Programmering i matematikundervisningen
– Vilka effekter har programmering på elevers lärande i matematikundervisningen i lägre åldrar?

Programming in Mathematics
– what are the effects of programming in mathematics education in primary school?

Emelie Gröndahl
Robin Jern

Handledare: Kristin Westerholm
Examinator: Anders Magnusson
Sammanfattning

Syftet med den här studien har varit att ta reda på vilka fördelar det finns med att implementera programmering i matematikundervisningen. För att ta reda på detta har vi letat fram ett flertal olika studier som berör programmering inom skolväsendet på något sätt. För att hitta dessa studier har vi sökt i olika databaser efter relevanta artiklar. Dessa har vi valt utifrån valda kriterier.

I studierna som vi har tagit del av användes både digital programmering, Scratch och LOGO, samt fysisk programmering, Bee-Bots. Resultatet av vår studie har visat att flera av elevernas matematiska förmågor gynnas av att arbeta med programmering i matematiken. I de flesta fallen visade studierna att eleverna fick ännu bättre resultat i jämförelse med traditionella metoder. Förmågorna som eleverna utvecklade var bland annat: aritmetik, problemlösningsförmåga, spatialt tänkande, algoritmer och resonemangsförmåga. Utöver elevernas matematiska förmågor visade det sig även att programmeringsövningar hade en positiv inverkan på elevernas motivation och intresse. Detta kan i sin tur leda till indirekta positiva effekter på elevernas lärande.

Nyckelord: programmering, matematik, problemlösning, lägstadiet
Innehållsförteckning

1. Inledning .. 1
2. Syfte och frågeställning .. 2
 2.1 Syfte ... 2
 2.2 Frågeställningar ... 2
3. Bakgrund .. 2
 3.1 Programmering i styrdokumenten ... 3
 3.2 Centrala Begrepp ... 3
 3.2.1 Programmering .. 4
 3.2.2 Scratch, LOGO och Bee-bots .. 4
 3.2.3 Algoritm ... 5
 3.2.4 Problemlösningsförmåga .. 5
 3.2.5 Spatial förmåga ... 6
 3.5.6 Motivation ... 6
 3.5.7 Sociokulturellt perspektiv .. 6
4. Metod ... 7
 4.1 Litteratursökning ... 7
 4.1.1 Avgränsningar och urval ... 7
 4.2 Tillvägagångssätt ... 9
5. Resultat ... 10
 5.1 Digital programmering ... 11
 5.2 Fysisk programmering ... 15
6. Resultatsammanställning ... 18
7. Diskussion ... 19
 7.1 Matematiska förmågor ... 19
 7.2 Pedagogiskt perspektiv ... 20
8. Avslutning ... 22
1. Inledning

I läroplanens centrala innehåll i matematik står det att i matematikundervisningen ska elever kunna förbättra användningen av matematik i vardagen (Skolverket, 2018a). Matematikundervisningen ska också ge eleverna potential att klara av matematiska mönster. Programmering har med mönster att göra, därför är det viktigt att eleverna får lära sig mönster genom att träna med hjälp av till exempel programmering (Skolverket, 2018a). Trots att det står i läroplanen om vad eleverna ska lära sig i programmering har vi märkt att lärare under vår praktik finner det svårt att jobba med programmering i matematikundervisningen.

En anledning av flera till varför det är viktigt att arbeta med programmering är att det är brist på programmerare. I Sverige spås det behövas 70 000 programmera år 2022 och i EU saknas det 1 000 000 programmerare (SvD Näringsliv, 2018). Därför är programmering väldigt aktuellt och det är bra att eleverna får lära sig att programmera eftersom vårt uppdrag är att utbilda framtiden. Det är flera länder som har digital teknik i skolundervisningen, därför är det även viktigt att svenska elever har programmering i skolundervisningen. Eftersom det gör att eleverna ska få en bättre förståelse kring sin digitala omvärld och att de ska kunna jobba mot arbetsmarknadens behov (Skolverket, 2018a). Eftersom andra länder har programmering i skolundervisningen (Manilla, 2017) är det ännu viktigare att svenska elever kommer ut på arbetsmarknaden och har kunskapen inom programmering, eftersom annars kommer svenska ungdomar inte bli lika konkurrenkskraftiga på arbetsmarknaden.

Vi tror att ett sätt att bättre motivera lärare att använda sig av programmering skulle kunna vara att visa de fördelar det har för elevernas lärande. Detta skulle också kunna göra det enklare för lärarna att motivera det för eleverna och föräldrar, samt begära eventuella resurser från skolan för att genomföra den undervisningen. Syftet med denna uppsats är därför att undersöka vilka fördelar det finns med att arbeta med programmering i matematikundervisningen i lägstadiet.
2. Syfte och frågeställning

2.1 Syfte

Syftet med denna konsumtionsuppsats är att ta reda på vad den aktuella forskningen säger om vilka fördelar det finns med programmering i de yngre åldrarna inom skolan och vilka förmågor som eventuellt främjas.

2.2 Frågeställningar

• Vilka är fördelarna med att arbeta med programmering i matematikundervisningen på lågstadiet?

3. Bakgrund

att det finns kvar en viss tveksamhet när det kommer till programmering i matematiken, och många frågar sig säkert fortfarande vad det kan tillföra till ämnet.

3.1 Programmering i styrdokumenten

3.2 Centrala Begrepp

I det här avsnittet har vi valt att välja ut relevanta begrepp som läsaren bör förstå för att kunna förstå konsumtionsuppsatsen. Dessa begrepp är relevanta för att förstå om vad programmering i skolundervisningen handlar om. Det är även relevant för att förstå om vad för funktioner som kan
gynnas när elever får arbeta med programmering. Dessa begrepp kommer även att behandlas mer djupgående i diskussionsdelen.

3.2.1 Programmering

3.2.2 Scratch, LOGO och Bee-bots

Scratch och LOGO är båda exempel på vanligt förekommande programspråk i de studier vi har tagit det av. LOGO är ett programspråk som har rötter i 70-talet och utvecklades av Seymour Papert. Programmet bygger på att man styr en sköldpadda som man kan instruera att till exempel gå framåt eller vända sig 90 grader åt en viss riktning. LOGO är det första programspråket som utvecklades specifikt för barn (Mannila, 2017). LOGO har lagt grunden till mycket inom programmeringen i skolan och finns i flera olika varianter.

struktur istället för att fokusera på kodningen. Det finns en annan variant till Scratch vilket är ScratchJr. Detta program är till för yngre barn, eftersom det är mer anpassat till yngre barns utveckling (MIT Media Lab, u.å.).

Trycker man på vänster- eller högerknapparna roterar roboten 90 grader på stället.

3.2.3 Algoritm

3.2.4 Problemlösningsförmåga

3.2.5 Spatial förmåga

3.5.6 Motivation

3.5.7 Sociokulturellt perspektiv

Programmeringen har i de studier vi tagit del av har oftast bedrivits genom att eleverna fick arbeta tillsammans på olika sätt. Därför anser vi att den sociokulturella teorin är relevant för vårt arbete.

central del av den sociokulturella teorin är vikten av att använda sig av kulturella redskap i undervisningen. Dessa redskap kan syfta på allt från linjaler till Ipad och kan ha en stor påverkan på elevers kognitiva utveckling.

4. Metod

I detta avsnitt beskrivs det tillvägagångssätt som använts och det urval av artiklar som gjorts. Det finns även en tabell på vilka artiklar som använts. Tabell 1 ger en översikt om vilken metod forskarna har använt och vad för typ av studie det är och vad för sökord som använts.

4.1 Litteratursökning

Eftersom vi skriver en systematisk litteraturstudie finns det kriterier som behöver uppfyllas enligt Bajaras, Forsberg och Wengström (2013). Dessa kriterier innebär bland annat att vi behöver beskriva våra metoder och kriterier för hur vi har valt artiklar tydligt samt beskriva vår sökstrategi.

För att hitta artiklar använde vi oss av databaserna ERIC, UniSearch och Google Scholar. ERIC är en databas som innehåller artiklar som berör ämnena pedagogik och psykologi (Bajaras mfl., 2013). Google Scholar är en databas som har de flesta vetenskapliga tidskrifter i Europa och USA. Utöver databaser sökte vi även manuellt, vilket innebar att vi kollade i referenserna till de artiklar vi hittade. Med UniSearch kan man söka i flera hundra databaser efter artiklar och tidskrifter mm.

4.1.1 Avgränsningar och urval

I vår sökning valde vi att avgränsa vår sökning efter olika kriterier. Vi valde att endast använda oss av “Peer Reviewed artiklar (Bajaras, 2013), vilket betyder att artiklarna har genomgått en granskning av andra forskare. För att begränsa sökningar av artiklar ytterligare använde vi oss av olika sökord. För att se exakt vilka sökord som vi användes av, se tabell 1.

Efter vi valt att artikeln skulle vara “Peer Reviewed” och använt oss relevanta sökord fick vi göra ett andra urval av artiklarna. I urval två begränsade vi oss till elevernas ålder och variifrån forskningen har bedrivits. Vi ville att forskningen skulle vara ifrån olika delar av världen.
Under vår artikelsökning hittade vi sammanlagt tio artiklar som vi valde att undersöka närmare. Vi började med attläsa abstraktet för att se om artiklarna var relevanta för vårt område. Efter det valde vi att utesluta två artiklar som vi kände inte var relevanta för oss. Detta berodde på att de inte var direkt kopplade till det vi ville undersöka i vår uppsats, det vill säga på vilka sätt programmering kan främja elevers matematikkunskaper.

Tabell 1. Artiklarna är sorterade efter årtal; från äldst till yngst

<table>
<thead>
<tr>
<th>Författare</th>
<th>Titel</th>
<th>År</th>
<th>Land</th>
<th>Databas</th>
<th>Sökord</th>
<th>Typ av studie</th>
<th>Metod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highfield</td>
<td>Robotic Toys as a Catalyst for Mathematical Problem Solving</td>
<td>2010</td>
<td>Australien</td>
<td>ERIC</td>
<td>Programming, beebot</td>
<td>Kvalitativ</td>
<td>Observation</td>
</tr>
<tr>
<td>Fessakis</td>
<td>Problem Solving by 5-6 Years Old Kindergarten Children in a Computer Programming Environment: A Case Study</td>
<td>2012</td>
<td>Grekland</td>
<td>Unisearch</td>
<td>Programming, kindergarten</td>
<td>Kvalitativ</td>
<td>Observation, intervjuer</td>
</tr>
<tr>
<td>Calao; Moreno-Leon; Correa; Robles</td>
<td>Developing mathematical thinking with Scratch An experiment with 6th grade students</td>
<td>2015</td>
<td>Colombia</td>
<td>Manuell sökning</td>
<td>N/A</td>
<td>Kvantitativ</td>
<td>För- och eftertest</td>
</tr>
<tr>
<td>Newhouse; Cooper; Cordery</td>
<td>Programmable Toys and Free Play in Early Childhood Classrooms</td>
<td>2017</td>
<td>Australien</td>
<td>Manuell sökning</td>
<td>N/A</td>
<td>Kvalitativ</td>
<td>Observation</td>
</tr>
</tbody>
</table>
4.2 Tillvägagångssätt

Innan vi började med arbetet funderade vi på vilket ämne vi ville skriva om inom matematiken. Efter ett tag bestämde vi oss för att vi ville fokusera på programmering i matematikämnets. Vi valde programmering eftersom att vi ansåg att det var ett väldigt aktuellt ämne som kanske inte allt för många har skrivit om redan. Det var också något som vi har stött på under vår verksamhetsförlagda utbildning. Vi begränsade vår frågeställning till vilka fördelar det finns med att använda sig av programmering i matematikundervisningen. Anledningen till varför vi valde just den frågeställningen varför att vi ansåg att den var tillräckligt bred för att det skulle finnas tillräckligt med forskning som har behandlat det området.

När vi hade bestämt oss för exakt vilken frågeställning vi skulle ha började vi att söka efter vetenskapliga artiklar inom det området. Till en början använde vi oss av databasen ERIC. Där kunde man avgränsa sina sökningar till målgrupp (lärare, elev t.ex.) och utbildningsnivå. Vi valde även att endast söka efter artiklar som var peer-reviewed. När vi hade gjort dessa avgränsningar
sökte vi efter artiklar som innehöll ordet ”programming”. Vi fick en hel del träffar som vi kunde göra bedömningen att de var relevanta för oss baserat på sin titel. När vi såg en artikel som vi ansåg vara relevant för, baserat på om titeln antydde att studien handlade om programmering kopplat till matematikundervisningen, gick vi vidare och läste artiklarnas sammanfattning. Om artiklarna visade sig handla om gymnasieelever eller högre så sållade vi bort dem. En del av artiklarna berörde heller inte vår frågeställning tillräckligt; till exempel knöt dem inte an till matematikämnet tillräckligt eller så diskuterade dem inte vilka effekter programmeringen hade på elevers matematikkunskaper tillräckligt.

När vi märkte att vi hade problem att hitta fler artiklar använde vi oss av fler sökord samt flera databaser (se tabell 1). Vi gick också igenom referenslistorna i några av artiklarna för att se till vilken forskning dem hänvisade (manuella sökningar i tabell 1). På så sätt kunde vi hitta ännu fler artiklar som var av intresse för vår forskning. Överlag fann vi inte att det var särskilt problematiskt att hitta artiklar som handlade om vårt område.

När vi var klara med alla artikelssammanfattningar och skulle börja med diskussionen var vi tvungna att utöka bakgrunden så att vi kunde diskutera utifrån de centrala begreppen i uppsatsen. Samtidigt som vi skrev diskussionen gick vi även igenom resten av arbetet och korrigerede och lade olika delar av arbetet.

5. Resultat

Här presenteras resultaten av de studier vi har läst och vad de säger om vilka fördelar som kan finnas med programmering. Resultatet är uppdaterat efter om eleverna har arbetat med digital programmering eller fysisk programmering.
5.1 Digital programmering

I följande del sammanställer vi de studier som använde sig av digitala programmeringsmetoder. Dessa metoder innefattar Scratch, Scratch Jr. och diverse LOGO-vianter.

Resultat: Efter projektet var slutfört gick forskarna igenom det insamlade materialet från bloggar och intervjuer. Resultatet visade att eleverna genom projektet fått öva på att ta in feedback och utveckla sina spel utefter den. Eleverna provade sig fram, och beroende på vad som hände i spelet ändrade de sin kod, något som Calder menar visar att de förstår kopplingen mellan koden och det som faktiskt händer i spelet. Forskarna märkte också att eleverna kunde uttrycka sina problem och program med matematiskt språk, och att elevernas bloggar visade på att eleverna använde sig av problemlösning för att uppnå sina mål. De märkte även att eleverna fick öva på vinklar och få förståelse kring kopplingen mellan den siffra de skrev och hur stor svängen blev i spelet. Forskarna tyckte att eleverna blev engagerade och fick öva på problemlösning.

Insamlingen av data skedde genom ett förtest och ett eftertest som båda grupperna gjorde. För- och eftertestet hade fyra olika huvudområden. Modellering, resonemang, problemlösning och förmågan
att använda sig av rätt procedurer vid uträkningar, till exempel algoritmer och operationer. Det var fyra frågor inom varje område.

Resultat: Ett fördröjt eftertest gjordes, som testade elevernas kunskaper om tallinjeuppskattning och tallförståelse. Studien visade att grupperna som använde sig av full embodiment-aktiviteter hade ökat sin matematikförståelse (tallinjeförsåelse och aritmetik).

Eleverna delades slumpmässigt in i tre grupper. En grupp som arbetade med programmering med hjälp av Ipad, en grupp som arbetade med programmering med papper och penna och en tredje grupp som arbetade med traditionella additions- och subtraktionsuppgifter med papper och penna. I studien använde sig forskarna av standardiserade förtester för att bestämma elevernas matematiska och spatiala förmågor, samt sitt arbetsminne.

Resultat: Resultatet från studien visar att alla tre grupperna fick signifikant bättre matematiska och spatiala förmågor. Deras arbetsminne hade dock inte blivit bättre. Det visade sig också att det inte var någon större skillnad mellan att arbeta med programmering på tekniska hjälpmedel jämfört med papper och penna. Sammanfattningsvis visar den här studien att programmering är minst lika
effektivt som traditionella metoder när det kommer till att främja elevers matematiska förmågor och spatiala förmåga.

5.2 Fysisk programmering

I följande del sammanställer vi de studier som använde sig av fysisk programmering. Metoden som de använde sig av var bland annat Bee-Bots och andra robotleksaker.

I en studie skriver av Kate Highfield (2010) så ska eleverna använda sig av Bee-Bots och probots i undervisningen. Syftet med studien var att undersöka hur robotleksaker kan fungera som verktyg för att hjälpa barn att utveckla sina kunskaper i matematik. I studien deltog 33 barn, som inte hade någon tidigare erfarenhet av robotleksaker. Av dessa var elva barn mellan tre och fyra år samt 22 elever i årskurs 1. Inte heller lärarna hade någon erfarenhet av robotleksaker tidigare.

Enligt Highfield (2010) är den visuella processen som uppstår när man arbetar med robotarna bra för att eleverna kan se effekterna av sina program och sedan kan barnen utvärdera om vad som gått fel vilket har en betydelse. Då kan de åter knappa in ett program och se hur deras ändringar ändrade resultatet.

Newhouse, Cooper och Cordery (2017) har genomfört en studie där de undersökte hur barn kan interagera med robotleksaker genom fri lek. Deltagarna i studien var förskolebarn från fyra till sex år. Forskningen pågick i två års tid. Studien använde sig av två olika typer av robotleksaker: Bee-Bots och Spheros. Sphero är en boll som är uppkopplad till Bluetooth och styrs med hjälp av en Ipad.

I studien ingick två olika australienska förskolor: skola 1 och skola 2. Studien var indelad i två olika faser; skola 1 deltog endast i den första fasen av studien medan skola 2 deltog i både fas ett och två. I första fasen började skola 1 med att eleverna fick en tydlig presentation av robotleksakerna och en demonstration av hur en Bee-Bot fungerar. Demonstrationen skedde med hjälp av en elev. Skola två fick en kortare och mindre fullständig presentation av robotleksakerna. Förskolebarnen i båda förskolorna observerades med hjälp av en checklista med olika beteenden som eleverna visade, till exempel utforskande och problemlösning.

Resultat fas 2: Forskarna upplevde att endast vissa elever förstod vad syftet var med att arbeta med robotleksaker men de allra flesta av eleverna gjorde inte det. När eleverna fick hjälp och stöd av

Under eftertestet fick de beskriva vad lapparna med pilar på betydde. Sedan fick förskolebarnen programmera roboten utifrån instruktioner på en karta med rutnät. De skulle även rita pilar som beskrev programmeringen som de just hade gjort. Slutligen fick de lappar med pilar som de skulle programmera roboten efter och gissa var roboten skulle hamna.

Resultat: Studien visar att förskolebarnen tyckte att det var roligt med programmeringsövningarna och de deltog entusiastiskt. Resultatet visade även att alla barn kunde programmera roboten ut efter
kartan, vilket innebär att de förstod förhållandet mellan ritningen på papperskartan och den stora rutnätskartan. De fick också möjlighet att arbeta multimodal under övningarna, det vill säga att de i detta fall använde sig av till exempel både sin kropp och sin talförmåga. En del av barnen delade upp instruktionerna i olika steg. Detta visar en förmåga att planera och sätta objekt i rätt ordning, vilket är en viktig färdighet inom matematiken.

6. Resultatsammanställning

I följande avsnitt kommer vi att sammanställa de viktigaste resultaten från de studier vi har tagit del av som har med vår frågeställning att göra: ”vilka är fördelarna med att arbeta med programmering i matematikundervisningen?”

7. Diskussion

I följande avsnitt kommer vi att diskutera resultaten av de studier vi har tagit del av utifrån vår frågeställning. Vilka förmågor är det som gynnas av programmering i matematikundervisningen? Vi kommer även att diskutera resultaten utifrån ett pedagogiskt perspektiv.

7.1 Matematiska förmågor

I detta avsnitt kommer det diskuteras om vad för matematiska förmågor som gynnas av programmering utifrån artiklarnas resultat och våra egna reflektioner.

Det har visat sig att programmering i matematikundervisningen har många positiva effekter. Ett återkommande resultat i studierna som vi läst handlar om problemlösning. Vilket inom matematiken betyder att eleven har ett matematiskt problem som han/hon inte vet hur det ska lösas, och behöver därför undersöka problemet och försöker lösa problemet med olika strategier (Skolverket, 2017). Det kan vara till exempel att eleven ska guida en Bee-Bot genom en labyrint och vet inte hur den ska göra det. Eleven kommer i det tillfället använda sig av sin problemlösningsförmåga.

av fri lek som en metod för att utveckla elevers problemlösningsförmåga har dock en del brister som vi tar upp i slutet av diskussionen.

7.2 Pedagogiskt perspektiv

I följande avsnitt tar vi upp hur man kan se på resultaten av studierna utifrån ett pedagogiskt perspektiv och vilka utmaningar lärare kan ställas inför.

multimodala lärandet en ännu mer central roll och resultatet av hennes studie visade att de elever som använde sig av full-embodiment, det vill säga hela kroppen, för att förankra sitt lärande fick signifikant bättre resultat än de som inte gjorde det, eller gjorde det i en mindre grad. Detta tyder på att det finns en del saker som lärare behöver ha i åtanke när de inför programmering i undervisningen om de vill få ut så mycket som möjligt av den.

8. Avslutning

Avslutningsvis kan vi efter att ha genomfört vår studie konstatera att det finns en hel del fördelar med att införa programmering i matematikundervisningen, både när det gäller elevers matematiska förmågor och deras motivation. Det finns dock en del som lärare måste ha i åtanke när programmering används i undervisningen. Att låta eleverna leka fritt med robotleksaker visade sig vara inte alltför effektivt när det kommer till att förbättra elevernas matematikabilitet. Det krävs en viss form av stöttning och struktur från lärare för att kunna ta vara av fördelarna. Det har också
visat sig att oavsett om skolan har datorer eller inte så kan eleverna jobba med programmering eftersom är ungefär lika effektivt att programmera utan digitala hjälpmedel.

9. Referenslista

Larsson, Å. (2017, Mars 9). *Skolvärlden*. Hämtad från Nu införs programmering i matten:
https://skolvarlden.se/artiklar/nu-infors-programmering-i-matten

Skolverket (2014) *De matematiska förmågorna*. Stockholm: Skolverket

Självvärdering

Emelie

Robin

För att försöka arbeta så effektivt som möjligt delade vi ofta upp arbetet så att en skrev på en del och den andra på en annan. Till exempel när vi märkte att vi skulle skriva resultatsammanställningen så märkte vi att vi behövde utöka bakgrunden. Då skrev jag på bakgrunden medan Emelie skrev resultatsammanställningen. Emelie läste dock alltid igenom det jag hade skrivit och vice versa, och vi gjorde även många justeringar på texten utifrån varandras feedback.
Överlag anser jag att arbetet under denna uppsats fungerat mycket väl både från min och Emelies sida. Vi hade lite svårt när vi först skulle välja frågeställning och ämne, men när vi väl kom igång flöt det på bra under i stort sett hela arbetsgången.