The first
equality makes use of the additivity (also called the superposition property), and
the second the homogeneity property. A system that is not linear is called non-
linear. Since this includes “everything else”, it is hard to do a classification and
come to general conclusions. Most results in system identification are therefore
developed for linear systems, or some limited subset of nonlinear systems. The
system is time invariant if its response to a certain input signal does not depend
on absolute time. A system is said to be dynamical if it has some memory or his-
tory, i.e., the output does not only depend on the current input but also previous
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inputs and outputs. If it depends only on the current input, it is static.
In system identification, the goal is to use the known input data u and the

measured output data y to construct a model of the system S. Here, only single-
input single-output (siso) systems are considered, but the ideas can most of the
time be adapted to multiple-input multiple-output (mimo) systems. It is usually
neither possible nor desirable to find a model that describes the whole system
and all its properties. Instead, one wants to construct a model which captures
and can describe some interesting subset thereof, which is needed for the given
application. It is up to the user to define such criteria as to what needs to be
captured by the model.

2.2 Transfer function models

One way to present a linear time invariant (lti) system is via the transfer function
model

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (2.1)

where q is the shift operator, such that qu(t) = u(t + 1) and q−1u(t) = u(t − 1),
and e(t) is a white noise sequence. G(q, θ) and H(q, θ) are rational functions of
q and the coefficients in θ, where θ consists of the unknown parameters that de-
scribe the system. Depending on the choice of polynomials in G(q, θ) and H(q, θ),
different structures can be obtained. A quite general structure is

A(q)y(t) =
B(q)
F(q)

u(t) +
C(q)
D(q)

e(t) (2.2)

where the polynomials are described by

X(q) = 1 + x1q
−1 + · · · + xnxq−nx for X = A, C, D, F,

and nx is the order of the polynomial. There is a possible delay nk in B(q),

B(q) = bnkq
−nk + · · · + xnk+nb−1q

−(nk+nb−1),

such that there can be a delay between input and output. This structure is often
too general, and one or several of the polynomials will be set to unity. Depending
on the polynomials used, different commonly used structures will be obtained.
When the noise is assumed to enter directly at the output, such as white measure-
ment noise, or when we are not interested in modeling the noise, the structure is
called an output error (oe) model, which can be written

y(t) =
B(q)
F(q)

u(t) + e(t),

i.e., the polynomials A(q), C(q) and D(q) have all been set to unity. Many such
structures exist (see Ljung [1999] for more examples) and are called black-box
models, since the model structure reflects no physical insight but acts like a black
box on the input, and delivers an output. One strength of these structures is that
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they are flexible and, depending on the choice of G(q, θ) and H(q, θ), they can
cover many different cases.

Physical models are sometimes called white-box models to highlight that
they are see-through and can be built upon physical knowledge about the sys-
tem. A model which does not belong to the black-box model structure, and is not
completely obtained from physical knowledge of the system is called a gray-box
model. This can for example be a physical structure with unknown parameters,
such as an unknown resistance in an elsewise known circuit. It can also be a some
properties of the data that can be explored in the choice of model structure. The
latter is done in the power amplifier modeling in Chapter 9.

2.3 Prediction error method

One way to say something about the system, is to use a model that can predict
what will happen next. At the present time instant t, we have collected data from
previous time instants t − 1, t − 2, . . . , and this can be used to predict the output.
The one-step-ahead predictor of (2.2) is

ŷ(t) =
D(q)B(q)
C(q)F(q)

u(t) +
[
1 − D(q)A(q)

C(q)

]
y(t), (2.3)

and depends only on previous output data. The unknown parameters in the
polynomials A(q), B(q), C(q), D(q) and F(q) are gathered in the parameter vector
θ,

θ = [a1 . . . ana bnk . . . bnk+nb−1 c1 . . . cnc d1 . . . dnd f1 . . . fnf ]T .

The predictor ŷ(t) is often written ŷ(t|θ) to point out the dependence on the pa-
rameters in θ.

By defining the prediction error

ε(t) = y(t) − ŷ(t|θ), (2.4)

a straightforward modeling approach is to try to find the parameter vector θ̂, that
minimizes this difference,

θ̂ = arg min
θ

V (θ), (2.5a)

V (θ) =
1
N

N∑

t=1

l(ε(t)) (2.5b)

where l( · ) is a scalar valued, usually non-negative, function. Finding the param-
eters by this minimization is called a prediction-error (identification) method
(pem). This idea is illustrated in Figure 2.2.

Except for special choices of the model structures G(q, θ) and H(q, θ) and
the function l(ε) in (2.5b), there is no analytical way of finding the minimum of
the minimization problem (2.5a). Numerical solutions have to be relied upon,
which means that a local optimum might be found instead of the global one if
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System _

Model

u(t)

ŷ(t|θ)

y(t) ε(t)

v(t)

Figure 2.2: An illustration of the idea behind the prediction error method in
system identification. The goal is to minimize the prediction error ε(t).

the cost function is nonconvex and has more than one minimum. For results on
the convergence of the parameters and other properties of the estimate, such as
consistency and variance, see Ljung [1999].

Sometimes, the concept of a true system will be used, and the idea is that this
true system exists and produces the data. The concept is interesting as it makes it
possible to do analytical calculations and gain insight into convergence and other
properties of the model, but it might be very hard to describe it mathematically
for a real system.

2.4 Linear regression

A common way to describe the relationship between input and output of an lti
system is through a linear difference equation where the present output, y(t),
depends on previous inputs, u(t − nk), . . . , u(t − nk − nb + 1), and outputs, y(t −
1), . . . , y(t − na) , as well as the noise and disturbance contributions. This can
for example be done for (2.2) when C(q), D(q) and F(q) are set to unity, so that
G(q, θ) and H(q, θ) in (2.1) correspond to

G(q, θ) =
B(q)
A(q)

, H(q, θ) =
1
A(q)

with

A(q) = 1 + a1q
−1 + · · · + anaq−na

B(q) = bnkq
−nk + · · · + bnk+nb−1q

−(nk+nb−1).

The linear difference equation is then

y(t)+a1y(t−1)+ · · ·+anay(t−na) = bnku(t−nk)+ · · ·+bnk+nb−1u(t−nk−nb+1)+e(t),

and we can write
A(q)y(t) = B(q)u(t) + e(t). (2.6)

This particular structure is called auto-regressive with external input (arx). An-
other special case is when the output only depends on past inputs, such that
na = 0 in (2.6). This is called a finite impulse response (fir) structure.
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The predictor for an arxmodel is

ŷ(t|θ) = −a1y(t − 1) − · · · − anay(t − na)+
bnku(t − nk) + · · · + bnk+nb−1u(t − nk − nb + 1). (2.7)

By gathering all the known elements into one vector, the regression vector,

φ(t) = [−y(t − 1), . . . , −y(t − na) u(t − nk), . . . , u(t − nk − nb + 1)]T

and the unknown elements into the parameter vector,

θ = [a1 . . . ana bnk . . . bnk+nb−1]T ,

the predictor (2.7) can be written as a linear regression

ŷ(t|θ) = φT (t)θ, (2.8)

that is, the unknown parameters in θ enter the predictor linearly.

2.5 Least-squares method

With the function l( · ) in (2.5b) chosen as a quadratic function,

l(ε) =
1
2
ε2,

and the predictor described by a linear regression, as in (2.8), we get

V (θ) =
1

2N

N∑

t=1

[
y(t) − φT (t)θ

]2
, (2.9)

called the linear least-squares (ls) criterion. A good thing about this criterion is
that it is quadratic in θ, which means that the problem is convex and the mini-
mum can be calculated analytically. The minimum is obtained for

θ̂LS =




1
N

N∑

t=1

φ(t)φT (t)




−1
1
N

N∑

t=1

φ(t)y(t), (2.10)

and is called the least-squares estimator. See for example Draper and Smith
[1998] for a more thorough description of the lsmethod and its properties.

Apart from the guaranteed convergence to the global optimum, a benefit with
ls solutions is that there exist many efficient numerical methods to solve them.
The recursive least-squares (rls) method can be used to solve the numerical op-
timization recursively. Another option is the least mean square (lms) method,
which can make use of the linear regression structure of the optimization prob-
lem in (2.8). These methods are described in, for example, Ljung [1999, Chapter
11].
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2.6 Nonlinear and nonconvex system identification

For many model structures, both linear and nonlinear, it is not possible to write
the model in such a way that it can be put in the linear regression form (2.8).

2.6.1 Separable least-squares

For some model structures, the parameter vector can be divided into two parts,
θ = [ρT ηT ]T , so that one part enters the predictor linearly and the other nonlin-
early, i.e.,

ŷ(t|θ) = ŷ(t|ρ, η) = φT (t, η)ρ.

Here, for a fixed η, the predictor is a linear function of the parameters in ρ. The
identification criterion is then

V (θ) = V (ρ, η) =
1

2N

N∑

t=1

[
y(t) − φT (t, η)ρ

]2

and this is an ls criterion for any given η. Often, the minimization is done first
for the linear ρ and then the nonlinear η is solved for. The nonlinear minimiza-
tion problem now has a reduced dimension, where the reduction depends on the
dimensions of the linear and nonlinear parameters. This method is called separa-
ble least-squares (sls) as the ls part has been separated out, leaving a nonlinear
problem of a lower dimension, see Ljung [1999, p. 335-336].

2.6.2 Nonlinear system linear in the parameters

There are also nonlinear model structures where the parameters enter linearly.
One example is the model where

y =
K∑

k=1

αkfk(φ) (2.11)

and the fk , k = 1, . . . , K are nonlinear functions of the regression vector φ. Since
the parameters αk , k = 1, . . . , K enter the equation linearly, this system is still
linear in the parameters and the least-squares formulation can be used. This can
also be seen as a redefinition of φ where instead of the original signals, we use
nonlinear transformations of the same.

2.6.3 No least-squares formulation?

In many cases, we end up in a problem formulation that does not fit into the least-
squares formulation. There are many numerical optimization algorithms to find
the minimum of a function, when it is not possible to find an analytical solution.
These include the gradient descent method that uses the gradient of the function
to find a minimum and Newton’s method that uses curvature information of the
Hessian to find the minimum faster. The Gauss-Newton method is a modification
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of Newton’s method that does not require second derivatives, which can be hard
to compute.

In the case where no analytical solution is available, the optimization prob-
lem is often not convex, and there can be multiple local optima. Many different
methods and heuristics have been developed to solve the optimization, see for ex-
ample Ljung [1999, Chapter 10] and the references therein. One option is to use
local solutions that expand the search region in different ways. This can be done
by allowing the optimization some steps uphill (in a minimization criterion) to
pass local maxima in search of a better local minimum, ideally the global one. Yet
another option is to add some stochasticity to the solution. The results of these
methods often depend on the initial guess of the parameter vector – how close
it is to the global optimum. If the initial estimates are very poor, the methods
will have a hard time finding the global optimum and will get stuck in a local
optimum. Examples of these heuristics are simulated annealing, particle swarm
optimization and evolutionary algorithms. The Nelder-Mead simplex method
has been used in this thesis. Another idea is to use gridding where the whole
domain, or a subset thereof, is evaluated within a predetermined accuracy, and
all possible parameter combinations are evaluated. This can be very heavy nu-
merically, and the number of cost function evaluations depends on the size of the
domain and the precision for each parameter.

The trade-off here is the number of calculations vs. the search region, and
how close to the global optimum we want to get. In nonconvex optimization, no
guarantees can be made regarding the optimality of the solution.

2.7 Instrumental variables

So far the goal has been to minimize the prediction error. A different approach
to system identification is to use a correlation approach. In the instrumental
variables (iv) method we want to find instruments or instrumental variables ζ(t)
that are correlated with the regression vector but uncorrelated with the noise.
In this overview of the method we will assume the model is a linear regression
(2.8) [Ljung, 1999].

In the iv method, the covariance between the prediction error (2.4), ε(t) =
y(t) − φT (t)θ and the instruments ζ(t) should be zero,

θ̂IV = sol


1
N

N∑

t=1

ζ(t)
[
y(t) − φT (t)θ

]
= 0

 . (2.12)

This can also be written as

θ̂IV =




1
N

N∑

t=1

ζ(t)φT (t)




−1
1
N

N∑

t=1

ζ(t)y(t), (2.13)

provided the inverse exists. Of course, the choice of instruments heavily impacts
the performance of the method. Possible choices of instruments are simulated
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outputs (for example based on an ls estimate) and shifted inputs and outputs
(assuming the orders of the system and the noise model are such that it is possi-
ble).

2.8 The system identification procedure

The process of constructing a model from data consists of a number of steps,
which often have to be performed multiple times before a suitable model can be
obtained. See for example Ljung [1999] for a more thorough discussion of the
different steps.

1. A data set is needed, usually containing input and output data. The data
should be “rich enough”, so that it excites the desired properties of the sys-
tem. This is called persistency of excitation.

2. Different model structures should be examined, to evaluate which structure
best captures the properties of the data. These structures should fulfill
certain demands, such that two sets of parameters do not lead to the same
model. This property is called identifiability.

3. A measurement of “goodness”, such as the criterion (2.5), has to be selected
to decide which models best describe the data.

4. The model estimation step is where the parameters in θ are determined.
In the ls method, this would consist of inserting the data into (2.10), and
in the pem case, the minimization of (2.5) for a certain choice of predictor
structure ŷ(t|θ) in (2.3).

5. Model validation. In this step, different models should be evaluated to de-
termine if the models obtained are good enough. The evaluation should
be done on a new set of data, validation data, to ensure that the model is
useful not only for the data for which it was estimated. Two important com-
ponents of the model validation are the comparisons between measured
data and model output as well as the residual analysis, where the statistics
of the unmodeled properties of the data are evaluated.

Some of these steps contain a large user influence, whereas others might be set
or rather straightforward. The choice of model structure and model order, such
as na and nb in (2.7), is often hard and needs to be repeated a number of times
before a suitable model can be found.





Part I

Estimation of inverse systems





3
Introduction to system inversion

Inverse systems are used in many applications, more or less visibly. One appli-
cation example is power amplifiers in communication devices, which are often
nonlinear, causing interference in adjacent transmitting channels [Fritzin et al.,
2011a]. This interference will be noise to anyone that transmits in these neigh-
boring channels, and there are measures describing the amount of power that is
allowed to be spread to adjacent frequencies. If the inverse of the nonlinearity
can be found and applied to the signal, the noise should be canceled. However,
one does not want to work with the amplified signal, but rather with the input
signal to the system, that is, before the signal is amplified. A prefilter that inverts
the nonlinearities, called a predistorter, is thus desired.

In sensor applications it is rather a postdistortion that is needed. If the sensor
itself has dynamics or a nonlinear behavior, the sensor output is not the true
signal but will also contain some sensor contamination. This would have to be
handled at the sensor output, since this is where the user can get access to the
signal.

In the area of robotics, there is a need for control such that the robot achieves
the demands on precision. Smaller and lighter robots reduce the need for large
motors, as well as the cost and wear of the robot. However, this also introduces
new problems such as larger oscillations and increases the demands on the con-
trol performance. In robotic control applications, a common strategy is to use
feedback to control the joint positions. The last part of the robot, however, con-
necting the tool to the robot, is often controlled using open-loop control. Models
of both the forward and the inverse kinematics are used for control.

In the above applications, finding the inverse of the system is a crucial point;
how should the input to or the output from the system be modified to obtain
the desired dynamics from input to output? Each application entails its own re-
strictions and special conditions to attend to, and in this chapter, some aspects of

23
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system inversion are discussed. For a nonlinear system, the inversion is nontriv-
ial, and different approaches can be used. A selection of methods is presented
here.

When an inverse exists, there is a one-to-one relation between input and out-
put and this property is called bijectivity. If the system or function is not bijective,
finding an inverse is not possible. However, an approximate inverse can still be
useful. In parts of this thesis we assume that the system and the inverse can both
be written analytically, see Example 3.1 for a case when this is not valid. Both
the system and the inverse are assumed to be stable and causal (see for exam-
ple Rugh [1996]). The systems considered in this thesis are single-input single-
output (siso). In this chapter, the main focus is on inversion, and a model of
the system is supposed to be known, either by physical modeling or by system
identification. Different approaches to estimate inverse models will be presented
in Chapter 5.

Example 3.1: Nonexisting analytical inverse
Consider the system

y(t) = ex(t) + sin(x(t))

for |x(t)| < 0.5π. The function ex + sin(x) is monotonic on [−π2 π
2 ], and thus also

invertible. However, no analytic expression of the inverse exists, and a numerical
inverse will have to be used.

Here, the methods are described in either continuous or discrete time. Differ-
ent frameworks are usually most easily described in one domain or the other,
hence the mixed use in this chapter. Also, the systems are often continuous
whereas the controllers are implemented in discrete time. The explicit depen-
dency on time will sometimes be left out for notational convenience.

This chapter mostly contains an overview of methods of system inversion al-
ready present in the literature. The new contribution is the adaptation of the
Hirschorn method to a postinverse, presented in Section 3.3.2.

3.1 Inversion by feedback

The behavior of a system can be modified in a multitude of ways, often with the
goal of making the output follow a desired trajectory, called reference signal, r. In
the automatic control society the main choices are feedback and feedforward con-
trol. For the linear case many different control strategies exist, perhaps the most
common of which is the pid, consisting of a proportional (P), an integral (I) and
a derivative (D) part. The P, I and D parameters of the controller can be trimmed
to obtain a desired behavior of the controlled system. The concept of controllers
using pid has been used since the 18th century, but a recent contribution is for
example Åström and Hägglund [2005].

In this section, a few feedback strategies will be introduced. An iterative con-
trol approach that can be used for linear and nonlinear systems is the iterative
learning control (ilc). ilc works on systems with a repetitive input signal, such
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as a robot performing the same task over and over again. It makes use of the
output from the last repetition and tries to improve this so that the output better
follows the reference signal. Another feedback solution for nonlinear systems is
the exact input-output linearization, which makes use of a known model of the
system to obtain overall linear dynamics, determined by the user.

Though the classical view of feedback control is not that of system inversion,
this is indeed one interpretation; the feedback system produces the input that
leads to a desired output. This is also the goal of an inverse system, to produce
an input by use of an output. We will start this chapter by covering a few control
strategies.

3.1.1 Feedback and feedforward control

Feedback control refers to using a measured output of a system to determine the
input to said system. A standard solution is to look at the difference between the
reference r(t) and the output y(t), called control error e(t) = r(t) − y(t), and this
signal can be used for control of the system. For example, if the control error
is negative, a conclusion can be that the input u(t) is too small, and should be
increased, and vice versa. Many control strategies based on this idea have been
constructed and form the basis of the control laws used in industry. The idea is
presented in Figure 3.1 where a feedback controller F is applied to the system G.

On the other hand, if we know something about how the system will trans-
form the input, we might want to use this to counteract later effects. This is the
concept of feedforward control, where the reference signal is altered and sent to
the system, or fed forward. Often, feedforward and feedback control are used
together to get the advantages of both approaches. Figure 3.2 shows a block di-
agram where the feedback loop in Figure 3.1 has been expanded to include a
feedforward loop with the feedforward controller Ff . A common requirement is
that the output should have a softer behavior than the reference, and this can be
achieved via the filter Gm, denoting the desired dynamics. The ideal choice of the
feedforward controller is Ff = Gm/G. If feedforward control is used alone, with
no feedback loop, it is often called open-loop control.

Feedback control can handle phenomena like disturbances and model uncer-
tainties, since it is based on the true output. It can also handle unstable systems,
which is not possible for a pure feedforward (open-loop) control, however a bad
feedback loop may cause instability.

Feedforward control has the advantage of not needing any measurement but
the drawback is that ideal feedforward control (using Ff = Gm/G) requires per-
fect knowledge of the system, and that both G and Gm/G are stable. Also, there is
no possibility to compensate for disturbances. However, if the disturbances are
perfectly known or measurable, feedforward control from the disturbances can
be applied and the disturbances compensated for. These are of course limiting
assumptions. A benefit with feedforward control is that two cascaded stable sys-
tems will always be stable, hence a bad controller can not destabilize the system.
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Figure 3.1: A feedback controller F applied to the system G.
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Figure 3.2: Feedforward controller Ff and feedback controller F applied
to a system G. Gm is used here to describe the desired dynamics between
reference and output.

3.1.2 Iterative learning control

As discussed in the introduction, iterative learning control (ilc) can be seen as
an iterative inversion method [Markusson, 2001, Markusson and Hjalmarsson,
2001]; the goal is to find the input leading to the desired output. In this section,
the basic concepts of ilc will be described, but for a more thorough analysis
see for example Wallén [2011], Moore [1993] and the references therein. The
ilc concept comes from the industrial robot application, where the same task or
motion is performed repeatedly. The idea is to use the knowledge of how the
controller performed in the last repetition and improve the performance in each
iteration.

The system S in this setting is described by the input u, the output y, and the
reference r over a finite time interval. The task is assumed to be repeated, so that
the reference r and the starting point are the same for each iteration. The time
index is t, where t ∈ [0, N −1] for each repetition, and each repetition is of length
N . A basic first order ilc algorithm is described by

uk+1(t) = Q(q) (uk(t) + L(q)ek(t)) (3.1)

where
ek(t) = r(t) − yk(t)

and k is the iteration index, indicating how many times the task has been re-
peated. Here, q is the shift operator, that is q−1u(t) = u(t−1), while Q(q) and L(q)
denote linear or nonlinear operators, chosen by the user. It is important that this
choice leads to convergence to an input where the output achieves the desired per-
formance. Also, the learning should be fast enough. There are structured ways
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to determine Q(q) and L(q), which can be based on a model of the system. The
concepts of stability and convergence of ilc systems are treated in, for example,
Wallén [2011]. It can be shown that ilc is robust to model errors, such that for a
linear system, a relative model error of 100% can be tolerated [Markusson, 2001].
Even a rather simple model can therefore perform well.

One of the limits of ilc is that it can only be used on tasks that are per-
formed repeatedly, and the performance can deteriorate significantly if the tasks
are slightly different. One solution to this is the use of basis functions in the ilc,
which enables ilc use for slightly varying tasks [Boeren et al., 2015].

Iterative methods are used in many applications, also outside the control com-
munity. The common factor is that the information found in the output y is used
to improve the input, but the algorithm is not necessarily similar to (3.1). One
application where iterative solutions are often used is analog-to-digital converter
(adc) correction, such as in Soudan and Vogel [2012].

3.1.3 Exact linearization

In exact linearization (also called input-output linearization) [Sastry, 1999], the
output from a nonlinear system S,

ẋ = f (x) + g(x)u

y = h(x), (3.2)

which is affine in u, is differentiated enough times to obtain a relation between
the differentiated output y(n) and the input, u. Differentiating y with respect to
time, we obtain

ẏ =
∂h
∂x
f (x) +

∂h
∂x
g(x)u

= Lf h(x) + Lgh(x)u,

where Lf h(x) and Lgh(x) are the Lie derivatives of h with respect to f and g,
respectively. If Lgh(x) , 0, a relation between the differentiated output ẏ and the
input u has been obtained, then using the input,

u =
1

Lgh(x)
(−Lf h(x) + r)

leads to a linear relation between output and reference, ẏ = r. If Lgh(x) = 0, a
second differentiation can be performed,

ÿ =
∂Lf h

∂x
f (x) +

∂Lf h

∂x
g(x)u

= L2
f h(x) + LgLf h(x)u,

from which a control law can be calculated if LgLf h(x) , 0. In this manner, one
can continue until there is a direct relation between y(γ) and r through the control
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law

u =
1

LgL
γ−1
f h(x)

(−Lγf h(x) + r)

= α(x) + β(x)r. (3.3)

Here, γ is the smallest integer for which LgL
i
f h(x) ≡ 0 for i = 0, 1, . . . , γ − 2 and

LgL
γ−1
f h(x) , 0, and it is called the relative degree of the system.

The system (3.2) with control input (3.3) now describes a system with lin-
ear dynamics. Hence, linear theory can be used to obtain the desired dynamics
chosen by the user, Gm, and the linear feedback loop can be combined with the
nonlinear one. The overall system from r to y (the nonlinear system with the
nonlinear and linear feedback) will thus be linear, and the dynamics will be de-
scribed by the transfer function Gm.

Exact linearization requires knowledge of all the states, and is therefore often
used in combination with a nonlinear observer. This can lead to a complicated
feedback loop. Here, it is assumed that any zero dynamics present are stable. The
above system and the derivation of the feedback loop are described in continuous
time. A discrete-time description can also be done, as presented in Califano et al.
[1998].

3.2 Analytic inversion

In the above feedback loops, only the system itself, or a model thereof, is used
to produce an inverse. No explicit inversion is done. Another approach is to per-
form an analytic inversion of the system, which can be applied at the input to,
or the output from, the system, see Figure 1.1. The output from this cascaded
system should have the desired dynamics. If the goal is to make the output ex-
actly the same as the reference in a noise-free setting, a “true” inverse has to be
found. But even for other situations, the inversion can be seen as a case where
the undesired nonlinear and linear dynamics have been inverted. For example, in
the exact linearization case, the nonlinear and dynamical behavior of the system
are inverted, and in the end a system with some user-defined linear dynamics
is obtained. This approach has already been used in the feedforward controller
Ff = Gm/G, where the system G is inverted.

There are several ways to find a system inverse. One method for finding an
inverse to dynamic systems uses Volterra series, which is a nonlinear extension
of the impulse response concept for the linear case. This approach leads to an
analytical inverse. Other systems that might be analytically invertible are block-
oriented systems, which consist of a static nonlinearity and a linear dynamic sys-
tem. A brief overview of Volterra series will be presented here together with a
short discussion on the use of preinverse and postinverse and problems that oc-
cur with inversion.
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3.2.1 Problems occurring with system inversion

Here, the goal is not to cover all problems with the inversion of systems, but to
give some insights to the problems that can occur.

For a stable and minimum-phase lti system G, it is rather straightforward to
find an inverse G−1. However, if these conditions are not fulfilled, we quickly
run into problems, even for linear systems. Any nonminimum-phase zeros of the
original system will become unstable poles of the inverse system. However, if
the system is nonminimum phase, the inverse can be used if noncausal filtering
is allowed. If a delay can be allowed, time-reversed input and output sequences
can be used together with a matching, stable inverse [Markusson, 2001].

Another aspect with inverse systems concerns whether the system is proper
or not. A proper transfer function is one where the order of the denominator is
greater than or equal to that of the numerator. A strictly proper transfer function
is one where the order of the denominator is greater than that of the numerator.
The amplification of a proper system always approaches a value as the frequency
goes to infinity. If the transfer function is strictly proper, the amplification will
approach zero at high frequencies. For a transfer function that is not proper,
however, the amplification will approach infinity when the frequency approaches
infinity. That is, high frequency contents will be amplified. This means that the
inverse of a strictly proper system will be improper.

3.2.2 Postinverse and preinverse

Loosely speaking, a postinverse to a system S is a system T such that the sys-
tem T S behaves approximately as a unit mapping, while a preinverse R makes
SR act like a unit mapping. The concepts will be more formally defined in Sec-
tion 4.1, where it will also be clear why it is important to distinguish between
them.

As is commonly known, the ordering of two linear systems does not matter,
i.e., the output from A ·B equals the output from B ·A when A and B are linear
dynamical systems. This property is called commutativity. However, this does
not apply to nonlinear systems, as shown in Example 3.2.

Example 3.2: Noncommutativity of nonlinear systems
Consider the two functions

f1(x) = 2x and f2(x) = x2.

If the order of the systems is f1, f2, the output is y12 = 4u2 and with the reversed
order, the output is y21 = 2u2 , y12.

Thus, for nonlinear systems, the output depends on the order of the systems.
There are some exceptions where this is not true and the systems can change
order without changing the output. One example where two nonlinear systems
commute, is where one of the systems is the inverse of the other, as in Example 3.3
for a Hammerstein-Wiener system. When an exact inverse exists, the preinverse
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s+1
s+2( · )3

u z y

(a)

3
√
·s+2

s+1

(b)

Figure 3.3: (a) A Hammerstein system with invertible static nonlinearity
followed by a linear, stable minimum-phase dynamical system. For such
a system, an analytical inverse exists, as shown in (b).

and the postinverse are the same in a noise-free case. However, it is often not
possible to determine the exact inverse, and an approximate inverse has to be
used. This approximate function does not necessarily commute with the system.

Example 3.3: Analytical inversion
Consider the Hammerstein system with the static nonlinearity

fH (x) = x3

which is invertible for all x, followed by the minimum-phase linear dynamic sys-
tem

GH (s) =
s + 1
s + 2

,

as shown in Figure 3.3a. For this system, an analytical inverse exists, namely the
Wiener system

GW (s) =
s + 2
s + 1

, fW (x) = 3
√
x,

see Figure 3.3b. This inverse is also an example of where a nonlinear system and
its inverse are commutative, that is, the two systems can be placed in whichever
order. This Wiener system can thus be used as a preinverse or a post inverse.

Another example of nonlinear systems that commute are the Volterra series
and the p-th order Volterra inverse that will be described in the next section.
But, in general, the commutative property does not apply to nonlinear systems,
see Mämmelä [2006] for an extended discussion on commutativity in linear and
nonlinear systems.

In Chapter 4 it will be shown that the optimal preinverse and postinverse are
not necessarily the same. Various modeling approaches will be further consid-
ered in Chapter 5, leading to either a preinverse or a postinverse. Which one
is requested is often closely connected to the application, for instance for power
amplifier linearization a preinverse is desired, and for sensor calibration a postin-
verse. In power amplifier predistortion, the commutativity property is often con-
sidered approximately valid, and the pre- and postinverses are used interchange-
ably without further consideration [Abd-Elrady et al., 2008, Paaso and Mämmelä,
2008].



3.2 Analytic inversion 31

3.2.3 Volterra series

In the linear systems theory, a common way to describe the output y(t) of the
system affected by the input u(t), is by the impulse response g( · ),

y(t) =

∞∫

−∞
g(τ)u(t − τ)dτ, (3.4)

usually with the added constraints that the system is causal and the input zero
for t < 0, so that the integral is limited to [0, t]. It can also be described by the
corresponding Laplace relation

Y (s) = G(s)U (s), (3.5)

where Y (s) and U (s) are the Laplace transformed versions of y(t) and u(t), respec-
tively, and G(s) is the transfer function. This is not possible for nonlinear systems.
However, if the nonlinear system is time invariant with certain restrictions, an
input-output relation can be determined. These conditions include convergence
of the infinite sums and integrals that occur [Sastry, 1999], but will not be further
considered here. The input-output relation can be described by

y(t) =

∞∫

−∞
h1(τ1)u(t − τ1)dτ1 +

∞∫

−∞

∞∫

−∞
h2(τ1, τ2)u(t − τ1)u(t − τ2)dτ1dτ2 + . . .

+

∞∫

−∞
. . .

∞∫

−∞
hn(τ1, . . . , τn)u(t − τ1) . . . u(t − τn)dτ1 . . .dτn + . . . (3.6)

where
hn(τ1, . . . , τn) = 0 for any τj < 0, j = 1, 2, . . . , n.

The relation (3.6) is called a Volterra series (sometimes Volterra-Wiener series)
and the functions hn(τ1, . . . , τn) are called the Volterra kernels of the system. The
expression (3.6) can also be written as

y(t) = H1[u(t)] + H2[u(t)] + · · · + Hn[u(t)] + . . . (3.7)

where

Hn[u(t)] =

∞∫

−∞
. . .

∞∫

−∞
hn(τ1, . . . , τn)u(t − τ1)u(t − τ2) . . . u(t − τn)dτ1 . . .dτn (3.8)

is called an n-th order Volterra operator.
When considering an lti single input-single output (siso) system, the Vol-

terra series reduces to the standard form, and the kernel h1( · ) in (3.6) corre-
sponds to g( · ) in (3.4). See for example Schetzen [1980] for a more thorough
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description of Volterra series. The counterpart of the transfer function is based
on the multivariable Fourier transform,

Hp(jω1, . . . , jωp) =

∞∫

−∞
. . .

∞∫

−∞
hp(τ1, . . . , τp)e−j(ω1τ1+···+ωpτp)dτ1 . . .dτp (3.9)

called the p-th order kernel transform. The inverse relation is

hp(τ1, . . . , τp) =
1

(2π)p

∞∫

−∞
. . .

∞∫

−∞
Hp(jω1, . . . , jωp)ej(ω1τ1+···+ωpτp)dω1 . . .dωp.

(3.10)
In analogy to the linear case, these functions are sometimes referred to as higher
order transfer functions. The discrete counterpart of the Volterra operators (3.8)
is [Tummla et al., 1997]

Hn[u(t)] =
∞∑

i1=−∞
. . .

∞∑

in=−∞
h

(n)
i1,i2,...,in

u(n − i1) . . . u(n − in). (3.11)

This version is often used in data-based modeling, where the models are based
on sampled data.

p-th order Volterra inverse

A p-th order inverse, H−1
(p), is defined as a system that, when connected in se-

ries with the nonlinear system H, results in a system, Q, in which the first-order
Volterra kernel is a unit pulse and the other Volterra kernels are zero up to order
p, qk = 0, k = 2, . . . , p. The Volterra kernels for k > p might however be nonzero
but are generally considered to be negligible [Zhu et al., 2008]. The inverse, H−1

(p),
can be determined by using the Volterra series (assumed known) of the system,
and the desired output. This is done in a sequential way by first finding the first
order Volterra operator, H−1

(1), and then solving for the higher order Volterra oper-

ators H−1
(n), n = 2, . . . , p, which then only depend on the system H and lower order

operators of the inverse, see Schetzen [1980, Chapter 7] for a thorough discus-
sion.

The ordering of the system H and the inverse H−1
(p) will affect the output, but it

can be shown [Schetzen, 1980] that the first p Volterra operators of the connected
systems are the same. The order of the system H and the inverse H−1

(p) can thus

be interchanged and the postinverse H−1
(p) can also be used as a preinverse, if only

the nonlinearities up to order p are of interest.

3.3 Inversion by system simulation

Some approaches to avoid the explicit inversion of a system are based on a simu-
lation of the true system, without including any feedback from the actual system.
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L−1(q−1)
w(t)

N (w, t)

+
y(t)

Figure 3.4: An inversion method that only uses the inverse of the linear part
L of a nonlinear system S = L + N .

The exact linearization described in Section 3.1.3 can be modified such that it
uses a simulated output in the feedback loop. Another approach is to decompose
the original system to avoid the explicit inversion of the nonlinear system. The
idea with these inversion methods is that the inverse can be used as a preinverse
or a postinverse, thus avoiding a feedback loop.

3.3.1 Separation of a nonlinear system

A way to avoid the explicit inversion of a nonlinear system is presented in Markus-
son [2001, p. 51]. There, the nonlinear system S is separated into a linear part,
L, and a nonlinear part, N , where operator notation is used. The inverse of
S = L+(S−L) = L+N = L(I+L−1N ), can then be written as S−1 = (I+L−1N )−1L−1.
We have thus obtained a postinverse S−1 such that

S−1S = (I + L−1N )−1L−1(L + N ) = (I + L−1N )−1(I + L−1N ) = I.

This can also be used as a preinverse, since

SS−1 = (L + N )(I + L−1N )−1L−1 = L(I + L−1N )(I + L−1N )−1L−1 = I.

The inverse (I + L−1N )−1L−1 can be obtained in a feedback loop, with the nonlin-
ear part N in the feedback and the linear inverse L−1 in the forward path (com-
pare to the sensitivity function for lti systems), see Figure 3.4. It follows that
the nonlinear part N does not have to be explicitly inverted, and that only the
linear part L is to be inverted. The output from the inverted system is denoted
w(t) to separate it from the true input u(t), since different initial conditions of
the true system and the model will produce an output that is not exactly equal to
the input. Unknown initial states are discussed in Markusson [2001, p. 45], in a
maximum likelihood (ml) setting.

3.3.2 Hirschorn’s method

Another approach to invert nonlinear systems is Hirschorn’s method, where ex-
act linearization is used in order to construct a linear system [Hirschorn, 1979].
Given that the model is good enough, it should be possible to use it not only in
the feedback to construct u as in (3.3), but also as a simulation model.
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∑
Ŝ

Controller

ys
r

u

S ylin

S†

Figure 3.5: A block diagram of Hirschorn’s method, where the system S is
replaced by a model Ŝ in the exact linearization feedback loop. The input
signal calculated in this way is then also applied to the real system S. The
simulation system and feedback loop that leads to an overall linear behavior
between r and ys is denoted S†. The input to S† is the reference r and the
output is the control signal u.

SS†r
u ylin
Gm

Figure 3.6: The predistortion block S† obtained using Hirschorn’s method in
series with the real system leads to an overall linear behavior between r and
ylin.

Preinversion

If instead of the measured output from the system, the output from the simu-
lated model is fed back to the controller, see Figure 3.5, the overall system (from
reference r to output ys) will by construction be linear with the dynamics Gm.
Also, the input calculated for this (simulated) system leads to the desired dynam-
ics, and the same input signal can be used also for the true system. The system
from r to u will be denoted S†. A pure open loop controller is thus obtained, as
in Hirschorn [1979], see Figure 3.6, and this is called Hirschorn’s method. The
simulated feedback can also be interpreted as an observer with no measurement
inputs.

Hirschorn’s method in combination with a small feedback loop has been
shown to give promising results in attenuating harmonic distortion in loud-
speakers [Arvidsson and Karlsson, 2012]. When a model of the system is avail-
able, the same idea could be able to use not only for exact linearization, but also
for other complicated control feedback loops.
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SS†r̃
u y

Figure 3.7: The (possibly fictitious) reference signal r̃ can be seen as input to
the block S†, creating the input u to the nonlinear system S.

1
Gm S† Gmy r̄ ū ylin

Figure 3.8: Hirschorn’s method applied as postdistortion, when the output
can be assumed to be created according to Figure 3.7. The block S† cannot
simply be applied at the output y, but has to be manipulated to obtain a
linear behavior between u and ylin.

Postinversion

Hirschorn’s method describes a preinversion, which we have adapted and ex-
panded into a postinversion method described here.

Let the nonlinear system be denoted S and the precompensation be denoted
S†, since it is not really an inverse of S, but rather creates a system that, in series
with S, will be linear. The dynamics of the overall linear system is Gm.

The method described above can be seen as an inversion of the nonlinearities
of the system – the output from the overall system will be linear with dynamics
Gm chosen by the user. This is based on the assumption that the model is accu-
rate enough, of course. This is a setup where preinverse and postinverse are not
interchangeable; Hirschorn’s method tells us only how to determine the input to
the nonlinear system such that the reference-to-output has the linear dynamics
Gm, not how to manipulate the output to make it a linear response to the input.
If it is this postinverse that is wanted, a different setup is needed.

It is known that S† in cascade with S yields a linear system Gm, so that

y = Gmr (3.12)

with r being the reference, cf. Figure 3.6. The goal is to obtain a linear response to
u by using a postinverse on the output y. Assume that u was actually created by a
prefilter, S†, with u as output and the fictitious signal r̃ as input, as in Figure 3.7.
An estimate of this signal can then be obtained by

r̄ =
1
Gm

y, (3.13)

where, if no transients or noise are present, r̄ = r̃. An estimate of the input u,
called ū, can be obtained by filtering r̄ by S†. Now, to obtain the desired dynamics,
ū must be filtered by the linear function Gm, see Figure 3.8. The cascade of these
three blocks (1/Gm, S† and Gm), thus makes up a postdistorter that leads to a
linear response between u (not available for manipulation) and ylin in Figure 3.9.
This method is illustrated in Example 3.4.
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S 1
Gm S† Gm

y
u

r̄ ū ylin

Figure 3.9: Hirschorn’s method used as postdistortion. The postinverse con-
sists of the three blocks 1/Gm, S† and Gm. Used in this way, the overall
behavior between u and ylin will be linear.

Example 3.4: Hirschorn’s postinverse
Consider the nonlinear system

ẋ1 = −x3
1 + x2 + w1

ẋ2 = −x2 + u + w2 (3.14)

y = x1

with process noise wi ∈ N (0, 0.05) and a multisine input. The nonlinear feedback

u = −3x5
1 + 3x2

1x2 + x2 + ũ

leads to a linear system ÿ = ũ. Now, linear theory can be applied and pole place-
ment has been used to get an overall system response from reference r to output
y corresponding to the one from

Gm(s) =
1

s2 + 5s + 6
. (3.15)

The output from the nonlinear system (3.14) is plotted in Figure 3.10 together
with the output from the desired dynamics Gm.

A preinverse S† has been constructed as in Figure 3.5. S† has been used as
a preinverse, as well as a postinverse for evaluation purposes. The results are
shown in Figure 3.11. Here, it is clear that the desired preinverse and postinverse
are not the same, and that S† cannot straight away be used as a postinverse. If
instead, the output y is filtered by the cascaded systems 1/Gm, S† and Gm, as in
Figure 3.8, the result improves considerably, as shown in Figure 3.11. The remain-
ing errors are primarily caused by the noise. For noise-free data, the preinverse
performs perfectly whereas the postinverse has some minor errors.
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Figure 3.10: The output from the nonlinear system (3.14) in gray and the
desired dynamics from Gm (3.15) in black.
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Figure 3.11: A Hirschorn postinverse applied to the system (3.14). The out-
put from Gm (3.15) is plotted in solid black and the output when S† was used
as a preinverse in dashed black. The dashed gray line shows the output from
S† used as a postdistorter. When the postdistortion is constructed according
to Figure 3.8, the result improves considerably. The solid gray line is the
output from a postinverse consisting of three blocks, 1/Gm, S† and Gm. Note
the scale difference from Figure 3.10.





4
A stochastic approach to system

inverses

In this chapter we will present what we mean by an inverse system, and a discus-
sion on optimal inverses and the true system. The inverse models of interest here
have the purpose of being used in cascade with the system itself, denoted S , as an
inverter, and a good inverse model in this setting would be one that reconstructs
the original input, see Figure 4.1. The inverse can be applied at the input, making
the inverse a preinverse R, or after the system as a postinverse T . The goal is to
obtain yR = p for a preinverse and yT = u for a postinverse.

4.1 Definitions and notation

Here, notation and some definitions will be introduced. The terms preinverse
and postinverse have already been used, but will be defined more clearly.

SR
p uR yR

S Tu y yT

Figure 4.1: The intended use of the estimated inverses. The top figure shows
a preinverse R, where the inverse is applied before the system S . The lower
shows a postinverse T , where the order of the system and the inverse is re-
versed. For a preinverse, the preinverted signal uR should make the output
yR the same as the reference p, yR = p. For a postinverse, the output yT
should be altered to be the same as the input u, yT = u.

39
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4.1.1 Signals

In this thesis both deterministic and stochastic signals will be used. When work-
ing with stochastic signals, stationarity is assumed, i.e., that the signals have the
same properties regardless of the absolute time. With some abuse of notation, the
use of the signals and whether they are deterministic or stochastic, will be given
by the context.

The general notation will be that an input is denoted u, an output y, measure-
ment noise v and process noise w. The reference signal will be denoted p. There
is a dependency on time t when necessary, that is, u(t) is the value of the input
signal u at time instant t.

The whole signal x is denoted

X =
(
x(t)

)∞
t=−∞ (4.1)

and past measurements, up to the current time t,

Xt =
(
x(t − k)

)∞
k=0
. (4.2)

Sometimes it will be assumed that the signal is equal to zero before time t = 0,

which reduces the limits above to Xt =
(
x(t − k)

)t
k=0

.

4.1.2 Systems

System S The system to be inverted is denoted S . This can be a linear system,
a nonlinear system, a static system, a dynamic system, or a combination thereof.
When there is a need to stress the kind of system, a subscript can be used. In this
way, Sf denotes a static nonlinearity f .

Preinverse R and Postinverse T An optimal preinverse is denoted R, where
the goal is to minimize the difference between the reference P and the predis-
torted output S(R(P )),

` (P − S(R(P ))) . (4.3)

For a postinverse the goal is to minimize the difference between the input U and
the postdistorted output T (S(U )),

` (U − T (S(U ))) , (4.4)

where T is an optimal postinverse. ` is an arbitrary non-negative, real-valued
function to be chosen by the user, and will be discussed below, in Section 4.2.
Different notations will be used for postinverse and preinverse to stress that they
might not be the same.

It can be helpful to remember the order by noting that R S T are in alpha-
betical order. Another memory rule is to see that pRe contains the letter R and
posT contains the letter T .
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Inverse S−1 For the true inverse system, when it exists, the conventional nota-
tion S−1 will be used. Then S(S−1(x)) = S−1(S(x)) = x.

Commutativity In the case where an exact inverse does not exist, the system and
its approximate inverse do not necessarily commute, so R , S−1, T , S−1 and
R , T in the general case.

Subscripts will be used when necessary to emphasize the original system, such
that Tf is the optimal postinverse of a static nonlinearity f . Capital letters denote
a model of the system or the inverse. That is, T is a particular model of a postin-
verse and T̂ is the actual estimated postinverse. In the same way, a postinverse of
a static nonlinearity f can be denoted Tf , with the estimated model T̂f .

4.1.3 Noise

In this thesis, cases with and without noise will be considered. The noise-free
case is interesting since it answers questions like What is the best possible result
we could obtain? and Is there a difference in performance between different
methods even under perfect conditions? However, all applications in the real
world are subject to some levels of noise, disturbances and uncertainties.

It is often assumed that noise corrupts the outcome of a system, such that not
all behavior depends solely on the known input signal and the often unknown
system. It might be possible to say something about the characteristics of the
noise, such as the frequency content or where it enters the system, but it cannot
be predicted exactly.

The noise is sometimes assumed to be additive, (Gaussian) noise that corrupts
the output directly, and is then called measurement noise. It can also be assumed
to enter the system earlier and it is then called process noise. If the noise enters
along with the input, it is called input noise. For a linear system, these noise
sources are interchangeable, which means that they can be pulled through the
system and be assumed to enter at any other point (since linear systems are addi-
tive, (2.1)), perhaps with a different coloring. For a nonlinear system, this is not
the case.

In Ljung [1999], it is shown how noise affects the estimation, but there the
noise is assumed to act on the output. Noise on the input can be handled by, for
example, input error (ie) methods, where the input is assumed to be corrupted by
additive noise [Åström and Eykhoff, 1971]. This assumes that the noise signals
are independent. In this thesis, when the goal is to use the inverse, the role of the
input and the output in some sense change, and the inverse can be seen as a case
with a perfectly known output u and an input y corrupted by noise. However, it
is important to remember that the noise and y are dependent in this case.

To put the noise in a more formal setting, the following definition will be
used. White noise consists of independent, identically distributed (i.i.d.) vari-
ables. Independency implies that two samples at two different time points are
not correlated. Identically distributed means that the distribution of the noise
does not change over time.
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When there is no noise present, the system is described by S(U ), and with
noise present by S(U,W ). Here, each element in W can be a vector. This is the
most general formulation where the noise can enter anywhere. For an input error
formulation, the output would be described by Y = S(U + W ) and for output
error, the output is described by Y = S(U ) + W .

Presence of noise in applications

In real applications, the noise levels could vary and be of considerable size. In
mobile phone base stations and other costly parts of the communication chain, it
could be a valid assumption that the noise can be seen as negligible. However, in
cheaper parts such as mass-produced mobile phones this assumption is probably
not true.

Sensors come in all shapes, sizes and price ranges, and the quality of the sen-
sors (and the noise levels) vary. Also in loudspeaker linearization, the price can
be assumed to be closely connected to the noise levels. The high-end loudspeak-
ers use more expensive components, whereas the mass-produced loudspeakers
used in tablets and smartphones use cheaper components.

4.2 The optimal preinverse and postinverse

To be able to say something is optimal, the goal needs to be determined. One
common measure is the (nonlinear) mean square error (mse) estimator,

ĝ = arg min
g

E
[
(y(t) − g(Ut))

2
]

(4.5)

which can be used to find the function that minimizes the difference between
the output and a filtered input in the forward case. The function g that is the
argument here is a function that takes Ut as input and gives an estimate of y(t)
as output. Often, the function g is of a set model structure and the minimization
is done over the parameters θ in the given structure, but it could also contain
different nonlinearities or other structures. The function g can be defined in
many ways, which will be discussed later in the thesis.

The goal is to find the mse (4.5), but this is a theoretical measure using ex-
pected values and infinite series of measurements and cannot be applied directly
to measured data. Instead, the corresponding quadratic cost function that ap-
proximates mse, or a finite data mse, will be used

M ′ =
1
N

N∑

t=1

(y(t) − g(u(t)))2 . (4.6)

In this case, the function `( · ) in (4.3) and (4.4) is defined by

`(X) =
1
N

N∑

t=1

x(t)2.
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There are of course a number of possible measures to evaluate the models and
inverses. Depending on the choice, the results will be different, and it is relevant
to discuss what the purpose of the inverse should be. To minimize the total er-
ror, the mean square error (4.6) could be used (depending on how the error is
defined). The mse is the L2-norm, but other norms are possible choices, such as
the L1-norm. Another is to minimize the maximum error such that all errors are
made fairly small, but there is no incentive to minimize the individual errors. The
min-max-optimization is one such method which minimizes the largest (maxi-
mal) error. The choice of minimization criterion is up to the user. However, this
should reflect the purpose of the inverse to be used.

In this section, there is noise corrupting the output, that is, the output is de-
scribed by Y = S(U,W ). The models considered are simulation models, meaning
that the output is based solely on the input at past and present time instances.

4.2.1 Optimal forward model

In forward (standard) model estimation and system identification, the goal is to
minimize the difference between the measured output and the modeled output
as in (4.6). For forward models, the calculations are well-known, but they are
presented here for the sake of completeness.

In the standard setup, the input u to the system is completely known, the
output y from the system is measured, and the noise w is unknown but can be
seen through the effects it has on the output. The goal is to estimate a model of
the system.

In the forward modeling, the goal is to find the minimum mean-square error
estimator (4.5). Let the conditional expected value E [y(t)|Ut] be denoted

g0(Ut) = E [y(t)|Ut] , (4.7)

and consider also an arbitrary estimator g(Ut). The goal is to find the minimizing
argument

ĝ = arg min
g

E
[
(y(t) − g(Ut))

2
]
. (4.8)

Then

E
[
(y(t) − g(Ut))

2
]

= E
[(

(y(t) − g0(Ut)) + (g0(Ut) − g(Ut))
)2

]

= E
[
(y(t) − g0(Ut))

2
]

+ 2E
[
(y(t) − g0(Ut))(g0(Ut) − g(Ut))

]

+ E
[
(g0(Ut) − g(Ut))

2
]

= E
[
(y(t) − g0(Ut))

2
]

+ E
[
(g0(Ut) − g(Ut))

2
]

≥ E
[
(y(t) − g0(Ut))

2
]

(4.9)

using

E [(y(t) − g0(Ut))(g0(Ut) − g(Ut))] = EU [E [(y(t) − g0(Ut))(g0(Ut) − g(Ut))] |Ut]
= EU [(g0(Ut) − g(Ut))E [y(t) − g0(Ut)|Ut]]
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and
E [y(t) − g0(Ut)|Ut] = E [y(t)|Ut] − g0(Ut) = 0.

The inequality in (4.9) comes from the fact that the first term on the row above
does not depend on the minimizing argument g, and the best that can be done
with the second term is to set R = g(U ) = g0(U ).

4.2.2 Optimal postinverse

For a postinverse, the goal is instead to look at what can be done to the output of
the system, to recover the original input. The input to and the noisy output from
the system are unchanged by a postinverse.

Now, to find the optimal postinverse, the mse is defined by

f̂ = arg min
f

E
[
(u(t) − f (Yt))

2
]

(4.10)

which can be used to find the function that minimizes the difference between the
postinverted output and the input. The corresponding finite-data mean square
error mse is

M =
1
N

N∑

t=1

(u(t) − yT (t))2 . (4.11)

Let the conditional expected value E [u(t)|Yt] be denoted

f0(Y ) = E [u(t)|Yt] , (4.12)

and consider an arbitrary estimator f (Yt).
Ideally, a postinverse should recover the original input to the system. This

will of course not be the case since there is noise present, but it is interesting to
see what can be achieved. It turns out that f0 is the minimum mean-square error
estimator since

E
[
(u(t) − f (Yt))

2
]

= E
[(

(u(t) − f0(Yt)) + (f0(Yt) − f (Yt))
)2

]

= E
[
(u(t) − f0(Yt))

2
]

+ 2E
[
(u(t) − f0(Yt))(f0(Yt) − f (Yt))

]
+

E
[
(f0(Yt) − f (Yt))

2
]

= E
[
(u(t) − f0(Yt))

2
]

+ E
[
(f0(Yt) − f (Yt))

2
]

≥ E
[
(u(t) − f0(Yt))

2
]

(4.13)

using

E [(u(t) − f0(Yt))(f0(Yt) − f (Yt))] = EY [E [(u(t) − f0(Yt))(f0(Yt) − f (Yt))] |Yt]
= EY [(f0(Yt) − f (Yt))E [u(t) − f0(Yt)|Yt]]

and
E [u(t) − f0(Yt)|Yt] = E [u(t)|Yt] − f0(Yt) = 0.

In a similar way as for the forward case, the best postinverse is T = f0(Y ) =
E [u(t)|Yt].
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4.2.3 Optimal preinverse

For the optimal preinverse, the input signal should be adapted in such a way that
the output from the system will be as similar to the original input as possible.
This is different compared to the earlier cases, since the actual input to the system
will be changed.

To find the optimal preinverse, the goal is to minimize the difference between
the reference p and the preinverted output

YR = S(R(P ), W ), (4.14)

that is

R = arg min
R

E
[
(p(t) − yR(t))2

]
.

For the optimal forward model and the optimal postinverse, the measured
data Ut and Yt (corrupted by noise) contain all the information needed. Or rather,
the data and their stochastic properties contain the information needed. In those
two cases, the goal is to find the signal or system by determining what is inter-
esting and what is noise, and how to use the degrees of freedom in the model to
obtain the best performance.

For the optimal preinverse, the setup is a very different. Here, the input signal
UR is determined by the user, and the goal is to change this signal, which will
then pass through the system (with noiseW ) with the overall goal that the output
from the system should be similar to the original input.

Hence, the data with corresponding properties are not enough, since the prein-
verse could change the properties of the predistorted input significantly. It is
therefore not sure that the experiments have captured the desired properties of
the system with a different input signal. In general in system identification, a
model is only valid for inputs with the same properties as the one used for the
estimation, since different input signals could excite different parts of the system.
Since the original input and the predistorted input could have significantly dif-
ferent properties, the two inputs could excite different properties in the system,
and an inverse based on measurements using one input signal is not necessarily
useful for the other. The same reasoning is valid for the inverse – an inverse esti-
mated for one input signal could perform badly when used with a different input
signal.

The concepts of domain and range of a signal is also coupled to this. For a
forward model the domain is the same and the range of the model should be the
same as for the system. For a postinverse, the goal is to reconstruct the input, and
the domain of the inverse is the range of the system, and vice versa. However, a
preinverse has the same domain as the system, but the range of the inverse could
be outside of the domain of the system. Imagine a system that makes the output
much smaller in amplitude; then the preinverse should amplify this signal, and
there are no guarantees that this new input is within the domain of the system.
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4.3 Is the exact inverse best?

Here, some examples to illustrate that the answer is No will be presented. The
mean square error (4.11) is used as a criterion.

4.3.1 Difference between preinverse and postinverse

The following two examples illustrate that the best preinverse and the best postin-
verse are not necessarily the same.

Example 4.1: A signal in noise
Consider a system with process noise and no measurement noise. This system is
described by

y = f (u + w)

where u is the input and w is the noise. The inverse f −1( · ) exists and f −1(f (x)) =
f (f −1(x)) = x. This means that the true inverse applied to a noisy output is

f −1(f (u + w)) = u + w.

That is, an exact postinverse would recreate the sum of the input and the process
noise. However, the goal is not to recreate this sum but only the input u, so using
another postinverse Tf here seems reasonable if that inverse model is better at
predicting the original input u.

Using a specific function, with f (u) = u, the exact inverse is f −1(y) = y. If
the input and noise are band-limited and in separate frequency bands (for exam-
ple a slowly varying input signal and a high-frequent noise signal), the optimal
postinverse would be an ideal (low-pass) filter such that the noise is suppressed
while the original input passes unchanged and the exact input can be regained.
Here, the exact inverse f −1 will not affect the output at all, but yT = y = u + w.
The same reasoning works with other characteristics of the input signal and the
noise, as long as they can be separated. However, a preinverse in this case will
act on the input signal (with no noise present) so using this optimal postfilter as
a prefilter will have no effect on the overall behavior of the system.

In the example above, it is clear that the preinverse and postinverse cannot be
interchanged without further consideration. In the example below, some theoret-
ical results are presented to support this conclusion.

Example 4.2: Analytical calculations of a cubic function
Consider a system that is described by a cubic function

f (u) = bu3

where u is the input and y = f (u) is the output. There is process noise w present,
that enters along with the input

y = b(u + w)3. (4.15)
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The input signal u and the noise signal w are independent white Gaussian noises
with zero mean and variances σ2

u and σ2
w, respectively.

A model that is the inverse of the true system will be used as a preinverse,
to evaluate what can be achieved if the true structure of the system is known.
The structure of the inverse is then a cubic root with a scaling parameter. For a
postinverse (with subscript T ), the input estimate is

yT = θT 3
√
y

intended to be applied at the output of the system. For a preinverse (with sub-
script R) the predistorted signal is

uR = θR
3
√
u

and the corresponding predistorted output is

yR = b(uR + w)3.

When the cubic root 3
√

· is used, the real branch of the root is assumed.
The cost function is the mean square error (4.11), see also Chapter 2, where

the goal is to minimize the difference between the original input u and the prein-
verted or postinverted output, respectively. The inverted output is yp with yp =
yT or yp = yR depending on the case evaluated, and

θ̂ = arg min
θ

E[(yp − u)2]. (4.16)

The true inverse is u0 = θ0
3
√
s with s = {u, y} for a preinverse and postinverse,

respectively, and

θ0 =
1
b1/3

. (4.17)

To find the minimizing argument of (4.16), take the derivative and set it to
zero

∂
∂θ

E[(yp(θ) − u)2] = 0, (4.18)

where yp depends on θ. Since linear functions commute, it is possible to change
the order of the expected value and the differentiation, and

θT =
1
b1/3

σ2
u

σ2
u + σ2

w
= θ0

σ2
u

σ2
u + σ2

w

is the optimal value of θ for a postinverse. The optimal postinverse takes the
noise variance into account, so only knowing the true value of b does not really
help in constructing the optimal inverse. For the noise-free case (σ2

w = 0), the
true inverse is optimal, and if the noise variances are known the optimal inverse
model can be obtained.

The preinverse leads to a more complicated expression, and the equation to
be solved is

θ5
R6b2σ2

u + θ3
R60b2σ2

wE[u4/3] − θ2
R6bσ2

u + θR90b2σ4
wE[u2/3] − 6bσ2

wE[u4/3] = 0.
(4.19)
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This is not a trivial equation to solve, but it is easy to check if the true inverse is
one solution by inserting θ0 in the equation. Using (4.17) in (4.19) leads to

∂
∂θ

E[(yR − u)2|θ = θ0] = 54bσ2
wE[u4/3] + 90b5/3σ4

wE[u2/3] > 0

where the last step comes from

E[u4/3] > 0 and E[u2/3] > 0,

and implicitly that b , 0 and σ2
w , 0. That E[u4/3] > 0 and E[u2/3] > 0 hold is

clear when it is considered that the real branch u1/3 is well defined along the real
axis, and the expected value of a square of this stochastic variable ((u1/3)2) will
always be positive. The same holds for (u1/3)4.

For the noise-free case, where σ2
w = 0, the calculations are simplified and

θR =
1
b1/3

= θ0,

just like for the postinverse.
This example shows that even in a simple case like the cubic nonlinearity, the

true inverse is not the optimal inverse neither for a preinverse nor a postinverse
when there is noise present. For the postinverse, knowing the true forward sys-
tem (or inverse system) as well as the noise variances will lead to the optimal
inverse, by using a scale factor in this case. For a preinverse the connection be-
tween the true inverse and the optimal one is not as straightforward.

In the examples above it can clearly be seen that the optimal preinverse and
postinverse are not necessarily the same, and that the optimal inverse could be
something else than the true inverse of the system.

4.3.2 Choice of preinverse structures

In the following two examples the system itself is a static nonlinearity, and two
different types of preinverses will be applied.

Example 4.3: Piecewise linear system
In this example, look at a piecewise linear system where the slope is 1 between

[−a a] and k outside, such that there is a jump in the derivative at a and −a,
respectively. The function itself is continuous. Here, a = 1 and k = 10. The
input u is uniform in [−a a] = [−1 1] and the process noise w is uniform in
[−a/10 a/10] = [−0.1 0.1], see Figure 4.2 (a). The goal is to apply a preinverse.

If the true inverse is used as a preinverse, the input will not be affected at all
since the input is within the linear range, and the precompensated output will
be the same as the original output. If some other inverse is used the nonlinear
behavior can be reduced, for example by simply saturating the input signal at
0.9a, such that when it enters the nonlinearity with the added process noise, it
is still within the linear region, see Figure 4.2(b). This will of course cause some



4.3 Is the exact inverse best? 49

−2 −1 0 1 2
−10

−5

0

5

10

(a)

−1 −0.5 0 0.5 1

−2

−1

0

1

2

(b)

Figure 4.2: (a) The nonlinearity in Example 4.3. The data distributions are
also plotted, the input u (green) at 0, the noise w (black) at 1 and the noisy
input u + w (red) at −1. (b) The nonlinearity (blue solid line) and the out-
put/predistorted output using the true preinverse (red dots). These will be
the same since the true inverse does not affect the signal. The output using a
saturating predistortion is plotted in light blue.

Table 4.1: Squared errors of the piece-wise linear example in Example 4.3.

Preinverse
y True Saturation

7.97 7.97 3.77

distortion, but it will be smaller than in the original output. Other smoother
functions that are not as harsh as a saturation, such as an arctangent function,
could also be used that reduce the influence of the noise. This will not be further
investigated here. The squared errors

∑N
t=1 (yR(t) − p(t))2 are shown in Table 4.1

for the output, the true preinverse and a saturating preinverse.

The example above shows that a nonlinear function that is not the inverse to
the true system can help improve the performance, when used as a preinverse. In
the example below, a dynamical system is instead used in addition to a nonlinear-
ity to improve the preinversion behavior of a purely nonlinear system.
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Figure 4.3: The tangent function y = f (u, w) = tan(u + w). The solid line
shows the tangent function without process noise (y = f (u) = tan(u)). The
plus sign and the circles show the effect of process noise w = 0.1 for two
different input values. The plus signs are the values without noise and the
circles are with process noise. It is clear that the same noise level will have
different effects depending on the input amplitude.

Example 4.4: A tangent function
In this example, the nonlinear system is a tangent function with input noise,
y = f (u, w) = tan(u + w). The derivative of a tangent function is small close to
zero and grows to infinity close to the edges of the function domain ]−π2 , π2 [ . For
an input that is close to the edge, adding a bit of noise can have a big effect on the
function output, see Figure 4.3.

Consider an input that is a multisine with an overshoot, see Figure 4.4(a), with
umax = 1.18. There is process noise w present, with w uniform, w ∈ [−0.39, 0.39],
such that u + w ∈ ]−π2 , π2 [ and the system is invertible. The input to and the
output from the system are shown in 4.4(b). The true inverse f −1 to the nonlinear
function f is an arctangent function.

This true inverse R0 = f −1 will be compared to an inverse RH where the non-
linearity is combined with a linear filter in a Hammerstein structure. In a Ham-
merstein structure, the static nonlinearity is followed by a linear dynamic block,
see Figure 4.8 in Section 4.4 where block-oriented systems will be further dis-
cussed. The nonlinearity is the true inverse of the system (i.e., the same as the
inverse R0) and the linear dynamics is G(z) = 0.04603

z−0.954 . The two blocks in the Ham-
merstein inverse RH were also swapped to create a Wiener structure preinverse
RW. The sample time is 0.1 seconds and the number of data points N = 10 000.

The results are shown in Figures 4.5 and 4.6. Here only the Hammerstein
inverse RH is shown, which significantly reduces the spikes in the predistorted
output signal. For the sake of comparison, the noise realization is the same for
the three predistorters in the evaluation. The mse values (4.11) of the three pre-
distorters R0, RH and RW and the original output y are presented in Table 4.2
and a box plot of Monte Carlo simulations in Figure 4.7.
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Figure 4.4: (a) The input to the tangent function nonlinearity. (b) The input
u (green) and the output y (blue) signals.
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Figure 4.5: (a) The pink line shows the predistorted output when the true in-
verse R0 is applied, and the black line when a different inverse RH is applied.
The green line is the original input. As can be seen, using the true inverse R0
results in larger spikes than the alternative Hammerstein inverse RH. How-
ever, since the noise is significant, both predistorted outputs are rather noisy.
(b) A zoomed in copy of (a) to better show the difference between the signals.

Table 4.2: mse (4.11) of the tangent example in Example 4.4.

y True Hammerstein Wiener
R0 RH RW

2.6707 0.1429 0.1273 0.1359
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Figure 4.6: The pink line shows the predistorted output error when the true
inverse R0 is applied, and the black line when a Hammerstein structured
inverse RH is applied. That is, this plot shows the deviations from the green
line in Figure 4.5.
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Figure 4.7: A boxplot of themse of 40 Monte Carlo simulations of the system
in Example 4.4. The left box represents the true inverse R0, the middle one
the Hammerstein inverse RH and the right box is the Wiener inverse RW.
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H(q)f (u)
u x y

f (x)H(q)
u x y

Figure 4.8: Block-oriented systems consist of linear time-invariant dynamic
systems H(q) and static nonlinearities f ( · ). The top figure shows a Hammer-
stein system, where the nonlinearity is at the input, and the lower a Wiener
system with a nonlinearity at the output.

It is clear that using a predistorter reduces the distortion and the mse but
also that the structure of the predistorter affects the results. The Hammerstein in-
verse RH performs best, followed by the Wiener inverse RW . Both block-oriented
inverses outperform the true inverse R0. Hence, the true inverse, a pure nonlin-
earity, is not the best structure in this case, since it is beneficial to add a dynamic
filter to the preinverse.

The examples above show that different approaches can be used to improve
the performance of a preinverse or a postinverse, and that the optimal inverse is
not necessarily the true inverse of the system. A common denominator in these
examples is that there is noise present. Different structures (nonlinearities, dy-
namics or a combination thereof) can be added to, or used instead of, the true
inverse system to improve the performance.

These examples do not tell us how to obtain a better inverse, but they do
illustrate that it can be beneficial to explore different structures of the inverse,
even if the structure of the system itself is known.

4.4 A background to linear approximations of
block-oriented systems

Nonlinear systems can be challenging to model but one common way is to use
block-oriented models. These are built-up by lti systems and static nonlinear-
ities. This is a reasonable assumption when there is, for example, a nonlinear
actuator due to saturation in an otherwise linear control application. In this sec-
tion, some background on linear approximations of block-oriented systems is pre-
sented which will be used in the derivation of theory presented in Section 5.3.2.

A Hammerstein system consists of a static nonlinear system followed by a
linear dynamic system and in a Wiener system, the static nonlinearity is at the
output of the linear dynamics, see Figure 4.8. The combination of the two, with a
static nonlinearity at both sides of the linear dynamics, is called a Hammerstein-
Wiener system. One way to broaden the use of the Hammerstein model is to use a
more general parallel Hammerstein model, with multiple Hammerstein models
in parallel branches [Schoukens et al., 2011].
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4.4.1 Linear models of nonlinear systems

It can often be practical to work with a linear model instead of a nonlinear one.
This can be done by either linearizing a nonlinear model via differentiation, or by
fitting a linear model directly to measured input-output data. Here, the approach
of finding a linear second-order equivalent that in some sense captures part of
the behavior of the nonlinear system will be used. This can be useful for example
in the pa predistortion case where the predistorter should be implemented in
hardware. A reduction in complexity is reflected in a smaller chip area and a
lower power consumption, so if a linear model can perform well, this is beneficial.

The concept of constructing linear models of nonlinear systems, often by us-
ing an lti system with certain required properties, such as stability and causality,
has been looked at before. The term lti second order equivalent (lti-soe) here
denotes the optimal stable and causal lti system that approximates a nonlin-
ear system in a mean-square error sense (4.6). The term second order equiva-
lence refers to the property that the true, nonlinear system and the lti-soe will
be equivalent if second order properties of inputs, outputs and model residuals
are considered [Enqvist, 2005, Enqvist and Ljung, 2005, Ljung, 2001]. Similar
concepts as the lti-soe are used under different names, such as the noncausal
Wiener filter [Gardner, 1990], related dynamic system and best linear approxi-
mation (bla) [Pintelon and Schoukens, 2012]. When the bla is stable and causal,
it equals the lti-soe [Pintelon and Schoukens, 2012]. The concepts of related
dynamic systems and bla, and the estimation in the frequency domain are dis-
cussed in Schoukens et al. [1998] and Schoukens et al. [2005]. A deterministic
approach is investigated in Mäkilä and Partington [2003], where differentiation
is used to obtain an lti approximation.

It is well-known that the stable model G0 that minimizes the mean-square
error,

E
[
(y(t) − G(q)u(t))2

]
, (4.20)

can be written

G0 =
Φyu(z)

Φu(z)
, (4.21)

where Φ(z) is the z-spectrum of u(t), see for example Gardner [1990]. The (power)
spectrum is defined as

Φu(ω) =
∞∑

τ=−∞
E [u(t)u(t − τ)] e−iτω

and the cross spectrum is defined as

Φyu(ω) =
∞∑

τ=−∞
E [y(t)u(t − τ)] e−iτω.

The model (4.21) is by construction stable, but not necessarily causal. When
the model is required to be stable and causal and of output error (oe) struc-
ture [Ljung, 1999], it is called an output error linear time-invariant second or-
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der equivalent (oe-lti-soe) and sometimes this model coincides with (4.21) [En-
qvist and Ljung, 2005, Corollary 7]. Additive output noise, y(t) = G(q)u(t) + e(t)
is assumed in the oe structure. An introduction and overview of optimal lin-
ear models of nonlinear systems can be found in Enqvist [2005] or Pintelon and
Schoukens [2012].

The models are defined by minimizing the mean-square error. A model of the
forward behavior can be found by minimizing

E
[
(y(t) − Gf (q, θ)u(t))2

]
, (4.22)

and the stable model that minimizes this will be denoted G0,f and called a non-
causal lti-soe. Here only cases where the inverted estimated forward model

G0,f i(q, θ) ∆= 1/G0,f (q, θ) (4.23)

is also stable will be looked at.
Here, the investigation concerns how the estimation of inverse systems can be

done when the goal is to construct a linear approximation of a nonlinear system.
In a similar way as the optimal forward model was defined in (4.22), an optimal
inverse model is defined according to the following definition.

Definition 4.1. The term noncausal inverse lti-soe (i-lti-soe) will be used for
models obtained by minimizing the mse criterion

E
[
(u(t) − Gi(q, θ)y(t))2

]
, (4.24)

and this stable inverse model will be denoted G0,i .

It follows from (4.21) that the optimal model that minimizes (4.24) is

G0,i =
Φuy(z)

Φy(z)
, (4.25)

where the input u(t) and the output y(t) are switched.
Hence, the notation is as follows. G0,f is used for the noncausal lti-soe, G0,f i

for the inverted G0,f , such as it will be used here, and G0,i is used for the non-
causal i-lti-soe (4.25). For notational convenience, the arguments of the models
will sometimes be omitted.

4.4.2 Application to experimental data

The discussion above concerns theoretical definitions of the optimal models,
which are marked by a subscript 0. However, when measured input-output data
are available, the ideas can be used to estimate models. A model structure then
has to be chosen for the models to be estimated. To make comparisons fair, the in-
verse of the forward model is restricted to have the same structure as the inverse
model, such that

Gf i(q, θf ) = Gi(q, θf ) (4.26)
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for a specified model structure, where θf are the parameter values that minimize
the forward mse (4.22) in a given model structure. The inverted estimated op-
timal forward model Gf i thus has the same structure as the estimated optimal
inverse model Gi . Note also that there are no assumptions on the invertibility
of the nonlinearity, since a stable linear approximation with a stable inverse is
estimated.

The estimated inverses Gf i and Gi can be applied as preinverse or postinverse.
They can be applied at the output as

yf T (t) = Gf i(q, θf ) y(t) or yiT (t) = Gi(q, θi) y(t). (4.27)

The inverses can also be used as preinverses,

uf R(t) = Gf i(q, θf ) u(t) or uiR(t) = Gi(q, θi) u(t) (4.28)

and then the signals uf R(t) or uiR(t) are passed through the nonlinear system. In
general, this is an application-dependent choice that the user cannot affect. For
example, in the sensor calibration application, the user does not have access to
the input side, and only a postinverse is possible to use.

Another point that is important to discuss for the estimation of inverse sys-
tems is the scaling of the signals. The amplitude of the output of a precompen-
sated versus a postcompensated system can be considerably different. To reduce
the effects of the signal amplitudes, normalization can be used.

In the next chapter, estimation methods for inverse models will be discussed.
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Estimation of a system inverse

In Chapter 4, what is meant by a preinverse and a postinverse was discussed,
and what the optimal inverse is. However, nothing was said about how the in-
verses should be obtained. One way is to use the method of system identification,
described in Chapter 2, where a model is based on measured data.

The estimation of system inverses is rather common, but there has not been
much theoretical work on which approach is to be preferred in practical applica-
tions. In Paaso and Mämmelä [2008] and Abd-Elrady et al. [2008] two approaches
have been evaluated on data. The approach that leads to better results in one
paper leads to worse results in the other, leading to the conclusion that there
might not be a method that is always preferred, and that further investigations
are needed. However, in pa predistortion it seems to be more common to choose
an estimation approach and evaluate the results, rather than to evaluate the dif-
ferent approaches themselves. This chapter contains some results regarding the
differences between the approaches, and the goal is to improve the knowledge of
the estimation of inverse systems.

In estimation, it is usually beneficial to estimate the system in the setting
in which it should be used, concerning for example the choice of input and
the experimental conditions [Ljung, 1999, Gevers and Ljung, 1986, Pintelon and
Schoukens, 2012]. It is important to choose the input signal to capture the sig-
nificant characteristics of the system. Another important topic in system iden-
tification is the choice of loss function, V in (2.5b). It should reflect the goal
of the identification, and, depending on how it is chosen, different properties of
the estimated model will be emphasized. Here, the goal is to make use of these
degrees of freedom and the flexibility of the model to obtain an accurate input re-
construction. Parts of the contents are also presented in Jung and Enqvist [2013,
2015].

57
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Table 5.1: Inputs and outputs to the identification procedure, using the dif-
ferent methods.

Method Input Output Requires Model In pa literature

A u y S
B1 p p Ŝ R dla
B2 p p Experiments R
C y u T ila

5.1 Classification of estimation methods

In system identification, the goal is to achieve a model as good as possible to
explain the behavior of y by a prediction or simulation ŷ(t|θ), which depends on
the estimated model parameters θ and the input u. This is done using measured
data, usually input data u(t) and output data y(t), see also Chapter 2.

The inverse model is estimated with the purpose of using it in series with the
system itself, as an inverter, see Figure 4.1. In this setup, the goal is to minimize
the difference between the input u and the output from the cascaded systems, yR
or yT . A good model in this setting would be one that, when used in series with
the original system, reconstructs the original input.

5.1.1 Method overview

There are three main approaches to the estimation of an inverse of a system S ,
described in more detail below.

Method A In a first step, the forward model Ŝ is estimated in the standard
way, with input data u and output data y. Step two is to invert the resulting
model to obtain an approximate inverse Ŝ−1.

Method B The inverse model is estimated as a preinverse R, in series with a
model of the system Ŝ (Method B1) or the system S itself (Method B2).
For Method B1, the goal is to minimize the difference between the input
u and the simulated, preinverted output yR. In Method B2 the difference
between the input u and the measured output yR is minimized iteratively
with the system S in the loop.

Method C The identification is done in one step, by identifying the inverse
directly, using input data y and output data u. This leads to a postinverse
T .

The inputs and outputs to the different approaches are summarized in Table 5.1.

METHOD A The identification method in the first approach, Method A, is the
standard one, as described in, for example, Pintelon and Schoukens [2012] and
Ljung [1999], and the inversion is discussed in Åström and Hägglund [2005] in
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the feedforward control application. One way to construct an inverse based on a
forward model is to use Hirschorn’s method, presented in Section 3.3.2. The use
of feedforward control based on an inverse model of the system in the presence of
plant uncertainty is discussed in Devasia [2002]. A good thing with MethodA is
that the identification uses standard methods. On the other hand, an inversion is
required, and as mentioned before the model should be estimated in the setting
in which it will be used which is not fulfilled here. The inverse can be used as
either a preinverse or a postinverse.

METHOD B This method is developed for preinversion. An inverse estimated
this way can of course be used as a postinverse, but this does not seem like a
straightforward way. For Method B1, the quality of the inverse and the forward
models are closely coupled, and multiple choices are available. Since it is often
preferable to obtain a rather simple inverse model (for example in the predis-
torter case), this restriction can also be applied to the forward model, so that the
same model structure is used for the forward and the inverse models. Another
approach is to use a more complex forward model, making sure that as much as
possible of the behavior of the system is captured, and then let the inverse model
be less complex. The choice in the end comes down to the implementation – if the
forward model has to be implemented, also this model needs to have a limited
complexity.

Since the system output is obtained through simulations, the estimation of
the inverse model is done with no noise present. This requires two, possibly non-
convex, minimizations with the risk of obtaining local minima and the quality of
the inverse clearly depends on the quality of the forward model. The preinverse
problem is also harder numerically, since the signal will pass through the system.
Even in the case where the both Ŝ and R can be described by a linear regression,
the cascaded system will have a more complicated structure that will make the
optimization harder.

An alternative method where the inverse model is still estimated in a prein-
verse setting is to use the system itself in an iterative method. This method is
denoted Method B2. The benefit of estimating the preinverse in series with the
real system is that this is the actual setup in which it will be used. Also, it is possi-
ble to take the noise into consideration in a suitable way, which can improve the
performance. The drawback is of course that multiple measurements are needed,
as well as access to the physical device to perform experiments.

METHOD C Method C determines a postinverse, which can also be used as
a preinverse. For Method C to be applicable for preinversion, it is assumed
that a preinverse and a postinverse are interchangeable (commutativity), see also
Section 3.2.2. An advantage with this method is that the model is estimated as
an inverse, which is how it will be used. A drawback is that the measured out-
put is used as input, which risks causing a biased estimate [Amin et al., 2012].
Method C can be an easier approach than Method A or Method B, since the
estimation is done in one step. This makes it easy to try out different model
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structures and model orders, which is often needed to find a good model. De-
pending on the model structure, it can also be easier to find a convex formulation
compared to Method B which is a nested problem. Also, there is no need to
construct a model for the forward system that will be discarded later.

5.1.2 Predistortion application of the methods

In the second part of this thesis, the goal is to estimate a power amplifier predis-
torter. This section provides a discussion on how the different methods are used
in predistortion. The boundary between the different methods is not always clear.
For example, Method B1 could be seen as belonging to Method A, where the
second estimation step is a numerical inversion. However, since it is a method
designated to design a preinverse, we have separated them into different meth-
ods.

The two most common approaches in dpd applications are Methods B1 and
C. In this application, Method B1 is also called direct learning architecture
(dla) [Fritzin et al., 2011a, Abd-Elrady et al., 2008, Paaso and Mämmelä, 2008].
Method C is also called indirect learning architecture (ila), or the postdistor-
tion and translation method [Gilabert et al., 2005]. It is commonly used in power
amplifier predistortion applications and has been evaluated in for example Abd-
Elrady et al. [2008] and Paaso and Mämmelä [2008].

In power amplifier predistortion applications, Method C is more commonly
used than Method B1, as investigated in Paaso and Mämmelä [2008]. This
could be because Method C has a less complex structure and faster conver-
gence [Chani-Cahuana et al., 2016] and this is considered a bigger benefit than
the drawback that there is a risk of bias. In Paaso and Mämmelä [2008], com-
parisons indicate that Method B1 performs better, whereas Method C seems
to perform slightly better in Abd-Elrady et al. [2008], both evaluated in simu-
lations. Ghannouchi and Hammi [2009] state that the accuracies of pre- and
postcompensation are equivalent, which we will show is not always the case.

Hussein et al. [2012] compares predistortion results of Methods B1 and C
for different noise settings, and their results show that the Method C is better
than Method B1 in the noise-free case, but the opposite is true when there is
noise present (that is, Method B1 outperforms Method C). The results are eval-
uated in a simulation study on a power amplifier. The errors in the pa modeling
in Method B1 are used as an explanation that Method C performs better in
the noise-free case. The deterioration of Method C in the presence of noise is
attributed to the least-squares solution which is sensitive to noise entering in a
non-standard way. The authors also stress that it is important both for both meth-
ods B1 and C to use an iterative approach with repeated measurements, since
the predistortion changes the input to the pa and broadens the bandwidth of the
signal. This is done by performing a reidentification of the pa after a new predis-
torter is produced, until the pa-dpd system converges. This iterative Method B1
is different from Method B2, which does not use a model of the pa.
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In this thesis, we draw the same conclusion that it is important to reiterate
the modeling approach using multiple measurements, but with a different rea-
soning. The errors from the pamodeling in Method B1 can be avoided by using
Method B2 where the true system is used instead of a model. In Chapter 4 it
was illustrated that using the noise in the construction of an inverse can improve
the performance. Of course, the noise can also degrade the quality, and needs to
be handled correctly. By using Method B2, both these points can be taken into
account.

A modification to Method C, called model-based indirect learning architec-
ture (mila), is presented in Landin et al. [2014]. A model is created for the
amplifier and a simulated output is used in the Method C instead of a mea-
surement of the output, to reduce the risk of bias in the parameters due to the
noise in the wrong place in the Method C setup. However, this also entails a
second optimization and the quality of the predistorted output will depend on
the structure and the quality of the pa model, just like in Method B1. In this
classification, mila could be interpreted as a Method A. The only noisy estima-
tion performed is done on the forward system, and the second step of using the
model to construct an inverse could be seen as a numerical inversion.

One of the problems of inverse system identification is that the noise enters
the estimation in a nonstandard way. It is quite common to want to minimize the
influence of the noise, such as in the Method B1 approach (where the system is
replaced with a noise-free model) or in the Method C modification. However,
as was illustrated in Chapter 4, it can be beneficial to include the noise in the
inverse estimation.

The ilc-dpd is a rather new approach, presented in Chani-Cahuana et al.
[2016], Schoukens et al. [2017], where the authors construct the desired input
signal to the power amplifier using iterative learning control (ilc). ilc is an iter-
ative method that can be used for repetitive tasks, where the input signal uk to
the system is changed between the iterations, see Section 3.1.2. Since the same
task is performed over and over again, the output from the last iteration gives
information about the performance, and instead of changing the controller, the
input signal is adapted. The goal is to obtain an output that follows the reference
perfectly.

This ilc is performed as a first step in the ilc-dpd. In a second step, a transfer
function from original reference r to the new input signal uP is estimated. This
is an interesting approach since it looks at the intermediate signal uP , between
the predistorter and the power amplifier, which is not done in any of Methods
A-C. The benefit with this method is that the estimation in the second step can
be done using standard forward methods, and that the inverse is estimated as
a preinverse. This method does not perfectly fit into the classification of the
methods in this chapter, since the ilc is a nonparametric method that does not
result in a model of the system or its inverse directly. However, it has similarities
with Method B2 in that it uses the system iteratively to obtain the inverse model,
though this method has an additional step of getting the internal signal before
constructing the preinverse.
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5.1.3 In mathematical terms

In Chapter 2, the basics of system identification were covered and in Section 5.1.1,
different approaches to use system identification for inverse systems were de-
scribed. Here, these methods will be presented in more mathematical terms.

The parameter estimation is usually done by minimizing a cost function V (θ)
such that

θ̂ = arg min
θ

V (θ) (5.1)

with

V (θ) =
1
N

N∑

t=1

l (y(t), ŷ(t|θ)) (5.2)

where the model gives the output predictor ŷ(t|θ) and the minimization returns
the parameter estimates θ̂ that best describe the data, within the given model
structure. The function l(y, ŷ) describes how the measurements and model enter
the equation.

There are many possible choices for the minimization criterion. Here, we have
chosen to use the mean square error

ϑ̂ = arg min
ϑ

Vi(ϑ) (5.3)

where

Vi(ϑ) =
1
N

N∑

t=1

ε2(t, ϑ) (5.4)

and

εR(t, ϑ) = p(t) − S(R(p(t), ϑ)) (5.5)

for a preinverse where p(t) is the reference signal and

εT (t, ϑ) = u(t) − T (S(u(t), ϑ)) (5.6)

for a postinverse with input signal u(t) to the system. That is, the goal is to
minimize the difference between the original input and the pre- or postdistorted
output.

For Method A, the above procedure corresponds to minimizing (5.2), and
then use mathematical methods to invert the resulting forward model. Method
B1 uses the same first step as MethodA, but in a second step an inverse model is
estimated using the prediction error (5.5) with S replaced by the corresponding
model M. Method B2 minimizes (5.3)-(5.5) iteratively, using repeated experi-
ments with the system in the loop. Method C uses the prediction error (5.6) in
the estimation to find ϑ̂ in (5.3)-(5.4).
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5.2 Method descriptions

The methods described here will be evaluated on data later in Chapters 6 and 7.
In this section, a step-by-step description is presented with the goal of estimating
an inverse.

The system identification procedure will be used repeatedly in the method de-
scriptions in this section, and will therefore be described in Procedure 5.1 for the
prediction error method pem and Procedure 5.2 for the instrumental variables iv
method. See also Section 2.3 for more information on the pem and Section 2.7
for iv. The system identification procedure is also presented in Section 2.8. For a
clearer notation, the explicit dependence on time has been omitted in the method
descriptions. There is some overlap in the method descriptions regarding the
choice of model structure, etc., which makes the algorithms easier to read on
their own, but gives redundancy when used together.

Prodedure 5.1 System identification using pem

Require: Input data xi and output data xo

1: Choose a model structure and model order and form ŷ(xi , xo, θ), which is a
function of input data xi up to current time t, output data xo up to previous
time t − 1 and the unknown parameters θ.

2: Formulate the prediction error (2.4), ε = y − ŷ(xi , xo, θ), using xo as output
data y.

3: Find the minimizing argument θ̂ in (2.5)
4: if model is a linear regression (2.8) and l(ε) in (2.5b) is a quadratic function

(the problem is linear least-squares (ls) and can be solved analytically) then
5: Use (2.10) to find an ls estimate.
6: else
7: Solve the minimization problem (2.5) using your favorite numerical solver.
8: end if
9: Repeat with different model structures (linear and nonlinear), model orders,

etc., until the required model performance is acquired.

5.2.1 METHOD A

MethodA is a straightforward application of the standard identification method
in the literature. A number of parameter estimation methods are possible. The
most common and the one used if nothing else is mentioned, is the pem. Another
parameter estimation method possible is the instrumental variables.

For the analytical inversion, the nonlinearities are assumed to have a well-
defined inverse, sometimes with a limitation on the range or domain. It is also
interesting to see what can be done numerically with a nonlinearity that is almost
invertible, for example a function that is monotonous except in a small part of
the domain.
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Prodedure 5.2 System identification using iv

Require: Input data xi and output data xo

1: Choose a model structure and model order and form ŷ(xi , xo, θ), which is a
function of input data xi up to current time t, output data xo up to previous
time t − 1 and the unknown parameters θ.

2: Choose instruments ζ(t) that are correlated with the system output but un-
correlated with the noise.

3: Formulate the prediction error (2.4), ε = y − ŷ(xi , xo, θ), using xo as output
data y.

4: Use (2.13) to find an iv estimate θ̂.
5: Repeat with different model structures (linear and nonlinear), model orders,

instruments, etc., until the required model performance is acquired.

S

M

u

yM

y ε

Figure 5.1: An illustration of the identification part of Method A, using
a prediction error method. The goal is to minimize (a function of) the dif-
ference ε = y − yM where y is the output from the system S and yM is the
output from the model M. The box with rounded corners shows the part
with unknown parameters to be estimated.

The dynamics are assumed to be inversely stable, such that both the system
and its inverse are stable. lti systems on the rational form

G(q, θ) =
B(q)
A(q)

, (5.7)

are straightforward to invert, and the inverse is

G−1(q, θ) =
A(q)
B(q)

. (5.8)

The approach is described in Procedure 5.3 and illustrated in Figure 5.1.

5.2.2 METHOD B1

Method B1 refers to the standard use of dla, where two models are estimated.
The first estimation is a model of the system itself. This is a standard identifica-
tion, which of course entails a number of choices like the model structure, the
model order, etc., but the identification itself is straightforward. After a model
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Prodedure 5.3 Method A

Require: Input data u and output data y

{Estimation of forward model}
1: Estimate a model M of the system S using Procedure 5.1 or Procedure 5.2,

with xi = u and xo = y.
{Construction of inverse model}

2: Invert the forward model analytically or numerically to obtain an exact or
approximate inverse.

Output: Inverse Ŝ−1

validation, where the model is judged to be good enough according to some mea-
sure of performance, this model will replace the system in the identification of
the preinverse. The output from the inverse model is sent to the simulation model
of the system, and the cascaded output should be equal (or similar) to the original
input.

The identification in the second step of Method B1 is less straightforward.
Even though the first step could be a convex optimization problem (depending
on for example the model structure chosen), the second one will probably not be,
with two cascaded systems. Since the goal is to find a preinverse, the parame-
ters of the preinverse will affect the input to the system (model), so even if both
models by themselves are linear in the parameters, the nested problem will not
necessarily be.

There are a number of nonconvex optimization solvers in different softwares.
In this thesis, the Matlab routine fminsearch, based on the Nelder-Mead sim-
plex method, has been used (in Chapters 9 and 10). There are of course other
routines and algorithms that can be used. One thing to remember when using
a nonconvex solver is that there are generally no guarantees of global optimality,
see also Section 2.6. To avoid the nonconvexity of the optimization, the pa prob-
lem in this thesis has been reformulated into a (separable) least squares problem,
see Chapters 9 and 10.

The approach is described in Procedure 5.4, where each part (forward and
inverse modeling) are done until the performance meets the specified criteria,
and illustrated in Figure 5.2.

5.2.3 METHOD B2

The iterative Method B, called Method B2, is based on the idea that the system
itself should be used in the estimation. The benefit with this method is that
systematic noise contributions can and should be taken into account.

The difference compared to Method B1 is that in Method B2, the first part,
the identification of the forward model, is removed and the system itself is kept
in the loop. This means it is necessary to have access to the system that should
be inverted, and the possibility to control and change the input. There are multi-
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R M
p uR yR ε

(b)

Figure 5.2: An illustration of the identification part of Method B1, using a
prediction error method. The modeling of a forward model is shown in (a),
and is the same as in Method A. The inverse model estimation is shown
in (b), where the model from the forward modeling is used in series with the
preinverse. The goal in each step is to minimize (a function of) the difference
ε, in (a), ε = y − yM and in (b), ε = yR − p. The box with rounded corners
shows the part with unknown parameters to be estimated.

Prodedure 5.4 Method B1

Require: Input data u and output data y

{Estimation of forward model}
1: Estimate a model of the system using Procedure 5.1 or Procedure 5.2, with
xi = u and xo = y. This model will be denotedM.
{Estimation of preinverse model}

2: Use the forward modelM from Step 1 as a simulation model.
3: Choose a model structure and model order for the preinverse R. This prein-

verse has input p and output uR(θ, u), which is a function of the reference p
and the unknown parameters θ.

4: Use the signal uR as the input signal to the simulation modelM. The output
from the modelM is denoted yR.

5: Find the parameter values using Procedure 5.1 or Procedure 5.2, with xi = p
and xo = yM. The model structure in the identification isM(R(θ, u)).

6: Repeat Steps 3-5 with different model structures (linear and nonlinear),
model orders, etc., until the required model performance is acquired. If
needed, repeat also Step 1.

Output: Preinverse R
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R S
p uR yR ε

Figure 5.3: An illustration of the minimization of Method B2, using a pre-
diction error method. The goal is to minimize (a function of) the difference
ε = yR − p. An iterative solution can be used to obtain new parameter values
in the predistorter block R. The difference between this setup and the one
in Figure 5.2 (b) is that in this method, the system is still in the loop. The
box with rounded corners shows the part with unknown parameters to be
estimated.

ple options to find the preinverse, different stochastic optimization methods are
available, see for example Murphy [2012].

There are also multiple possibilities regarding the setup of the optimization.
A brute-force method is presented in Section 5.2.5 and relies on a local numerical
differentiation, where the parameter values are varied and a numerical differen-
tiation is done. One possibility is to combine Method B2 with, for example,
Method B1 or Method C (see below) to try out different model structures, etc,
and also to obtain new parameter values between the experiments. This model
(or these models) could then be refined to also account for the noise contribu-
tion using experiments with the real system in the loop. The disadvantage is that
two methods are needed (B1/C and B2), but the advantage is that the number of
experiments needed can be significantly reduced by evaluating different model
structures, obtaining good initial values, etc., in an offline setting.

The outline of the approach is described in Procedure 5.5, where the inverse
modeling is done until the performance meets the specified criteria, and illus-
trated in Figure 5.3.

5.2.4 METHOD C

MethodC produces a postinverse, and when used for predistortion it is based on
the assumption that the system and the inverse commute, and that a postinverse
will work as a preinverse. In this method, the identification is straightforward,
but the roles of the input and the output are reversed, compared to the standard
identification procedure. Just like in any model estimation, the identification
method is up to the user to choose, and the pem and the ivmethods are possible
choices.

The approach is presented in Procedure 5.6, where the modeling is done until
the performance meets the specified criteria, and illustrated in Figure 5.4.

5.2.5 An iterative solution for METHOD B2

The optimization problem in Method B2 is often nonlinear, leading to a noncon-
vex optimization which requires numerical techniques to solve. Many numerical
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Prodedure 5.5 Method B2

Require: The system S . The possibility to control the input u. Initial param-
eter values (could be obtained using for example Method B1 or Method C).

{Estimation of preinverse model}
1: Choose a model structure, model order and initial values for the preinverse
R. This preinverse has input xi and output uR(θ, u), which is a function of
input data p and the unknown parameters θ.

2: Send uR as the input signal to the system S . The preinverted output from the
system is denoted yR.

3: Use an online optimization that minimizes (a function of) the difference be-
tween the reference p and the precompensated output yR. One example of
such a method is described in Section 5.2.5, which minimizes the mse using
repeated experiments with the system in the loop.

4: Repeat with different model structures (linear and nonlinear), model orders,
etc., until the required performance is acquired.

Output: Preinverse R

S−1

T

y

uT

u ε

Figure 5.4: An illustration of the identification part of Method C, using a
prediction error method. The goal is to minimize (a function of) the differ-
ence ε = u − uT , where it is assumed that the system inverse S−1 exists. This
is the inverse estimation problem compared to MethodA, Figure 5.1, where
the box with rounded corners shows the part with unknown parameters to
be estimated.

Prodedure 5.6 Method C

Require: Input data u and output data y

{Estimation of postinverse}
1: Choose a model structure and model order for the postinverse T . This postin-

verse has input y and output yT (θ, u), which is a function of the input y and
the unknown parameters θ.

2: Estimate a model of the system using Procedure 5.1 or Procedure 5.2, with
xi = y and xo = u.
{Construction of a preinverse, when desired}

3: Use estimated postinverse as a preinverse.

Output: Postinverse T
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optimization solvers use local methods to find an optimum of the cost function.
A common choice is Newton’s method, where information from the gradient and
the Hessian of the cost function are used. The method will converge to a station-
ary point of the gradient. Depending on the starting point (initial value) of the
optimization method, the solver will converge to different local optima, which
can be close to or far away from the global optimum. If an analytical description
of the gradient and Hessian are not available, numerical approximations can be
used.

This can of course be achieved in many different ways, here one iterative so-
lution will be shown, assuming that measurements are not too costly or time-
consuming. This can be assumed to be the case in power amplifier predistortion
applications, but might not be true in, for example, a robotic application. The
method presented here is rather naïve and is just to show that a model can be
achieved this way. It is based on local numerical differentiation and is very sim-
ple in terms of implementation. The method is non-convex which means it risks
only reaching a local minimum. Evaluating different initial values of the method
or using one of the other methods here (for example, Method B1 or Method C)
to obtain the initial values can be useful. Other modeling methods can also be
explored, depending on the complexity of the model, and the predistorter setup
at hand.

The goal is to estimate a preinverse by minimizing (5.1) where

V (θ) =
1
N

N∑

t=1

(ut − yRt(u, θ, w, v))2 (5.9)

and θ comes from the parametrization of R(u, θ), determined beforehand. Since
the input signal to the system depends on the parameter value of θ, a new exper-
iment is needed for each iteration of θ.

The basic idea is to use a local optimization by adding a small ∆θ to θ, eval-
uate the new value of V (θ + ∆θ) and follow the negative gradient. In higher
dimensions, this method can be extended by taking a step in each dimension
and evaluating V (that is, assuming that the two parameters are independent,

which is of course not the case). First, V
(
θ +

[
∆θ 0

]T )
is evaluated and then

V
(
θ +

[
0 ∆θ

]T )
for a 2D case. This gives the direction of the optimization solver.

The approach is described in Procedure 5.7.

5.3 Analysis

Methods A-C can be applied to any kind of nonlinear dynamic system and to
evaluate and analyze the different methods for a general nonlinear dynamic sys-
tem is difficult. To be able to draw some more conclusions about the properties
of the estimated models, three special cases will be looked at. Block-oriented sys-
tems are one special case with linear dynamics and static nonlinearities. Purely
linear systems will also be analyzed, and iv.
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Prodedure 5.7 Iterative preinverse

Require: The system S . Possibility to control the input to the system. Initial
values θ0 (could be done using Method B1 or Method C for example)

{Iterative construction of preinverse}
1: Choose a model structure, model order for the inverse, and ∆θ and Nit for the

approach. The inverse model has the reference r as input and output uR(θ, u),
which is a function of the input u and the unknown parameters θ.

2: Calculate V 0 using (5.9) with θ = θ0.
3: for i = 1 : Nit do
4: θi = θi−1

5: for all k = 1 : n, where n is the dimension of the parameter vector θ do
6: θ̄ = θi−1 + ∆θek , where ek is the k:th unit vector.
7: Construct predistorted input signal uR using parameter vector θ̄.
8: Run experiment on system using uR as input signal.
9: Evaluate cost function V̄ using (5.9).

{Update parameter vector θi}
10: if V̄ < V i then
11: θi = θi + ∆θek
12: else
13: θi = θi − ∆θek
14: end if
15: end for
16: Construct predistorted input signal uR using parameter vector θi .
17: Run experiment on system using uR as input signal.
18: Evaluate cost function V i using (5.9).
19: end for



5.3 Analysis 71

In this section, the goal is to show that the results of inverse system identifi-
cation using the methods introduced in this chapter will be different, depending
on the choice of method. In some special cases, the forward and inverse models
are the same, but in general this cannot be assumed.

5.3.1 Inverse PEM identification of LTI systems

In this section, the estimation of lti systems will be investigated. Since lin-
ear systems commute, there is no principal difference between Method C and
Method B, except numerical issues in the optimization. Therefore, only Meth-
ods A and C will be discussed here. An example using the theory is presented in
Section 6.1.

An lti dynamical system will be looked at. The model estimation is done in
open loop and assuming the output was created according to

y(t) = G0(q)u(t) + H0(q)e0(t) (5.10)

where G0 is the true system, H0 is the true noise dynamics and e0 is a white
noise sequence. Here, the causal case is considered. A kernel-based identification
approach for non-causal inverse systems is covered in Blanken et al. [2018] for
firmodels.

As shown before, in system identification, the goal is often to find the mini-
mizing argument of a function of the prediction error ε(t, θ)

θ̂ = arg min
θ

1
N

N∑

t=1

ε(t, θ)2 = arg min
θ

1
N

N∑

t=1

[y(t) − ŷ(t|θ)]2 , (5.11)

where y(t) is the measured output and ŷ(t|θ) is the predicted output given the
model parameters θ. Here, a fixed noise model H∗ ≡ 1 is used such that the pre-
diction is described by ŷ(t|θ) = G(q, θ)u(t). Looking at the identification from a
frequency domain point of view, the minimization criterion in (5.11) can asymp-
totically be written as [Ljung, 1999, (8.71) p. 266]

θ̂ = arg min
θ

π∫

−π

∣∣∣G0(eiω) − G(eiω, θ)
∣∣∣2 Φu(ω)dω (5.12)

where G(eiω, θ) is the model and Φu(ω) is the spectrum of the input signal. The
estimation will thus be done in a way to emphasize the model fit in frequency
bands where the transfer function and the input spectrum are large enough to
have a significant impact on the total criterion. The minimization is done with
respect to the product of model fit (|G0 − G|2) and input spectrum. If the input is
white noise (flat spectrum), it is thus more important to obtain a good model fit
at frequencies with a large transfer function magnitude.

If instead the goal is to estimate the inverse model to be used as described in
Section 5.1, the minimization criterion in the time domain can be written

ϑ̂ = arg min
ϑ

1
N

N∑

t=1

[
u(t) − 1

G(q, ϑ)
y(t)

]2

(5.13)
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and the frequency domain equivalent to (5.13), when y is noise-free, is

ϑ̂ = arg min
ϑ

Vinv(ϑ). (5.14)

The loss function is

Vinv(ϑ) =

π∫

−π

∣∣∣∣∣∣
1

G0(eiω)
− 1
G(eiω, ϑ)

∣∣∣∣∣∣

2

Φy(ω)dω

=

π∫

−π

∣∣∣∣∣∣
1

G0(eiω)
− 1
G(eiω, ϑ)

∣∣∣∣∣∣

2

|G0(eiω)|2Φu(ω)dω

=

π∫

−π

∣∣∣∣∣∣1 −
G0(eiω)
G(eiω, ϑ)

∣∣∣∣∣∣

2

Φu(ω)dω (5.15)

=

π∫

−π

∣∣∣G(eiω, ϑ) − G0(eiω)
∣∣∣2 Φu(ω)
|G(eiω, ϑ)|2 dω (5.16)

using Φy = |G0(eiω)|2Φu if no noise is present. The loss function in (5.16) is
similar to the weighting for the input error case where H = G so that y(t) =
Gu + Ge = G(u + e), that is, the error enters the system at the same place as the
input [Åström and Eykhoff, 1971].

Comparing the minimization criterion for the forward estimation in (5.12)
to the one for the inverse estimation in (5.15), the weighting is clearly different.
In the forward case, a relative model error at a frequency where the system am-
plification is small, will affect the criterion much less than a model error at a
frequency where the system amplification is large. In the inverse estimation case,
a relative model error will have the same effect on the criterion for two frequen-
cies with the same input spectral density, and does not depend on the system
amplification at that frequency. The weighting, and thus the model fit, between
the different frequencies will be shifted to better reflect the importance of a good
fit also at frequencies with a small transfer function magnification.

The time domain criterion (5.13) thus leads to the frequency domain descrip-
tion (5.15), and the weighting is automatically done to match the use of the in-
verse model estimate. Here, only the case when the system and its inverse are
both stable and causal will be investigated. See Section 3.2.1 for a brief discus-
sion on the problems involved in system inversion. There are also methods where
a forward and an inverse identification leads to the same results, see Ho and En-
qvist [2018] for the iv case.

5.3.2 Linear approximations of block-oriented systems

Another common special case of general nonlinear dynamic systems, are block-
oriented systems. In this section, the theory presented in Section 4.4 will be
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applied to Hammerstein structured systems. Examples using the theory in these
sections will be presented in Section 6.2 and Section 6.3.

Before the new results, some background to linear and nonlinear filtering of
stochastic processes is presented. Let y(t) be a stationary stochastic process ob-
tained by passing a zero-mean stationary process u(t) through a stable lti system
with transfer function H(z) such that y(t) = H(q)u(t). Then

Φy(z) = H(z)Φu(z)H(z−1) (5.17)

and
Φyu(z) = H(z)Φu(z). (5.18)

Furthermore, if x(t) is jointly stationary with u(t) and y(t), it is also known that

Φxy(z) = Φxu(z)H(z−1). (5.19)

See for example Kailath [2000].
These results hold for linear systems only, but some properties can be shown

for nonlinear systems. Here, Bussgang’s theorem will be used, which is valid for
static nonlinearities [Bussgang, 1952]. Assume a differentiable static nonlinearity
f with a Gaussian input u(t) and output x(t), such that x(t) = f (u(t)). Assume
also that both signals have zero-mean, that is E [x(t)] = E [u(t)] = 0, and that
the covariance functions Rxu(τ) and Ru(τ) are well-defined for all τ and that
E [f ′(u(t))] exist. Then

Rxu(τ) = c Ru(τ) (5.20)

where c = E [f ′(u(t))]. In the z-domain, Bussgang’s theorem is thus equivalent to

Φxu(z) = cΦu(z), (5.21)

and Φxu(z) and Φu(z) differ only by a scaling factor.

Hammerstein systems

Assume a system with a Hammerstein structure, with a nonlinearity followed by
a stable linear system H(z), and no measurement noise on the output is present,
see Figure 4.8. The goal is to fit a linear model to the block-oriented system.

Assumption A1. Signals will here be considered with well-defined first and sec-
ond order moments, z-spectra and canonical spectral factorization according to
Assumptions A1 and A2 in Enqvist and Ljung [2005]. When white noise is used,
this means independent, identically distributed (i.i.d.) variables.

The optimal forward linear approximation of the system with a Gaussian in-
put is

G0,f (z) =
Φyu(z)

Φu(z)
=
H(z)Φxu(z)

Φu(z)
=
H(z) cΦu(z)

Φu(z)

= c H(z), (5.22)

that is, the noncausal lti-soe is equal to the linear subsystem times a constant.
For the inverse estimated directly, the following result is valid.
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Lemma 5.1 (Inverse estimation). Consider a Hammerstein system with a Gaus-
sian input u(t) and output y(t) and intermediate signal (after the nonlinearity)
x(t) such that Assumption A1 is fulfilled. Then the noncausal i-lti-soe for a
Hammerstein structure is

G0,i(z) =
c

H(z)
Φu(z)
Φx(z)

(5.23)

where H(z) is the linear part of the Hammerstein model.

Proof:

G0,i(z) =
Φuy(z)

Φy(z)
=

Φux(z)H(z−1)
Φy(z)

=
Φux(z)H(z−1)

H(z)Φx(z)H(z−1)
=

Φux(z)
H(z)Φx(z)

=
Φxu(z−1)
H(z)Φx(z)

=
cΦu(z−1)
H(z)Φx(z)

=
c

H(z)
Φu(z)
Φx(z)

.

That is, there is an extra dynamic factor Γ (z) = Φu(z)/Φx(z). For an i.i.d. white
noise input, it follows that Φx is constant if Φu is, so that only a scale factor differs
and the result is

G0,i(z) =
Φuy(z)

Φy(z)
=

c̃
H(z)

, (5.24)

thus, the noncausal i-lti-soe is equal to the inverse linear subsystem times a
constant.

It can also be seen that the inverse model is proportional to 1/H(z) in fre-
quency regions where the spectral densities are flat. Typically, Γ (z) has a low-pass
characteristic, which means that the linear model will be a scaled version of the
true linear system in these frequencies.

For a white noise input, the result from estimating a forward model and in-
verting it according to Method A is the same, up to a constant, as when estimat-
ing an inverse model directly as in Method C. However, if the input u(t) is not
white, (5.24) is not valid, and the weight factor Γ (z) = Φu(z)/Φx(z) will affect the
optimal linear inverse model.

Should a forward or inverse model of a Hammerstein system be estimated?

Whether or not it is better to estimate a forward model or an inverse model must
depend on the application. Two viewpoints can be taken.

Forward: If the linear model is to be used as a part of a nonlinear model (for
example as the linear block in a Wiener or Hammerstein model), it is better to
estimate the forward model directly, which can then be inverted. For a Gaussian
input, this estimation will lead to a model that is a scaled version of the linear
system, and as a second step the nonlinearity can be estimated.
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Inverse: If the goal is to find a linear approximation of the inverse, and the
approximate inverse is to be used, it can be better to estimate the inverse directly.
This inverse model will then take into account the use of the estimated model.
This can for example be useful in power amplifier predistortion, where an inverse
of low complexity is preferred, since it reduces the power consumption and chip
area.

5.3.3 Inverse IV identification

As outlined in Section 2.7, the instrumental variable (iv) method is a way to use
correlations to estimate a model. For a forward model, it is known that

θ̂IV = sol


1
N

N∑

t=1

ζ(t)
[
y(t) − φT (t)θ

]
= 0

 .

It has been shown in Ho and Enqvist [2018] for the lti case that a for a basic iv
method with process noise, it does not matter whether a model is estimated in a
forward or inverse setting, and that the estimate and the variance are the same
for the two models. This is valid even for finite data lengths.

Here, a cubic (nonlinear) example is examined (which was used in Exam-
ple 4.2) and will be further analyzed in Chapter 7.

Example 5.1: Inverse iv estimation
The system output is described by

y = b(u + w)3.

The input signal u and the noise signal w are independent white Gaussian with
zero mean and variances σ2

u and σ2
w, respectively. The dependence on time has

been omitted for ease of notation.
The instruments of the inverse model are chosen as

Z =
[
u u2 · · · un · · ·

]T
,

and the regression vector φ

φ =
[
y y1/3

]T
.

The inverse model with has a cubic and a linear term, as in

û = ϑ̃1y + ϑ̃3y
1/3 = φT ϑ

where ϑ is the parameter vector. This means the inverse problem E [Z (u − û)] = 0
is

E [Z (u − û)] = E







u
u2

...




(
u − û

)



= E







u
u2

...




(
u − ϑ̃1y − ϑ̃3y

1/3
)


. (5.25)
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Since the elements in the vector are linearly dependent, this is equivalent to look-
ing at the first element only. Using y = b(u + w)3 and y1/3 = b1/3(u + w) gives

E [Z (u − û)] = E
[
u2 − ϑ̃1bu(u3 + 3u2w + 3uw2 + w3) − ϑ̃3b

1/3(u2 + wu)
]
.

Taking the expected value with respect to the noise w, and knowing that
Ew

[
3u2w

]
= Ew

[
w3

]
= Ew [wu] = 0 and Ew

[
w2

]
= σ2

w we get

E [Z (u − û)] = E
[
u2 − ϑ̃1bu(u3 + 3uσ2

w) − ϑ̃3b
1/3u2

]
= 0.

The only way to assure that ϑ̃1b(u4 + 3u2σ2
w) for an arbitrary σ2

w , 0 and b , 0 is
that ϑ̃1b = 0 ⇒ ϑ̃1 = 0 . This leaves

E
[
u2 − ϑ̃3b

1/3u2
]

= E
[(

1 − ϑ̃3b
1/3

)
u2

]
= 0

or
ϑ̃3 =

1
b1/3

.

The result of the inverse estimation is thus that

ϑ̃IV =
[
0

1
b1/3

]T
= ϑ̃0.

That is, the inverse ivmethod results in an unbiased estimate of the parameters.

For a forward model, the problem coincides with the ls problem, and there
will be a bias in the linear term.
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Examples of approximations in

noise-free measurements

In an ideal world, every signal can be measured and all measurements are perfect.
Even in this case, it is often the case that it is not possible or desired to find or
use the same structure for the model as the system, and model approximations
are needed. The system could be very complex making it impossible to find the
corresponding model structure, or it could be a choice to use a simplified model
structure (for example, a linear model for a nonlinear system) to make it easier
to work with the model.

In this chapter, some of the theory presented in earlier chapters will be illus-
trated by examples. The data here is all noise-free, and so the examples present
what happens in a best-case-scenario. In Chapter 7, examples with noisy data are
presented.

The inverse can either be used as a preinverter or a postinverter, see Figure 6.1
(the same as Figure 4.1, duplicated here for easy access). Both preinversion and
postinversion will be evaluated when possible (in the linear case, the system and
its inverse commute and there is no difference between a preinverse and a postin-
verse). The goal here is then to regain the original input signal or reference signal,
using the preinverse or postinverse, such that yR = p or yT = u, respectively.

SR
p uR yR

(a)

S Tu y yT

(b)

Figure 6.1: The intended use of the estimated inverses. (a) shows a prein-
verseR, where the inverse is applied before the system S . (b) shows a postin-
verse T , where the order of the system and the inverse is reversed.

77



78 6 Examples of approximations in noise-free measurements

6.1 METHOD A and METHOD C for linear systems

In Section 5.3.1, a theoretical analysis of Method A and Method C was pre-
sented for linear systems and here, those results will be illustrated with an exam-
ple.

Example 6.1: A linear dynamic system with lower order model
In this example, a linear, resonant system is considered. The two methods
Method A (estimate a forward model and invert it) and Method C (estimate
an inverse model directly) will be evaluated.

The goal is to obtain a system inverse to be used in series with the original
system in order to retrieve the input, see Figure 6.1a. The input u and the noise-
free output y are measured with no predistorter present. The system has two
resonance frequencies, at ω = 1 rad/s and ω = 10 rad/s. The magnitudes of the
two resonance peaks are very different, with the first one a hundred times larger
than the second one. The true system, G0 is described by

G0(s) =
10

s4 + 1.1s3 + 101.1s2 + 11s + 100
(6.1)

and the Bode magnitude diagram is shown in Figure 6.2. The input consists of
three sinusoids around each of the two resonance peaks such that the input power
is concentrated in two bands, centered around the resonance frequencies, i.e.,

u(t) =
6∑

k=1

ak sin(ωkt + φk) (6.2)

with ak = 1 for k = 1, 2, 3, ak = 10 for k = 4, 5, 6, ωk ∈
(
0.9, 1, 1.1, 9, 10, 11

)
and

φk ∼ U [−π π]. The input amplitude and the frequency points are illustrated
by the stars in Figure 6.2. The sampling time is Ts = 0.02 s and N = 10 000
simulated measurements have been collected.

With the goal of using an firmodel as a preinverseR to recover the input, two
models have been estimated, using Method A and Method C. An fir model
depends only on previous input signals, as described in Section 2.4. As the system
is linear, the ordering of the two systems does not matter, and the preinverse and
postinverse are interchangeable.

First, a forward model has been estimated as an output error (oe) model using
System Identification Toolbox in Matlab [Ljung, 2003], with [nb nf nk] =
[1 3 0]. This model has then been inverted resulting in an fir model with 4
terms, according to Method A. The approximative inverse using Method C is
an fir model with 4 terms, i.e., [nb nf nk] = [4 0 0], and will have a very
different weighting. Hence, the two inverses will catch different behaviors of the
system. The system G0 in (6.1) is a fourth order system whereas the model is
third order. Thus, the model cannot perfectly model the system but should be
able to capture one resonance peak and the overall behavior of the system.

As can be seen in the Bode magnitude plot in Figure 6.3, the Method A

model has a much better fit around ω = 1 rad/s and almost perfectly models
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Figure 6.2: The Bode magnitude plot of G0 in (6.1) is marked by the solid
line. The stars mark the amplitude of the multisine input (u in (6.2)) com-
ponents at each frequency.

the resonance peak, but completely misses the second resonance peak at ω =
10 rad/s. The inverse estimate, the MethodC model, on the other hand, does not
manage to catch either of the resonance peaks in a satisfactory way but catches
the amplitudes at both of the resonance frequencies. That is, the amplification
at ω = 1 and 10 rad/s is well captured, but not the behaviors around the peaks.
Estimating the forward model in the standard way will clearly focus on the fre-
quencies where the product of model error |G0 − G|2 and input spectrum is large.
When this system approximation is inverted, according to Method A, the errors
around ω = 10 rad/s will become prominent.

The results in the time and frequency domains are presented in Figures 6.4
and 6.5. In the time domain plot in Figure 6.4, it is clear that the Method C

model better reconstructs the input than the Method A model. In Figure 6.5,
the periodograms of the reconstructed inputs are shown, zoomed in around the
input frequencies. At the lower frequency around ω = 1 rad/s, the Method A

model captures the input almost perfectly, but around ω = 10 rad/s, the reverse
is true and the Method C model performs better.

As shown in this small example, there are clearly occasions when it is advan-
tageous to estimate an approximate inverse directly as opposed to estimating the
forward model and then inverting it.
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Figure 6.3: The Bode magnitude response of G−1
0 (black solid line), the

inverted estimated forward model from Method A, (black dashed line)
and the inverse model estimate using Method C (gray solid line). The
Method A model perfectly catches the resonance peak at ω = 1 rad/s,
whereas the MethodC inverse does not model either of the resonance peaks
in a satisfactory way. The Method C model instead has an accurate mod-
eling of both peak frequency values, that is, it manages to accurately model
the amplification at ω = 1 and 10 rad/s, but not the resonance peaks.
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Figure 6.4: The input u (black solid line), and the reconstructed input yu
using Method A (black dashed line) and the Method C model (gray solid
line). The estimation of the inverse cannot perfectly reconstruct the input,
but is clearly better than the inverted forward model.

6.2 Linear models of Hammerstein systems

The theoretical aspects of modeling a block-oriented system using a linear model
are presented in Section 5.3.2 and here illustrated by two examples.

Example 6.2: Hammerstein system with white and colored inputs
In this example, the goal is to estimate a linear model to a nonlinear system,

which is a Hammerstein system.
Two input signals u(t) are used, one white noise sequence and one with col-

ored noise, where a white noise sequence e(t) has been passed through an fir
filter L(q). The input u(t) is passed through a static nonlinearity x(t) = f (u(t))
and then through an lti filter H(q). See also Figure 6.6. Here, the nonlinearity is

f (u(t)) = u3(t) (6.3)

and the lti filter is
H(q) =

1
1 + 0.5q−1 . (6.4)

Two models have been estimated with the goal of using an fir model as pre-
or postfilter to recover the input u(t); one forward (which has then been in-
verted) and one inverse. The first, a forward model, has been estimated as an
output error (oe) model using System Identification Toolbox in Matlab, with
[nb nf nk] = [1 1 0], and has then been inverted (resulting in an firmodel
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Figure 6.5: Periodogram of the input u (black solid line), and the recon-
structed input yR using MethodA (black dashed line) and MethodC (gray
solid line) around ω = 1 rad/s (top) and ω = 10 rad/s (bottom). It is clear
also in the frequency domain that the forward model captures the behavior
around ω = 1 rad/s better than the inverse estimation, but the reverse is true
around ω = 10 rad/s.

1
1+0.5q−1(·)3u x y

Figure 6.6: The Hammerstein system used in the example. The input u
(white noise or filtered white noise) is passed through a cubic nonlinearity
and an lti filter H(q).
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with 2 terms) as in MethodA. The directly estimated approximate inverse, from
Method C, is an firmodel with 2 terms ([nb nf nk] = [2 0 0]).

The colored input is constructed by fir-filtering a white noise sequence e(t)
with variance σ2 and E [e(t)] = 0 as

u(t) = L(q)e(t) = (1 + l1q
−1)e(t), (6.5)

with l1 = 0.7. Then

Rx(0) = 15σ6
(
1 + 3l21 + 3l41 + l61

)

Rx(±1) = σ6
(
9l1 + 24l31 + 9l51

)

Rx(τ) = 0 |τ | > 1 (6.6)

such that

Φx(eiω) =
∞∑

τ=−∞
Rw(τ)e−iτω

= (eiω + e−iω)σ6
(
9l1 + 24l31 + 9l51

)
+ 15σ6

(
1 + 3l21 + 3l41 + l61

)
. (6.7)

The spectral density for u is

Φu(eiω) = L(eiω)ΦeL(e−iω)

= σ2
(
(eiω + e−iω)l1 + (1 + l21 )

)
. (6.8)

This leads to an additional dynamic factor

Γ (z) =
Φu(z)
Φx(z)

=
1

3σ4

(
(z + z−1)l1 + (1 + l21 )

)

(z + z−1)
(
3l1 + 8l31 + 3l51

)
+ 5

(
1 + 3l21 + 3l41 + l61

) , (6.9)

in the noncausal i-lti-soe. The spectral density Γ (eiω) is shown in Figure 6.7.
It is clear that the weighting function Γ is not a constant, and that an inverted

noncausal lti-soe, Gf i , will be different from a noncausal i-lti-soeGi , estimated
directly.

Numerical results for a simulated example (Monte Carlo simulations with 10
runs) with N = 100 000 data points are presented for the Hammerstein example.
The estimated models Gf i and Gi are shown in Table 6.1, and the resulting fit to
data

fit = 100
(
1 −

∑N
t=1(u(t) − û(t))2

∑N
t=1(u(t) − ū)2

)
(6.10)

in Table 6.2 with
û(t) = Gmy(t), m = i, f i (6.11)

and ū as the mean value of u(t).
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Figure 6.7: Bode plot of the dynamic factor Γ (eiω) = Φu(eiω)/Φx(eiω) in (6.9)
for a Hammerstein example.

According to the results in Section 5.3.2, it could be expected that an inverted
forward model and an inverse model are the same, up to a constant. As discussed
in Section 5.3.2, these models should also be a constant times the true linear
system. In this example, b0 = 1 and b1 = 0.5, so any model estimate where
b̂0 = 2b̂1 fulfills these results. This is however not true for a colored input signal,
illustrated here by an input filter L(q). In Table 6.1, it can be seen for the white
noise input that the models are the same, up to a constant, as expected (in this
case, Gf i = 1.66 ·Gi). For the colored noise input where this is not valid for the
Method C model, the forward model still estimates a constant times H(q)−1.

The amplitude of the output of a precompensated versus a postcompensated
system can be considerably different. To reduce the effects of the signal ampli-
tudes, normalization can be used. Here, two different scaling approaches will be
used, namely to use the signals as they are or to normalize the output such that
the input and output have the same variance. The importance of normalization
in Method C for pa predistortion is discussed in Chani-Cahuana et al. [2015].

The model fit results, which are presented in Table 6.2, are hard to draw con-
clusions from, but it is clear that the method of model estimation heavily affects
the results. The use of normalization seems to lead to a degraded Gi . In general,
the postinverse seems to perform better, but the choice of pre- or postinverse is
often given by the application.

To illustrate a case where the estimated inverse can be beneficial, a purely
linear system can be looked at, as in Example 6.3. That is, a Hammerstein system
with f (u) = u.
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Table 6.1: Estimated models for a Hammerstein system. The inverse models
Gf i and Gi have the structure B(q) = (b0 + b1q

−1). B0(q) = (1 + 0.5q−1).
Input filtering Normalization Gf i Gi

b0 b1 b0 b1

none none 0.333 0.166 0.200 0.100
none variance 1.48 0.741 0.894 0.449
L(q) none 0.223 0.112 0.127 0.088
L(q) variance 1.228 0.611 0.691 0.482

Table 6.2: Model fit, (6.10), of reconstructed input û(t) = B(q)y(t) using
models from Table 6.1.

Input filtering Normalization Gf i Gi
Pre R Post T Pre R Post T

none none 12.7 19.1 3.0 37.1
none variance 18.9 37.0 – –
L(q) none 18.9 38.4 8.1 2.1
L(q) variance 18.2 38.1 – –

– denotes a negative fit.

Example 6.3
In this example the setup used in Example 6.1 is used (a linear resonant system).

We are guessing it is a Hammerstein structured system, with a nonlinearity fol-
lowed by a linear dynamic system. As a first step we want to estimate the linear
part (in two ways). We can then look at the input nonlinearity non-parametrically
to see what it could look like. By filtering the output with the inverse of an es-
timated linear model, an estimate of the intermediate signal is obtained, x, in a
Hammerstein system. Plotting this signal, x̂, as a function of the input u it should
be possible to see how nonlinear the first system block really is.

A Method A model and a Method C model were identified, resulting in
two fir models with 4 terms. As was shown in Figure 6.2, the two models will
catch different behaviors of the system. The Method A model models the ω = 1
rads/s resonance peak well but misses the second peak, whereas the Method C

estimate gives a reasonable fit at both resonance frequencies but does not capture
the resonance peak behavior.

A moving average approximation of the nonlinearity has been computed from
the estimated signal x̂ and is plotted as a function of the input u in Figure 6.8,
using Methods A and C. It can be seen that the Method C estimate leads to a
function that looks rather like a straight line (the true nonlinearity is a straight
line with slope 1) whereas it would be hard to see this in the nonlinearity estimate
using Method A. Since the Method C model better captures the intended use
of the model, the signal estimate using the directly estimated inverse is better in
this sense.
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Figure 6.8: A nonparametric moving average approximation of the nonlin-
earity in Example 6.3 has been obtained by taking the mean over 41 data
points. The estimated signal x̂ is presented as a function of the input am-
plitude, using Method A (black dashed line) and Method C (gray solid
line).

This example of a linear system interpreted as a Hammerstein system shows
that estimating a model in the intended setting really does make a difference.
When an inverse was estimated with Method C, using the inverse model to ap-
proximate the nonlinearity works well.

6.3 Linear models for Wiener systems

Another type of block-oriented system is the Wiener system, where an lti system
is followed by a static nonlinearity. To see that there is a difference in the models
estimated using Methods A and C, let us look at a similar example as in the
Hammerstein case.

Example 6.4
Let a white Gaussian input signal pass through an lti filter L(q) = (1 + l1q

−1)
followed by a cubic nonlinearity. Then the forward model, the noncausal lti-
soe, will be

G0,f (z) =
Φyu(z)

Φu(z)
=

3σ4(1 + l21 )(1 + l1z−1)
σ2

= 3σ2(1 + l21 )(1 + l1z
−1). (6.12)
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Figure 6.9: Bode plots of the optimal inverse models for a Wiener system.
White Gaussian noise has been used as input to an lti filter L(q) (6.5) and
then passed through a cubic nonlinearity. The solid line is the inverted non-
causal lti-soe G0,f i , and the dashed is noncausal i-lti-soe G0,i .

The inverse, noncausal i-lti-soe, on the other hand is

G0,i(z) =
Φuy(z)

Φy(z)
=

3σ4(1 + l21 )(1 + l1z)
(z + z−1)φ1 + φ2

(6.13)

with
φ1 = σ6

(
9l1 + 24l31 + 9l51

)

and
φ2 = 15σ6

(
1 + 3l21 + 3l41 + l61

)
.

One can see that the inverted optimal forward model (6.12) and the optimal in-
verse model (6.13) differ by more than a constant, so that the models estimated
in the forward and inverse approaches will be different. Bode plots of the two
optimal inverse models with l1 = 0.7 are presented in Figure 6.9.

The results for a Hammerstein system that a forward model and its inverse
differ by only a constant is not valid for a Wiener system, even when a white
input is used.

6.4 Discussion

In the examples discussed in this chapter, the signals have all been noise free.
This is an ideal setting used to look at what can be achieved, since all real mea-
surements are corrupted by noise and disturbances. For an inverse model that
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can capture the true inverse, the Method A and Method C inverse models are
the same in the examples used in this thesis, for noise-free data. However, once
there are approximations and simplifications done on the model structures, dif-
ferent results are achieved depending on the choice of method.

In this chapter it has been shown that the method of estimation of the inverse
model, even under ideal settings, will have an impact on the model performance.
It has been said before for other contexts (feedback for example [Ljung, 1999])
that a model should be estimated in the setting in which it will be used. The
same is valid for inverse system identification as was illustrated here. An inverted
forward model will not necessarily be the same as an inverse model estimated
directly, and the choice of estimation method should depend on the goal.

In this thesis, the goal is to find an inverse model and in the examples in this
chapter, we have shown that it can be beneficial to estimate the inverse directly.



7
Inverse systems with noisy data

In Chapter 6, we looked at some examples where the measurements are perfect,
and no noise is present. In this chapter, noisy data will be used instead. The noise
can enter at the measurement (at the output) and is then called measurement
noise, or it can enter the system earlier and is then called process noise.

When there is no noise present, having the true inverse will lead to a perfect
inversion when used with the system, as a preinverse or a postinverse. However,
as could be seen in the examples in Chapter 4, when noise is present this is no
longer the case.

The different identification methods described in Chapter 5 will be illustrated
and analyzed in this chapter. These include the least-squares method (ls), the
instrumental variables method (iv), and the iterative method Method B2 where
repeated measurements are used to construct a preinverse. The focus in this
chapter will mainly be in preinversion. However, when applicable the inverse
models will also be evaluated as a postinverse. The goal is to illustrate some
of the theoretical results, and to be able to draw conclusions. The small case
study will allow comparisons of the methods presented in earlier chapters. The
performance of the methods can easier be seen in a small case study where the
noise can be made exactly the same in the evaluation of the different methods. A
next step would be to evaluate the different methods in data from, for example,
power amplifiers.

We will also conclude this part of the thesis with some thoughts concerning
inverse estimation.

7.1 Results using a cubic model structure

To make some comparisons, a case study with a cubic function like the one used
in Example 4.2 will be used. The system is illustrated in Figure 7.1.

89
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f (x) = bx3+ +
u

w v
y

Figure 7.1: The system setup, with a cubic nonlinearity f , input signal u,
process noise w, measurement noise v and output signal y.

Assume the true system is a static cubic nonlinearity,

S = f (u) = bu3. (7.1)

There is process noise w affecting the input and measurement noise v at the out-
put, such that the actual system is

y = S(u, w, v) = b(u + w)3 + v. (7.2)

The signals u, w and v are white, zero-mean and mutually independent.
Method C can be used to estimate an inverse model. The model structure of

the inverse model is
û = ϑy1/3. (7.3)

The true parameters for the inverse model is

ϑ0 =
[ 1
b1/3

]
(7.4)

showing that the true inverse is contained in the model set given by this model
structure for a specific choice of parameters.

To be able to make comparisons, also forward models will be evaluated and
inverted, according to Method A. Here,

ŷ = θu3, (7.5)

and the true parameters for the forward model is

θ0 = [b]. (7.6)

In this chapter, the forward models will use θ as a parameter and the inverse
models ϑ.

The true parameter is b0 = 4 and the noise variances are σw = σv = 0.2 and
σu = 1, that is, both process noise and measurement are present and of the same
size. To evaluate the estimates, Nmc = 100 Monte Carlo simulations have been
performed with N = 10 000 samples in each run.

Methods A, B2 and C will be evaluated. See Section 5.2.1 and Algorithm 5.3
(page 65) for Method A, Section 5.2.3 and Algorithm 5.5, (page 68) for Method
B2 and Section 5.2.4 and Algorithm 5.6 (page 68) for Method C. For Methods
A and C, both ls and iv estimators will be evaluated,

The results will mainly be evaluated by Monte Carlo simulations, and illus-
trated by box plots. These are a way of graphically showing, for example, the
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Figure 7.2: Cubic model structure, ls method. The estimates of b using ALS
and CLS methods. The true value is b0 = 4 and it is clear that ALS is closer
to the true value than CLS. For CLS, the estimate of b has been produced by
taking b̂ = 1

ϑ3 .

statistics of the parameter value or the mse value. The box represents the first
and third quartiles, and the band inside the box is the median. The whiskers
show 1.5 times the interquartile range and outliers are represented by crosses.

In Example 4.2, calculations showed that the true inverse is neither optimal
as preinverse nor postinverse, for the case with only process noise. In this section,
estimation results will be shown. For fairness in the comparison, the same noise
realization has been used in the evaluation.

7.1.1 Least squares method

Since the models (7.3) and (7.5) can be written as linear regressions, the least
squares method can be used to estimate the parameters, cf. (2.8) and Sections 2.4
and 2.5. The fact that the structure can be written as a linear regression does not
say anything about bias, etc., in the parameter estimates. Both a forward model
(Method A) and an inverse model (Method C) can be estimated using least
squares, and can be applied as a preinverse or a postinverse. The methods will
be denoted ALS and CLS.

The estimates of the ALS method and the CLS method are presented in Fig-
ure 7.2. The CLS estimate b̂ has been produced by taking b̂ = 1

ϑ3 . It is clear that
the ALS estimate is closer to the true value of b0 = 4, but this does not mean the
performance as a preinverse or a postinverse is better for the inverted forward
model estimate ALS. The performance evaluation is done using the mse (4.11),
and the results are presented in Figure 7.3. The results using the inverted for-
ward estimate ALS and the inverse estimate CLS are presented along with the true
value, used as both (a) preinverse and (b) postinverse. It can be seen that the CLS
estimate performs better than the ALS estimate in both the preinverse and postin-
verse cases, and that both of them perform better than the true inverse. This
is because the noise present in the measurements should be taken into account
when the inverse is constructed.
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Figure 7.3: Cubic model structure, ls method. The performance of esti-
mates from a least squares estimation, evaluated as (a) a preinverse and (b) a
postinverse. The ALS and CLS model estimates are evaluated and compared
to the true inverse model, and it is clear that the CLS method performs best
both as a preinverse and a postinverse. The ALS method, which has a bet-
ter estimate of b0 performs worse than the CLS method but the results are
slightly better than for the true value.

7.1.2 Instrumental variables method

The instrumental variables method described in Section 2.7 has also been eval-
uated for Methods A and C. The methods will be denoted AIV and CIV. The
instruments are

ζ =
[
u u3

]T
. (7.7)

These models can be applied as a preinverse or a postinverse.
The parameter estimation results are presented in Figure 7.4 where it can be

seen that both the forward model and the inverse model obtain a good estimate
b̂ of the parameter b. It is easily computed that the AIV estimate has a small bias

(θ̂ = b + 3b σ
2
w

σ2
u
, θ0) but the CIV estimate is unbiased (ϑ̂ = 1

b1/3 = ϑ0). The per-

formance evaluation is done using the mse (4.11), and the results are presented
in Figure 7.5. Since the parameter values are close to each other and to the true
value, all three sets of parameter values performs similarly, with the AIV estimate
slightly better both as a preinverse and as a postinverse.

7.1.3 Iterative method B2

The iterative method used in Method B2 is described in Section 5.2.5. There are
many optimization algorithms that take the stochasticity into account, and can
be used. Here, the goal is not to find the optimal solver, but more to show a proof
of concept that it is possible to find a better solution than the true inverse S−1, by
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Figure 7.4: Cubic model structure, iv method. The estimates of b using
AIV and CIV methods. The true value is b0 = 4 and both Methods A and
C estimates using iv are close to the true value. For the CIV method, the
estimate of b has been produced by taking b̂ = 1
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Figure 7.5: Cubic model structure, iv method. The performance of the pa-
rameter estimates evaluated as (a) a preinverse and (b) a postinverse. The
model estimates using AIV and CIV methods are evaluated and compared to
the true value, and the performance is similar for all three estimates, with
AIV slightly better than the others.
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Figure 7.6: Cubic model structure, iterative Method B2. (a) Estimates from
100 Monte Carlo simulations and (b) the values of θ during one Monte Carlo
run. The initial value θ = 0.8 corresponds to a b̂ = 1.95.

using the real system in producing the preinverse. This will ensure that the noise
will be accounted for in the preinverse.

The step length ∆ϑ was fixed. No stopping criterion was used but the method
runsNit = 100 times, meaningNit experiments are needed. Here, the solution has
converged in around 50 iterations, but without a stopping criterion the algorithm
will run through all Nit iterations. The number of function evaluations is (n +
1)Nit (one in each step direction (that is, the dimension of the parameter vector
n) and one final evaluation with the updated θ, for each iteration). A gridding
was also performed for evaluation purposes (leading to d function evaluations,
where d is the number of values evaluated for ϑ).

This naïve implementation of a stochastic solver finds a better solution (in ls
sense) by minimizing the cost function V (θ) than when using the true inverse as
a preinverse. The estimation results are presented in Figure 7.6. The estimate
of the Monte Carlo simulations are shown in (a) and the values of θ during one
Monte Carlo run in (b). Figure 7.7 shows the evaluation of Method B2 as a
preinverse, and it is shown that it performs better than the true value.

7.1.4 Comparisons between the methods

In Figure 7.8, the estimation results of the different methods are presented, where
b0 = 4. Figure 7.9 shows the mse results from the methods, evaluated as a prein-
verse and a postinverse.

For a preinverse, all methods are evaluated, and Method B2 clearly performs
better than the others. The only unbiased estimator is the CIV, the other methods
are all biased. The estimate from Method B2 is much larger than the other
estimates, and has a larger variance. However, this bias in the estimate takes the
noise contribution into account, and in the evaluation (both as a preinverse and a
postinverse) the CLS estimate leads to a bettermse than the CIV. The comparison
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Figure 7.7: Cubic model structure. The performance of the iterative method
B2, evaluated as a preinverse and compared to the true value.

4

6

8

10

12

14

1 2 3 4 5
A

LS
      C

LS
       A

IV
        C

IV
        B2

Figure 7.8: Cubic model structure. The estimates of b using Methods A, B2

and C. The true value is b0 = 4. For B2, CLS and CIV, the estimate b̂ has been
produced by taking b̂ = 1

ϑ3 .

is slightly unfair since we are evaluating with respect to the mse, so that the
ls method performs best is not a surprise. However, it is still an interesting
comparison since many measures of goodness are based on themse (or the rmse).

7.2 Results using a cubic and linear model structure

It can be beneficial to try different model structures. In this section, an expanded
model structure is evaluated.

A forward model containing a linear term will be evaluated with the model
structure

ŷ = θ̃1u + θ̃3u
3 =

[
u u3

] [θ̃1
θ̃3

]
∆= φT θ̃. (7.8)

The true parameters for the forward model is

θ̃0 = [0 b]T . (7.9)
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Figure 7.9: Cubic model structure. The performance of estimates from an in-
strumental variables and a least-squares estimation, evaluated as (a) a prein-
verse and (b) a postinverse. ALS, AIV, CLS and CIV are evaluated and com-
pared to the true value. For the preinverse, also the B2 estimate is evaluated.
The B2 estimate is the best preinverse, followed by the CLS. For the postin-
verse, CLS is the clear winner.

For Method C, the expanded structure corresponds to an inverse model
structure containing a linear term,

û = ϑ̃1y + ϑ̃3y
1/3 =

[
y y1/3

] [ϑ̃1
ϑ̃3

]
∆= φT ϑ̃. (7.10)

The true parameters for the inverse model is

ϑ0 =
[ 1
b1/3

]
(7.11a)

ϑ̃0 =
[
0

1
b1/3

]T
(7.11b)

showing that the true inverse is contained in the model sets given by these model
structures for a specific choice of parameters.

In this chapter, the forward models will use θ as a parameter and the inverse
models ϑ. The tilde ( ·̃ ) denotes an expanded model with an additional linear
term. See also Table 7.1.

The model structure with an extra linear term is motivated by analyzing the
expected value of the output

y = b(u + w)3 + v = b(u3 + 3u2w + 3uw2 + w3) + v.
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Table 7.1: Notation in the cubic case study.

Structure Model type
Forward Inverse

Cubic θ ϑ
Cubic & linear θ̃ ϑ̃

The expected value with respect to the noise w is

E[y] = E
[
b(u3 + 3u2w + 3uw2 + w3) + v

]

= bu3 + 3bu2E [w] + 3buE
[
w2

]
+ bE

[
w3

]
+ E [v]

= bu3 + 3buσ2
w

since both w and v are zero-mean white noises. This means that the expected
value of the parameter vector is

E
[
θ̃
]

= [3bσ2
w b]T . (7.12)

and the linear term is nonzero in the mse, compared to the true θ̃0 = [0 b]T .
Here,

[
θ̃
]

= [3bσ2
w b]T = [0.48 4]T .

7.2.1 METHOD A

Just like the case with the true structure as an inverse, the model (7.8) can be
written as a linear regression, and both least squares and instrumental variables
methods can be used to estimate the parameters. The instruments are defined
in (7.7). In this section, MethodA is evaluated for ls and iv identification. Since
the model structure with an additional term is no longer as easily inverted, the
forward model will be evaluated only based on the estimation of the parameters.

The parameter values from Monte Carlo simulations for θ̃LS and θ̃IV are pre-
sented in Figure 7.10. In this case (with the regressors and variables chosen), the
two methods coincide, and both methods lead to a good estimate of b, b0 = 4
(boxes 2 and 4), and ˆ̃θ is close to (7.12).

7.2.2 METHOD C

The inverse models ϑ̃ using Method C, based on ls and iv methods, are also
evaluated as preinverse and postinverse. The results are shown in Figure 7.11
where the linear parameter in both methods are close to zero and the true ϑ̃0 =[
0 1/b1/3

]T ≈ [0 0.63]T . The CLS method underestimates ˆ̃ϑLS compared to the

true value ϑ̃0 ≈ [0 0.63]T . ˆ̃ϑIV is closer to the true value.
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Figure 7.10: Cubic and linear model structure, Method A. The estimates of
θ̃ using ALS and AIV methods. For the choice of regressors and instruments
in this case, the ls and the iv methods coincide. Here, θ̃0 = [3bσ2

w b]T =
[0.48 4]T .
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Figure 7.11: Cubic and linear model structure, Method C. The estimates of
ϑ̃ using CLS and CIV methods. The true value is ϑ̃0 ≈ [0 0.63]T .
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7.2.3 METHOD B2

The iterative method is described in Section 5.2.5, where the system is used in the
measurement loop, using repeated experiments. The step length ∆ϑ was fixed.
Here, the solution is found in around 50-70 iterations, but without a stopping
criterion the algorithm will run through all Nit = 100 iterations. The number of
function evaluations is (n + 1)Nit where n is the dimension of the parameter vec-
tor (for each iteration: one in each step direction and one final evaluation with
the updated parameter vector). A gridding was also performed for evaluation
purposes (leading to d1 · d3 function evaluations, where d1 is the number of val-
ues evaluated for ϑ1 and d3 is the number of values evaluated for ϑ3). In this case,
the gridding uses 1659 experiments, and the iterative method 300.

Figure 7.12 shows the mean squared error (mse, defined in (4.11)) of the it-
erative method and the grid method along with the true value. It is clear that
the iterative method does not achieve as good results as the gridding method,
but it outperforms the true inverse in all Monte Carlo simulations, and the com-
putational load is much smaller than for the gridding method. Since the grid
method evaluates all values (within a predefined range) of the parameter space,
it is not surprising that it achieves the best results. The estimate from method B2
performs almost as well as gridding, and always better than the true parameter
value, illustrating that repeated experiments can improve the performance.

Figure 7.13 shows the value of ϑ̃ for one simulation for the iterative solution
and gridding as well as the true value. It can be seen that the iterative method
converges rather quickly, but without a stopping criterion the method will just
continue until the iteration counter reaches Nit. A well-formulated stopping cri-
terion will stop the procedure earlier or continue longer if needed, but has been
outside the scope of this thesis.

Figure 7.14 shows the path of the ϑ̃ on top of the contours of the minimization
criterion (based on the gridding method). The jaggedness is a consequence of the
noise present in the Monte Carlo runs. The rhombic shape of the ϑ̃ trail is a
consequence of the choice of search path, where ϑ̃ is always updated in pairs,
with a positive or negative increment in each direction. With a variable step
length in each separate direction this would not be the case, and the iterative
method would probably find a better optimum. However, this is outside the
scope of this thesis and will not be further explored.

7.2.4 Comparisons between the methods

The results of the estimation using methods CLS and CIV and B2 are presented
in this section. Since the model structure with an additional term is no longer as
easily inverted, the forward model will be evaluated only based on the estimation
of the parameters. The inverse models ϑ̃ from Method C, based on ls and iv
methods, are also evaluated as postinverses.

Figure 7.15 shows the results of the model estimation and shows the estimates
of b from the different methods. For methods B2, CLS and CIV, the estimates
b̂ have been produced by taking b̂ = 1

ϑ3
3

. The estimates based on the forward
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Figure 7.12: Cubic and linear model structure, iterative Method B2. The
mean square error of the different methods. The dashed pink line shows
the evaluation of the true ϑ̃, the green line is the iterative method and the
dashed black shows the best choice from gridding the parameter space. It is
clear that the gridding method is the best, followed closely by the iterative
method presented here, and that they both outperform the true inverse, in
all Monte Carlo runs.
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Figure 7.13: Cubic and linear model structure, iterative Method B2. The
value of ϑ̃ in one Monte Carlo run. The solid line shows the iterative method,
the dashed line is the grid-based method and the dotted line shows the true
values. Black is the linear term ϑ̃1 and the cubic term ϑ̃3 is plotted in green.
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Figure 7.14: Cubic and linear model structure, iterative Method B2. A path
of ϑ̃ in black, on top of the border lines of the cost function, based on a grid-
ding approach. The plus sign is the minimum found through gridding and
the star marks the true parameter value. The small and large circles mark
the initial and final values of ϑ̃ using the iterative method Method B2. The
rhombic shape of the ϑ̃ trail is the consequence of the choice of search path,
where ϑ̃ is always updated in pairs, with a positive or negative increment in
each direction. With a variable step length in each separate direction this
would not be the case, and the iterative method would probably find a better
optimum.
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Figure 7.15: Cubic and linear model structure. The estimate of the cubic
parameter b, with b0 = 4. The MethodA estimates are closest to b0, CLS and
B2 are overestimating and CIV is underestimating the value. For methods B2,
CLS and CIV, the estimate b̂ has been produced by taking b̂ = 1
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.

Method A are close to b0 = 4, whereas Method C either overestimates (CLS) or
underestimates (CIV) b̂. Method B2 leads to a much larger variance in the pa-
rameter estimate than the other methods, which could be caused by the method
getting stuck in a local minimum. In Figure 7.16 the mse results are shown for
validation data from (a) preinversion and (b) postinversion. The CLS method per-
forms significantly better than the CIV method or using the true value. The CIV
method performs slightly worse than the true values. The iterative Method B2

used as a preinverse performs better than the other methods.

7.3 Inverse identification in Hirschorn’s method

In the case study above, the underlying structure of the system was known and
model structures for the inverse model were based on that knowledge. For a
small system, this can be done but in the general case, finding a structure for the
matching inverse is nontrivial. Hirschorn’s method, described in Section 3.3.2, is
a way of finding an inverse to a general nonlinear system. Hirschorn’s method
gives a structure for the inverse, based on a model of the forward system. Ex-
act linearization assumes full knowledge of the system, but one could imagine
a situation where the structure of the nonlinear system is known, but there are
unknown parameters. The identification can be done in several ways, correspond-
ing to the methods described in Section 5.1.

MethodA would correspond to measuring the input u and the output y, and
identifying the unknown parameter values in the standard (forward) way. This
estimated model could then be used to provide the inverse, since a model of the
inverse system is available if a forward model is.

Since the exact linearization framework provides us with an inverse if the for-
ward model is known, Method B1 does not really have an equivalence in this
case – once the forward model is known, the exact inverse to match it is also
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Figure 7.16: Cubic and linear model structure. The mse for the Methods
B2 and C, evaluated as (a) a preinverse and (b) a postinverse. For the prein-
verse, the iterative B2 method performs best, closely followed by the CLS
method.The CIV method performs slightly worse than the true parameter
value. For the postinverse, only Method C is evaluated and compared to
the true value. The ranking of performance is the same as in the preinverse
case.

known. In the general case, this forward model could be used to estimate an ap-
proximate inverse. Method B2 could be used where the parameter is estimated
using repeated experiments.

Method C would correspond to estimating the inverse S† directly. The order
of the input and the output are reversed in Method C, so that y is used as input
and u as output. In Hirschorn’s method, the inverse takes the reference r as input
and the output is the control signal u. So, in order to find the inverse of S†, u
is needed as output and the reference r as input. But, as the data was collected
in open loop with no pre- or postdistorter, the signal r is not available, only u
and y. Now, as in Section 3.3.2, assume that the system was actually preceded by
a system S†, fed by a fictitious reference signal r̃, and that the overall behavior
from r̃ to y is in fact linear with dynamics described by Gm. If this is true, then
a signal r̄ ≈ r̃ can be obtained by filtering y with 1/Gm, and the system S† can
be identified using r̄ as input and u as output, see Figure 7.17. So, this equals
finding the inverse by using (a filtered version of) the output y as the input and u
as output as in Method C. A benefit with Hirschorn’s method is that it provides
a parameterized inverse, so that the structure of this inverse system is already
known.

Example 7.1: Parameter estimation for a Hirschorn inverse
Let us look at the example used in Example 3.4, where the goal is to obtain a
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Figure 7.17: Estimation of Hirschorn inverse model. By filtering the output
y through the inverse dynamics of the desired dynamics Gm, an estimate of
the reference signal r̄ can be obtained. This means the reference signal r̄
(or an estimate thereof) and the desired output u are available. These two
signals can then be used to estimate the parameters needed in the inverse,
as in Method C. The difference compared to Figure 3.9 is that there is no
Gm block here. In Section 3.3.2, the goal was to obtain an overall behavior
equal to the Gm dynamics. Here, the goal is to obtain the signals needed to
perform the inverse system identification, in this case ū (constructed from
y) and u (available from measurements).

linear response from reference r to output y. The nonlinear system is

ẋ1 = −x3
1 + x2 + w1

ẋ2 = −αx2 + u + w2 (7.13)

y = x1

with process noise w1 ∈ N (0, 0.1), w2 ∈ N (0, 0.05) and the input is a multisine.
The parameter α = 0.8 is unknown but the structure of the system is known.

To evaluate the different identification methods, a model has been estimated
using measured data. The functions used to perform the grey-box modeling are
idnlgrey and pem in the system identification toolbox in Matlab. Method A

uses input data u(t) and output data y(t) from the open-loop system. Method C

uses the filtered output r̄ as input data and u(t) as output data. Method B2

uses repeated experiments, here a gridding is performed and the optimal value
is determined.

The evaluation is done using a Hirschorn preinverse, where the parameter es-
timates are used in the preinverse, and the system uses the true value α0. The
mse values are shown in Figure 7.18 for the true value, and the parameter esti-
mates from Methods A and B2. The estimate from Method C performs badly
and is not shown here. The extra filtering and the more complicated model struc-
ture for the Hirschorn inverse seem to complicate the optimization for the inverse
model using Method C. The mse values are presented in Table 7.2, along with
the parameter estimates α̂. The improvement shown is how much better themse
is in percent, compared to using the true value in the inverse. It is shown that es-
timating the parameter in the forward model improves the performance slightly
compared to using the true value, and that using Method B2 improves the per-
formance even more.
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Table 7.2: mse (4.11) of the Hirschorn identification example in Exam-
ple 7.1.

y True Method A Method B2

Estimate α̂ 0.8 0.8454 1.20
mse 0.5908 0.0281 0.0266 0.0215

Improvement [%] 0 5.6 23.5
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Figure 7.18: The mse of the Hirschorn preinverse in Example 7.1 for dif-
ferent identification methods. The mse for different α in the preinverse
are shown, along with the values using the true parameter value α = 0.8
(square), the forward Method A estimate (circle) and the estimate from the
repeated experiments using Method B2 (rhomb).
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7.4 Discussion on inverse system identification

In this first part of the thesis, we have looked at the estimation of inverse systems.
There are three main methods, and it has been shown that the results and perfor-
mance depend on the chosen method. There are cases when the various methods
produce the same model, but in the general case this is not true. Therefore, it is
necessary to consider the choice before estimating a model of an inverse system.
System identification should be performed in the same setting as the model is
intended to be used, and this is true also for inverse systems.

The discussions and analysis concern both preinversion and postinversion,
where the position of the inverse is often given by the application. It has been
shown that the identification of a forward system and a postinverse are more
straightforward than the identification of a preinverse. For the preinverse case,
the input signal to the system will change as it passes through the inverter, and
this step can significantly change the properties of the signal. Therefore, one
set of measurements is not enough to obtain the best performance. Furthermore,
when there is noise present in the measurements, the true inverse is not optimal,
and it can be beneficial to evaluate other structures.

In Part II of this thesis, focus is on preinversion, also called predistortion,
of power amplifiers. The two most common methods for power amplifier pre-
distortion are Method B1 (dla) and Method C (ila). Method C estimates
a postinverse that can be used as a preinverse, and the identification process is
straightforward which makes it easy to try out different model structures. How-
ever, if the goal is a preinverse, the commutation of the system and its inverse
might be problematic for a nonlinear system. Method B1 has the advantage
that it estimates a preinverse, but the identification process is more complicated
than for Method C. We have suggested a modification of Method B1, denoted
Method B2, where the preinverse is identified using the system in the loop dur-
ing repeated measurements. This allows for multiple noise realizations and the
altered (predistorted) input signal to correctly excite the system, but requires ac-
cess to the system.

Although it has been illustrated in this first part of the thesis that using mul-
tiple experiments can be beneficial, Method B2 will not be used further in the
second part. One of the goals of a predistorter is to be able to use it adaptively
and update the parameter values to account for wear and temperature changes,
and then it is crucial to have an online solution that does not require dedicated
experiments. The benefits are also largest when the noise contribution is consid-
erable, and this is not the case for the outphasing predistortion setup in Part II.
The Methods A, B1 and C will all be evaluated for the predistortion application.



Part II

Power amplifier predistortion





8
Power amplifiers

An electronic amplifier, or power amplifier (pa) is used to increase the power of
a signal, so that the output is a magnified replica of the input. There are many
different constructions of amplifiers, and they can be characterized by different
measures such as gain, efficiency and linearity. Amplifiers are commonly used in
many applications, such as audio applications and telecommunications, both in
base stations and hand-held devices.

This chapter provides a basis to understand the amplifier related problems
described in later chapters. It is by no means a complete description of pas, but
should be enough to understand this thesis. It also introduces the concepts of
predistortion and linearization as well as the outphasing pa.

8.1 Power amplifier fundamentals

Today, wireless communication is used everywhere to transfer information. An
important part of the technology is the possibility to transmit and receive the
information, and the devices used are called transmitter (tx) and receiver (rx).
The transmitter converts the information to an electrical signal suitable for the
transmission in the given medium (in this case air, but in standard communica-
tion this can be a wire, fiber-optics, etc.). At the other end of the transmitting
medium, a device is needed to receive the message and convert it into the origi-
nal form – the receiver. This process of sending and propagating an information
signal over a medium is called a transmission.

It is often desired that the equipment should be able to both send and receive
information (a phone for example, where one can speak and listen), that is, a
device that contains both a transmitter and a receiver. Such a circuit is called a
transceiver. The physical circuit is connected to a chip.

By combining the receiver and transmitter into a transceiver, the circuits can

109
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Figure 8.1: Block diagram of a direct-conversion transmitter. The baseband
signal (xBB) is upconverted to radio frequencies by the modulator and passes
through a pa before being sent to the antenna.

be used for multiple purposes, reducing the number of components (and thus the
cost) as well as the size of the chip, leading to more functionality per area. Such
shareable components are antennas, oscillators, amplifiers, tuned networks and
filters, frequency synthesizers and power supplies [Frenzel, 2003].

8.1.1 Basic transmitter functionality

A standard transmitter includes a digital baseband (db), digital-to-analog con-
verters (dac s), mixers (x) (further explained in Example 8.1), two local oscilla-
tors (los) that are 90◦ out of phase, a combiner, a power amplifier and a matching
network before the antenna. The signal of interest, xBB, is split into an in-phase
channel, I , and a quadrature channel, Q,

xBB(t) = I(t) + jQ(t) (8.1)

by the db, corresponding to the real (I) and imaginary (Q) parts of the signal,
to generate two independent signals. Complex signals are commonly used in
different modulation techniques in communications applications, see for exam-
ple Frenzel [2003]. The I and Q signals are upconverted to the radio frequency
(rf, ranging between 3 kHz and 300 GHz) carrier frequency, ωc, and recombined,
see Figure 8.1. The upconversion is done by a quadrature modulator, usually im-
plemented by two mixers and two lo signals with a phase difference of 90◦. The
power of the recombined output signal,

x(t) = r(t) cos(ωct + α(t)) (8.2)

where

r(t) =
√
I2(t) + Q2(t) (8.3)

and
α(t) = arctan(Q(t)/I(t)) (8.4)

is often too low for transmission, and it has to pass through a power amplifier
before being sent to the antenna.
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Figure 8.2: Amplitude modulation. The information in the modulation sig-
nal is upconverted in the mixer to the carrier frequency (frequency of the
carrier signal) and the shape (envelope) of the modulated signal contains the
original information in the modulation signal.

Example 8.1: Amplitude modulation
Modulation is the process of varying the properties of a high-frequency signal,
the carrier signal (usually a sine wave) with a modulation signal that contains the
information to be transmitted. The modulation can be performed using a mixer,
a component that multiplies the two (possibly shifted) inputs. When amplitude
modulation (am) is used, the information can be found in the amplitude of the
modulation signal. The imaginary line that connects the peaks of the modulated
signal is the information signal, and is called the envelope. Other common analog
modulation techniques include phase modulation (pm) and frequency modula-
tion (fm). Here, the envelope of the signal is kept constant but the phase shift or
the frequency, respectively, of the carrier frequency is varied. These modulation
techniques can also be combined into more complex modulation techniques.

For the example in Figure 8.2, the modulation (information) signal is a sine
wave. The carrier is a sine wave of much higher frequency, and the modulated
output is a high frequency signal where the shape of the envelope contains the
information in the modulation signal.

The amplitude modulation in Example 8.1 is an analog modulation scheme
that can be used for continuous signals. If the baseband signal is digital, a digital
modulation is needed which will be introduced in Example 8.2.

Example 8.2: Digital modulation
One digital modulation scheme is phase-shift keying (psk) that changes, modu-
lates, the phase of the carrier signal. A digital modulation uses a finite number
of distinct signals to represent digital data. In psk, the phase is unique for each
signal section, or symbol, that is transmitted. The demodulator, at the receiver
end, should interpret the signal and map it back to the original symbol. This
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Figure 8.3: (a) Constellation diagram for quadrature phase-shift keying, a
digital modulation scheme. The four symbols represent the bits 00, 01, 11
and 10. (b) An example where the symbol 10 is to be transmitted. The i
part is 1 and the q part is 0. The bits are modulated by a carrier signal, a
sinusoidal with a 90◦ phase shift between the i and q parts, and the signals
are added. Typically, the zero is coded as −1. The phase of the output is
unique and can be mapped back to the i and q parts, as seen in Figure 8.4.

requires the receiver to be able to compare the phase of the received signal to a
reference signal. Such a system is termed coherent.

One type of digital psk modulation is quadrature phase-shift keying (qpsk)
which uses four phases, and can encode two data bits per symbol. In a constel-
lation diagram, the qpsk scheme has four points spread out around a circle, as
seen in Figure 8.3a.

We will here look at an example where the symbol to be transmitted is 10.
The iq decomposition is done such that the odd-numbered bit (1) is the i compo-
nent and the even-numbered bit (0) is the q component, as seen in Figure 8.3b.
The bits are modulated by the carrier signal, a sinusoidal with a 90◦ phase shift
between the i and q branches, and the signals are added. The resulting signal is
unique, as seen in the bottom row of Figure 8.4, and can be mapped back to the i
and q components.

8.2 Power amplifier characterization

The choice of pa is a trade-off between different properties such as output power,
efficiency and linearity, and will depend on the application. If power efficiency
is an important property, such as in handheld devices where it will reflect di-
rectly on the battery time, a lower linearity might be accepted, whereas an audio
amplifier, always connected to the power net, might focus more on the linearity
and gain than on the efficiency. Any number of pas can be cascaded in order to
combine the benefits of each step.
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Figure 8.4: The modulated signals in the iq modulation, where the two car-
rier waves are sinusoidal with a 90◦ phase shift. The odd-numbered bits
encode the in-phase (i) component and the even-numbered bits encode the
quadrature (q) component. The total signal is shown at the bottom, to-
gether with the mapping. The digital data transmitted by this signal is
1 1 0 0 0 1 1 0. Tsym is the symbol duration.

8.2.1 Gain

An amplifier is of course supposed to amplify the input signal, and this property
is described by the gain. The gain of an amplifier expresses the relationship be-
tween the input and the output [Frenzel, 2003], and is usually described by the
voltage gain, AV ,

AV =
Vout
Vin

, (8.5)

where Vin and Vout are the input and output voltages, respectively. It can also be
expressed by the power gain, AP ,

AP =
Pout
Pin

,

where Pin and Pout are the input and output powers, respectively, see Figure 8.5.
The gain is usually expressed in decibels (dB), so that the power gain is

AP = 10 log10

(
Pout
Pin

)
. (8.6)

8.2.2 Efficiency

Another important property of a pa is the efficiency, which describes the amount
of power needed to perform the amplification. A part of the input power will be
dissipated in the circuit and can be counted as losses. The efficiency of a pa will
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directly affect the battery time for a cell phone for example, and a high efficiency
is desired.

The output efficiency, η, of a pa is defined as the ratio between the output
power at the fundamental frequency, Pout , and the dc supply power of the last
amplifier stage, PDC , [Cripps, 2006]

η =
Pout
PDC

, (8.7)

and is often denoted drain efficiency (de). Another efficiency measure is the
power added efficiency (pae),

pae =
Pout − Pin
PDC

, (8.8)

where PDC now represents the total power consumption of all amplifier stages
constituting the whole pa [Razavi, 1998].

8.2.3 Linearity

By assigning transmissions different frequency bands, many transmissions can
be done at the same time. For this setup to work, each of these transmissions
must send only in the allotted slot, or channel. A radio transmission is allocated
a frequency band with a certain bandwidth, ωb, around a center frequency, fc,
where power may be transmitted. Any power falling outside the boundaries will
cause disturbances in the neighboring channels. Broadening of the spectrum can
be caused by, for example, nonlinearities in the pa. So to be practically useful in
radio communications, pas need to be linear. This means that the signal should
be amplified in such a way that the output is an exact replica of the input but
with a larger amplitude, and not be transferred to other frequencies. This is not
possible in practice, and the level of linearity, or rather nonlinearity, is quantified
by measures such as spectral mask, adjacent channel power ratio (acpr) and
error vector magnitude (evm).

Spectral mask A spectral mask is a nonlinearity measure describing the amount
of power that is allowed to be spread to adjacent frequencies. It is usually spec-
ified in decibel to carrier (dBc, the power ratio of a signal to a carrier signal,
expressed in decibels) or in power levels given in dBm (power expressed in dB
with one milliwatt as reference) in a specified bandwidth at defined frequency
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Table 8.1: Spectral mask limitations for an edge signal
Offset [kHz] 100 200 250 400 600 1000
Limit [dBc] 0 -30 -33 -54 -60 -60
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Figure 8.6: Spectrum at 1.95 GHz for (a) measured output without dpd, (b)
measured output with predistortion (linearization) and (c) the input signal
for a wcdma signal. The measured aclr are printed in gray for the orig-
inal output signal (without predistortion) and in black for the predistorted
output. The gray shadows represent the passband in which the integration
takes place.

offsets [Fritzin, 2011]. Table 8.1 shows an example of the spectral mask limits for
an edge signal.

Adjacent channel power ratio The acpr is a measure that, like the spectral
mask, describes the amount of power spread to neighboring channels. It is de-
fined as the power in a passband away from the main signal divided by the power
in a passband within the main signal [Anritsu, 2013]. The power at frequencies
that are not in the main signal is the power transmitted in neighboring channels,
i.e., the distortion caused by nonlinearities. Another measure is the alternate
channel power ratio, which is defined as the ratio between the power in a pass-
band two channels away from the main signal, over the power within the main
signal.

The bandwidths and limits are connected to the standard used (for example
wcdma and lte). For awcdma signal, the acpr can be calculated by integrating
the spectrum over a bandwidth of ωb = 3.84 MHz at ±5 MHz distance from the
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Figure 8.7: Error vector magnitude (evm) and related quantities.

center frequency, as

acpr =

fc+l · 5+1.92∫

fc+l · 5−1.92
wcdmaspectrum df

fc+1.92∫

fc−1.92
wcdmaspectrum df

. (8.9)

Here, fc is the center frequency in the main signal and l = ±1 for the adjacent and
l = ±2 for the alternate channel power ratio. acpr is also named adjacent power
leakage ratio (aclr). An example of the aclr can be seen in Figure 8.6.

Error vector magnitude The error vector magnitude (evm) is a description of
the quality of a signal with both magnitude and phase, such as the iq signals as
described in Section 8.1. The error vector is defined as the difference between the
ideal signal and the measured signal [Agilent, 2013], see Figure 8.7.

Gain compression, AM-AM and AM-PM In traditional transistor-based power am-
plifier architecture, there is a point where a change in input amplitude does not
result in a corresponding change in output amplitude, as illustrated in Figure 8.8.
This phenomenon is called gain compression and leads to nonlinearities in the
output, since different amplitudes of the input will be amplified in different ways.

Other nonlinearity measures describing the amplitude and phase distortion
are the amplitude modulation to amplitude modulation (am-am) and the am-
plitude modulation to phase modulation (am-pm). The am-am maps the input
amplitude to the output amplitude (similar to the gain compression graph in Fig-
ure 8.8) and deviations from the straight line will result in output distortion. The
am-pmmaps the input amplitude to the output phase, where an increasing input
amplitude results in an additional output phase shift [Cripps, 2006]. Here, the
optimal phase change is of course zero for all input amplitudes.
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Figure 8.8: Gain compression due to saturation in an amplifier transistor.
The dashed line represents the ideal operation of the amplifier, while the
solid line is the true output of the pa and a consequence of gain compression.

8.3 Classification of power amplifiers

There are many different types of amplifiers, but they can be divided into two ba-
sic types; linear and switched amplifiers. See for example Frenzel [2003] and Jae-
ger and Blalock [2008] for a more thorough description of the different pa classes
and the circuitry to implement them. Classical pas usually assume both the input
and the output to be sinusoidal, which limits the efficiency. If this assumption is
disregarded, higher efficiency can be achieved [Razavi, 1998]. Here, the different
classes are described.

8.3.1 Transistors

An important part of power amplifier implementation are the transistors, and we
will start with a short overview of transistor functionality. A transistor is a de-
vice that uses a small signal to control a much larger signal. The two basic types
of transistors are bipolar junction transistors (bjt s) and field-effect transistors
(fets). The structure of the commonly used fets using semiconducting material
has led to the name metal-oxide-semiconductor field-effect transistor (mosfet).
Depending on how the silicon is doped, the fets can be either of p-type (pmos)
or n-type (nmos), and thus have different conduction capabilities with respect
to the applied voltages at the transistor terminals. Doping is the process of in-
tentionally introducing impurities into an extremely pure semiconductor for the
purpose of modulating its electrical properties. Complementary metal-oxide-
semiconductor (cmos) is a technology that typically uses complementary and
symmetrical pairs of p-type and n-type mosfets for logic functions.

The fets have three terminals, labeled gate (G), source (S) and drain (D), and a
voltage at the gate controls the current between source and drain, see Figure 8.9.
See for example Jaeger and Blalock [2008] for more insights into the workings
and construction of transistors. For an nmos transistor, a high voltage at the gate
leads to a large current between source and drain, and for a small gate voltage,
there is no current. For a pmos transistor the relations are reversed, and a small
gate voltage leads to a large current between source and drain, and a large gate
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Figure 8.9: The symbols of nmos (left) and pmos (right) and the associated
ports. The ports are labeled gate (G), source (S) and drain (D).
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Figure 8.10: Generic Class A/B/C power amplifier. The biasing of the tran-
sistor determines the conduction angle of the pa, as illustrated in the ampli-
fication of a sinewave input (left). The conduction angles are (from top to
bottom) 360◦ for the Class A, 180◦ for the Class B and 90◦ for the Class C
here.

voltage opens the circuit and no current flows. Common uses for transistors are
as amplifiers and switches, depending on the circuitry surrounding them.

8.3.2 Linear amplifiers

Linear amplifiers provide an amplified replica of the input. The drawback is that
linear amplifiers often require a high power level and provide a rather low effi-
ciency, as they operate far from their maximum output power where the linearity
is limited.

Class A amplifiers

A Class A amplifier operates linearly over the whole input and output range. It
is said to conduct for 360◦ of an input sine wave, that is, it will amplify for the
whole of the input cycle, see Figure 8.10. Since the device is always conducting,
a lot of power will be dissipated and the maximum achievable output efficiency
is low, only 50%.
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Class B amplifiers

In a Class B amplifier, the device is biased so that it only conducts for half of
the input cycle, i.e., it has a conduction angle of 180◦, see Figure 8.10. In this
region the amplifier is linear, and at the rest of the input it is turned off, and the
efficiency reaches η = π/4 ≈ 78.5%, with η defined in (8.7).

Class B amplifiers are often connected in a push-pull circuit, so that two am-
plifiers are connected, each of them conducting for half of the cycle, and together
they conduct for the whole 360◦. The efficiency is still the same, and in theory
this will be a completely linear amplifier. In practice, however, if the biasing of
the two amplifiers is not perfect, this will cause cross-over distortion at the time
of switching between the two amplifiers [Jaeger and Blalock, 2008].

Class AB amplifiers

The Class AB amplifier uses the same idea as the Class B configuration with two
amplifiers, but the amplifiers are slightly overlapping such that the cross-over
distortion is minimized. Each amplifier thus has a larger conduction angle than
the 180◦ of a Class B amplifier, but less than the full 360◦ of a Class A amplifier.
This reduction of cross-over distortion is at the expense of efficiency.

Class C amplifiers

Class C amplifiers have a conduction angle smaller than 180◦, typically between
90◦ and 150◦, see Figure 8.10. This causes a very distorted output consisting of
short pulses, and the amplifier usually has some form of resonant circuit con-
nected to recover the original sine wave.

8.3.3 Switched amplifiers

The low efficiency of linear amplifiers is caused by the high power dissipation due
to constant conduction. Switched amplifiers consist of transistors that are either
on (conducting) or off (nonconducting). In the off state (cutoff state), no current
flows so there is (almost) no dissipation. When the transistor is conducting, the
resistance across it is very low, and so is the power dissipation.

The output of a switched amplifier is a square wave, which is passed through
a filter to obtain a sinusoidal signal.

Class D amplifiers

A Class D amplifier consists of two transistors that alternately are on and off. The
output is a pulse-width modulated (pwm) signal, which can be filtered to obtain
the fundamental sine wave, see Figure 8.11. With ideal switches and ideal series
resonant network (C1 and L1) stopping all frequencies but the fundamental tone,
the theoretical maximum efficiency is 100%.
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Figure 8.11: Class D power amplifier.

Class E amplifiers

In a Class E amplifier, only one transistor is used (compared to the two for Class
D). By choosing a suitable load matching network, the drain current and voltage
can be shaped to not overlap each other, making the theoretical efficiency 100%.

8.3.4 Other classes

There exist many other classes including Class F (a variation of the Class E am-
plifier) and Class S (a variation of switching amplifier using pulse-width modula-
tion), see for example Frenzel [2003].

8.4 Outphasing concept

An outphasing amplifier is based on the idea that a nonconstant envelope signal,
with amplitude and phase information, can be decomposed into two constant
envelope signals with phase information only. The two signals can then be ampli-
fied separately by two nonlinear and highly efficient amplifiers and recombined,
as presented in Cox [1974] and Chireix [1935]. The output signal will be am-
plitude and phase modulated, just like the input signal. Another name for the
outphasing concept is linear amplification with nonlinear components (linc).

The outphasing concept is illustrated in Figure 8.12. Here, a nonconstant
envelope-modulated signal

s(t) = r(t)ejα(t) = rmaxcos(ϕ(t))ejα(t), 0 ≤ r(t) ≤ rmax (8.10)

where rmax is a real-valued constant, and α and ϕ are angles, is used to create two
constant-envelope signals, s1(t) and s2(t). This is done in the signal component
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Figure 8.12: Outphasing concept and signal decomposition.
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Figure 8.13: Illustration of ideal power combining (the plus sign) of the two
constant-envelope signals. The signals are amplified separately by two non-
linear amplifiers, A1 and A2, and recombined to an amplified replica of the
input s(t).

separator (scs) in Figure 8.13 as

s1(t) = s(t) + e(t) = rmaxe
jα(t)ejϕ(t)

s2(t) = s(t) − e(t) = rmaxe
jα(t)e−jϕ(t) (8.11)

e(t) = js(t)

√
r2
max

r2(t)
− 1.

The outphasing signals s1(t) and s2(t) contain the original signal, s(t), and a
quadrature signal, e(t), and are suitable for amplification by switched amplifiers
like Class D/E. By separately amplifying the two constant-envelope signals and
combining the outputs of the two individual amplifiers as in Figure 8.13, the
output signal is an amplified replica of the input signal.

In theory, the two quadrature signals will cancel each other perfectly in the
combiner, but in practice, implementation imperfections and asymmetries will
cause distortion. Letting g1 and g2 denote two positive real-valued gain factors,
in each branch s1(t) and s2(t), and δ denote a phase mismatch in the path for s1(t),
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Figure 8.14: The bandwidth of the quadrature signal e(t), and thus the out-
phasing signals s1(t) = s(t) + e(t) and s2(t) = s(t) − e(t), is much larger than
that of the original signal s(t). Any remainders of the quadrature signal
caused by pa imperfections will thus lead to degraded aclr and reduced
margins to the spectral mask. From Fritzin [2011] with permission.

it is clear from

y(t) = g1e
jδs1(t) + g2s2(t)

= [g1e
jδ + g2]s(t) + [g1e

jδ − g2]e(t), (8.12)

that besides the amplified signal, a part of the quadrature signal remains. As
the bandwidth of the quadrature signal, e(t), is larger than the original signal,
s(t), see Figure 8.14, this would lead to a degraded aclr and reduced margins to
the spectral mask [Birafane and Kouki, 2005, Birafane et al., 2010, Romanò et al.,
2006].

The phase and gain mismatches between s1(t) and s2(t) must be minimized
in order not to allow a residual quadrature component to distort the spectrum or
limit the dynamic range (dr),

cDR = 20 log10

(
max(|y(t)|)
min(|y(t)|)

)
= 20 log10

( |g1 + g2|
|g1 − g2|

)
, (8.13)

of the pa [Birafane and Kouki, 2005]. The dr defines the ratio of the maximum
and minimum output amplitudes the pa can achieve. However, all phases and
amplitudes within the dr can be reached by changing the phases of the outphas-
ing signals s1(t) and s2(t).

Since an outphasing amplifier only uses two states (on or off), it will not ex-
perience problems like the conventional pas such as gain compression (see Sec-
tion 8.2.3), where the peak amplitudes are clipped. Instead, the smallest am-
plitudes will not be properly amplified in outphasing pas, since any mismatch
of the amplifier gains will make it impossible for s1(t) and s2(t) to cancel each
other, compare Figures 8.12 and 8.15. Thus, the dr in an outphasing pa limits
the spectral performance when amplifying modulated signals.
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Figure 8.15: The outphasing concept when the gain factors g1 and g2 are not
identical. In the left figure, the outphasing signals are parallel and the re-
sulting output is the maximal one. In the right figure, the nonidentical gain
factors cannot cancel each other, and some remains are left. The dynamic
range (the ratio between the maximal and minimal amplitudes, see (8.13))
of the power amplifier will determine the limit of small amplitude clipping.

As the output of a Class D stage can be considered as an ideal voltage source
whose output voltage is independent of the load [Yao and Long, 2006], i.e., the
output is connected to either VDD or GND, the constant gain approximations g1
and g2 are appropriate and make Class D amplifiers suitable for nonisolating
combiners like transformers [Xu et al., 2010]. The implementation of the com-
biner (the plus sign in Figure 8.13) can be done in a multitude of ways, see for
example Fritzin [2011] and the references therein.

8.5 Linearization of power amplifiers

The increased use of nonlinear amplifiers in an attempt to improve efficiency also
requires new linearization methods. As described in Chapter 3, there are differ-
ent approaches to do linearization. Since it is desirable to work with the original
signal, and not with the amplified output of the pa, a prefilter is desired, also
called a predistorter [Kenington, 2000]. Originally, these predistorters consisted
of small analog circuits, but now they are often implemented in a look-up ta-
ble (lut) or a digital signal processor (dsp). Such an implementation is called
a digital predistorter (dpd). The idea behind predistortion is presented in Fig-
ure 8.16. The predistortion can be divided into two parts, the construction of the
predistorter functions and the implementation of the obtained dpd.

The implementation of predistortion methods entails further considerations,
and as concluded in Guan and Zhu [2010], “different methodologies or imple-
mentation structures will lead to very different results in terms of complexity and
cost from the viewpoint of hardware implementation”. An implementation using
a look-up table will grow quickly with the resolution of the dpd, and thus needs
a large chip area, but avoids the necessity of calculations needed in a polynomial
implementation (leading to a larger power consumption). The implementation
issues have not been considered in this thesis.
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Predistorter System Linear system

Figure 8.16: The main idea behind predistortion is to compensate for future
nonlinearities and dynamics so that the overall system is linear.

An overview of different model structures for behavioral modeling of pas, and
implicitly predistorters, are presented in Ghannouchi and Hammi [2009].

8.5.1 Volterra series

The theory of p-th order Volterra inverses, introduced in Section 3.2.3, allows for
the simpler postinverse (see Method C in Section 5.1) to be calculated and then
used as the desired preinverse. This is used in the predistortion, or linearization,
of for example rf power amplifiers. See also Section 3.2.2 and Section 4.2 for
discussions on preinverse versus postinverse.

Since Volterra series consist of an infinite sum of integrals, the use of general
Volterra theory is rather limited. To reduce the complexity a pruned, or truncated,
version of the Volterra series is often used, where the memory length and/or
the order of nonlinearity is limited. This heavily reduces the complexity of the
sum, but the computational growth is still exponential/polynomial in memory
length/order of nonlinearity, limiting the practical use of Volterra series. The
memory of an inverse Volterra kernel is usually higher than the kernel of the
original system [Tsimbinos and Lever, 1996].

Using pruned Volterra series as a means for modeling and predistortion of
high-power amplifiers is presented in Tummla et al. [1997] and is shown to work
for simulated data with memory length of 1 and nonlinearity order of 7. In Zhu
et al. [2008], pruning techniques have been applied to drastically reduce the num-
ber of terms in the (discrete time) Volterra series and the method was applied to
experimental data. A memory length of 2 and an order of nonlinearity of 11
was used. Volterra based predistorters have also been implemented in field pro-
grammable gate array (fpga), shown in Guan and Zhu [2010]. An fpga is a
circuit that can be configured by the user and are used to implement complex
digital computations.

8.5.2 Memory polynomials

A popular structure to use in pa predistortion is the memory polynomial or the
generalized memory polynomial [Ding et al., 2004, Hussein et al., 2012, Landin
et al., 2014]. Memory polynomials are less complex than Volterra series, and
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linear in the parameters. Parallel Wiener and parallel Hammerstein structures
(see next section) are special cases of memory polynomials [Ding et al., 2004].

8.5.3 Block-oriented models

Since general nonlinear systems are very difficult to model, a common assump-
tion is that the dynamics are linear, and that the nonlinearity is static, which
gives a block-oriented model. This will be the case when there is, for example, a
nonlinear actuator (due to saturation) in a linear control application.

A Hammerstein system consists of a static nonlinear system followed by a
linear dynamic system and in a Wiener system, the static nonlinearity is at the
output of the linear dynamics, see also Example 3.3. One way to broaden the use
of the Hammerstein system is to use a more general parallel Hammerstein sys-
tem, where multiple Hammerstein systems are branched. This structure is often
used in modeling of power amplifiers, where a basic assumption is that the main
part of the signal is amplified in a nonlinear way through the pa, and distortions
are added to the output. The number of branches in the parallel Hammerstein
structure determines the complexity of the model.

In Gilabert et al. [2006], a Wiener model of the pa has been used in combina-
tion with a Hammerstein structure predistorter, with memoryless nonlinearities
followed by linear blocks using finite impulse response (fir) and infinite impulse
response (iir) filters. The block-oriented structures have also been used in Gi-
labert et al. [2005] where both a Wiener and a Hammerstein structure have been
evaluated for a pamodel, combined with a Hammerstein dpd. The Hammerstein-
Hammerstein setup presented a better performance. In Nader et al. [2011], par-
allel Hammerstein structures have been used for modeling both pa and dpd, and
compared to peak-to-power power ration reduction. The implementation of a
Hammerstein predistorter in fpga technique is discussed in Xu et al. [2009] us-
ing a wcdma input signal. Gan and Abd-Elrady [2008] use an iir Hammerstein
model structure for the pa and an iir Wiener model for the dpd, such that the
model structures of the power amplifier and the predistorter match.

8.5.4 Model structure considerations in B1 methods

When using Method B1 (dla), there are two model structure choices: one for
the power amplifier and one for the predistorter. These can be chosen to be the
same or different. For general model structures, it can be natural to use the same
structure for both models. This is done in Ding et al. [2004] where memory poly-
nomials are used for both the pa and the dpd models, and in Isaksson and Rön-
now [2007] reduced Volterra series are used.

For block-oriented structures, the choice has to be made regarding whether
the same structure will be used or not. There are combinations of pa-dpd using
Wiener-Hammerstein [Gilabert et al., 2006], Hammerstein-Wiener [Gan and Abd-
Elrady, 2008] but also Hammerstein-Hammerstein [Gilabert et al., 2005] and par-
allel Hammerstein-parallel Hammerstein [Nader et al., 2011].
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As illustrated in Example 3.3, in the noise free case, a Hammerstein system
and the corresponding Wiener system (consisting of the inverses of the static
nonlinearity and the dynamic system, respectively) commute and the exact in-
verse can be obtained. However, when there is noise present in the setup, this
is no longer a guarantee. As shown in Examples 4.1-4.4, the true inverse is not
necessarily the optimal inverse structure, so using an easier model structure (in
parameter estimation, variance or complexity sense) can be beneficial. So, using a
Hammerstein structure as both a model and its inverse, though counterintuitive
at first, could be a good idea.

8.5.5 Outphasing power amplifiers

In outphasing pas, there is no linearity between the individual outphasing sig-
nals, and any gain or phase mismatch between the two signal paths will cause
spectral distortion, see for example Birafane and Kouki [2005] and Romanò et al.
[2006]. Typical requirements are approximately 0.1−0.5 dB in gain matching and
0.2 ◦ − 0.4 ◦ in phase matching, which is very hard to achieve [Zhang et al., 2001].

The gain mismatch could be eliminated by adjusting the voltage supplies in
the output stage [Moloudi et al., 2008], but this would require an extra, adjustable
voltage source on the chip, which is undesirable. For the outphasing amplifier, all
amplitudes within the dynamic range and all phases can be achieved by tuning
the outphasing signals s1(t) and s2(t), see Figures 8.12 and 8.13. This can be used
in the predistortion, so that the two signals are adjusted in a way to compensate
for gain errors and possibly other unwanted effects in the pa.

Earlier predistortion methods for outphasing pas compensate for the gain and
phase mismatches in the signal branches. In Myoung et al. [2008], a mismatch
detection algorithm has been evaluated using four test signals. These two-tone
signals are used to calculate the amplitude and phase mismatches of the amplifier
using a closed-form expression, later used for predistortion. Chen et al. [2011]
present a signal component separator (scs) implementation with a built-in com-
pensation for branch mismatches in phase and amplitude. The scs performs the
decomposition of the original signal s(t) into the outphasing signals s1(t) and
s2(t), (8.11). By taking gain and phase mismatches into account, the scs has a
built-in predistorter.

Helaoui et al. [2008] discuss the impact of the combiner on the outphasing pa
performance. The choice of combiner is a trade-off between linearity and power
consumption. Nonlinearities can be introduced by a nonisolated combiner such
that the output distortion depends on the input power. These nonlinearities were
successfully reduced by the use of a predistorter.

The solutions in Myoung et al. [2008] and Chen et al. [2011] consider the
gain mismatch between the two branches and compute the ideal phase compen-
sation when the outputs are approximated as two signals with constant ampli-
tudes. This is possible when there is no interaction between the amplifier stages.
In this thesis, the outputs are still considered as two constant amplitude signals
generating amplitude and phase distortion. Furthermore, an amplitude depen-
dent phase distortion, occurring due to the interaction and signal combining of
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the amplifiers’ outputs, is also considered.
Parts of the results in Chapters 9-11 can also be found in Fritzin et al. [2011a]

and Jung et al. [2013]. The nonconvex algorithm, presented in Fritzin et al.
[2011a], has been developed in Landin et al. [2012] to include a method for find-
ing good initial values to the nonlinear optimization. However, the basic prob-
lem of nonconvexity has not been solved there and local minima still risk posing
problems in the optimization. In Jung et al. [2013], the nonconvex formulation
has been reformulated into a convex method. In this method, the pa model is
estimated in a least-squares setting and an analytical calculation of the predis-
torter is used. Furthermore, a theoretical characterization of an outphasing pa is
presented and form a basis for an ideal dpd. This characterization has also been
used to obtain an estimate thereof.





9
Modeling outphasing power

amplifiers

In this chapter, one way of modeling of the outphasing power amplifier using
knowledge of the physical structure of outphasing amplifiers is presented. It
consists of a new decomposition of the outphasing signals making use of the
knowledge of the uneven amplification in the two branches, as well as a way to
incorporate the possible nonlinearities in the branches.

Despite the fact that the pa is analog and the baseband model is in discrete
time, the notation t is used to indicate the dependency on time. Based on the
context, t may thus be a continuous or discrete quantity and denote the time or
the time indexation. For notational convenience, the explicit dependency on time
will be omitted in parts of this chapter and the following one.

9.1 An alternative outphasing decomposition

As mentioned in Chapter 8, the pa output signal y(t) is a distorted version of
the input signal. The nonlinearities are due to (i) the nonidentical gain factors
g1 and g2, and (ii) nonlinear distortion in the amplifier branches. First, a novel
decomposition will be described, accounting for the nonidentical gain factors g1
and g2, followed by a description of how these can be used in the modeling of
the outphasing power amplifier. Since it is desired that the predistorter should
invert all effects of the pa except for the gain, the signals can be assumed to be
normalized such that

max
t
|s(t)| = max

t
|y(t)| = 1. (9.1)

As described in Figure 8.12, the amplitude information of the original input
signal s(t) can be found in the angle between s1(t) and s2(t). Let

∆ψ(s1, s2) = arg(s1) − arg(s2) (9.2)

129
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Figure 9.1: (a) Decomposition of the input signal s(t) into s1(t) and s2(t)
when g1 = g2 = g0 = 0.5 and into s̃1(t) and s̃2(t) when decomposed as
in (9.3) with nonidentical gain factors g1 and g2. (b) Trigonometric view
of the decomposition of s(t) using nonidentical gain factors. Note that
|s̃k | = gk , k = 1, 2.

denote the phase difference of the outphasing signals s1(t) and s2(t). Since the
amplitude of the nondecomposed signal in the outphasing system is determined
by ∆ψ(s1, s2), this difference can be used instead of the actual amplitude in many
cases. For notational convenience, ∆ψ will be used instead of ∆ψ(s1, s2), unless
specified otherwise. Here, all phases are assumed unwrapped.

To describe the distortions caused by the imperfect gain factors, consider
again the decomposition of s(t) into s1(t) and s2(t) in (8.11). This is only valid
when g1 = g2 but we can use an alternative decomposition of s(t) into s̃1(t) and
s̃2(t) such that

s̃1(t) + s̃2(t) = s(t), (9.3a)

|s̃k | = gk , k = 1, 2, and (9.3b)

arg(s̃1) ≥ arg(s̃2). (9.3c)

Assuming knowledge of g1 and g2 = 1 − g1 and given s(t), the signals s̃1(t) and
s̃2(t) can be computed from (9.3). Let

b1 = arg(s̃1) − arg(s)

and
b2 = arg(s) − arg(s̃2)

denote the angles between the decomposed signals and s(t) as shown in Fig-
ure 9.1a.

Figure 9.1b shows that the decomposition can be viewed as a trigonometric
problem and application of the law of cosines gives

g2
2 = g2

1 + |s|2 − 2g1|s| cos(b1) (9.4)

and
g2

1 = g2
2 + |s|2 − 2g2|s| cos(b2). (9.5)
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The angles b1 and b2 that define s̃1(t) and s̃2(t) can be computed from these ex-
pressions and can be viewed as functions of ∆ψ since |s| = rmax cos(∆ψ/2). This
means that the angles

ξ1(∆ψ) ∆= arg(s̃1) − arg(s1) = b1 − 1
2
∆ψ (9.6)

and
ξ2(∆ψ) ∆= arg(s̃2) − arg(s2) =

1
2
∆ψ − b2 (9.7)

can also be viewed as functions of ∆ψ .
When the goal is to model the phase distortions in the two branches, this al-

ternative way of defining the decomposition reflects the physical behavior better
than the standard outphasing decomposition in (8.11). The output y(t) can be
decomposed in the same way to y1(t) and y2(t), taking the gain factors g1 and g2
into account.

9.2 Nonconvex PA model estimator

A first step on the way to model the outphasing pa is to observe that although
the two branches are identical in theory, once implemented in hardware this will
not be the case. Since the signals s1(t) and s2(t) are amplified by two different
amplifiers, there might be a small amplification difference resulting in a gain
offset between these signals, as well as a time delay stemming from the fact that
s1(t) and s2(t) take different paths to the power combiner. With this insight, a
first model structure with a gain mismatch between g1 and g2 and a phase shift δ
in one branch is proposed. This leads to a model structure described by

y(t) = g1e
jδs1(t) + g2s2(t), (9.8)

where g1, g2 and δ are real-valued constants.
When adding more complex behavior to the model structure, the structure of

the physical pa must still be kept in mind. The separation of the two branches
is still valid, but each branch can be affected by other factors than the gain dif-
ference and possible phase shift. As the amplitudes of the outphasing signals are
fixed, a distortion based on changing the phase only in each branch is proposed.

To model an amplitude dependent phase shift while keeping in mind the
constant amplitude of the signals s1(t) and s2(t), a model structure with an ex-
ponential function can be used. An amplitude-dependent phase distortion in
yk(t), k = 1, 2 (the two amplifier branches) can be written as

yk(t) = gke
j fk(∆ψ)sk(t), k = 1, 2, (9.9a)

y(t) = y1(t) + y2(t), (9.9b)

as in Figure 9.2. Here, f1 and f2 are two real-valued functions describing the
phase distortion

arg(yk) − arg(sk) = fk(∆ψ), k = 1, 2, (9.10)
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Figure 9.2: A schematic picture of the amplifier branches setup. Note that
the functions fk , k = 1, 2, are not functions of the input to the block only but
are used to show the general functionality of the pa with the separation of
the two branches.

in each signal path. Furthermore, g1 and g2 are the gain factors in each amplifier
branch. Hence, an ideal pa would have f1 = f2 = 0 and g1 = g2 = g0 and any
deviations from these values will cause nonlinearities in the output signal and
spectral distortion as previously concluded.

The functions f1 and f2 describing the phase distortion in the separate bran-
ches can be described by arbitrary basis functions. Here, polynomials

f̂k = p(ηk ,∆ψ) =
n∑

i=0

ηk,i∆
i
ψ , k = 1, 2, (9.11)

where
ηk =

(
ηk,0 ηk,1 . . . ηk,n

)T
,

have been used as parameterized versions of the functions fk , motivated by the
Stone-Weierstrass theorem, see Rudin [1976, Theorem 7.26].

The model parameters in the given model structure are estimated by minimiz-
ing a quadratic cost function [Ljung, 1999] as in

θ̂ = arg min
θ

V (θ), (9.12)

V (θ) =
N∑

t=1

∣∣∣y(t) − ŷ(t, θ)
∣∣∣2 (9.13)

with
ŷ(t, θ) = g1e

j p(η1,∆ψ(s1,s2))s1(t) + g2e
j p(η2,∆ψ(s1,s2))s2(t) (9.14)

where θ = [g1 g2 ηT1 ηT2 ]T ∈ R
2n+4, y(t) is the measured output data and

ŷ(t, θ) is the modeled output. The model (9.14) can be compared to the struc-
ture (9.9), where y(t) = g1e

j f1(∆ψ)s1(t) + g2e
j f2(∆ψ)s2(t). This structure leads to a

nonlinear and nonconvex optimization problem, so the minimization algorithm
might find a local optimum instead of a global. In order to obtain a good min-
imum in a nonconvex optimization problem, it is essential to have good initial
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values, and one way to obtain these is presented in Landin et al. [2012]. Convex-
ity and nonconvexity will be further discussed in Section 9.5.

Here, a model of the pa was estimated by minimizing a quadratic cost func-
tion measuring the difference between the measured and modeled output sig-
nal. This estimation problem involves solving a nonconvex optimization prob-
lem. However, using the knowledge of the structure of the outphasing amplifier,
there is an alternative way which essentially only involves solving standard least-
squares problems, presented in the next section.

9.3 Least-squares PA model estimator

The output distortions originate both from imperfect gain factors and nonlinear-
ities in the amplifiers. Once the gain factor impact has been accounted for, the
amplifier nonlinearities can be modeled. This means that the modeling optimiza-
tion problem can also be rewritten as a separable least squares (sls) problem,
also presented in Jung et al. [2013]. A separable least squares problem is when
one set of parameter enters the model linearly and one set nonlinearly. Given
the nonlinear parameters, the linear part can be solved for efficiently, leaving a
nonlinear problem of a lower dimension [Ljung, 1999]. See also Section 2.6.1 for
a short introduction to sls problems.

Often, the minimization is done first for the linear part and then the nonlinear
parameters are solved for and this nonlinear minimization problem now has a
reduced dimension. Here, the idea is to use knowledge of the gain factors to
make a nonlinear transformation of the data using the decomposition (9.3). Once
this decomposition is done, the minimization can be rewritten as a least-squares
(ls) problem in the phase distortion in the two branches. This is not the usual sls
method since it involves a nonlinear transformation of the data, but the basic idea
of separating out the nonlinear parameters to obtain a ls problem still applies.
We will here explore two ways of estimating the gain factors g1 and g2. One
is based on the dynamic range of the pa and the other is based on a parameter
gridding of possible values of g1 and g2.

Assuming the gain factors to be known, we know what the phases of the out-
puts from the two outphasing branches must be in order for the two signals to
sum up to the measured output y(t). It is now possible to decompose the out-
put y(t) into y1(t) and y2(t), using the decomposition in Section 9.1. What is left
to determine is the phase distortion in the branches, described by the functions
fk . Since the gain factor influence is handled by the alternative decomposition of
y(t), the phase distortion is now described by the difference between the phase
of the input sk(t) and the output yk(t), k = 1, 2 and this can be formulated as a
least-squares problem.

Consider first the two gain factors g1 and g2 = 1 − g1, where the relation
between them comes from the normalization (9.1). Let

g1 = g0 ± ∆g ,
g2 = g0 ∓ ∆g , (9.15)
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where ∆g ≥ 0 represents the gain imbalance between the amplifier stages and
g0 = 0.5. Inserting (9.15) into (8.13) gives

cDR = 20 log10

(
g0

∆g

)
. (9.16)

Hence, the imbalance term ∆g can be computed as

∆g = g0 · 10−cDR/20, (9.17)

making it possible to find approximations of g1 and g2 from the dynamic range of
the output signal. The value of cDR can be estimated from measurements as the
ratio between the maximum and minimum output amplitudes. The estimate is
noise sensitive, but this can be handled by averaging multiple realizations. These
approximations are valid for input signals with large peak to minimum power
ratios, like wcdma and lte, where the pa generates an output signal including
its peak and minimum output amplitudes, i.e., its full dynamic range. If this
is not fulfilled or the noise influence is too large, an alternative approach is to
evaluate a range of values of g1 and g2 = 1 − g1 and then solve the pa modeling
problem for each pair of gain factors, as in the usual sls approach.

Once the gain factors have been determined, s(t) can be decomposed into s̃1(t)
and s̃2(t), and y(t) into y1(t) and y2(t) using (9.3) to (9.5). Furthermore, the stan-
dard outphasing decomposition of s(t) into s1(t) and s2(t) as in (8.11) will be used
in the sequel.

Since the gain factor mismatch has been accounted for, it is now possible to
determine the impact of the nonlinearities on the two branches. The phase dis-
tortion in each signal path caused by the amplifiers can thus be modeled from
measurements of s(t) and y(t). Here, polynomials

p(ηk ,∆ψ) =
n∑

i=0

ηk,i∆
i
ψ , k = 1, 2,

have been used as parameterized versions of the functions fk , as in (9.11). Es-
timates η̂k,i of the model parameters ηk,i have been computed by minimizing a
quadratic cost function, i.e.,

η̂k = arg min
ηk

Vk(ηk), k = 1, 2, (9.18)

where

Vk(ηk) =
N∑

t=1

(
arg (yk(t)) − arg (s̃k(t)) − p

(
ηk ,∆ψ(s1(t), s2(t))

))2
, (9.19)

and
ηk =

(
ηk,0 ηk,1 . . . ηk,n

)T
.

The cost function (9.19) can be motivated by the fact that the true functions fk
satisfy (9.10) when the amplifier is described by (9.9). Minimization of V1 and V2
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are standard least-squares problems, which guarantees that the global minimum
will be found [Ljung, 1999].

Once the ls problem is solved for each setup of g1 and g2, the problem of
finding the best setup is now reduced to a one dimensional (possibly nonconvex)
optimization problem over g1(g2 = 1 − g1), which is much easier to solve than
the original, multidimensional problem. A problem this small can be solved at a
small computational cost.

The parameter estimates η̂k define function estimates

f̂k(z) = p(η̂k , z), k = 1, 2, (9.20)

that, together with the gain factor estimates ĝ1 and ĝ2 describe the power ampli-
fier behavior. The different steps are also described in Part A – Estimation of pa
model in Algorithm 10.1, page 155.

The alternative decomposition described in Section 9.1 depends on the gain
factors g1 and g2 via a nonlinear relation, but with these given, the problem is
reduced to a ls-problem in the phase as in (9.19). If the gain factor estimation
is done using the dr as in (9.15) and (9.17), this will result in two ls-problems
to solve, and gridding of g1 will result in

(
gmax−gmin

pM
+ 1

)
ls problems. The values

gmin and gmax bound the values of g1 and g2 that one wants to evaluate and pM is
the precision, so that g1 ∈ [gmin, gmin + pM , . . . , gmax] and g2 = 1− g1. Compare to
Algorithm 10.1, page 155, for notation. This is not the standard slsmethod, since
a nonlinear transformation of the data is done before solving the ls problem, but
the separation of the linear and nonlinear parameters applies. This separation re-
duces the optimization to a number of ls problems and a nonlinear optimization
in only one dimension, g1 (g2 = 1 − g1 due to the normalization (9.1)). This is
clearly a reduction from the nonlinear optimization in 2n + 4 dimensions of the
original problem.

9.4 PA model validation

As an evaluation of the different approaches presented above, the models have
been compared. Figures 9.3-9.6 present the amplitude and phase of the measured
output and the model output. The amplitude error |y − ŷ| and the phase error
arg(y) − arg(ŷ) are also included. The first simple model in (9.8), using only the
gain factors g1 and g2 and a phase shift δ, is presented in Figure 9.3. The more
complex model structure (9.14) is presented in Figures 9.4, 9.5 and 9.6, using the
different modeling methods. The model obtained by the nonconvex approach
as in (9.12)-(9.14) is presented in Figure 9.4. The ls method using (9.18)-(9.19)
and the dynamic range to obtain the gain factors is presented in Figure 9.5. In
Figure 9.6, the ls method using gridding of g1 over a range of values and then
determining the best fit is presented.

The more complex models perform very well, and fairly similarly. This is
easier to see in Figure 9.7, where the errors for the different modeling methods
are plotted together. Though the models all perform well, there are still errors.
These errors are largest where the input amplitude is small, such as around time
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Table 9.1: pamodel validation

Method g1 g2 |y − ŷ|22, (9.13)
Delay only, model structure (9.8) 0.4911 0.5089 62.99

Nonconvex 0.4986 0.5014 0.9985
ls, grid 0.50 0.50 1.119
ls, dr 0.4994 0.5006 0.9781

152 µs and 156.5 µs. The result of the dr lsmodel is also presented in an iq plot
in Figure 9.8 where the signals are plotted in the complex plane. Also in this
plot, the model shows a very good behavior, with a slightly worse performance
for small amplitudes.

The gain factor estimates are presented in Table 9.1 together with the cost
function (9.13) for the different methods. As seen in the rightmost column where
|y − ŷ|22, (9.13), is presented, the added model complexity with nonlinearities
makes a large improvement in the model fit. The ls method using dr and the
nonconvex method achieve rather similar results with the gridding ls method
slightly behind. The results of the nonconvex method depends on the number of
iterations used in the optimization.

Except for the first simple model, the other methods perform very similarly
with a very good fit to validation data. This clearly shows that the nonlinear ex-
tension to the model has a significant impact on the model properties. This also
means that the choice of method comes down to other considerations than the
fit. The lack of guarantees of convergence to a global minimum of nonconvex
optimization methods is a reason to avoid the method described in Section 9.2.
If the ls method is chosen, this also entails the choice of gridding or using the
dynamic range. Gridding is more robust against noise, since the dr estimation is
done using only two measurements (the one with minimal and the one with max-
imal amplitude), so noise at either of these data points will have a large impact.
A drawback with gridding is the risk of missing the best value, if the precision
pM (difference in g1 and g2) is chosen too large, or the performance is sensitive to
changes in the the parameter. A smaller pM , on the other hand, will increase the
number of ls problems that need to be solved. Benefits and drawbacks for the
dynamic range method are the opposite.
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Figure 9.3: Model validation of the model produced using the first struc-
ture (9.8), with gain factors g1 and g2 and a phase shift δ only. The upper
plot shows the amplitude of the measured signal (solid pink), the model out-
put (dashed blue) and the error (black). The lower plot shows the phase.
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Figure 9.4: Model validation of the model produced using the original, non-
convex, optimization in (9.12)-(9.14). The upper plot shows the amplitude
of the measured signal (solid pink), the model output (dashed blue) and the
error (black). The lower plot shows the phase.
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Figure 9.5: Model validation of the model produced using the convex
method in (9.18)-(9.19) and the dynamic range has been used to determine
the gain factors as in (9.17) and (9.15). The upper plot shows the amplitude
of the measured signal (solid pink), the model output (dashed blue) and the
error (black line). The lower plot shows the phase.
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Figure 9.6: Model validation of the model produced using the convex
method in (9.18)-(9.19) and g1 has been gridded in [gmin, gmax] = [0.4, 0.6]
with precision pM = 0.005. The upper plot shows the amplitude of the
measured signal (solid pink), the model output (dashed blue) and the error
(black line). The lower plot shows the phase.
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Figure 9.7: A summary of the model errors of the different models. The
upper plot shows the amplitude error |y − ŷ| and the lower plot shows the
phase errors arg(y) − arg(ŷ). The simple model (9.8) is plotted in black, the
ls methods using dr in solid pink and gridding in dashed blue. The model
obtained by the nonconvex method is plotted in a green dashed line. The
three models describing a nonlinear behavior perform very well and in a
very similar way, as seen in the figure where the lines are almost on top of
each other.
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Figure 9.8: iq plot (imaginary part, Q, vs real part, I) of the measured signal
(solid pink) and the model output (dashed blue) and the error y − ŷ (black).
The model was estimated by the ls method using dr to estimate g1 and g2.
The zoom-in in the upper right corner is a ten times amplification of the
error signal.
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The estimated phase distortion functions, f̂1 and f̂2, from the models can be
plotted as functions of ∆ψ and the results for a wcdma signal for the different

methods are rather similar. The function ˆ̃f describes the phase change between
the two outphasing signals at the output, and thus the amplitude change of the
output. The phase distortion functions ˆ̃f are presented in Figure 9.9 as deviations
from the ideal phase distortion, which should be as close to zero as possible. The
ideal phase distortion includes the compensation for nonequal gain factors. By
this, it is clear that at amplitudes close to zero (∆ψ close to π), a zero distortion
will not be possible for nonequal gain factors. In Figure 9.10, the functions fk , k =
1, 2, are shown for the different methods. The methods achieve similar results,
but at the expense of the number of computations in the nonconvex approach,
where 25 000 function evaluations have been performed to achieve the optimum.

Even though the methods result in similar validation results, the largest dif-
ferences are found close to the edges of the interval. In thewcdma signal, 99.1%
of the measured data points have 0.8 ≤ ∆ψ ≤ 3.0, so the focus of the fit is where
the most data points are. Compared to Figure 8.12 and (9.2), it is clear that the
data points with a very large ∆ψ (close to π) have a very small amplitude, and er-
rors in the phase distortion modeling might not affect as much as the data points
with a small ∆ψ (large amplitude). It can thus be concluded that it could be
more important to obtain a good model for small values of ∆ψ than for large
values (something that could be achieved by weighting functions). It can also
be noted that, if the amplitude of the input had been used instead of the angle
∆ψ = arg(s1) − arg(s2), more weight would have been put at the largest ampli-
tudes. This is not done now since a large input amplitude equals a small ∆ψ and
vice versa.

In polynomial fitting, the agreement with the function f is often bad at the
outer parts of the interval to be approximated. If one can choose the points at
which the polynomial is to be fitted, Chebyshev points should be chosen, with
more points at the outskirts of the interval [Dahlquist and Björck, 2008, p. 377-
379]. Here, we are fitting a polynomial using the method of least squares, but
the same reasoning holds. To obtain a smaller error at the peak power, more data
points could have been collected there. Instead, the least-squares fitting focuses
on fitting the overall performance, and hence more effort is made to obtain a
small error in the parts where there is a larger point density. For the signals
used in this thesis, this area of larger point density is in the center of the interval,
where an improvement will be clearly seen in for example Figure 11.9. We will
return to this subject in Chapter 11 when evaluating the predistortion results.
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Figure 9.9: Simulated output phase distortion of the models from the non-
convex method (dotted green) and the ls methods using dr (dashed blue)
and gridding (pink) (the two model outputs are almost completely on top
of each other). The lines describe the modeled phase difference as a func-
tion of the input signal amplitudes, that is, taking the different gain factors
into account. The three methods evaluated estimate the phase shift almost
equally for the middle range where most of the data points are (99.1% have
0.8 ≤ ∆ψ ≤ 3.0), but the differences are visible at the edges.
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Figure 9.10: Simulated outphasing output phase distortion of the models
from the nonconvex method (green) and the lsmethods using dr (blue) and
gridding (pink). The lines describe the modeled phase in each branch as a
function of the input signal amplitudes. Branch one is plotted in solid lines
and branch two in dashed lines.
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9.5 Convex vs nonconvex formulations

The minimization of the cost function (9.12)-(9.14) is a nonconvex optimization
problem in 2n+4 dimensions with possible presence of local minima. Nonconvex
optimization problems can either be solved by a local optimization method or a
global one, see also Section 2.6. A local optimization method minimizes the cost
function over points close to the current point, and guarantees convergence to a
local minimum only. Global methods find the global minimum, at the expense of
efficiency [Boyd and Vandenberghe, 2004]. Hence, even under ideal conditions
(noise-free data, true pa described exactly by one model with the proposed struc-
ture), there is no guarantee that the nonconvex approach will produce an optimal
model of the pa in finite time. The least-squares approach in (9.18)-(9.19) does ex-
actly this and results in a closed-form expression for the parameter estimate. This
is a major advantage since it removes the need for error-prone sub-optimality
tests and possible time-consuming restarts of the search algorithm. Additionally,
the computation time for the iterative, nonconvex, and potentially sub-optimal
solution is significantly longer compared to the least-squares method.

A two dimensional projection of the cost functions to be minimized, (9.13)
in the nonlinear formulation and (9.19) in the ls reformulation, can be seen in
Figure 9.11. All parameters but two have been fixed at the optimum, and the
linear term in each amplifier branch (ηk,1 in (9.11)) has been varied. Clearly, there
is a risk of finding a local minimum in the nonconvex formulation illustrated
in (a) whereas there is only one (global) optimum in the least-squares formulation
in (b).

The local minima in themselves might not be a problem if they are good
enough to produce a well performing dpd, but there are no guarantees that this is
the case. Typically, a number of different initial points need to be tested in order
to get a reasonable performance.

9.6 Noise influence

Noise is always present in measurements, and the noise will effect the models.
The algorithms presented in this chapter are sensitive to noise especially in two
steps; the normalization g1 + g2 = 1 in (9.1) and the calculation of cDR in (8.13).
Both these calculations are based on very few measurements, one for the normal-
ization (the largest amplitude) and two for the dr calculation (the smallest and
the largest amplitudes), so noise at these instances might have a large influence
on the estimation, and thus the performance of the predistorter.

The measurements used for the modeling and model validation in this chap-
ter were recorded using the same measurement setup and power amplifier that
will be used in Section 11.4. To avoid the influence of measurement noise, the
same input was applied a number of times, K , and the output was measured,
whereupon the average over the different realizations was calculated. In measure-
ments used for the pa model estimation described here, K = 10. No automatic
synchronization between input and measured output is done, so a manual syn-
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Figure 9.11: Two dimensional projections of the cost functions of (a) the
original nonconvex optimization problem (9.12)-(9.14) and (b) the least-
squares reformulation, (9.18)-(9.19) using the dynamic range for the estima-
tion of g1 and g2. All but two parameters in each amplifier branch have been
fixed at the optimal value, and the linear terms (ηk,1 in (9.11)) are varied. In
(a), the visible local minima are marked with 5 and the minimum obtained
clearly depends on the initial point of the local optimization. In the least-
squares formulation illustrated in (b), there is only one minimum (the global
one) and convergence is guaranteed. The + marks the global minimum.
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chronization has to be performed. This also means that the sample times of the
output differ between different measurement sets and that the synchronization
between input and output is not the same for different data sets. When looking
at the different data sets, the most dominant noise effect seems to stem from this
time mismatch, which is evenly distributed around the mean value. The noise
levels in general are very low.

9.7 Memory effects and dynamics

A more complex model structure has also been investigated by adding memory,
that is to say that the output depends not only on the current input but also on
the previous inputs, as in the model structure

pmem(α, β̄nm(s)) =
nm∑

m=0

n∑

j=0

αmjβ(s(t −m))j , (9.21)

with a memory depth nm, where

β̄nm(s) =
(
β
(
s(t −m)

))nm
m=0

. (9.22)

This approach did not lead to a better fit in the model validation, nor did it give
any significant improvement in predistortion.

If dynamics are present in the pa, it is not unreasonable to assume that they
would appear in the combiner, since the amplifier components in each branch
can be assumed to contribute with little dynamics. This would mean that we
have a parallel Hammerstein system with two parallel nonlinear, static branches
(the amplifiers) followed by a dynamic system (the combiner). To investigate how
such dynamics would effect the method described above, a dynamical system has
been simulated at the output of a static model. The model was estimated using
the ls method with dr. The dynamical system was a first order system with dif-
ferent values of the time constant in the range [0.2Ts 5Ts], where Ts is the sample
time. The same identification method was then applied to this data. In this case,
the decomposition of the output using an estimate of g1 and g2 (obtained by dy-
namic range or gridding), is no longer a good approximation of the system, and
the method will not perform in a satisfactory way. Thus, further investigation of
how to include dynamics is needed.
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Predistortion

Power amplifiers in communication devices are often nonlinear and/or dynamic,
which causes interference in adjacent transmitting channels. To reduce this in-
terference, linearization is needed. This is preferably done at the input, so that
a prefilter inverts the nonlinearities/dynamics. This prefilter is called a predis-
torter (pd). Originally, these predistorters consisted of small analog circuits, but
now they are often implemented in a look-up table (lut) or a digital signal pro-
cessor (dsp). Such an implementation is called a digital predistorter (dpd).

For the outphasing amplifiers evaluated in this thesis, the gain mismatch
could be eliminated by adjusting the voltage supplies in the output stage, but
this would require an extra adjustable voltage source on the chip, which is un-
desirable. Instead, the goal is to find a predistorter that uses only the phases of
the two outphasing signals. By adjusting the outphasing signals, it is possible to
achieve all amplitudes (within the dynamic range) and phases, and this idea will
be explored in the construction of a predistorter.

In this chapter, a description of an ideal dpd will be presented and different
methods to obtain it will be described. As a first step, the evaluation of the predis-
torters will be based on a model of the pa (described in Chapter 9), on simulated
data only. In Chapter 11, the predistorters will be evaluated on real measurement
data.

10.1 A DPD description

With the description of the power amplifier in (9.9)-(9.10), it is clear that an ideal
pa would have f1 = f2 = 0 and g1 = g2 = g0 = 0.5 and any deviations from
these values will cause nonlinearities in the output signal and spectral distortion.
In order to compensate for these effects, a dpd can be used to modify the input
outphasing signals to the two amplifier branches, i.e., s1(t) and s2(t).

149
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Figure 10.1: A schematic picture of the amplifiers with predistorters. Note
that the functions fk and hk , k = 1, 2, are not functions of the input to the
block only, but are used to show the general functionality of the pa and the
dpd with the separation of the two branches.

Since the outputs of the Class D stages (the amplifiers in each branch) have
constant envelopes, the dpdmay only change the phase characteristics of the two
input outphasing signals. With this in mind, a dpd that produces the predis-
torted signals

sk,P (t) = ej hk(∆ψ)sk(t), k = 1, 2, (10.1)

to the two amplifier branches is proposed. Here, h1 and h2 are two real-valued
functions that depend on the phase difference between the two signal paths. By
modifying the signals in each branch using the dpd in (10.1), shown in Fig-
ure 10.1, the predistorted pa output yP (t) can be written

yP = g1e
j f1(∆ψ(s1,P ,s2,P ))s1,P︸                    ︷︷                    ︸

∆=y1,P

+ g2e
j f2(∆ψ(s1,P ,s2,P ))s2,P︸                    ︷︷                    ︸

∆=y2,P

. (10.2)

The output is thus a sum of the two predistorted branches. In each branch k =
1, 2, the phase of the input is changed to counteract the effects of the nonequal
gain factors and the pa nonlinearities. Each branch is predistorted separately and
sent to the outphasing pa.

We will start by describing the effects of the predistorter on the output. The
phase difference between the two paths after the predistorters is described by

∆ψ(s1,P , s2,P ) = arg(s1,P ) − arg(s2,P )

= [arg(s1) + h1(∆ψ)] − [arg(s2) + h2(∆ψ)]

= ∆ψ + h1(∆ψ) − h2(∆ψ) ∆= h̃(∆ψ), (10.3)
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and the phase difference between the two paths at the (predistorted) outputs by

∆ψ(y1,P , y2,P ) = arg(y1,P ) − arg(y2,P )

=
[
arg(s1,P ) + f1(∆ψ(s1,P , s2,P ))

]
−
[
arg(s2,P ) + f2(∆ψ(s1,P , s2,P ))

]

=
[
arg(s1) + h1(∆ψ) + f1(h̃(∆ψ))

]
−
[
arg(s2) + h2(∆ψ) + f2(h̃(∆ψ))

]

= ∆ψ + h1(∆ψ) − h2(∆ψ) + f1(h̃(∆ψ)) − f2(h̃(∆ψ))

= h̃(∆ψ) + f1(h̃(∆ψ)) − f2(h̃(∆ψ))
∆= f̃ (h̃(∆ψ)). (10.4)

These phase differences correspond to the amplitude of the signal, since it is
known that |s| = cos(∆ψ/2), cf. Figure 8.12. The absolute phase change in each
branch is given by

arg(yk,P ) = arg(sk) + hk(∆ψ) + fk(∆ψ(s1,P , s2,P )) (10.5)

for k = 1, 2. We now have a model structure describing how the phases of each
outphasing signal, and thus the amplitude and phase of the output, depend on
the characteristics g1, g2, f1 and f2 of the pa and the predistorter functions h1 and
h2.

10.2 The ideal DPD

As mentioned above, the pa output signal y(t) is a distorted version of the in-
put signal. An ideal dpd should compensate for this distortion and result in a
normalized output signal yP (t) = y1,P (t) + y2,P (t) that is equal to the input signal
s(t) = 0.5s1(t)+0.5s2(t). In the ideal case when g1 = g2 = g0 = 0.5, this is obtained
when y1(t) = 0.5s1(t) and y2(t) = 0.5s2(t). However, this is not possible to achieve
when gk , 0.5, k = 1, 2. In this case, the ideal values for y1,P (t) and y2,P (t) are
instead s̃1(t) and s̃2(t), as described in (9.3). These signals define an alternative
decomposition of s(t) such that the gain mismatch is accounted for.

Assume now that an ideal dpd (10.1) is used together with the pa (9.9). In
this case, the equalities

y1,P (t) = s̃1(t) (10.6)

and
y2,P (t) = s̃2(t) (10.7)

hold, which results in

yP (t) = y1,P (t) + y2,P (t) = s̃1(t) + s̃2(t) = s(t).

That is, when the ideal dpd is applied to the pa, the original input will be re-
trieved. This assumes that the model perfectly describes the pa. Some more
conclusions can be drawn about the ideal dpd by looking at the amplitudes and
the phases of the input and the output. In order not to distort the amplitude at
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the output, the phase difference between y1,P (t) and y2,P (t) must be equal to the
one between s̃1(t) and s̃2(t), i.e.,

∆ψ(y1,P , y2,P ) = ∆ψ(s̃1, s̃2) = arg(s̃1) − arg(s̃2) =

=
[
arg(s1) + ξ1(∆ψ)

]
−
[
arg(s2) + ξ2(∆ψ)

]

= ∆ψ + ξ1(∆ψ) − ξ2(∆ψ) ∆= ξ̃(∆ψ). (10.8)

Hence, inserting (10.8) into (10.4) gives

f̃ (h̃(∆ψ)) = ξ̃(∆ψ) ⇔ h̃(∆ψ) = f̃ −1(ξ̃(∆ψ)), (10.9)

assuming that f̃ is invertible. Furthermore, for (10.6) and (10.7) to hold, that is,
y1,P = s̃1 and y2,P = s̃2, we require that the phases of the two signals are equal,

arg(yk,P ) = arg(s̃k), k = 1, 2. (10.10)

Now, we have a description of how the predistorter will affect the output as well
as how the gain factors g1 and g2 change the desired outphasing output signals.
The phase condition (10.10) combined with (10.3), (10.5) as well as (9.6) or (9.7),
respectively (for each branch), gives

arg(sk) + hk(∆ψ) + fk(h̃(∆ψ)) = arg(sk) + ξk(∆ψ), k = 1, 2.

That is, if we know the power amplifier functions fk , the predistorter functions
hk is the only unknown in each branch and can be solved for. This results in

hk(∆ψ) = −fk(h̃(∆ψ)) + ξk(∆ψ)

= −fk(f̃ −1(ξ̃(∆ψ))) + ξk(∆ψ) (10.11)

for k = 1, 2. Here, (10.9) has been used in the last equality.
Hence, using the predistorters (10.11) in (10.1), the output y(t) will be an am-

plified replica of the input signal s(t), despite the gain mismatch and nonlinear
behavior of the amplifiers. This is valid within the dr, which is where we have
the opportunity to improve the behavior.

10.3 Nonconvex DPD estimator

A first approach to identify the predistorter is to notice that the goal is to min-
imize the difference between the normalized input and the normalized predis-
torted output. This can be written down in a straightforward way as solving the
minimization criterion

θ̂DPD = argmin
θDPD

N∑

t=1

∣∣∣s(t) − ŷP(t, θDPD)
∣∣∣2 , (10.12)

ŷP(t, θDPD) = ĝ1e
j p(η̂1,∆ψ(s1,P ,s2,P ))s1,P (t) + ĝ2e

j p(η̂2,∆ψ(s1,P ,s2,P ))s2,P (t), (10.13)
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where
sk,P (t) = ej p(ηk,DPD,∆ψ(s1,s2))sk(t), k = 1, 2, (10.14)

and θDPD = [ηT1,DPD ηT2,DPD]T ∈ R
2n+2. The signal ŷP (t) is the output from a

pa model, using a predistorted input, as in Figure 10.1, where the amplifiers are
replaced by the obtained models thereof. The dpd is thus identified based on
a model of the forward system, according to Method B1, Procedure 5.4. The
forward model was approximated by polynomials, f̂k(∆ψ) = p(ηk ,∆ψ), according
to (9.11), and this is used in (10.12)-(10.13) to explicitly point out the dependence
on the model parameters. When identifying the dpdmodel, the model structure
was assumed to be the same as for the pa model, see (9.11), motivated by the
Stone-Weierstrass theorem (Theorem 7.26 in Rudin [1976]), so that

ĥk(∆ψ) = p(ηk,DPD,∆ψ) =
nh∑

i=0

ηk,i,DPD∆
i
ψ , k = 1, 2, (10.15)

where
ηk,DPD =

(
ηk,0,DPD ηk,1,DPD . . . ηk,n,DPD

)T
.

The resulting estimated parameter vector θ̂DPD contains the dpd model parame-
ters.

This formulation leads to a nonconvex optimization problem and is thus at
a risk of obtaining a suboptimal solution if the optimization algorithm finds a
local minimum. To restart the algorithm at different initial points is a possible
way to reduce the risk of getting stuck in a local minimum instead of the global
minimum, but this solution would not be useful in an online implementation, see
also Section 9.5 for a discussion on convex and nonconvex optimization.

10.4 Analytical DPD estimator

The ideal dpd outlined in Section 10.2 requires knowledge of the pa model, and
once the pa characteristics g1, g2, f1 and f2 are known (or estimated), the predis-
torter functions can be determined. The first step to construct a dpd is thus to
obtain a model of the pa, as described in Chapter 9. This method is similar to
Method A, Procedure 5.3, where a model of the system itself is used to analyti-
cally produce an inverse. Here, the goal is not to reconstruct the original inputs
exactly, but the overall idea is still the same.

The parameter estimates η̂k define function estimates (9.20)

f̂k(x) = p(η̂k , x), k = 1, 2,

from which an estimate
ˆ̃f (x) = x + f̂1(x) − f̂2(x) (10.16)

of the function f̃ from (10.4) can be computed. Provided that this function can
be inverted numerically, estimates ĥk of the ideal phase correction functions can
be computed as in (10.11), i.e.,

ĥk(∆ψ) = −f̂k( ˆ̃f −1(ξ̃(∆ψ))) + ξk(∆ψ) (10.17)
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for k = 1, 2, where ∆ψ is given by (9.2) and ξ̃, ξ1 and ξ2 by (10.8), (9.6) and (9.7),
respectively.

Hence, the complete dpd estimator consists of the selection of gain factors
g1 and g2, see Sections 9.1 and 9.3. Also, the two least-squares estimators given
by (9.18), a numerical function inversion in order to obtain ˆ̃f −1 and the expres-
sions for the phase correction functions in (10.17) make part of the complete dpd
estimator. The dpd estimation can either be done at each point in time, or (as has
been done here) by evaluating the function for the range of possible ∆ψ and sav-
ing this nonparametric, piecewise constant function.

The dpd estimator will result in two functions ĥ1 and ĥ2 which take ∆ψ as ar-
gument, and by using these as in (10.1), the predistorted input signals s1,P (t) and
s2,P (t) can be calculated for arbitrary data. Measurement results for a validation
data set, not used during the modeling, will be presented in Chapter 11.

The algorithm thus consists of two main parts, A – Estimation of pa model
and B – Calculation of dpd functions. Part A consists of three subparts where
the first, A.I, produces candidates for the gain factors g1 and g2 by either using
the dr by gridding possible values. A.II produces ls estimates of the nonlinear
functions f̂1 and f̂2 for each pair of g1 and g2 and in A.III, the best performing
model is chosen among all the candidates. In Part B, the dpd functions ĥ1 and ĥ2
are calculated. The different steps are described in more detail in Algorithm 10.1.

10.5 Inverse least-squares DPD estimator

In the deduction of the predistorter described above, the ideal dpdwas produced
using analytical relationships between the input and the desired output, follow-
ing the basic Method A. By instead choosing Method C, we want to estimate
the inverse directly. This means that the system input s(t) (or rather s1(t) and
s2(t)) will be considered as output to the identification, and y(t) (or y1(t) and
y2(t)) as input, see also Procedure 5.6.

Since g1 and g2 can be found rather easily (through the dynamic range or
gridding), these can still be assumed to be known, so the decomposition of y(t)
into y1(t) and y2(t) can be performed using (9.3). In each branch k = 1, 2 we thus
have

arg(sk) = arg(yk) − hk
(
∆ψ(y1, y2)

)
. (10.18)

The left hand side is the input, which is known. The first term on the right hand
side represents what we have measured, using the decomposition (9.3). The sec-
ond term represents how the outphasing outputs should be modified to match
the input, a postdistorter. The only unknown is thus the predistorter functions
h1 and h2 in the two branches. By approximating these as polynomials,

ĥk ≈ p(ζk ,∆ψ(y1, y2)) =
nh∑

i=0

ζk,i∆
i
ψ(y1, y2), k = 1, 2, (10.19)

where
ζk =

(
ζk,0 ζk,1 . . . ζk,n

)T
.
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Algorithm 10.1 lsmodeling and analytical dpdmethod

Require: model order n, method for choice of g1 and g2, precision of pa model
(pM ) and inverse (pI ), estimation data.

{A – Estimation of pamodel}
1: Normalize the output y(t) = y(t)

max(|y(t)|)
2: Calculate ∆ψ ∀t according to (9.2).

{A.I – Estimation of gain factor candidates g1 and g2}
3: if Use Dynamic Range to determine g1 and g2 then
4: Calculate cDR using (8.13), and ∆g using (9.17).
5: Calculate possible choices of g1, g2 according to (9.15).
6: else {g1 and g2 over a range of values}
7: Grid g1 ∈ [gmin, gmax] with precision pM and let g2 = 1 − g1.
8: end if

{A.II – Estimation of nonlinearity function candidates f̂1 and f̂2}
9: for all pairs of g1, g2 do

10: Create s̃k = gke
j arg(s̃k ) and yk = gke

j arg(yk ), k = 1, 2 using (9.4) to (9.7).
11: Find ηk using (9.18) and calculate f̂k , k = 1, 2 using (9.20).

12: Simulate the output ŷg1,g2
(t) = g1e

j f̂1(∆ψ)s1(t) + g2e
j f̂2(∆ψ)s2(t).

13: Calculate error Vg (g1, g2) =
∑
t |y(t) − ŷg1,g2

(t)|2.
14: end for

{A.III – Choose best forward model, ĝ1, ĝ2, f̂1 and f̂2}
15: Select ĝ1 = arg ming1

Vg (g1, 1 − g1), ĝ2 = 1 − ĝ1 and the corresponding f̂1, f̂2.

{B – Calculation of dpd functions ĥ1 and ĥ2}
{Create a look-up table (lut) for different values of ∆ψ by creating an
intermediate signal s}

16: Grid ∆ψ ∈ [0, π] with precision pI .
17: for each value of ∆ψ do
18: Create s = cos(∆ψ/2) according to (8.10) assuming α = 0 and rmax = 1

(ϕ = ∆ψ/2).
19: Create s1 and s2 according to (8.11) and s̃1 and s̃2 using (9.3) to (9.5).
20: Find ξ̃ using (10.8), (9.6) and (9.7).
21: Calculate ˆ̃f (ξ̃) using (10.16).
22: end for
23: Invert ˆ̃f (ξ̃) numerically to get ˆ̃f −1. This can e.g. be done by calculating f̃ (ξ̃)

for a number of values of ξ̃ ∈ [0, π], grid ˆ̃f (ξ̃) and match with the ξ̃ that gives
the closest value.

24: for each value of ∆ψ in line 16 do
25: Find estimate ĥk(∆ψ) according to (10.17).
26: end for
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as was done for the pa model, the parameters corresponding to the hk-functions
can be found.

The estimates ζ̂k,i of the model parameters have been computed by minimiz-
ing a quadratic cost function, i.e.,

ζ̂k = arg min
ζk

V h
k (ζk), k = 1, 2, (10.20)

where

V h
k (ζk) =

N∑

t=1

(
arg (yk(t)) − arg (sk(t)) − p

(
ζk ,∆ψ(y1(t), y2(t))

))2
. (10.21)

The parameter estimates ζ̂k define inverse function estimates

ĥk(x) = p(ζ̂k , x), k = 1, 2, (10.22)

that can be used as a dpd. As discussed in Chapter 3, this method assumes com-
mutativity of the two systems (system and inverse), so that the inverse which was
estimated at the output of the power amplifier, a postdistorter, can also be used
at the input as a predistorter. The method is summarized in Algorithm 10.2.
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Algorithm 10.2 Inverse ls dpdmethod

Require: model order nh, method for choice of g1 and g2, precision of gain
factors (pM ), estimation data.

1: Normalize the output y(t) = y(t)
max(|y(t)|)

{I – Estimation of gain factor candidates g1 and g2}
2: if Use Dynamic Range to determine g1 and g2 then
3: Calculate cDR using (8.13), and ∆g using (9.17).
4: Calculate possible choices of g1, g2 according to (9.15).
5: else {g1 and g2 over a range of values}
6: Grid g1 ∈ [gmin, gmax] with precision pM and let g2 = 1 − g1.
7: end if

{II – Estimation of nonlinearity function candidates ĥ1 and ĥ2}
8: for all pairs of g1, g2 do
9: Create yk = gke

j arg(yk ) using (9.4) to (9.7) and sk using (8.11).
10: Calculate ∆ψ(y1, y2) ∀t according to (9.2).
11: Find ζ̂k using (10.20) and calculate ĥk , k = 1, 2 using (10.22).

12: Simulate the input ŝg1,g2
(t) = e−j ĥ1(∆ψ(y1,y2))y1(t) + e−j ĥ2(∆ψ(y1,y2))y2(t)

13: Calculate error Vg (g1, g2) =
∑
t |s(t) − ŝg1,g2

(t)|2
14: end for

{III – Choose best inverse model, ĥ1 and ĥ2}
15: Select ĝ1 = arg ming1

Vg (g1, 1 − g1), ĝ2 = 1 − ĝ1 and the corresponding ĥ1 and

ĥ2.
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Table 10.1: dpdmodel validation

Method |s − ŷp |22
Analytical 0.0532
ls 1.008

Gain factors only 65.5

10.6 Simulated evaluation of analytical and LS

predistorter

The goal here is to evaluate the performance of the predistorter methods in simu-
lations, and determine how well the different methods achieve an inversion. One
way is to look at the am-ammodulation to assess how much the amplitude of the
predistorted output is distorted. For an outphasing pa, this is connected to the
phase difference ∆ψ(y1,P , y2,P ) of the outphasing outputs y1,P and y2,P .

The predistorter methods in Sections 10.4 and 10.5 are evaluated using a
model of the amplifier as “the truth”. The model is presented in Chapter 9, where
the gain factors were estimated using the dr and the nonlinearities using the ls
approach, see Section 9.3 and the model validation in Section 9.4 and Figure 9.5.
The same validation data have been used in order to evaluate the different predis-
torter methods. Evaluation on a real pa will be presented in Chapter 11.

Test 1 – Inversion Evaluation

We will start by looking at the am-ammodulation to determine how much the am-
plitude of the predistorted output is changed. The deviation from the ideal phase
difference at the output (i.e., the output amplitude) with and without predistor-
tion is presented in Figure 10.2. Both the analytical method and the ls method
clearly reduce the phase shift introduced by the pa. Figure 10.3 shows the esti-
mated deviation from the ideal phase for each signal branch with and without
predistortion, with rather similar performance for the two dpdmethods.

The values of the cost function (10.12) are presented in Table 10.1 for the two
methods. The result using only the estimation of the gain factors and the alterna-
tive decomposition (using the knowledge of the nonequal gain factors) is also pre-
sented. It is clear that incorporating the nonlinearities improves the performance.
For cases when the gain factors differ more from the ideal g1 = g2 = 0.5 than in
this case (g1 = 0.4986 and g2 = 0.5014), the alternative decomposition (9.3) will
have a larger improvement on the modeling than in this case, when the difference
is small.

For the ls method, the fit is almost perfect in the middle range, which is to
be expected since a polynomial is used (see discussion in Section 9.4. Also the
number of measurements is unevenly spread out over ∆ψ with most data in the
middle, only 0.9% of the estimation data have ∆ψ < 0.8 or ∆ψ > 3. For the
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Figure 10.2: Simulated predistorter evaluation for a model with polynomial
degree n = 5 using thewcdma input signal (see Chapter 11). The signals are
generated using the dpd functions and the pa model. For an ideal pa, there
is no amplitude distortion, that is, the phase difference of the outphasing
signals is the same at the output and the input. The deviation from this ideal
phase difference for the output signal (modeled, not predistorted) ŷ is shown
in dotted green and the predistorted output signals ŷP in pink and blue.
The pink line shows the result using the analytical inversion as described in
Sections 10.2 and 10.4 and the dashed blue line shows the result of the ls
approach in Section 10.5, with predistorter degree nh = 5 in (10.19). The
two methods both perform very well in a large interval.

analytical solution, one can see an inversion error close to ∆ψ = π. This is a
consequence of the nonequal gain factors, ∆ψ = π should represent a complete
opposition of the two outphasing signals such that the output amplitude is zero.
If g1 , g2 however, this is not possible and no phase combination of the two
outphasing signals will lead to a zero-amplitude output. A power amplifier with
a large dynamic range (dr, difference between the gain factors g1 and g2) will
have a very small distortion close to ∆ψ = π, whereas a pa with a small dr will
show this distortion in a larger region. The errors of the two methods when
compared to validation data are shown in Figure 10.4. Also in this plot, it can
be seen that both methods reduce the power amplifier distortion, and that the
analytical inversion performs slightly better.
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Figure 10.3: Simulated predistorter evaluation for a model with polynomial
degree n = 5 using thewcdma input signal. The signals are generated using
the dpd functions and the pa model. The deviation from the ideal phase
for the output outphasing signals (modeled, not predistorted) ŷ1 and ŷ2 are
shown in green and the predistorted output signals ŷ1,P and ŷ2,P in pink
and blue. The pink lines show the results using the analytical inversion as
described in Sections 10.2 and 10.4 and the blue lines show the result of the
ls approach in Section 10.5. Branch one is plotted in solid lines and branch
two in dashed lines. It should be noted that the analytical method uses a
look-up table for with 2 ∗3142 elements and the lsmethod uses polynomials
with 2 ∗ 6 coefficients (nh = 5 in (10.19)). So for a fair comparison between
the two methods we would need to look at more even number of parameters,
but the goal here is to show that both methods perform well.
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Figure 10.4: The upper plot shows the amplitude error, |s− ŷp |, and the lower
plot shows the phase error, arg(s) − arg(ŷp), for the two dpd methods. The
analytical method is in pink and the ls in blue. As a comparison, the errors
for the original, unpredistorted signal y(t) are also plotted in green.
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Figure 10.5: Simulated aclr at 5 MHz and 10 MHz offset with dpd (solid
line) and without (dashed line) for thewcdma signal.

Test 2 – Impact of ACLR on predistorter performance

As previously explained, the result of a limited dynamic range is that all ampli-
tude and phase errors occurring outside the dr cannot be corrected. The signal
clipping in an outphasing pa occurs at small amplitudes, while in a conventional
linear pa, the peak amplitudes are clipped. Thus, the dr in an outphasing pa
limits the spectral performance when amplifying modulated signals. To investi-
gate the performance limits of the predistorter, simulations have been done using
two amplifiers with a given dr (no phase distortion), with and without dpd. In
Figure 10.5, the aclr over dr at 5 MHz and 10 MHz for the wcdma signal are
plotted with and without dpd. Here, the phase error between the outphasing
signals is assumed to be zero. For a pa with a dr of 25 dB the differences in aclr
between the nonpredistorted and predistorted outputs are 8-13 dB. When the dr
is 25 dB the optimal theoretical aclr is achieved after dpd. For a pa with 45 dB
of dr, the difference between when a dpd is used or not is negligible.

Summary

In this simulated evaluation, both dpd methods achieve an improvement, com-
pared to the original power amplifier output. The analytical inversion leads
to slightly better results at the cost of a higher computational complexity. The
look-up table for the analytical dpd has 2 ∗ 3142 elements (with precision pI =
0.001 in Algorithm 10.1), and the polynomials contain 2 ∗ 6 coefficients (nh = 5
in (10.19)). Using a higher polynomial degree could lead to improved results for
the ls method, and a smaller lut could lead to a degradation of the analytical
method. As implementation issues are out of scope for this thesis, the methods
are not optimized for implementation and therefore these considerations have
not been further pursued.
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10.7 Recursive least-squares and least mean squares

Here, a few aspects of a possible future implementation of the dpd methods are
presented. In addition to the guaranteed convergence, least-squares formulations
also have the advantage that there are many efficient numerical methods for solv-
ing this type of problems. They can be solved recursively by, for example, the
recursive least-squares (rls) method [Björck, 1996] making them suitable for an
online implementation. An even less complex parameter estimation algorithm is
the least mean square (lms) method, which can make use of the linear regression
structure of the optimization problem, developed here in (9.11) and (9.19). lms
has been used for rf pa linearization in Montoro et al. [2007] and implemented
in field programmable gate array (fpga) technology, as shown in Gilabert et al.
[2009].

With a recursive implementation of the algorithm, it is even more important
that the algorithm can be proved to converge to good values, as no monitoring of
the performance should be necessary in order for the method to be useful in prac-
tice. This also means that a nonconvex solution as in (9.12)-(9.13) is not suitable
for online implementation since it cannot guarantee convergence to good enough
minima. In an offline application, the possibility to restart the optimization could
be added but, together with the lack of a bound on the number of iterations, this
does not seem like a good solution for an online version. Using well explored
methods like rls or lms would result in a low-complexity implementation, and
though it is hard to judge the exact complexity of the iterative implementation
that would be needed for the online version of nonconvex solution, it is clear
that it would be very hard to find a simpler one than for the low-complexity lms
version of the convex method.

Since circuitry will behave differently depending on the settings under which
it operates, it is important to be robust to such conditions. This is covered in
the concept of process, voltage and temperature variations (pvt variations). One
way to handle the pvt variations and changes in the setting, such as aging, would
be to use a method with a forgetting factor, reducing the influence of older mea-
surements [Ljung, 1999]. The rls and lms solutions assume the changes in the
operating conditions to be slow.





11
Predistortion measurement results

The models presented in Chapter 9 and the predistorters in Chapter 10 are based
on measured data from a power amplifier. In Chapter 10, the methods’ ability
to invert the nonlinearities was investigated, using a forward model as a “true”
system. In this chapter, the methods will be evaluated in real measurements.
The predistorters are applied to a new data set, validation data, that is not the
same as the signal used for estimation. To start off, a short introduction to the
signal types used and the measurement setup will be presented.

11.1 Signals used for evaluation

The predistortion methods have been evaluated for the different signal types
edge, wcdma and lte. Mobile communication technologies are often divided
into generations, and the new devices of today are the fourth or fifth generation,
4G or 5G. The first generation, 1G, was the first analog mobile radio systems of
the 1980s. 2G was the first digital mobile systems and 3G the first mobile systems
handling broadband data.

Enhanced data rates for gsm evolution (edge) is a mobile phone technology
with higher bit rates than general packet radio service (gprs) [Ahlin et al., 2006],
and has been called 2.75G since it did not quite reach the 3G standards. The
carrier frequency used is 2 GHz, and the bandwidth is 200 kHz. Wideband code
division multiple access (wcdma) is a third generation (3G) mobile phone tech-
nology, and is one of the 3G mobile communications standards [Frenzel, 2003].
The carrier frequency used is 2 GHz, and the bandwidth is 5 MHz. The band-
width of the long term evolution (lte) signal is variable, and can be adjusted
between 1 and 20 MHz. It is sometimes called 4G or 3.9G since it does not com-
pletely satisfy the 4G requirements [Dahlman et al., 2011].

The wcdma and lte have large peak-to-minimum power ratio, i.e., the pa
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Figure 11.1: iq plots (imaginary part, q, vs real part, i) of signal realizations
of the edge,wcdma and lte standards in the complex plane. The sampling
frequency in the modeling data sets is four times higher than that shown
here.
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Figure 11.2: Histograms of the distribution of the input amplitude of signal
realizations of the edge,wcdma and lte standards. This difference in input
distribution affects the peak-to-average power ratio, and it also implicitly
determines the weighting of the fit of the polynomials, see also the discussion
on polynomial fitting on page 143.

output signals include the minimum and maximum amplitudes (the full dynamic
range). For these signals, the dr of the pawill effect the output signal, by clipping
the smallest amplitudes. For edge, the signal amplitude is never close enough to
zero to be effected by the pa dr, and no clipping will occur. Realizations of each
signal type (edge, wcdma and lte) are shown in Figure 11.1 as iq-plots. His-
tograms of the distribution of the input amplitude are shown in Figure 11.2. The
distribution also implicitly determines the weighting of the fit of the polynomi-
als, see also the discussion on polynomial fitting on page 143. One characteristic
of a signal is the peak-to-average power ratio (papr). A signal with a high papr
sets high standards on the linearity of the pa, since a large range of input signal
amplitudes has to be amplified.

The signals used are created as random signals with predefined characteris-
tics.
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Figure 11.3: Measurement setup for iq-data with two Master-Slave-
configured SMBV signal generators [Rohde & Schwarz].

11.2 Measurement setup

The measurements that will be discussed in Section 11.3 have been performed
using an SMU200A signal generator with two phase-coherent rf outputs and an
arbitrary waveform generator where the input signals (s1(t) and s2(t)) and the
predistorted input signals (s̃1(t) and s̃2(t)) were stored. For the measurements
that will be discussed in Section 11.4, two R&S SMBV100A signal generators with
phase-coherent rf outputs and arbitrary waveform generators with maximum iq
sample rate of 150 MHz have been used. Figure 11.3 shows the measurement
setup.

The outphasing power amplifiers used in the measurements have been devel-
oped by Jonas Fritzin et al. and are briefly described in Appendix A and in more
detail in Fritzin [2011].

Sampling

The sampling rate in Section 11.4 was 92.16 MHz in the measurements, six times
the original sampling frequency of the signal. The impact of baseband filter-
ing and limited bandwidth is investigated in Gerhard and Knöchel [2005a,b],
where it was concluded that to obtain an optimal signal/distortion ratio over
the entire bandwidth, a compromise between the sampling frequency and the
filter characteristics has to be made. Here, we have evaluated the required band-
width/sampling rate based on measurements with two signal generators and one
combiner, no pa was used. Increasing the sampling frequency from the original
15.36 MHz to 30.72 MHz and 61.44 MHz, the aclr is improved, see Table 11.1.

Thus, for the specific tests performed here, the aclr at 5 and 10 MHz can be
improved by 6-9 dB and 4-8 dB, respectively, when increasing the sampling rate
up to four times the original sampling rate of 15.36 MHz. Further increasing the
sampling frequency, up to 92.16 MHz, shows no significant change.
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Table 11.1: Measured spectral performance at 1.95 GHz forwcdma and lte
uplink signals for different sampling frequencies.

Measured parameter 15.36 MHz 30.72 MHz 61.44 MHz
wcdma aclr @ 5 MHz [dBc] -44 -50 -52

aclr @ 10 MHz [dBc] -48 -52 -56
lte aclr @ 5 MHz [dBc] -34 -43 -46

11.3 Evaluation of nonconvex method

In this section, the nonconvex approach presented in Sections 9.2 and 10.3 has
been evaluated. The pa model has been obtained by minimizing the noncon-
vex cost function in (9.13) and the corresponding dpd by minimizing (10.12).
The method involves solving two nonconvex optimization problems, and corre-
sponds to Method B1 in Section 5.1. This method has been evaluated on the pa
described in Appendix A.1 and Fritzin [2011].

The predistortion methods were evaluated on a physical chip. The measure-
ment setup was optimized and the branch amplifiers were tuned to achieve the
best performance possible. The phase offset between s1(t) and s2(t) in the base-
band was adjusted to minimize phase mismatch (ideally 180 ◦ between the two
rf inputs for nonmodulated s1(t) and −s2(t) in Figure A.2, i.e. maximum out-
put power for a continuous signal). Since this is not a reasonable assumption in
a real-life application, an additional phase error of 3 ◦ was added in one of the
branches.

Measurements of input s(t) and output y(t) of length Nid were collected K
times, and an average was taken to avoid the influence of measurement noise.
This data was used to model the power amplifier. Based on this pa model, a pre-
distorter model was produced. Polynomials with order n have been used as pa-
rameterized versions of the pa nonlinearities and of order nh for the predistorter
functions. The predistorted input signals, s1,P and s2,P , were then computed (in
Matlab) for a validation input signal of length Nval. The predistorted outphas-
ing input signals were sent to the pa, resulting in a predistorted output. The
additional phase error was still applied during the predistorter validation.

For the computation of the model parameters, a large number of algorithms
are available for solving a nonlinear optimization problem. Here, the Matlab
routine fminsearch, based on the Nelder-Mead simplex method, was used. The
estimation and validation data sets contain Nid and Nval samples, respectively.
The input and output sampling frequencies are denoted fs and fs,out, respectively.
To minimize the influence of measurement noise, the signals were measured K
times, and a mean was calculated. The data collection parameters are shown in
Table 11.2. Since the wcdma is a more wide-band signal than the edge signal,
the number of samples Nid and Nval were chosen to be larger.
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Table 11.2: Data collection, nonconvex method

Nid Nval fs fs,out K
edge 40 001 80 001 8.67 MHz 34.68 MHz 150
wcdma 153 600 153 600 61.44 MHz 61.44 MHz 200

Table 11.3: Measured spectral performance of the edge signal
(a) With no phase error and no dpd.
(b) For a 3 ◦ phase error and no dpd.
(c) When dpd is applied to (b).

Freq. Freq. offset Spec. Meas. (a) Meas. (b) Meas. (c)
2 GHz 400 kHz -54 dB -54.4 dB -53.5 dB -65.9 dB

600 kHz -60 dB -60.3 dB -59.9 dB -68.2 dB

11.3.1 Measured performance of EDGE signal

edge is a rather narrow-band signal with a peak-to-average power ratio (papr) of
3.0 dB. The spectrum of the estimation input data set is shown in Figure 11.4(d).
The output of a perfectly matched pa in Figure 11.4(a) fulfills the requirements,
but without any margins to the spectral mask. The spectral mask is a nonlinearity
measurement that describes the amount of power that is allowed to be spread to
the neighboring channels. The requirements for an edge signal are summarized
in Table 8.1 and illustrated in Figure 11.4. As the phase error cannot be assumed
to be 0 ◦ in a transceiver, a phase error of 3 ◦ was added and led to a violated
spectral mask as in Figure 11.4(b).

When predistortion was applied to a validation data set, not used for estima-
tion, the linearity improves, as seen in Figure 11.4(c). The pamodel was of order
n = 5 and the predistorter of order nh = 5. The measured power at 400 and
600 kHz offsets were -65.9 and -68.2 dB, with margins of 11.9 and 8.2 dB, respec-
tively. The average power at 2 GHz was +7 dBm with 22 % pae and root mean
square (rms) evm of 2 %. The measured performance of the amplifier for an
edge signal is summarized in Table 11.3.

11.3.2 Measured performance of WCDMA signal

The papr of the wcdma signal was 3.2 dB and the spectrum of the estimation
data set is shown in Figure 11.5(d). Figure 11.5(a) shows the measured wcdma
spectrum at 2 GHz, with minimized phase mismatch and no predistortion. When
the same phase error of 3 ◦ as for the edge signal was added to simulate reason-
able phase settings, a distorted spectrum as in Figure 11.5(b) was measured. The
aclr is an integrated measure that describes the power spread to adjacent chan-
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Figure 11.4: Measured edge spectrum at 2 GHz.
(a) Output spectrum without phase error between s1(t) and s2(t).
(b) Output spectrum with 3 ◦ phase error between s1(t) and s2(t).
(c) Output spectrum when dpd is applied to (b).
(d) Spectrum of the estimation signal. The spectrum of the validation signal
was similar.
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Table 11.4: Measured spectral performance of thewcdma signal
(a) With no phase error and no dpd.
(b) For a 3 ◦ phase error and no dpd.
(c) When dpd is applied to (b).

Freq. aclr Spec. Meas. (a) Meas. (b) Meas. (c)
1 GHz 5 MHz -33 dBc -40.6 dBc -39.4 dBc -53.6 dBc

10 MHz -43 dBc -59.8 dBc -56.2 dBc -60.3 dBc
2 GHz 5 MHz -33 dBc -43.4 dBc -38.0 dBc -50.2 dBc

10 MHz -43 dBc -53.9 dBc -50.9 dBc -52.2 dBc

nels. At 1 GHz and 2 GHz, the power amplifier fulfills the requirements, also
with the additional phase error, as seen in Table 11.4.

The phase predistortion method, with n = 5 and nh = 4, for a validation
signal, improves the measured aclr. A spectrum is shown in Figure 11.5(c).
The channel power at 2 GHz was +6.3 dBm with pae of 22 % and rms composite
evm of 1.4 % (0.6 % after dpd). The measured performance of the amplifier for a
wcdma signal is summarized in Table 11.4.

11.3.3 Summary

The nonconvex predistortion method clearly improves the pa performance for
both edge and wcdma signals, even when an extra phase error is added. The
measured spectral performance at 400 kHz offset and the aclr at 5 MHz is com-
parable to state-of-the-art edge [Mehta et al., 2010] and wcdma [Huang et al.,
2010] transmitters.
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Figure 11.5: Measuredwcdma spectrum at 2 GHz.
(a) Output spectrum without phase error between s1(t) and s2(t).
(b) Output spectrum with 3 ◦ phase error between s1(t) and s2(t).
(c) Output spectrum when dpd is applied to (b).
(d) Spectrum of the estimation signal. The spectrum of the validation signal
was similar.
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Table 11.5: Data collection, least-squares and analytical method

Nid Nval fs fs,out K
wcdma 100 000 100 000 92.1 MHz 92.1 MHz 10
lte 100 000 100 000 92.1 MHz 92.1 MHz 10

11.4 Evaluation of least-squares PA and analytical
inversion method

In this section, the least-squares modeling of the pa, using the dr to estimate
g1 and g2, has been applied. An analytical inversion has been used to construct
the predistorter functions, as in Method A in Section 5.1. The pa modeling is
described in Section 9.3, the dpd in Section 10.4 and the method is summarized
in Algorithm 10.1, page 155. This method has been evaluated on the pa described
in Appendix A.2 and Fritzin et al. [2011c].

The measurement setup was optimized and the branch amplifiers were tuned
to achieve the best performance possible. For the measurements without predis-
tortion, the phase offset between s1(t) and s2(t) in the baseband was adjusted
to minimize phase mismatch (ideally 0 ◦ between nonmodulated s1(t) and s2(t),
that is, maximum output power for a continuous signal). Moreover, the iq-delay
between the signal generators was adjusted for optimal performance [Rohde &
Schwarz].

Measurements of input s(t) and output y(t) were collected K times, and an
average was taken to avoid the influence of measurement noise. This averaged
data set was used to model the pa, and based on the pa model, a predistorter
model was produced. Polynomials with order n have been used as parameterized
versions of the pa nonlinearities and based on this model, an approximation of
the ideal predistorter has been constructed. The predistorted input signals, s1,P
and s2,P , were then computed (in Matlab) for a validation input signal. The pre-
distorted outphasing input signals were sent to the pa, resulting in a predistorted
output.

The estimation and validation data sets contain Nid and Nval samples, respec-
tively. The input and output sampling frequencies are denoted fs and fs,out, re-
spectively. The data collection parameters are shown in Table 11.5. In all follow-
ing experiments, the dpd estimates ĥk , k = 1, 2, have been calculated for 3142
uniformly distributed points (pI = 0.001 in Algorithm 10.1). This lut has been
used in the construction of the predistorted outphasing input signals. For each
input phase difference ∆ψ , the outphasing input signals s1(t) and s2(t) were ad-
justed according to the nearest neighbor principle.
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Figure 11.6: Measuredwcdma spectrum at 1.95 GHz.
(a) Measuredwcdma spectrum without dpd. The measured aclr is printed
in gray.
(b) When dpd is applied to (a). The measured aclr is printed in black.
(c) Spectrum of estimation signal. Spectrum of validation signal was similar.

11.4.1 Measured performance of WCDMA signal

The papr of the wcdma uplink signal was 3.5 dB. The spectrum of the estima-
tion data is shown in Figure 11.6(c). For the wcdma signal at 1.95 GHz without
predistortion, the measured aclr at 5 MHz and 10 MHz offsets were -35.5 dBc
and -48.1 dBc, respectively. The spectrum is shown in Figure 11.6(a). The estima-
tion output data y(t) were used in the predistortion method to extract the model
parameters, with n = 5. The aclr is a measure describing the amount of leakage
into adjacent channels that can be tolerated, and the standards for wcdma are
-33 dBc and -43 dBc at 5 MHz and 10 MHz offsets, respectively.

The predistorted input signals, s1,P (t) and s2,P (t), were computed for the vali-
dation input signal, resulting in an output spectrum as shown in Figure 11.6(b).
The power spectral densities of the predistorted input is similar to that of the
nonpredistorted input signal, and therefore not included (similarly for the lte
signal). With predistortion, the measured aclr at 5 MHz and 10 MHz offsets
were -46.3 dBc and -55.6 dBc, respectively. Thus, the measured aclr at 5 MHz
and at 10 MHz offsets were improved by 10.8 dB and 7.5 dB, respectively. The
average power at 1.95 GHz was +26.0 dBm with 16.5 % pae. It is clear that the
predistortion reduces the spectral leakage.

Figure 11.7 shows the measured am-am (output amplitude vs. input ampli-
tude) and am-pm (phase change vs. input amplitude) characteristics with and
without dpd for the wcdma signal. The upper figure shows the amplitude mod-
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ulation, and should ideally be a straight line from lower left corner (0,0) to the
upper right (1,1), such that the output amplitude equals the input amplitude for
the whole range of the signal. If this is not the case, there will be amplitude dis-
tortions. Here, the improvement can be seen in normalized amplitudes smaller
than 0.4. The lower plot shows the phase distortion, and the ideal is zero. It can
be seen that the dpd reduces the phase distortion for normalized amplitudes in
the range 0.05 . |s| . 0.95. For amplitudes close to one, the distortion is slightly
worse with a predistorter than without. This is due to the polynomial fit of the
pa model, which has the best fit in the middle region where the density of data
points is largest.

11.4.2 Measured performance of LTE signal

The papr of the lte uplink signal was 6.2 dB and the spectrum of the estimation
data sets is shown in Figure 11.8(c). For the lte signal at 1.95 GHz without pre-
distortion, the measured aclr at 5 MHz offset was -34.1 dBc. The spectrum is
shown in Figure 11.8(a). The estimation output data y(t) were used in the pre-
distortion method to extract the model parameters with n = 5. The predistorted
input signals, s1,P (t) and s2,P (t), were computed for the validation input signal,
resulting in an output spectrum as shown in Figure 11.8(b). With the predis-
torted spectrum in Figure 11.8(b), a small asymmetry can be observed, which
was expected due to the asymmetrical frequency spectrum of the reference sig-
nal. With predistortion, the measured aclr at 5 MHz offset was -43.5 dBc. Thus,
the measured aclr at 5 MHz offset was improved by 9.4 dB. The average power
at 1.95 GHz was +23.3 dBm with 8.0 % pae.

Figure 11.9 shows the measured am-am and am-pm characteristics with and
without dpd for the lte signal. The amplitude mapping in the upper figure
should ideally be a straight line from the lower left corner to the upper right
one, and the bottom figure should be zero for all input amplitudes. The figure
shows that the amplitude and phase errors are significantly reduced for small
amplitudes, with a normalized amplitude |s| . 0.4.
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(a)

(b)

Figure 11.7: (a) Measured am-am characteristics (output amplitude vs. in-
put amplitude) with dpd (black) and without dpd (gray) forwcdma signal.
(b) Measured am-pm characteristics (phase change vs. input amplitude) with
dpd (black) and without dpd (gray) forwcdma signal.



11.4 Evaluation of least-squares pa and analytical inversion method 177

©
20

13
ie
e
e

Figure 11.8: Measured lte spectrum at 1.95 GHz.
(a) Measured lte spectrum without dpd. The measured aclr is printed in
gray.
(b) When dpd is applied to (a). The measured aclr is printed in black.
(c) Spectrum of estimation signal. Spectrum of validation signal was similar.
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(a)

(b)
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Figure 11.9: (a) Measured am-am characteristics (output amplitude vs. in-
put amplitude) with dpd (black) and without dpd (gray) for lte signal. (b)
Measured am-pm characteristics (phase change vs. input amplitude) with
dpd (black) and without dpd (gray) for lte signal.
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Figure 11.10: Measured aclr depending on the polynomial degree n of the
pa model. Degree n = 0 represents the performance without predistortion.
The nonlinear modeling and distortion clearly improves the performance by
reducing the aclr.

11.4.3 Evaluation of polynomial degree

A small evaluation of the impact of polynomial degree in the pa model has been
performed, and the result is presented in Figure 11.10. It is clear that the addition
of nonlinear terms improves the aclr and reduces the spectral leakage. Polyno-
mials with orders above n = 5 did not further improve the results significantly. A
discussion on the impact of the choice of data points used in the ls problem can
be found in Section 9.4 on page 143.

11.4.4 Summary

The measured performance of the pa for modulated signals is summarized in
Table 11.6. The table shows measured aclr with dpd, without dpd, and the
required (Req) aclr for the wcdma [3GP] and the lte [3GPP] standards. In
measurements at 1.95 GHz, the dpd proved to be successful and improved the
wcdma aclr at 5 MHz and 10 MHz offsets by 10.8 dB and 7.5 dB, respectively.
The lte aclr at 5 MHz offset was improved by 9.4 dB. Thus, the predistortion
method improves the measured aclr to have at least 12.6 dB of margin to the
requirements [3GP, 3GPP]. The measured aclr at 5 MHz is comparable to state-
of-the-artwcdma transceivers [Huang et al., 2010].

To compare the dpd performance to the achievable aclr, a small simulation
study has been performed. Assuming a pa with 35 dB of dynamic range (neglect-
ing phase distortions), i.e. assuming g1 = 0.509 and g2 = 0.491, and a polynomial
degree of n = 5, the computed achievable aclr at 5 MHz and 10 MHz is ∼3 dB
better compared to the measurements with thewcdma signal. Similarly, the com-
puted achievable aclr at 5 MHz is ∼2 dB better compared to the measurements
with the lte signal.
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Table 11.6: Measured Spectral Performance at 1.95 GHz forwcdma and lte
Uplink Signals with Predistortion (using n = 5) and without.

Measured Parameter Req Without dpd With dpd
wcdma aclr @ 5 MHz [dBc] -33 -35.5 -46.3

aclr @ 10 MHz [dBc] -43 -48.1 -55.6
lte aclr @ 5 MHz [dBc] -30 -34.1 -43.5

As discussed in Section 9.4 on page 143, the polynomial fit is best in the mid-
dle, and in intervals where there is most data points. For the signals in this thesis,
that is in the center of the interval, see Figure 11.2 for the distribution of the
different signal types used. As seen in Figures 11.7 and 11.9, this is where the
predistorter improves the performance. The predistorter is based on inversion of
the pamodels estimated using least squares. Since the inversion is almost perfect,
see Figure 10.2 for the analytical inversion, the misfit at the smallest and largest
input amplitudes can be assumed to be correlated with the polynomial fit of the
pamodel. The nonlinearity functions can be compared for different signal types,
and though the overall appearance is very similar, a small shift can be seen, such
that the fit has been adapted to the signal type. That is, for an lte signal, the
functions f̂k differ a bit from the ones estimated for awcdma signal. This can be
seen for lower amplitudes in particular, where the lte signal has a higher signal
density than thewcdma.
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Concluding remarks

There are multiple applications where a model of an inverse is needed. These in-
clude power amplifier predistortion, sensor calibration, feedforward control and
inverse kinematics in robotics. In this thesis we have discussed inverse system
identification and predistortion for outphasing power amplifiers.

Inverse system identification The inverse models in this thesis have been esti-
mated with the purpose of using them in cascade with the system itself, as an
inverter. A good inverse model in this setting is one that, when used in series
with the original system, reconstructs the original input.

In this thesis, a classification and analysis of various inverse model estimation
approaches is provided, and a characterization of earlier work. In Method A a
forward model should be found and inverted, analytically or numerically. Two
possibilities exist for Method B– estimate a preinverse in series with either a
model of the system (B1), or the system itself (B2). Method C describes a postin-
verse, where the output and the input change place in the estimation process. In
power amplifier predistortion, there are two common methods to find the inverse,
dla corresponding to Method B1 and ila corresponding to Method C. Rather
often, one method is chosen and the preinverse is estimated and an improve-
ment is shown in performance. One goal here has been to evaluate the methods
themselves and to analyze the results from estimating inverse models in different
ways.

Two special cases have been analyzed comparing the methods when the in-
verse is estimated directly (Method C) and when an inverse is based on a for-
ward model (Method A). It is shown for linear time-invariant dynamical sys-
tems with noise-free measurements that the weighting of an approximate model
will be adjusted to reflect the intended use as an inverse if Method C is used
for the identification. This has also been illustrated by an example. For Hammer-
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stein systems with a white input, approximate linear models from Method A

and Method C are the same, up to a constant. For colored inputs and Wiener
systems this does not hold and an extra weighting factor will be present, meaning
that the inverted forward model and the inverse model will differ by more than a
constant gain.

For a forward model and a postinverse T , one set of measurements is enough
to find the optimal model. For a preinverse R this is not true. Since the prein-
verse will change the characteristics of the signal and the true system is affected
by noise, more information is needed. It has been shown that the problems of
finding a preinverse R and a postinverse T are fundamentally different.

For noise-free data and a model structure that is flexible enough, the true
inverse will reconstruct the input signal. However, when there is noise present,
we have shown that the true inverse will not be optimal, and that other models
and model structures can lead to a better preinverse and postinverse.

Since the preinverse changes the input, the original input to the system could
be very different from the predistorted one (for power amplifiers the predistorted
one is generally more broadband). The noise contribution should also be taken
into account when the inverse is constructed. Therefore, it is necessary to use
multiple measurements. Method B2 uses the system in measurements to con-
struct a preinverse R. The method demands multiple experiments but finds a
preinverse that captures the systematic noise contributions and the changed char-
acteristics of the predistorted input signal to the system.

The goal of this thesis has been to investigate the problems connected to in-
verse system identification and possibly to find the best method, but there are
still many open questions. The different methods need to be evaluated and the
differences investigated. Here, the special cases of lti systems and block-oriented
systems have been looked at, but more general results would be interesting. We
know that there is not one method that will always be best, that the decision
should be based on how the inverse should be used. Different noise levels and
noise types should be investigated to make the basis of a more general framework.
Also, different types of nonlinearities could be evaluated. This thesis covers the
siso case, the multiple input-multiple output mimo case could be investigated.
The method comparisons in this thesis and the references herein have been based
on theory and simulations. To evaluate the theory in measurements for pa pre-
distortion would also show the applicability of the results.

Outphasing power amplifier predistortion In this thesis, the predistortion prob-
lem has been investigated for a type of pa called outphasing power amplifier,
where the input signal is decomposed into two branches that are amplified sep-
arately by highly efficient nonlinear amplifiers, and then recombined. If the de-
composition and summation of the two parts are not perfect, nonlinear terms will
be introduced in the output, and predistortion is needed. The goal is to obtain a
predistorter that counteracts the nonlinearities introduced by the amplifier.

Here, a predistorter has been constructed based on a model of the pa. In a
first method, the structure of the outphasing amplifier has been used to model
the distortion, and from this model, a predistorter can be estimated. However,
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this involves solving two nonconvex optimization problems, and the risk of ob-
taining a suboptimal solution. Exploring the structure of the pa, the problem has
been reformulated so that the pa modeling basically can be done by solving two
least-squares (ls) problems, which are convex and can be solved efficiently. In
a second step, an analytical description of an ideal predistorter can be used to
obtain a predistorter estimate. Another possibility is to compute the predistorter
without a pa model by estimating the inverse directly. The methods have been
evaluated in simulations and in measurements, and it is shown that the predis-
tortion improves the linearity of the overall power amplifier system.

Interesting expansions would be to add dynamics to the models. Two ways of
adding dynamics have been evaluated which did not result in improved methods,
but there are many other possibilities. The measurements did not indicate a large
dynamic influence, however, extending the method to include possible dynamics
would extend the field of application. Also the noise influence was minor, but
less ideal conditions could be evaluated. Now, the noise has a large impact in the
normalization and the estimation of gain factors in the two branches, since these
depend on only one and two measurements, respectively. This could be made
more robust by looking at multiple measurements.





A
Power amplifier implementation

The outphasing power amplifiers used for the measurements presented in Chap-
ter 11 and the power amplifier modeling in Chapter 9 have been constructed by
Jonas Fritzin, Christer Svensson and Atila Alvandpour at the Division of Elec-
tronic Devices, Linköping University, Linköping, Sweden. The results and pic-
tures in this chapter are all measured and reproduced with the authors’ permis-
sion and are published here for sake of completeness.

As described in Section 8.2, a power amplifier can be characterized by differ-
ent measures, such as the efficiency and the gain. For the pa beginner, a quick
review of these concepts and the others in Section 8.2 could be useful. See also
the Glossary in the preamble (page xvi).

The power amplifiers are of outphasing-type. The amplifier in each branch is
a Class D amplifier, based on inverters, that switches between VDD and GND.

A.1 +10.3 dBm Class-D outphasing RF amplifier in
90 nm CMOS

The chip used for validation of the nonconvex method in Section 11.3 can be
seen in the chip photo in Figure A.1 and the sketch in Figure A.2. The pa is a
Class D outphasing amplifier with an inverter-based output stage and an on-chip
transformer as power combiner. More specifics can be found in Fritzin [2011]
and Fritzin et al. [2011a].

Figure A.3a shows the measured maximum output power (Pout), the drain
efficiency (de) and the power-added efficiency (pae) over frequency for the power
amplifier. VDD and Vbias were 1.3 V and 0.65 V, respectively. The 3 dB bandwidth
was 2 GHz (1-3 GHz). The output power at 2 GHz was +10.3 dBm with de and
pae of 39 % and 33 %, respectively, with a gain of 23 dB from the buffers to the
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Figure A.1: Photo of the chip with size 1x1mm2.

Figure A.2: Implemented outphasing amplifier with inverters in the output
stage.
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Figure A.3: (a) Measured output power (Pout), de and pae over frequency.
(b) Measured maximum output power, Pout,max, minimum output power,
Pout,min, and dynamic range, dr, over frequency.

output. The minimum and maximum output power and dr of the pa are plotted
in Figure A.3b, where Pout,max = Pout in Figure A.3a.

A.2 +30 dBm Class-D outphasing RF amplifier in
65 nm CMOS

The pa used for validation in Section 11.4 is described in more detail in Fritzin
et al. [2011c] , but some basic characteristics can be found here. The chip photo
can be seen in Figure A.4. Figure A.5 shows the outphasing pa, based on a Class
D amplifier stage utilizing a cascode configuration illustrated in Figure A.6a.
This configuration improves the life-time of the transistors by achieving a low
on-resistance in the on-state and distributing the voltage stress in the off state
which assures that the root mean square (rms) electric fields across the gate ox-
ide is kept low. The output stage is driven by an ac-coupled low-voltage driver
operating at 1.3 V, VDD1, to allow a 5.5 V, VDD2, supply without excessive device
voltage stress as discussed in Fritzin et al. [2011b] and Fritzin et al. [2011c]. The
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Figure A.4: Photo of the chip with size 2.5x1.0mm2. The photo has the same
orientation as the simplified PA schematic in Figure A.5.

Figure A.5: The implemented Class-D outphasing RF PA using two trans-
formers to combine the outputs of four amplifier stages.

chip was attached to an FR4 PCB and connected with bond-wires.
The measured output power, drain efficiency and power-added efficiency over

frequency and outphasing angle, ϕ in (8.11) (where ϕ = 2∆ψ), for VDD1 = 1.3 V
and VDD2 = 5.5 V is shown in Figures A.7. The output power at 1.95 GHz was
+29.7 dBm with a pae of 26.6 % (in all drivers). The pa had a peak to minimum
power ratio of ∼35 dB and the gain was 26 dB from the drivers to the output. The
dc power consumption of the smallest drivers was considered as input power.
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(a) (b)

Figure A.6: (a) The Class-D stage used in the outphasing PA Fritzin et al.
[2011c]. C1-C4 are MIM capacitors. (b) Off-chip biasing resistors, R and Ri .
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(a)

(b)

(c)

Figure A.7: Measured Pout, de and pae for VDD1 = 1.3 V and VDD2 =
5.5 V [Fritzin et al., 2011c]:
(a) over carrier frequency.
(b) over outphasing angle, ϕ, at 1.95 GHz.
(c) Measured Pout, de and pae over VDD2 for VDD1 = 1.3 V at 1.95 GHz.
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