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SOME CONTROLLABILITY ASPECTS FOR ITERATIVE LEARNING

CONTROL

P. Leissner, S. Gunnarsson, M. Norrlof

ABSTRACT

Some controllability aspects for iterative learning control (ILC)
are discussed. Via a batch (lifted) description of the problem a state
space model of the system to be controlled is formulated in the
iteration domain. This model provides insight and enables analysis
of the conditions for and relationships between controllability, output
controllability and target path controllability. In addition, the property
miminum lead target path controllability is introduced. This property,
which is connected to the number of time delays, plays an important
role in the design of ILC algorithms. The properties are illustrated by a
numerical example.

Key Words: lIterative Learning Control, Controllability, Output
controllability, Target path controllability

I. Introduction

ILC is a control method which improves the
control of processes that perform the same task
repeatedly [3, 15]. A classic example is an industrial
robot performing e.g. arc welding or laser cutting,
but it has also been used in other applications, such
as in the hard disk drive industry [5]. The system
where ILC is applied can be both in open loop as
well as in closed loop, and in block form it can be
illustrated by Figure 1.

Typically, the 1ILC input signal ug(t) € R™ is
updated according to an equation of the type

uk+1(t) =F (ta {uk (Z)}iV:Ov {ek(l)}f\io) y
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r(t) —
ug (t) —> S [V (t)

Fig. 1. System description. The reference signal is denoted by
r(t), the ILC input signal by ug(¢) and the output signal
by yk(t), where k is the ILC iteration index and t the
time index.

with t =0,..., N and where e, (t) = r(t) — yx(t) is
the control error, r(t) € R™ the reference signal,
vi(t) € R™ the measurement signal, k the iteration
index, ¢t the time index and F(-) is an update
function. The main task in 1L.C design is to find
an update function that is able to drive the error
to zero in some suitable norm, as the number of
iterations tends to infinity, i.e.,

lex(®)]| =0, k—o00, t=0,....,N (1)
The controllability concept, covered in this
contribution, provides general results concerning
what information is necessary to fulfil (1). The
results also provide insights in how to choose design
parameters in a certain class of ILC algorithms.
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In this paper, the system depicted in Figure 1
is described using the following linear, discrete-time
and time-invariant state space model

x(t+1) = Ax(t) + Byu(t), (2a)
y(t) = Cx(1), (2b)

where z(t) € R™=. For simplicity, disturbances and
the reference input are not considered.

Definition 1 (Controllability [19]) A  linear
time-invariant  state space model is called
controllable if, given any state xy, there is a
positive integer ty and an input signal u(t) such
that the corresponding response of the system,
beginning at x(0) = 0, satisfies x(ty) = x5.

Theorem 1 (Controllability [19]) An LTI sys-
tem is controllable if and only if the rank of
the controllability matriz € s equal to the state
dimension, i.e.,

rank (Bu AB, A"w_lBu) =n,. (3)

A related property is the output controllability of a
system. A formal definition of output controllability
follows from Definition 1 with x replaced by y. The
requirement for output controllability is that the
output controllability matrix, denoted by ¢°, has
full rank [17], where

%° = (CB, CAB, CA™B,) (4)

for a state space model parametrised as in (2).

By using a batch (iteration domain) descrip-
tion of the system in (2) a number of controllability
aspects related to the design and analysis of
ILC algorithms can be studied. In Section II
the iteration domain description is introduced.
Section III presents conditions for state and output
controllability. The target path controllability
(TPC) concept is recovered from [7]. An extension,
the new concept of Minimum Lead Target Path
Controllability (MLTPC) is also introduced. This
concept is especially suitable for application to
ILC. In the related area of repetitive control,
controllability has been investigated in [8, 18, 10],
where a batch formulation of the repetitive system
is utilised and controllability conditions are derived.
Another approach to controllability based on the
z-transform of the repetitive system is presented
in [6]. In Section IV aspects of controllability are
illustrated and it is discussed how TPC can be
used in ILC. The material presented below naturally
extends and builds upon the work in [4].

II. System Description in the Iteration
Domain

Consider the discrete-time state space model in
(2). According to [19] the system has the following
update formula for the state vector

t—1
x(t) =A"%(0) + > A" Byu(j)
§=0
for t > 1. By introducing the vectors

T

x=xD)T ... x(N)T) eRV",
= (u(0)" u(N-1)T)" e RN™,
y=OT .y e RN,

the model in (2) can be written more compactly for
a batch of length IV as

X =P®x(0) + Sxuu (5a)
y =Cx (5b)

® = (AT (AY)T,.. (AM)T)", (6a)
B, 0 0
AB, B, .0
AN-1B, AN2B, ... B,

The batch formulation is also known as the lifted
system representation in the ILC community and
it is used in the design of ILC update laws, e.g.
norm-optimal 1LC [1, 9], but also for analysis of
stability and convergence. The batch formulation
as introduced above takes into account that the
discrete time state space model (2) contains (at
least) one time delay from input to output since
there is no direct term between the input and the
output. In the batch formulation this is done by
shifting the elements of the vector of outputs y
one time step relative to the elements of the input
vector . This differs from the treatment in [9]
where the delay is not taken into account, and the
time indices of the input and output vectors are the
same. At iteration k and k + 1 it holds that

X = @X(O) + quﬁka (73)
Xkt1 = @X(O) + Sxulg+1, (7b)

where it is assumed that the initial state x(0) is iter-
ation independent. This is a common assumptions
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when applying ILC [2]. Subtracting (7a) from (7b)
gives the following expression

X+1 = X + Sxu (W41 — W), (8)

Let Ag, = Up+1 — Ur be a new input signal then
the state space model in the iteration domain can
be expressed as,

Xi+1 = Xk + Sxuly,, (9a)
¥ = CXp. (9b)
where the state dimension is Nn,, and Sy, and

C have dimensions Nn, x Nn, and Nn, X Nn,
respectively.

ITI. Controllability Aspects
3.1. State Controllability

Since the dynamics in (9) consist of a set of
integrators, the controllability matrix € is given by
Sxu repeated N times, i.e.,

% = (Sxu Sxu) (10)

and the rank is simply given by
rank ¢ = rank Sxy. (11)

From Theorem 1 it follows that the batch
system in (9) is controllable if and only
if rank% =rank Sy, = Nn,. A necessary and
sufficient condition for controllability of (9) is
presented in Theorem 2.

Theorem 2 The batch system (9) is controllable
according to Definition 1 if and only if rank B, =
Ng.

Proof 1 Exploiting the structure of Sxu gives

Sxu =¥B
with
I 0 0
A I 0
¥ = ) ,
AN—l AA}_Q I
B, O 0
0 Bgu 0
B = ) :
0 0 B.

where it can be noted that the matrix ¥ is square
and triangular with all diagonal elements equal to
1. The determinant of a square triangular matrix is
equal to the product of the diagonal elements [14],
hence det W =1 and ¥ is non-singular. It now
follows that

rank Sy, = rank B = rank B = N rank B,,.

The system is therefore controllable if and only if
rank By, = ng.

Corollary 1 A necessary condition for the system
in (9) to be controllable is that n, > n,.

Proof 2 It is given that By € R"=*"«  hence
rank By < min {n,,n,}. It is therefore necessary to
have n, > ng to be able to obtain rank By = ny.

The interpretation is that the number of inputs
has to be larger than or equal to the state
dimension to achieve controllability. Controllability
in the iteration domain is therefore a very strong
requirement. By definition the elements of X
consist of the state variables of the system in the
different time instances within one iteration.

3.2. Output Controllability

The requirement of state controllability is very
strict, but in many cases it is only necessary that
the output follows a desired trajectory. A condition
for output controllability for the system in (9) is
presented in Theorem 3.

Theorem 3 The batch system in (9) is output
controllable if and only if

rank CSyy = Nny,. (12)

Proof 3 From (10) and (4) it can be concluded
that €° = C€ for the system in (9). Hence, the
system is output controllable if and only if

©° = (CSxu CSxu) (13)

has full rank, i.e., rank¢° = Nn,. The result
follows directly from the fact that rank€° =
rank CSyy.

Remark 1 In the SISO case the matriz €°,
determining the output controllabilty, becomes the
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matriz of the Markov parameters gi of the input-
output representation

y(t) = gru(t — k) (14)
k=1
i.e.
g 0 - 0
w=|% . (15)
o ’ 0
gN - g2 g1

where it is assumed that go = 0. In case the time
domain system (2) contains additional delays, g1 =
0 and the matriz €° will loose rank. In this case
the system will not be output controllable, which
in practice means that the output y(1) cannot be
affected by the input u(0).

Output controllability is closely connected to the
assumption that the matrix of Markov parameters
has full row rank, which is used to proof
convergence of ILC algorithms in [13, 12, 11].

Note that a general controllable LTI system
is not necessarily output controllable in a batch
formulation, and a general output controllable
batch system is not necessarily controllable in
an LTI system sense. It follows from (12) that
if the system is output controllable the matrix
CSxy must have Nn, independent rows. Hence, the
measurements in the time domain model (2) must
be independent, in the sense that rank C = n,,.
Theorem 2 presents a necessary, but not sufficient,
condition for output controllability.

Corollary 2 Assume rankC =n,. A necessary
condition for system (9) to be output controllable
is that rank By > n,,.

Proof 4 The rank of a product of two matrices is
less than or equal to the minimum of the rank of
each matriz [14], hence

rank CSy, < min {rank C,rank Sy, }
= min { N rank C, Nrank B,} (16)

From the assumption rank C = n,, it follows that a
necessary condition to have rank CSxy = Nny, is to
have rank By, > n,

3.3. Target Path Controllability

In 1Lc it is of interest to reach a desired
trajectory, in as few steps as possible and then
be able to follow that trajectory for the complete
iteration. This is exactly what the concept of target
path controllability (TPC) [7] is considering. Target
path controllability can be used to investigate if it
is possible to track any given reference trajectory
over a time interval given any initial state. A formal
definition can be found in Definition 2, where
T(l,m) symbolises the vectors r(t) for t =1,...,m
stacked on top of each other. The same notation
holds for (I, m).

Definition 2 (Target path controllability [7])
Let p and q be positive integers. A linear time-
varying system is said to be target path controllable
at to with lead p and lag q, if for any initial state
x(to) = %o and for any reference output trajectory
T(to+p,to+p+q—1), there exists a control
sequence U(ty, to + p+ q — 2) such that y(t) = r(t)
fort=to+p,...,t0+p+q—1.

The target path controllability will be abbreviated
as TPC(to; p, q). For ¢ = oo the system is said to be
globally TPC at ¢ty with lead p. In this paper only
LTI systems are considered, therefore the starting
time tg =0 is used without loss of generality,
and TPC(p, q) £ TPC(0; p, ¢). Theorem 4 provides a
necessary and sufficient condition for TPC of an LTI
system.

Theorem 4 A linear time-invariant system 1is
TPC(p, q) if and only if rank Sy (p, q¢) = qny, where

CA”"'B, - CBy4 --- 0

Syu(pv Q) = : .. . :
CAPtI—2B, e CB.

Proof 5 The result follows directly from [7,
Lemma 8] using the LTI model in (2).

The relation between TPC and output controllabil-
ity is presented in Corollary 3.

Corollary 3 Output controllability of the system
in (9) is equivalent to the system in (2) being
TPC(1, N).

Proof 6 From Theorem 3 it holds that the system
in (9) is output controllable if and only if
rank CSxy = Nny. Using p=1 and ¢ =N gives
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Syu(l,N) = CSxu and from Theorem 4 it follows
that the system is TPC(1,N) if and only if
rank Sy (1, N) = Nn,. Hence, the two properties
are equivalent.

Remark 2 In the SISO case the matriz determin-
ing if the system is TPC(p,q) becomes

gp .o g1 e 0
Syu(pv Q) = ’ ’
9q—1 T g1

In some cases it is useful to stress that a system
is TPC with as small lead as possible therefore an
extention to TPC is defined.

Definition 3 (Minimum Lead TPC) Given
the definition of TPC in Definition 2, the Minimum
lead target path controllability is given by
MLTPC(p, N) where p is the smallest number
that satisfy TPC(p, N).

Minimum lead TPC is a system property, and if
the system operates under feedback the analysis
should be done for the closed loop system. In next
section the concept MLTPC will be illustrated in an
example.

IV. Illustration of the Controllability
Aspects

Given the different results on controllability
from Section III some aspects related to control-
lability of the dynamic system and the iterative
learning control algorithm are given next.

4.1. Controllability in a Dynamic System

Consider a second order (n, = 2) continuous
time system where the states are position and
velocity, and the input is the acceleration,

X(t) = (8 é) x(t) + (g’) u(t).  (17)

x(t) = (p(t) o())"

and p(t) and v(t) denote position and velocity
respectively. Consider now discretization using two
different approaches, where Case I uses zero order
hold and Case II uses the Euler forward method.

where

Case I: Discretisation of (17) using zero order
hold gives the discrete-time model

x(t+1) = (é Tl) x(t) + <T;/2) ut), (18)

where Ty is the sample time. The batch vector X
becomes

<= (p(1) v(l) p(2) v(2) p(N) o))"

From Theorem 2 it follows that the system in (9)
is controllable if and only if rank B, = n, = 2.
Here, rank B, = 1 hence the system is not state
controllable. If the position or the velocity is
considered as the output, ie., ny, =1, then the
necessary condition for output controllability from
Theorem 2 is satisfied, and hence the system can
be output controllable. Investigation of the matrix
CSxu shows that the system is output controllable
in both cases, and this can be understood as
follows. Discretization using zero order hold of the
continuous time model, with no time delay, gives a
discrete time model with one time delay, which is
taken into account when forming the batch model.
Hence g1 # 0 in the resulting matrix of Markov
parameters and the system is MLTPC(1, N).

Case II: Using the FKEuler method to
discretise (17), then the discrete-time model
becomes

X(t+1) = (é 7;) x(t) + (1(3) ut).  (19)

Also here rank B, = 1, and hence the system is not
controllable. The output controllability depends
on which signal that is considered as output.
Considering the position as output, i.e. C = (1 O)
gives the first row in CSy, equal to zero, since
g1 = CBy =0, and hence the rank condition for
CSyu is not satisfied. It means that the input signal
does not affect the position directly in the next time
step. The reason is that using the Euler method
for discretization introduces an extra time delay
between the input and the position. Since g; =0
it will not be possible to have TPC with lead p = 1,
and the first row of Sy (1, ¢) will be zero. However,
removing the first row with only zeros in CSxy
gives the matrix Syy(2, N —1). The conditions in
Theorem 4 are now satisfied, hence the system is
MLTPC with lead 2, according to Definition 3. If
instead the velocity is used as output the necessary
condition for output controllability from Theorem 2

© 2016 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls



6 Asian Journal of Control, Vol. 00, No. 0, pp. 1-7, Month 2016

is still satisfied. Consider again that position is the
output which gives a system MLTPC with lead 2.

Theorem 4 states a requirement for the system
to be TPC, which means that any output or
reference should be possible to track. For specific
trajectories, Remark 3 presents a necessary and
sufficient condition for tracking.

Remark 3 (Strongly admissible reference trajec-
tory [7, Theorem 8]) A reference trajectory T(p,p +
q — 1) is strongly admissible if and only if

rank((syu(pv q),i(p,p +q- 1))) = rank Syu(pa Q)

where

zZ(p,p+q—1) = (2(p)" 2p+q-1)7)"

and z(i) = r(i) — CA*x(0).

Remark 3 states that the reference should lie in the
range space of Syy(p, q) to be admissible.

Given a reference signal where the first element
is zero (and assuming zero initial condition) enables
T(1, N) to be strongly admissible, even though the
system is not TPC(1, N). The property, strongly
admissible, is related to the reference signal and
not to the system in general. Instead, TPC relates
to a system property and works for any reference.

4.2. TPC and Iterative Learning Control

Controllability, and especially MLTPC, are
highly useful for the ILC design. Given a system,
as in Figure 1, a natural first step in an ILC design
is to check MLTPC. It is important to note that in a
case where ILC is applied to a closed loop system
it is the closed loop system that should be checked.
From the definition of MLTPC it follows that for a
system with MLTPC(p, N), an ILC algorithm should
be able to reduce the error according to,

llex(®)]| =0, k— o0, t=0,...,N—1.
From Definition 2 it also follows that the ILC
control signal, in this case should be

ug(t), t=—-p,...,N—p—1. (20)

Given the information about MLTPC it is possible to
provide a starting point for a simple ILC algorithm
of P-type, as shown in the next example.

Example 1 Consider Case II from the previous
section, whith position as output. Before applying
ILC' it is assumed that the system is stabilized using
state feedback. Since the state feedback will not
change the structure of B,, and C in the state space
system and hence the system is still MLTPC(2, N),
as shown earlier. A general P-type ILC algorithm
is given by,

upi1(t) = up(t) + rgex (), (21)

where the gain k and the lead term & are the design
parameters. In this case it is natural to choose § =
2, according to, e.g. [16], since lead here represents
the system delay. The Kk value has to be chosen to
get a stable ILC system. Typically this is achieved
for 0 <k <1 if the closed loop system has static
gain 1.

Hence, it is important the analysis of MLTPC before
the algorithm design. Given that one can apply an
input signal for ¢ < 0, an input of the type in (20)
will enable the error to converge to zero. When,
however, the input signal can be applied for ¢ > 0,
the error can only be guaranteed to approach zero
from time ¢ > p.

V. Conclusions

Controllability is a fundamental property of
a control system and it applies naturally to ILC.
Provided a batch formulation of the controlled
system, state controllability, however, becomes a
very hard requirement to fulfil, since the number
of independent inputs must be at least as many
as the states of the system. In general, output
controllability is a more realistic requirement and
in this case the number of inputs to the system
must be at least as many as the outputs, which is
satisfied for most systems. In practice also output
controllability fails in many cases and therefore
Target Path Controllability (TPC) can be used to
further extends the controllability concept with a
time, lead time, in which the input will affect the
output. To be more useful and also consistent, the
concept of minimal lead TPC is introduced and it
is shown how this concept can be naturally used
in the design process for ILC when a P-type 1LC
algorithm is used. The minimal lead TPC concept
can be used with any ILC algorithm and results are
valid for multivariable systems. The implications of
the results for evaluation and algorithm design in a
multi variable case is left for future work.
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