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Abstract

Impressive results can be achieved when stacking deep neural networks hierarchies
together. Several machine learning papers claim state-of-the-art results when evaluating
their models with different accuracy metrics. However, these models come at a cost,
which is rarely taken into consideration. This thesis aims to shed light on the resource
consumption of machine learning algorithms, and therefore, five efficiency metrics are
proposed. These should be used for evaluating machine learning models, taking accuracy,
model size, and time and energy consumption for both training and inference into account.
These metrics are intended to allow for a fairer evaluation of machine learning models, not
only looking at accuracy. This thesis presents an example of how these metrics can be used
by applying them to both text and image classification tasks using the algorithms SVM,
MLP, and CNN.
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1 Introduction

This chapter describes the motivation for this thesis. It also presents the research questions
and delimitations.

1.1 Motivation

The amount of compute needed for AI, which machine learning is a part of, is growing
rapidly. The amount of compute for the largest AI training runs is doubling every 3.5 month.
Since 2012, the amount of compute needed has increased by 300 000 times. [1]

Several machine learning papers claim state-of-the-art results when evaluating the models
with different accuracy metrics. It is possible to get impressive results when stacking deep
neural networks hierarchies together and using the latest hardware. However, this comes
at a cost. This cost includes time, memory and energy, and it is rarely taken into account
in research papers [26]. It is easy to get blinded by the drastically increasing results of the
models.

This growth brings issues that become increasingly important, and we need to start paying
attention to the cost of machine learning. These machine learning algorithms are starting to
get too complex for the hardware that we have today. Instead of only focusing on making
better hardware, we should also focus on having resource consumption in mind when
choosing a machine learning model.

1.2 Aim

This thesis aims to test a set of metrics for evaluating machine learning algorithms, taking
into account time, memory, energy and accuracy. When doing so, it is also essential to
make a comparison between the different algorithms as fair as possible. That is because
the algorithms are all designed to work in different ways and have different strengths and
weaknesses. With that said, the goal is that this thesis leads to an example of how to make a
more fair evaluation between algorithms, and not only favor the ones with the best accuracy.

1



1.3. Research questions

1.3 Research questions

This thesis tries to answer the following questions:

1. How can we make a fair comparison between machine learning algorithms with respect
to resource consumption?

2. How to compare machine learning algorithms to each other using efficiency metrics
based on resource consumption?

1.4 Delimitations

The only measurements that are taken into account when evaluating these machine learning
algorithms are accuracy, model size, energy consumption for the CPU and GPU, and time
consumption for training and inference. More things could be taken into account, for
example, memory consumption during runtime and some measurement on how serious the
errors are. However, this is outside the scope of this thesis.

This thesis should not either be seen as an evaluation of machine learning algorithms.
It instead provides a methodology for evaluating a certain implementation of a machine
learning algorithm.

2



2 Background

This thesis was conducted at Ericsson. Ericsson is a Swedish company that was founded
in 1876 in Stockholm. They have about 95 000 employees across the world, of which about
12 500 in Sweden. It is one of the worlds leading provider of Information and Communication
Technology (ICT) solutions. About 40% of the world’s mobile traffic is carried through
Ericsson’s networks. 1

Armin Catovic, who is a senior specialist in machine learning at Ericsson, proposed this
thesis. The authors did not have much prior experience in machine learning but were
interested in the evaluation. The thesis was conducted at Ericsson’s headquarter in Kista
(Stockholm).

1 https://www.ericsson.com/en/about-us
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3 Theory

This chapter will describe the theory needed for understanding the method used in this
thesis.

3.1 Machine Learning

Machine learning is a buzzword that is being used a lot nowadays. However, what is machine
learning, and how can it be used to create value? As stated by Peter Morgan in Machine
Learning is Changing the Rules [22], machine learning is the process of a machine learning
from a large dataset similarly as we humans do. The new opportunities that the field of
machine learning provides enforce the need of developers to understand what impact their
implementation has on their business. Morgan also states that the terms Artificial Intelligence
(AI), Machine Learning (ML) and deep learning are often used to describe the same thing.
Deep learning is, in fact, a subset of machine learning, and machine learning is a subset of
artificial intelligence.

There are two main types of machine learning methods, supervised learning and
unsupervised learning. These are described in more detail in the two following sections.

Supervised Learning

Supervised learning is when the algorithm is given data that already have labeled outputs,
meaning we already know the answers to the input data. The model is therefore trained
to make certain conclusions based on the input. Supervised learning is often used for
classification or regression and is probably the most common type of machine learning. In a
classification problem, there is a set of discrete output values. For example, a classification
problem could be to classify pictures of letters to the output labels A-Z. While in a regression
problem, the answers are a range of real values. For example, a regression problem could be
to map the input value blood pressure, to probability of a heart attack in a year, where the output
value range between 0% and 100%. [20]

4



3.1. Machine Learning

Actual values
Positive Negative

Predicted values Positive TP FP
Negative FN TN

Table 3.1: Confusion matrix

Unsupervised Learning

Unsupervised learning is when an algorithm is given a set of input values, and the output
values are unknown. It is often used for clustering, representation learning, and density
estimation. In this type of problem, the model aims to find patterns and structures in the
input data, without knowing any output labels.1

Two common types of problems that unsupervised learning solves are exploratory analysis
and dimensionality reduction. Exploratory analysis is when the model should find the main
characteristics in the input data. If someone, for example, is trying to segment consumers,
exploratory analysis can solve this problem. Dimensionality reduction is when the model
removes one or several of the input dimensions. It can be done to prepare input data for
further machine learning processing.2

Classification measurements

There are several ways of measuring the performance of classification in a machine learning
algorithm. A few examples are accuracy, F1 score, precision and recall.

Accuracy is one of the most basic measurements that are used to evaluate a machine learning
algorithm. In general, the following equation is used to retrieve the accuracy3:

Accuracy =
Number o f correct predictions
Total number o f predictions

To get the result in percentage, the Accuracy should be multiplied by 100. This equation can
be simplified to the following if it is a binary classification problem:

Accuracy =
TP + TN

TP + TN + FP + FN

The confusion matrix in Table 3.1 describes true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). For a binary classification problem, the output labels
are either ’true’ or ’false’, and the classifier has the output classes ’true’ and ’false’. TP is when
the result should be ’true’ and is also predicted to be ’true’. TN is when the result should be
’false’ and is also predicted to be ’false’. FP is when the result is predicted to be ’true’ but is
in fact ’false’. FN is when the result is predicted to be ’false’ but is in fact ’true’.

Precision and recall are often measured together since they complement each other’s
weaknesses. Precision is used to measure to what extent the positive predictions were
correct, while recall shows how many of the actual positives were predicted positive. The

1 https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
2 https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
3 https://developers.google.com/machine-learning/crash-course/classification/

accuracy
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3.1. Machine Learning

mathematical equations for precision and recall are as follows4:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score is a combination of precision and recall. It offers a balance between the two
measurements making it not so sensitive to the uneven balance between different classes.
Whereas it is more sensitive to false negatives and false positives that can impact business
negatively. The mathematical equation for the F1 score is5:

F1 Score = 2 ˚
Precision ˚ Recall
Precision + Recall

SVM

Support Vector Machine (SVM) is a type of supervised learning. Cortes and Vapnik (1995) [5]
introduced SVM, and they described it as an algorithm for classification problems consisting
of two classes. They constructed it as a mix of three ideas, the use of convolution of the dot
product, soft margins and optimal hyperplanes. In the report where they define SVM, they
used it to classify handwritten digits using the NIST dataset.

The SVM utilizes the dot product between data points, represented as vectors. For the two
p-dimensional vectors

#»a = (a1, a2, ..., ap)

#»

b = (b1, b2, ..., bp)

the dot product is defined as

#»a ¨
#»

b = (a1b1 + ... + apbp).

The definition of the optimal hyperplane is that if there is a dataset

S = t(x0, y0), (x1, y1), ..., (xn, yn)u

where x denotes input and y the class for that input, then the optimal hyperplane is the
plane where the distance between the hyperplane and the closest datapoints txi, xju from each
different class tyi, yku is maximized. The solid line in Figure 3.1 is the optimal hyperplane in
a two dimensional linear SVM.

When designing the hyperplane, the distance between the two dashed lines, visualized in
Figure 3.1, is called the margin. A hard margin SVM is when no errors can be allowed. In
that case, the data must be linearly separable without any errors. If that is not the case, using
a soft margin SVM could be better. A soft margin is when we can tolerate some of the dots
ending up on the wrong side of the hyperplane, introducing a slack variable.

4 https://developers.google.com/machine-learning/crash-course/classification/
precision-and-recall

5 https://skymind.ai/wiki/accuracy-precision-recall-f1
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3.2. Neural Networks

Figure 3.1: The optimal hyperplane in a linear SVM

3.2 Neural Networks

Artificial neurons have been around for more than half a century since McCulloch and Pitts
(1943) [18] first mentioned it. The artificial neuron is based upon a model of the human
neuron, where the input and output to an artificial neuron correspond to dendrites and axons
in the human neuron. Inside the artificial neuron is a core, that is producing the output
based on its input. This corresponds to a human neuron’s soma. The model produced by
McCulloch and Pitts consists of logical expressions. However, due to the low availability
of computational power6, the use of neural networks did not get up to speed until around
2010. In 2010 an image classification competition, called ImageNet [25], was introduced. The
best result from the first competition had 72% accuracy, while the last one, in 2017 had 97%
accuracy.

Neural networks are made up of several layers of artificial neurons. These are called deep
learning networks and are a type of machine learning that can be used to implement deep
learning7. Neural networks are used to solve many problems in different areas ranging from
healthcare to finance.8

MLP

The Multilayer Perceptron (MLP) is a type of feedforward neural network. Gardner and
Dorling (1997) [8] describes it as a neural network that consists of at least 3 or more layers, one
input layer, one or more hidden layers, and one output layer. Each layer consists of neurons,
and weights between the neurons densely connect the layers. By being densely connected, a
neuron in a layer connects to all neurons in the previous layer and the next layer. Figure 3.2

6 https://pages.experts-exchange.com/processing-power-compared
7 https://becominghuman.ai/artificial-neural-networks-and-deep-learning-a3c9136f2137
8 https://deepai.org/machine-learning-glossary-and-terms/neural-network
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3.2. Neural Networks

Hidden Layers
 

Input Layer
 

Output Layer 

Figure 3.2: Example of a MLP structure

shows an example of the MLP structure with an input layer consisting of 3 neurons, 2 hidden
layers with 4 neurons each and an output layer with 2 neurons.

The neuron produces an output that is a sum of all the inputs to the neuron, which runs
through an activation function. The output is then multiplied with the weights between the
neurons. During the training of MLP algorithms, the weights between each neuron need
to be updated. The weight is updated based on an error signal, and this error signal is the
difference between the predicted output and the actual output. When the error signal is
defined, all weights are updated to reduce the overall error of the entire network.[8]

CNN

LeCun et al. (1998) [15] defines a Convolutional Neural Network (CNN), which is a type
of feedforward neural network, as a combination of three different architectures. It is the
ideas of a local receptive field, shared weights and sub-sampling. When using CNN for
image recognition, the local receptive field is used to capture features such as sharp edges
and corners and create feature maps. The detected edges and corners are then combined
with other edges and corners in the following layers to finally extract features such as eyes or
mouth. Information extracted in one local receptive field maps to a single entry in the feature
map. If the original picture is 32x32 pixels and using a local receptive field of 5x5 pixels, it
generates a feature map of size 28x28. The concept of shared weights is used when creating
a feature map from the local receptive field. With a receptive field of 5x5 pixels, there are 25
weights, one for each pixel. All local receptive fields use these weights to construct a feature
map. The weights are then multiplied with a bias variable, and each feature map consists
of 26 trainable variables. After constructing a couple of feature maps for extracting different
characteristics, sub-sampling is used to reduce the size of the feature map. There are different
ways to do sub-sampling, and one way is by using max-pooling over a 2x2 receptive field.
Riesenhuber and Poggio (1999) [24] defined max-pooling as

y = maxtu(1,1), u(1,2), ..., u(h,k)u

8



3.2. Neural Networks

6

2 8

4
Figure 3.3: A 2x2 receptive field of a feature map

Figure 3.4: An example of a CNN structure 9

where u is the feature map and y is the output to the pooling layer. When applying the
max-pooling technique to the receptive field in figure 3.3 the output will be 8.

The design of a typical CNN is visualized in Figure 3.4

Loss function

Machine learning models learn by utilizing something called loss function. A loss function
is a way of evaluating how well an algorithm models the given data. The value given by the
loss function represents how good the predictions are. A loss function measures the absolute
difference between the predicted values and the real values. A high value means that the
model is far from the correct predictions. A low number means the model predicts closer to
the real values. There are several types of loss functions and which one to use depends on the
problem. There are generally two types of loss functions, regression losses and classification
losses, depending on the problem.10

One of the most common loss functions is the cross-entropy loss, which for multiclass
classification problems is defined as

H(p, q) = ´
ÿ

pilog(qi).

where p is the set of true labels, and q is the set of predictions. For binary classification, where
the number of classes is two, p P ty, y´ 1u and q P tŷ, 1´ ŷu, the cross-entropy loss can be
rewritten as

9 Typical CNN by Aphex34. Licensed under CC BY-SA 4.0
10 https://towardsdatascience.com/common-loss-functions-in-machine-learning-

46af0ffc4d23
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3.2. Neural Networks

´
ÿ

pilog(qi) = ´ylog(ŷ) + (1´ y)log(1´ ŷ).

The true label for the training data is y, and ŷ is the predicted probability that it is just that
label. One of the benefits of cross-entropy loss is that it heavily penalizes predictions that the
model is very confident about is correct but are wrong.11

Optimizers

During training, the model’s weights are updated to minimize the loss function in order to
make the predictions as correct as possible, and this is where the optimizer comes in. The
optimizer is used to calculate how to change the weights to achieve a lower loss function.
The optimizer reacts based on the output of the loss function, which tells the optimizer if it is
heading in the right direction or not. The optimizer has a big impact on the model’s speed of
learning.12

There are several ways of making an optimizer. The goal of an optimizer is to find parameters
that minimize or maximize functions. By minimizing the loss function, the hope is that the
accuracy and other qualities get better. The type of loss function is chosen based on the
desired qualities of the model.

Loss functions can have very different shapes, and it can be tricky to find the minimum. One
of the problems an optimizer has to tackle is local minima. The optimizer thinks it has found
a minimum, but in fact, it is only the minimum for a specific area. Another problem that is
probably even harder are saddle points. The gradient from that point can be almost zero in
all directions, making it hard to know in which direction to go.13

One type of optimizer, used for a wide range of problems, is the Adaptive Moment Estimation
(Adam). It is an updated version of the Root Mean Square Propagation (RMSProp) optimizer.
Heusel et al. [10] describe Adam as following:

"Adam can be described as Heavy Ball with Friction (HBF) [...], since it averages
over past gradients. This averaging corresponds to a velocity that makes the
generator resistant to getting pushed into small regions. Adam as an HBF method
typically overshoots small local minima that correspond to mode collapse and can
find flat minima which generalize well."

Activation Function

Karlik and Olgac (2011) [12] describe the activation function as the most important part of
a neural network. The activation function is used inside a neuron to calculate its activation.
Activation functions are often used to limit the amplitude of the neuron’s activation, and
these are called squashing functions. The Sigmoid function

f (x) =
1

1 + e´x

is a saturating nonlinearity activation function, this function is uni-polar, meaning that it can
only output values between [0, 1]. The name Sigmoid is originating from the term ’S-shaped’

11 http://wiki.fast.ai/index.php/Log_Loss
12 https://blog.algorithmia.com/introduction-to-optimizers/
13 https://towardsdatascience.com/how-to-train-neural-network-faster-with-optimizers-

d297730b3713
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Figure 3.5: The Sigmoid activation function f (x) = 1
1+e´x

which is the shape this function takes as can be seen in Figure 3.5 [12]. Rectified Linear Units
(ReLUs),

f (x) = maxt0, xu,

as shown in figure 3.6 is a non-saturating nonlinearity activation function that, according
to Krizhevsky et al. (2012) [13] is six times faster during training than using the saturating
nonlinearity activation function tanh,

f (x) = tanh(x).

However, Al-Bdour et al. (2019) [3] state that using the ReLU function can cause the neuron
to die in the sense that it always outputs zero. This issue can only occur when the inputs
are zero or negative and, unfortunately, the neuron is not able to update its weights due to
blocked backpropagation and can therefore not recover.

Another activation function that is commonly used in the last layer is the softmax function
[13][16]

f (x)i =
exi

řK
j=1 exj

.

Dropout

Srivastava et al. (2014) [27] found that when applying dropout to neural networks during
training, the problem with overfitting diminishes. Dropout is the notion of temporarily
dropping neurons, including the incoming and outgoing weights from the network during
training. Applying dropout results in fewer inputs from preceding neurons in the network
and therefore decreases the reliability of previous neurons. Figure 3.7 shows an illustration
of a neural network during training with randomly dropped neurons.
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Figure 3.6: The ReLU activation function f (x) = maxt0, xu

Figure 3.7: Two neural networks where one has been applying dropout
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Embedding

When using machine learning for text, a key layer to use is embedding layers. The idea is
that a vector in several dimensions can represent every word. Every dimension represents
a property of the word. A common number of dimensions to use is 300. The similarities
between these words can be calculated using the cosine similarity, similarity = cos(θ),
between its corresponding vectors. The higher the value, the higher the similarity. It is even
possible to add and subtract vectors. A well-known example is king´man + woman, which
should give a vector similar to the queen vector.14

Embeddings are trainable, either they are trained simultaneously with a machine learning
algorithm or standalone. When training the embedding simultaneously with the algorithm,
it is most often not going to be reused for any other algorithm. It is possible to train the
embedding on its own when this is the case, it is most often going to be used for more than
one algorithm.15

3.3 Frameworks

Frameworks are used to simplify development by providing generic functionality that
allows the developer to create unique applications by applying selected functions from the
framework.

Tensorflow and Keras

Tensorflow is an open source library for machine learning. It provides tools for building
models at different levels of abstraction. Google Brain developed Tensorflow and released it
in February 201516. It can run on both CPU and GPU. The Tensorflow API is primarily built
for Python, but has some support for JavaScript, C++, Java and Go. Examples of companies
using Tensorflow are Airbnb, Coca-cola, and Paypal.17

Keras is a high-level API written in Python to build and train neural networks and is mainly
developed by the Google engineer François Chollet. It is designed to make it easy and fast
prototyping. In 2017 it was decided that Tensorflow should support Keras in their library.
It is possible to use Keras on top of Tensorflow, Theano, or CNTK, but Tensorflow is the
recommended backend. Keras supports both convolutional and recurrent networks.18 19

The high-level API that Keras provides allows developers to easily create layers that are
commonly used in neural networks. These layers can then be stacked upon each other in
different ways. A few examples of layers are convolutional layers20. These layers are used in
CNN since they are convolving over the input to produce feature maps, as described in the
CNN section. Another type of layer is the pooling layers21. These layers are used to shrink the
data, also called sub-sampling, as described in the section covering CNN. In Keras, there exist
these layers that are called core layers22. The layers grouped inside the core layers are layers
that are common in different types of neural networks. One layer among the core layers are
the dense layer, and this layer is used to connect all neurons in one layer with all the neurons
in the next layer. Very similar to the earlier description of MLP. Two other layers among

14 https://jalammar.github.io/illustrated-word2vec/
15 https://machinelearningmastery.com/what-are-word-embeddings/
16 https://ai.google/research/teams/brain/
17 https://www.tensorflow.org/
18 https://github.com/keras-team/keras
19 https://keras.io/
20 https://keras.io/layers/convolutional/
21 https://keras.io/layers/pooling/
22 https://keras.io/layers/core/
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the core layers are dropout and activation, and these two layers are working as described in
the CNN section. The dropout layer can be used to apply a different percentage of dropout,
ranging from 0-100% and the activation layer to apply different activation functions such as
ReLU, softmax or sigmoid. Some of these layers, such as the dense layer allow for selecting
what activation function to use without having to add an activation layer.

Embedding layers23 are used to represent words by using a vector with values between
[´1, 1]. The two main arguments to this layer are the input dimension that represents the
number of words used in the vocabulary and the output dimension representing the features
of each word. The embedding layer works similar to the other layers provided by Keras.
The goal is that the output is optimized to decrease the overall error in the network. When
training starts, the weights in the embedding layer are randomly initialized, and as training
prolongs, the weights are adjusted to fit in the context. This type of layer is common to use
as the first layer in Natural Language Processing (NLP) problems such as text classification
or predicting the next word in a sentence.

Scikit-learn

Scikit-learn is an open source module written in Python for data mining and data analysis. Sci
stands for science, and there are several other scikits out there. It is a popular tool for making
machine learning applications, building upon SciPy, NumPy, and matplotlib. Scikit-learn
is a module for Python with support for both Python 2 and 3. The project started as a
Google Summer of Code project in 2007 by David Cournapeau. Since then, many volunteers
have contributed. Several companies use Scikit-learn, for example, Spotify, J.P.Morgan, and
Booking.com.24 25

3.4 Related work

This section presents previous research in the area of efficiency and performance in
software development, both in general but also specifically in machine learning. There are
reported results of evaluations of machine learning algorithms with respect to time, energy
consumption, and model size, but rarely at the same time. It has also been done using several
different accuracy metrics. How machine learning and other software are evaluated today
and in the past is a big part of this thesis. After looking into the related work, the conclusion
is that there is not much research done when evaluating machine learning algorithms with
respect to resource consumption.

Environmental cost for machine learning

Strubell et al. (2019) [28] made a study about the financial and environmental cost of deep
learning in NLP. Advances in both techniques and hardware have led to an outstanding
accuracy improvement of NLP tasks.

They measured the energy consumed on a variety of popular off-the-shelf NLP models.
They also calculated the complete sum of resources to develop a state-of-the-art NLP model,
including all tuning and experimentation. The resources cover the energy, carbon dioxide
equivalent (CO2e) and cloud compute cost. To calculate the CO2e, they multiplied the energy
consumption with the average CO2 produced, measured in pounds per kilowatt-hour.

The measurements on several NLP models on different hardware shows that the CO2e
required for training these models ranges from 26 lbs up to 626 155 lbs. This CO2e footprint is
23 https://keras.io/layers/embeddings/
24 https://github.com/scikit-learn/scikit-learn
25 https://scikit-learn.org
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significant compared with an average human which consumes 11 023 CO2e in a year. Training
these models in the cloud would cost from 41 USD up to 3 201 722 USD.

Based on their findings, they propose solutions on how to reduce resource consumption
for NLP. One of them is that authors should report training time and sensitivity to
hyperparameters. They suggest, based on their experiments, that one should compare
different models to make a cost-benefit analysis. These cost-benefit analyses would make
it easier when choosing an NLP model based on what computational resources the consumer
has. Another solution is that academic researchers need equitable access to computation
resources. As it is now, usually, it is only big companies that have the resources to buy
the amount of hardware needed for developing state-of-the-art NLP models. The last
solution they propose is that researchers should prioritize computationally efficient hardware
and algorithms. It is up to both academia and the industry to promote research of both
computationally efficient algorithms and hardware that requires less energy.

Energy efficiency

Johann et al. (2012) [11] propose a generic way to measure the energy efficiency of software.
They defined the metric that they used as

Energy E f f iciency =
Use f ul Work Done

Used Energy
. (3.1)

To exemplify this metric, they tested it on a sorting application and a multi-user web
application. The authors chose these areas because it is rather easy to define what the useful
work done is. When evaluating the sorting application, they defined the useful work done
as the number of sorted items. The metrics were tested on both Bubble Sort and Heap Sort.
To measure energy, they multiplied the time spent and the average power consumption. The
metric in equation 3.1 was used to retrieve the number of sorted items per joule. This metric
can also be customized to fit other types of use cases.

A problem with this approach is that it is hard to measure the energy consumption using a
white box method. One other problem is that in more complex setups, it becomes harder to
define what useful work done is. However, a metric like this can bring light on the topic of
energy efficiency.

Measuring time

Pedregosa et al. (2011) [23] have been conducted a study about performance in different
machine learning libraries for Python, focusing on Scikit-learn. The study involves running
the machine learning algorithms SVM, LARS, Elastic net, kNN, PCA, and k-Means on the
scikit-learn, mlpy, pybrain, pymvpa, mdp, and shogun libraries. They used the Madelon
data set in every test. The results on the performance of these algorithms are measured
using seconds of training time. The fastest library was considered as the best for each of
the algorithms. They concluded that Scikit-learn was the fastest library to use in 4 out of 6
algorithms.

Measuring energy

Hähnel et al. (2012) [9] were investigating the energy consumption of running short code
paths. To be able to do this they had to investigate how granular the Intel Running Average
Power Limit (RAPL) measurement tool is. RAPL is claiming an update rate of 1 ms, although
the actual measurements conducted in this report show a standard deviation in the update
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rate of 0.004 ms. The deviation is too high to be used for accurate measurements of short-term
energy consumption, assuming an update rate of 1 ms. They, however, state that the
measurements are accurate when taking the deviation into account and the runtime of the
short code is adjusted accordingly.

Travers (2015) [29] is arguing that the usage of Intel’s RAPL to measure the energy
consumption of the CPU cannot always be complete. He discovered that when locking the
voltage of the CPU through settings in BIOS the values that RAPL reported did not correlate
to the power that the shunt resistor observed. Due to this fact, he argues that RAPL must
rely on some underlying model, Intel SpeedStep. It is still possible to use RAPL as a tool for
estimating the energy consumption of a CPU, but there can be no alteration in the voltage
that the CPU is running.

Dong et al. (2014) [7] studied how the redesign of a hydrodynamic application to use both
CPU and GPU could reduce the total energy consumed. To read the energy consumption for
the CPU and GPU, they used the RAPL and NVML libraries.

Li and Kessler (2016) [17] present a tool called MeterPU that is used to measure the energy
consumption of an entire system. The underlying libraries for this tool are the Intel
PCM library for energy measurements on CPU and the Nvidia NVML library for energy
measurements on GPU.

Strubell et al. (2019) [28] measured the energy consumption for training NLP models. They
sampled the power consumption during training for both GPU and CPU. To get the power
consumed by the GPU, they used NVIDIA System Management Interface (nvidia-smi). For
the CPU, they used Intel’s RAPL. They then computed the average power consumption. They
estimated the total power consumption by combining the power consumption from CPU,
GPU, and DRAM.

Measuring model size

Meng et al. (2017) [21] developed a CNN model called SqueezeNet, which is a compressed
variant of AlexNet. SqueezeNet is using 50 times fewer parameters than AlexNet, though the
model is 510 times smaller and reaches a size of 0.5 MB. The method they used to measure
the model size of a neural network was by counting the bytes that are required to store all
parameters of the trained model.

Zhu et al. (2017) [31] investigated if the pruning of parameters during training heavily
compromises the accuracy of a few Neural Network models. Some parameters are set to
zero when pruning. By using pruning, a reduction in the number of nonzero parameters
(NNZ) occurs. In this article, the model size is measured using the NNZ metric.

Variani et al. (2017) [30] are evaluating a Long-Short Term Memory (LSTM) algorithm on
speech recognition. LSTM is a type of Neural Network algorithm. In the article, they are
running three variants of the algorithm with a different number of LSTM cells per layer,
600, 768 and 1024. The article presents the size of these models by showing the number of
parameters used by the model.

Dong et al. (2008) [6] are looking into compressing an SVM model used for text classification.
To see if the compression of their model succeeded, they measured the size of the model by
looking at the weight matrix generated by the algorithm after training.
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Comparing time, accuracy, energy and model size

Kumar et al. (2017) [14] developed a machine learning algorithm called Bonsai, that is very
resource efficient when making a prediction. In IoT devices that have limited resources,
this algorithm could be useful. It can also possibly eliminate the need for connecting to
the cloud if the device can make a prediction locally. This can be an advantage for devices
that have energy constraints or may not have an internet connection. To test this algorithm,
they run the prediction on an Arduino Uno with only 2 kB RAM. They compared several
different algorithms based on accuracy, prediction time, prediction energy and model size.
The experiment was carried out on public datasets for binary and multiclass classification.
They could conclude that the Bonsai model could have as much as 30% higher accuracy than
other resource efficient machine learning algorithms. It was still very efficient in model size
and energy consumption during prediction.
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4 Method

In this chapter, the method will be described in detail. Section 4.1 describes the efficiency
metric and how it was derived. Section 4.2 describes how the different techniques were
implemented, and also why these techniques were chosen. Section 4.3 explains how the
different measurements were made and evaluated.

4.1 Efficiency metric

The biggest part of this thesis was to come up with a useful metric for evaluating these
machine learning algorithms with respect to their resource consumption. This section
describes the reasoning behind the choice of these metrics. Also, the metrics which were
finally chosen are presented.

The choice of metrics

The first thing that had to be done was to think about what makes a good and fair metric
for evaluating these machine learning models. Ideally, one would use metrics that could
be used to evaluate a machine learning algorithm in general. One problem is that models
may result in very different measurement values depending on the implementation of the
algorithms, the hardware it runs on, and much more. Another problem with evaluating
different machine learning models, in general, is that everyone has different requirements for
accuracy and other qualities. Some algorithms may not even be able to come up to certain
levels of accuracy. The last percentage of accuracy is often the most resource draining, and it is
not possible to know how much the consumer values the last extra percentage of accuracy. An
algorithm that makes its predictions by only guessing is resource efficient and may, therefore,
get a relatively high result.

Metrics

The terms measurement and metric are often confused and sometimes used as synonyms. To
clarify these concepts in this thesis, we define the concept of a measurement as a quantifiable
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quality of the software, and a metric as a combination of measurements. A software metric
is, in this case, a measurement of how well an application performs in some way.

Efficiency is an evaluation of how much of the desired results can be produced with as little
resources as possible. In this case, the desired result is high accuracy. The resources that we
are interested in are energy, time and model size. Similar to what Johann et al. proposed as
energy efficiency, described in equation 3.1, the efficiency metrics proposed in this thesis are:

• Model Size E f f iciency = Accuracy
Model size

• Training Time E f f iciency = Accuracy
Training time

• Training Energy E f f iciency = Accuracy
Training energy

• In f erence Time E f f iciency = Accuracy
In f erence time

• In f erence Energy E f f iciency = Accuracy
In f erence energy

It is not possible to compare time-, memory- and energy efficiency directly because they
depend on the desired efficiency. It is, therefore, up to the consumer to analyze these metrics
to come to the conclusion which of the machine learning algorithms are most efficient in
their use case. There can be many things that have an impact on the efficiency of the
model, for example, programming language, algorithmic implementation and utilization
of the hardware. By taking this complexity into account, it is essential to make efficiency
measurements on the actual implementation.

A similar metric to Model Size E f f iciency has been tested before by Canziani et al. (2016)
[4]. They measured the information density by calculating the accuracy per parameters. The
only difference between their metric and Model Size E f f iciency is that Model Size E f f iciency
measures model size by multiplying the number of parameters with the parameter size. It is
an efficiency metric that highlights the capacity of a model to utilize the parameters for useful
information.

4.2 Implementation

To put the metrics presented in section 4.1 to the test, an attempt for a realistic use case was
set up with different machine learning algorithms and datasets to evaluate. This evaluation
is an example of how to use these metrics and not a complete evaluation of these algorithms.

The development process was divided into two phases, and the respective phase was used to
evaluate a specific category. These categories were image classification and text classification.
Each of the phases started with 4 weeks of implementation of the classification tasks, using
the following 2 week period to make measurements on the models. Documentation of the
process and results were made continuously during these 6 weeks phases.

This section describes the used datasets, the implementation of the machine learning
algorithms, and also the used soft- and hardware.

Datasets

The goal was to compare these implementations of algorithms in the fairest way possible.
Therefore the chosen datasets were common, well tested and open-source. Because the
different models may perform differently compared to each other depending on the dataset,
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Figure 4.1: The MNIST dataset 5

six different datasets were used. All of the datasets used in this thesis were of type
classification and came from the TensorFlow/Keras1 and Scikit-learn’s2 Python package. To
diverse the results, the algorithms were tested on datasets from two different categories.
These were image and text classification problems. The following sections describe the
datasets used for these problems in more detail.

Image datasets

The first dataset, MNIST3, is a dataset consisting of 70 000 images of handwritten digits that
have been normalized in size and centered in a grayscale 28x28 pixels large image. 60 000
images are used to train, and 10 000 images are used to test. The dataset origins from
the National Institute of Standards and Technology (NIST) database4. Since the images are
representing handwritten digits, there are 10 class labels, ranging from 0 to 9. Figure 4.1
shows a set of images in the MNIST dataset.

The second dataset that was used was Fashion-MNIST6. It was developed by Zalando using
images from their articles. This dataset is also consisting of 70 000 images that have been
normalized in size and centered in a grayscale 28x28 pixels large image. 60 000 images are
used to train, and 10 000 images are used to test. The idea behind this dataset was that it
could be a direct replacement for the original handwritten digit MNIST dataset.7 Since this
dataset was designed as a direct replacement for MNIST, it also has 10 class labels, which can
be seen in Figure 4.2.

The last image dataset that was used is CIFAR108. It consists of 60 000 pictures representing
different objects such as airplanes, dogs and birds. 50 000 pictures are used to train, and

1 https://keras.io/datasets/
2 https://scikit-learn.org/0.19/datasets/
3 https://keras.io/datasets/#mnist-database-of-handwritten-digits
4 http://yann.lecun.com/exdb/mnist/
5 A few samples from the MNIST test dataset by Josef Steppan. Licensed under CC BY-SA 4.0
6 https://keras.io/datasets/#fashion-mnist-database-of-fashion-articles
7 https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
8 https://keras.io/datasets/#cifar10-small-image-classification

20

https://keras.io/datasets/
https://scikit-learn.org/0.19/datasets/
https://keras.io/datasets/#mnist-database-of-handwritten-digits
http://yann.lecun.com/exdb/mnist/
https://keras.io/datasets/#fashion-mnist-database-of-fashion-articles
https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
https://keras.io/datasets/#cifar10-small-image-classification


4.2. Implementation

Ankle boot T-shirt/top T-shirt/top Dress T-shirt/top

Pullover Sneaker Pullover Sandal Sandal

T-shirt/top Ankle boot Sandal Sandal Sneaker

Ankle boot Trouser T-shirt/top Shirt Coat

Dress Trouser Coat Bag Coat

Figure 4.2: The Fashion-MNIST dataset with labels

10 000 pictures are used to test. The images in this dataset are RGB colored and 32x32 pixels
big. The number of different objects that occur in these images is 10, the same as in the
previous datasets. Figure 4.3 visualizes a few examples of the images and their labels.

Text datasets

The first text dataset that was used was IMDB Movie Reviews9, which is a binary
classification task. It consists of a total of 50 000 movie reviews from IMDB, each of them
labeled with the sentiment ’positive’ (1) or ’negative’ (0). 25 000 reviews are used to train,
and 25 000 reviews are used to test. The reviews have been through pre-processing involving
transforming the actual words to a corresponding integer. The integers value also indicates
how often it occurs. For example, the integer 1 corresponds to the most common word in all
of the reviews. This pre-processing can be used to easily filter the dataset by how common
words are, that to make the otherwise large dataset more manageable.

The next text dataset that was used was Reuters10. It consists of 11 228 newswires from
Reuters, which is an international news organization. 8 982 newswires are used to train, and
2 246 newswires are used to test. The dataset is labeled with 46 different topics. Like the
IMDB dataset, the data is pre-processed, and every integer represents a word.

The last dataset that was used was 20 newsgroups11. It consists of 18 846 newsgroups
posts, which are labeled with 20 different topics. 15 076 posts are used to train, and 3 770
posts are used to test. Unlike the other datasets, this came from Scikit-learn, and the

9 https://keras.io/datasets/#imdb-movie-reviews-sentiment-classification
10 https://keras.io/datasets/#reuters-newswire-topics-classification
11 https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
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Figure 4.3: The CIFAR10 dataset with labels

original version has not been pre-processed like IMDB and Reuters. To be able to use the
same algorithms without modifying them, this dataset has to be pre-processed to the same
structure as the previous datasets. This was done using a Keras pre-processing class called
Tokenizer12. This class implements a method called fit_on_texts that takes a list of
texts as argument, removes characters such as [!#%&()*+,-./] and converts all words into
lower case. This method also counts the occurrences of words and updates an internal
vocabulary for the class giving the most frequent word the lowest index. Another class
method called texts_to_sequences uses the vocabulary that was built up in the tokenizer
and returns lists of integers corresponding to the word index of the vocabulary. Some
recommend removing some of the data to get a more realistic model, because otherwise, the
model can overfit on specific things, for example, on headers, footers, and quotes. However,
because the goal of this thesis is not to get optimized models, none of the data was filtered.

Since these datasets are representing a text by using sequences of integers, each integer
is representing one word, and the lowest integer is representing the most frequent word
in the text. To make these datasets more manageable, they have been modified only to
contain the 1000 most frequent words. One problem with these datasets is that all sequences
of integers are of different length. To convert the data to tensors of equal length, the
arrays were either padded or trimmed to be of length 1000 with the help of the function
tensorflow.keras.preprocessing.sequence.pad_sequences13. The tensors get
the shape 1000 x num_reviews.

12 https://github.com/keras-team/keras-preprocessing/blob/master/keras_preprocessing/
text.py

13 https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing
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Algorithms

To make a comparison using the metrics presented in section 4.1, three machine learning
algorithms were chosen. The first two, CNN and MLP, are neural networks. These are
state-of-the-art algorithms that have outstanding performance. However, they are also
known for requiring much computational power. The last one is SVM, it is a traditional
machine learning algorithm, and based on a much simpler algorithm. These algorithms
could, therefore, be interesting to compare. All of these three algorithms are well known
and well used.

The neural networks are implemented using Tensorflow’s Python API, and the SVM is
implemented using Scikit-learn’s Python API.

The neural networks have randomly initialized weights, and therefore, the measurements
differ from run to run. All of the algorithms were run 10 times on each of the datasets, to get
average measurement values. When training the neural networks, it is possible to select how
many epochs to run. An epoch is one iteration of training on the entire dataset, thus training
on the same data for every epoch. By running a few epochs, the accuracy of the model
can increase satisfyingly. However, by doing this, it is possible to encounter overfitting.
Overfitting occurs when the model is trained to fit the training data very well and cannot
replicate to validation data to the same extent. The neural networks are being trained with
only one epoch unless anything else is specified.

Important to know is that Tensorflow does not clear the session itself after a run. To do
that the function tf.keras.backend.clear_session14 was used after every run on the
implementation of MLP and CNN to destroy the current Tensorflow graph and create a new
one, to avoid clutter from the old model. By not clearing the session, the training time gets
longer after every run.

The following sections describe the implementation of these algorithms in more detail.

MLP

The MLP algorithm that was used in this thesis consisted of 4 layers. One input layer, two
hidden layers, and one output layer.

For image classification, all layers are of type dense. The size of the input layer is based on
image size. For the MNIST datasets that are grayscale images of size 28x28 pixels, the input
layer is 784 neurons. While for the CIFAR10 dataset, the images are RGB images of size 32x32
pixels, resulting in an input layer of 3072 neurons. The input layer is fully connected to a
1024 neurons large hidden layer using the ReLU activation function and with 15% dropout.
This hidden layer is then fully connected to another 1024 neurons large hidden layer, as the
previous using the ReLU activation function and 15% dropout. The last layer, the output
layer has the same number of output neurons as the number of different outputs that can
occur. The possible number of outputs is 10, and therefore, the number of output neurons is
10. The final output is using the softmax activation function.

For text classification, using the MLP algorithm, the input layer has been changed to an
embedding layer. The embedding layer is set to take 1000 as the input dimension and 300
as the output dimension. Following these settings, the text classification is set to have 1000
words in its vocabulary, and each vector of size 300 represents a word. As the first hidden
layer, a Global Average Pooling (GAP) layer has been added. This layer is reducing the size
of the tensors that are produced by the embedding layer from 1 x sequence_length x 300 to

14 https://www.tensorflow.org/api_docs/python/tf/keras/backend/clear_session
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1 x 1 x 300. As for the MLP used for image classification, the following dense hidden layer
consists of 1024 neurons with ReLU activation function and 15% dropout. The size of the
output layer depends on the dataset, for the IMDB dataset, the output layer consists of 2
neurons and is activated using the sigmoid activation function. While for the other datasets,
Reuters and 20 newsgroups, they consist of 42 and 20 neurons respectively and are both
activated using the softmax activation function.

Since this algorithm was implemented using Tensorflow and Keras, the high level API
of Keras requires a compilation of the different layers that have been added. This is
done by calling the compile method15 on the model. The compile method takes one
required argument and several optional ones. The arguments that have been provided
in this thesis are the optimizer, loss and metrics arguments. The optimizer that
was used is the tf.keras.optimizers.Adam16 while the loss function that was used is
the tf.keras.backend.sparse_categorical_crossentropy17 for all datasets except
IMDB, that uses the loss function tf.keras.backend.binary_crossentropy18, since it
is a binary classification task. The argument for metrics was Accuracy.

CNN

The CNN that was used consisted of seven layers. For image classification, the image was the
subject of a 3x3 convolution layer that resulted in 32 feature maps. Each feature map having
the size 26x26 for the MNIST datasets, and 30x30 for the CIFAR10 dataset. The extracted
feature maps are then subject to another 3x3 convolution layer. This convolutional layer
extracts 64 feature maps where each feature map has the size 24x24 for the MNIST datasets
and 28x28 for CIFAR10. Both of these convolutional layers are using the ReLU activation
function. The next layer is going to reduce the feature maps to half the size, 12x12 and 14x14
respectively, by the use of 2x2 max pooling and applying a layer of 25% dropout after the
pooling. The flattening layer creates a layer of neurons, similar to the neuron layers in the
MLP algorithm. The amount of neurons in the flattening layer is based on the size of the
feature maps and the number of feature maps. In this case the amount of neurons will be
12x12x64 = 9216 and 14x14x64 = 12544 for the different datasets. All these neurons are then
densely connected to a 128 neuron large layer that is using the ReLU activation function. This
layer is then having a 50% dropout applied before being densely connected to the output layer
using the softmax activation function. It consists of the same amount of neurons as there are
output classes, and in this case, it is 10.

When using CNN for text classification, minor changes had to be made. As for the MLP used
for text classification, CNN also needs to have an embedding layer. This embedding layer
is designed in the same way for CNN as for MLP, and it takes 1000 input dimensions and
300 as output dimension. The following 3x3 convolution layer results in the same 32 feature
maps. However, each feature map is of size 3x300. The second convolution layer produces 64
feature maps of the same size 3x300. These convolution layers, as for image classification, are
also using ReLU as their activation function. The last layer that differs is the pooling layer.
Since the text is only in one dimension the max pooling layer is of size 2, thus halving the
size. The output layer is, as for the MLP, also depending on the number of classes the dataset
contains. This layer is using softmax as its activation function for the multiclass classification
datasets Reuters and 20 newsgroups. The binary classification dataset IMDB uses sigmoid.

15 https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#compile
16 https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
17 https://www.tensorflow.org/api_docs/python/tf/keras/backend/sparse_categorical_

crossentropy
18 https://www.tensorflow.org/api_docs/python/tf/keras/backend/binary_crossentropy
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This algorithm was, as MLP, also implemented using Tensorflow and Keras. To make
the comparison between these algorithms as fair as possible, the compilation of the CNN
algorithm was done using the same parameters for optimizer, loss and metrics.

SVM

The implementation of the SVM does not differ very much from the standard implementation
provided by scikit-learn19. The major changes that have been applied in contrast to their
default implementation is that max_iter, the maximum number of iterations, has been set
to 10 000 and that dual has been set to false. It is recommended to set dual to false when
there are more samples than there are features. In the standard implementation, the penalty
parameter C is 1. To make it consistent, the same number of max_iter were used for every
dataset. This number of iterations may result in some of the models not converging. The
algorithm has the same settings for all datasets.

Hardware

The hardware that these algorithms were tested upon had the following specifications:

• CPU: Xenon CPU E5-2609 with 6 cores running at 1.9 GHz

• Memory: 32 GB RAM

• GPU: Asus GeForce GTX 1070 TI, 8 GB GDDR5

To make sure the CPU was not limited in any way, ’C-state’ and ’Intel SpeedStep’ were
disabled. Both of these settings can be changed in the BIOS. ’C-states’ are different power
modes for the CPU. They are used to save energy. ’SpeedStep’ saves power by dynamically
changing the clock frequency and processor voltage. It can also reduce heat production.20

Software

The software and hardware that is used when running machine learning algorithms affect
the results and resource consumption. To get a realistic use case, common and well-used
software was used.

The operating system that was used was a 64-bit version of Ubuntu 18.04.2. This operating
system was the latest Long Term Support (LTS) version of Ubuntu at the time.21

The software that was used to implement the machine learning algorithms were Scikit-learn
and Tensorflow with Keras. These were chosen because they are the most common tools for
machine learning22, and therefore could pose a realistic use case.

An alternative to Tensorflow is Pytorch. Facebook has developed Pytorch that has a
lot in common with Tensorflow. More developers are using Tensorflow than Pytorch,
and in fact, for every developer using Pytorch, 3.4 developers are using Tensorflow.
Therefore, Tensorflows community is more prominent and there are many resources related
to Tensorflow on the internet. That is also one of the reasons that Tensorflow is used in this
thesis.23

19 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#
sklearn.svm.LinearSVC

20 https://www.intel.com/content/www/us/en/support/articles/000007073/processors.html
21 https://wiki.ubuntu.com/Releases
22 https://github.com/topics/machine-learning?o=desc&s=stars
23 https://www.developereconomics.com/tensorflow-vs-pytorch
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There are not that many alternatives to Scikit-learn. Scikit-learn comes in a single package
and is, therefore, easy to use. Classic machine learning in Python could also be implemented
using, for example, mlpy or pybrain. However, these two libraries have not been updated
since 201224 and 201525 respectively. It is also noticeable that implementing a support vector
machine in Scikit-learn is faster than using the other two [23].

4.3 Measurements

The first step of the evaluation process was to decide what to measure. After training a
machine learning algorithm, it is possible to retrieve several different measurements. A
few common measurements that can be retrieved are accuracy, F1 score, precision, and
recall. Recall is used to show how many predictions that were supposed to be true and also
predicted true. While precision is used to show how many of the positive predictions were
correct. F1 score combines recall and precision to create a score that is good when the model
shows a low number of false positives and false negatives, and this means that with zero
false positives and zero false negatives the model is correct in all predictions. Accuracy
is a measurement of the total correct predictions, and this became the most important
measurement to make. Besides accuracy, the intention was to look at the measurements that
could potentially be a limiting factor when running these machine learning algorithms.

The goal was to encounter the resources that were needed to train and use these models.
The desire was to find a way to measure resource consumption and take into account that
these algorithms run on different hardware (GPU and CPU). That desire was to make the
comparison fair and acknowledge that they utilize different resources. However, it is hard to
make measurements fair based on the used hardware.

The conclusion was that it would be most fair to take into account how much energy these
algorithms consumed when running on different hardware. When measuring the CPU and
GPU energy consumption, some overhead that is needed, for example, to run the operating
system is included. It is not self-evident to include the energy from the GPU when running
the SVM because it only utilizes the CPU. However, because the inclusion of overhead from
CPU and GPU in the energy measurements for CNN and MLP, the fairest would be to include
all overhead for all algorithms.

Memory can, in some cases be a limiting factor for machine learning algorithms. Especially
if the model is to be used in an IoT device. These algorithms utilize memory during run
time in different ways, which makes it unfair to compare. Neural networks that run on GPU,
which in this thesis are CNN and MLP, are designed to use a considerable amount of memory
during training. Therefore, only the model size is measured. The model size is of particular
interest when models do inference on a device with a small amount of memory. The model
size often also affects the time of inference.

In most cases, the time it takes to do the inference is of significant interest. But in some cases
it is also of interest how long the model takes to train. Therefore, the time it takes for both
training and inference was measured.

This section describes the implementation of the different measurements that were made in
detail. The measurements made were accuracy, energy usage on GPU, energy usage on CPU,
model size and time. Accuracy, time and energy used, both for CPU and GPU, were measured
both when training the model and during inference.

24 http://mlpy.sourceforge.net/
25 https://github.com/pybrain/pybrain/releases
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Test suite

Figure 4.4 shows an overview of the implementation of the test suite. This process is done
for all algorithms on every dataset. The first part of the test suite is to import datasets that
are supposed to be used for this test run. Next, for monitoring the energy usage on the
CPU and GPU, two monitors have been implemented. These two monitors are started in a
subprocess each, using the multiprocessing module in Python26. The implementation of
these monitors differs a little. For the CPU monitor, the tool cpu-energy-meter is executed
and continues to measure the energy consumed by the CPU until the training finishes. While
the GPU monitor is using the pynvml Python package for reading the current power usage
in the GPU. When these monitors have been initialized and started, the current timestamp
is saved, and training of the model begins. When the training is complete, the current
timestamp is saved to be able to retrieve the actual training time. The two monitors stop
and report the results back to the main process.

The process of monitoring time and energy usage is then done again for these models during
inference. It is worth mentioning that these values retrieved during inference are for all test
samples and that the number of samples varies depending on the dataset. At this stage, the
test suite retrieves the accuracy of the trained model. The gathered data from the test suite is
written to a CSV file that can be used for visualization in external software.

Accuracy

An essential part is to retrieve the accuracy of the trained model. In Tensorflow, the function
tf.keras.models.Model.evaluate returns the values of the metrics27. This includes
the accuracy, which is a measurement of how often predictions matches labels. In Scikit-learn,
the accuracy can be retrieved from the function sklearn.metrics.accuracy_score28.

Energy usage on GPU

To be able to measure the energy usage of the GPU when running the algorithms, the Nvidia
Management Library (NVML) was used. NVML is an API used for managing and monitoring
NVIDIA GPUs. It is possible to retrieve the current GPU utilization, temperature and fan
speed, but also the current power usage of the entire board.29 The API is written in C but
has officially supported bindings for both Perl and Python. For measuring power usage in
an NVIDIA GPU, Weaver, V.M. et al. (2012) [19] suggests the usage of NVML since it has a
milliwatt resolution to the power usage of the GPU.

In this thesis, the current power usage is measured with a frequency of 10 Hz. To get the
average power usage, all of the measurements are summed up and divided by the number of
measurements. To convert the power usage to the energy consumed, the following equation
is used:

Energy = Power ˚ Time

Energy usage on CPU

The CPU Energy Meter library is a tool for measuring the energy consumption on an Intel
CPU. It is a tool for Linux computers, written in C. It is based on Intel Power Gadget30

and developed at the Ludwig Maximilian University of Munich. To measure the energy

26 https://docs.python.org/3.4/library/multiprocessing.html
27 https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#evaluate
28 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.

html
29 https://developer.nvidia.com/nvidia-management-library-nvml
30 https://software.intel.com/en-us/articles/intel-power-gadget-20
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Figure 4.4: Flowchart over software implementation of evaluation tool
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consumption, the tool uses a feature in Intel CPUs called Running Average Power Limit
(RAPL). CPU Energy Meter monitors the power usage with a few tens of milliseconds
interval. This tool was used in this thesis to measure energy consumption by the CPU.31

Model size

To retrieve the model size, the number of parameters in the model is multiplied with
the size of the parameters. In the implementation used in this thesis, Tensorflow uses
4 bytes for its parameters, and Scikit Learn uses 8 bytes. In Tensorflow, the method
tf.keras.models.Model.count_params32 is used to count the number of parameters.
In Scikit Learn, the method sklearn.svm.LinearSVC.coef_.size33 is used instead.

Time

To calculate the time, Python’s method time.time34 is used. The time is measured before
and after training and inference. To get the time that has passed, the start time is subtracted
from the end time.

31 https://github.com/sosy-lab/cpu-energy-meter
32 https://www.tensorflow.org/api_docs/python/tf/keras/models/Model#count_param
33 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
34 https://docs.python.org/3/library/time.html#time.time
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5 Results

This chapter covers the results of this thesis. It is divided into two parts, one for each type of
classification area. Section 5.1 will present the results for image classification, followed up by
Section 5.2 presenting the results for text classification.

5.1 Image classification

Table 5.1 shows that the best algorithm for high accuracy is CNN while it uses more resources
than the other algorithms. On the other hand, MLP shows the best numbers in both training
time and total energy consumption during training, which goes hand in hand. The table also
shows that SVM is showing by far the smallest model size, shortest inference time and low
energy consumption during inference. The SVM has, in general, a much longer training time,
especially on CIFAR-10, which also affects the total training energy. During training of SVM
on the MNIST dataset, it shows a lower energy consumption on the GPU than the others even
though it has a longer training time. This energy usage is because the SVM does not utilize
the GPU for training, but it is still a part of the total energy consumption of the system.
CIFAR-10 was the only task with colored images, which makes it more complex to train. This
complexity affects the SVM to a greater extent than CNN and MLP. The MLP algorithm falls
a bit short compared to the CNN, when it comes to accuracy, but also compared to the SVM,
in regards to model size and resources during inference. There is, in general, one algorithm
that has the best results for every measurement on all datasets.

Table 5.2 shows the metrics for SVM, MLP and CNN on the image classification datasets. For
the first metric, Model Size Efficiency, SVM has the best result for every dataset. Although
the SVM got the lowest accuracy on two out of the three datasets, this result is due to
its outstanding model size. SVM also has the best results when it comes to Inference Time
Efficiency and Inference Energy Efficiency. This result correlates to the small model size. CNN,
and especially MLP, performs best when it comes to Training Time Efficiency and Training
Energy Efficiency. Generally, for every metric, there is one dominant algorithm that almost
always has the best result.
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Measurement Dataset SVM MLP CNN
Accuracy [%] MNIST 91.83 96.67 98.50

Fashion-MNIST 84.00 84.69 88.63
CIFAR-10 37.56 35.06 57.83

Model size [KB] MNIST 62.72 7454.76 4799.53
Fashion-MNIST 62.72 7454.76 4799.53

CIFAR-10 245.76 16826.41 6505.77
Training time [s] MNIST 55.96 12.61 14.63

Fashion-MNIST 122.89 12.49 14.64
CIFAR-10 11684.05 13.66 14.78

Training energy CPU [J] MNIST 1296.47 287.52 332.91
Fashion-MNIST 2853.45 284.40 333.99

CIFAR-10 274515.34 311.65 337.33
Training energy GPU [J] MNIST 426.46 633.49 882.40

Fashion-MNIST 936.23 633.34 912.94
CIFAR-10 90589.01 963.74 1102.02

Total training energy [J] MNIST 1722.93 921.01 1215.31
Fashion-MNIST 3789.68 917.74 1246.94

CIFAR-10 365104.35 1275.40 1438.35
Inference time [s] MNIST 0.03 0.68 0.80

Fashion-MNIST 0.03 0.68 0.80
CIFAR-10 0.07 0.80 1.03

Inference energy CPU [J] MNIST 2.34 18.38 20.85
Fashion-MNIST 2.32 18.35 20.78

CIFAR-10 5.32 20.82 25.93
Inference energy GPU [J] MNIST 0.24 29.66 44.58

Fashion-MNIST 0.24 29.71 45.64
CIFAR-10 0.55 44.88 69.80

Total inference energy [J] MNIST 2.58 48.04 65.44
Fashion-MNIST 2.56 48.06 66.42

CIFAR-10 5.87 65.70 95.73

Table 5.1: All results for image classification

Dataset Algorithm Accuracy
Model size

Accuracy
Training Time

Accuracy
Training Energy

Accuracy
In f erence Time

Accuracy
In f erence Energy

MNIST SVM 1.46E+00 1.64E+00 5.33E-02 2.92E+03 3.56E+01
MLP 1.30E-02 7.67E+00 1.05E-01 1.41E+02 2.01E+00
CNN 2.05E-02 6.73E+00 8.10E-02 1.24E+02 1.51E+00

Fashion-MNIST SVM 1.34E+00 6.84E-01 2.22E-02 2.64E+03 3.28E+01
MLP 1.14E-02 6.78E+00 9.23E-02 1.25E+02 1.76E+00
CNN 1.85E-02 6.05E+00 7.11E-02 1.11E+02 1.33E+00

CIFAR-10 SVM 1.53E-01 3.21E-03 1.03E-04 5.27E+02 6.40E+00
MLP 2.08E-03 2.57E+00 2.75E-02 4.41E+01 5.34E-01
CNN 8.89E-03 3.91E+00 4.02E-02 5.60E+01 6.04E-01

Table 5.2: Metric result for image classification
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Figure 5.1: CIFAR-10 - Accuracy
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Figure 5.2: CIFAR-10 - Model Size Efficiency
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Figure 5.3: CIFAR-10 - Training Time Efficiency
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Figure 5.4: CIFAR-10 - Training Energy Efficiency

33



5.1. Image classification

0 5 10 15 20 25
Epochs

45

50

55

60

65

Ac
cu

ra
cy

 [%
] /

 In
fe

re
nc

e 
tim

e 
[s

]
Inference Time Efficiency

MLP
CNN

Figure 5.5: CIFAR-10 - Inference Time Efficiency
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Figure 5.6: CIFAR-10 - Inference Energy Efficiency
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Figure 5.7: CIFAR-10 - Training energy in relation to accuracy

To get a better understanding of how these metrics behave, a test where the neural networks
have an increasing number of epochs were run on the CIFAR-10 dataset. This dataset was
chosen because of the low performance in accuracy for the algorithms. The number of tested
epochs were 1, 5, 10, 15, 20 and 25. Figure 5.1 shows how the accuracy changes when the
epochs increases. By going from 1 to 5 epochs the largest increase in accuracy for both these
algorithms occurs. While the improvement in accuracy between epochs decreases for an
increased number of epochs, even a decrease in accuracy can be observed.

Figure 5.2 shows how the Model Size Efficiency changes when increasing the number of epochs.
In this case, the model size is constant and does not change from epoch to epoch. The only
measurement making this metric move is the accuracy. This metric continues to increase as
long as the accuracy is improving.

From Figure 5.3 showing the Training Time Efficiency and Figure 5.4 showing the Training
Energy Efficiency it is possible to see a correlation between them. This correlation is due to each
epoch using approximately the same amount of energy and takes approximately the same
time to complete. Since the accuracy is not increasing as much as necessary to compensate
for the increase in time and energy consumed, these metrics show a clear decrease for every
epoch.

Figure 5.7 shows how the accuracy for the different models correlates to the training energy.
The number next to the algorithms name shows the number of epochs used. No matter how
many epochs used, the CNN always has the best accuracy. The SVM uses the most energy
during training.

The last metrics Inference Time Efficiency and Inference Energy Efficiency that can be seen in
Figure 5.5 and Figure 5.6 respectively are increasing for approximately every epoch. These
two metrics are slightly correlated to the Model Size Efficiency metric in Figure 5.2. During
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inference, the values from all neurons in the model are computed and result in a prediction.
Since the number of neurons in the model is constant for all epochs, and so is the model size.
It is therefore not a notable difference in inference time and inference energy for any given
number of epochs. As long as the accuracy is increasing for the epochs, this metric continues
to increase.

5.2 Text classification

In general, the results from the text classification were better compared to image classification,
except for accuracy, see Table 5.3

The metrics for SVM, MLP and CNN on the text classification datasets can be seen in Table 5.4.
How the models compare to each other is very similar to the image classification tasks. CNN
has the best results when it comes to accuracy, but that comes at the cost of a larger model
size. Because of its large model size, the inference time is quite long. The MLP performs best
at training time and training energy for both CPU and GPU, and in total. On the other side
of the spectrum, the SVM performs poorly at the same measurements. However, the SVM
has outstanding results when it comes to model size, inference time and inference energy for
both CPU and GPU, and in total. A result that catches the eye is the inference time for the
IMDB dataset. Even if the model size is the smallest one compared to the other datasets, it
has by far the longest inference time.

The metrics for SVM, MLP and CNN on the text classification datasets can be seen in Table 5.4.
For the first metric, Model Size Efficiency, SVM have the best result for every dataset. Although
the SVM got the lowest accuracy on every dataset, this results are due to its outstanding
model size. SVM also has the best results when it comes to Inference Time Efficiency and
Inference Energy Efficiency. This result relates closely to the small model size. CNN and
especially MLP performs best when it comes to Training Time Efficiency and Training Energy
Efficiency.

Just as for image classification, these metrics were tested on a text classification task as well.
The test was using the 20 newsgroups dataset running with an increasing number of epochs.
This dataset was chosen because of the low performance in accuracy for the algorithms. The
epochs that were tested were 1, 5, 10, 15, 20 and 25. Figure 5.8 shows how the accuracy
changes when the epochs increase. The CNN starts with higher accuracy than the MLP after
one epoch, but somewhere after 5 epochs, the MLP walks past the CNN in terms of accuracy.
The improvement in accuracy between epochs decreases the more epochs.

Figure 5.9 shows how the Model Size Efficiency changes when increasing the number of epochs.
The model size is constant, even if the epochs are increasing. The movement of the metric is
only due to the changes in accuracy. Because the model size of the CNN is significantly bigger
than the MLP, the Model Size Efficiency of the MLP is considerably better than the CNN.

The Training Time Efficiency is shown in Figure 5.10 and the Training Energy Efficiency is shown
in Figure 5.11. Both of them are looking quite similar. The training time and the training
energy is almost linear and is due to that each epoch is using approximately the same amount
of energy and takes approximately the same time to complete. Therefore the exponential
decay in the metric is because of the reduction in accuracy improvement.

Figure 5.14 shows how the accuracy for the different models correlates to the training energy.
The number next to the algorithms name shows the number of epochs used. When the neural
networks are run with one epoch, the CNN gets a better result than the MLP while the MLP
always has a higher accuracy for the following epochs. The SVM uses the most energy during
training, and also has the lowest accuracy.
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5.2. Text classification

Measurement Dataset SVM MLP CNN
Accuracy [%] IMDB 52.31 83.45 86.84

Reuters 32.23 49.11 58.61
20 newsgroups 7.45 20.54 30.63

Model size [KB] IMDB 8.00 2441.10 17660.17
Reuters 368.00 2621.50 17682.87

20 newsgroups 160.00 2514.90 35352.33
Training time [s] IMDB 3249.44 9.61 15.78

Reuters 3324.92 3.52 5.83
20 newsgroups 17624.40 5.01 8.29

Training energy CPU [J] IMDB 76431.26 219.03 350.16
Reuters 74898.08 81.93 134.37

20 newsgroups 405019.52 116.42 187.96
Training energy GPU [J] IMDB 27441.48 649.89 1545.10

Reuters 25981.55 228.01 525.19
20 newsgroups 135755.63 336.73 795.18

Total training energy [J] IMDB 103872.74 868.92 1895.26
Reuters 100879.64 309.94 659.57

20 newsgroups 540775.15 453.15 983.13
Inference time [s] IMDB 0.15 1.84 2.92

Reuters 0.03 0.17 0.28
20 newsgroups 0.04 0.28 0.46

Inference energy CPU [J] IMDB 4.32 42.88 65.01
Reuters 2.22 6.56 8.57

20 newsgroups 2.13 8.84 12.86
Inference energy GPU [J] IMDB 1.20 123.49 305.80

Reuters 0.23 10.44 24.49
20 newsgroups 0.30 17.94 43.57

Total inference energy [J] IMDB 5.53 166.36 370.81
Reuters 2.45 17.01 33.07

20 newsgroups 2.43 26.78 56.42

Table 5.3: All results for text classification

Dataset Algorithm Accuracy
Model size

Accuracy
Training Time

Accuracy
Training Energy

Accuracy
In f erence Time

Accuracy
In f erence Energy

IMDB SVM 6.54E+00 1.61E-02 5.04E-04 3.46E+02 9.47E+00
MLP 3.42E-02 8.68E+00 9.60E-02 4.53E+01 5.02E-01
CNN 4.92E-03 5.50E+00 4.58E-02 2.98E+01 2.34E-01

Reuters SVM 8.76E-02 9.69E-03 3.20E-04 1.11E+03 1.32E+01
MLP 1.87E-02 1.40E+01 1.58E-01 2.84E+02 2.89E+00
CNN 3.31E-03 1.01E+01 8.89E-02 2.11E+02 1.77E+00

20 newsgroups SVM 4.66E-02 4.23E-04 1.38E-05 1.91E+02 3.07E+00
MLP 8.17E-03 4.10E+00 4.53E-02 7.34E+01 7.67E-01
CNN 8.66E-04 3.69E+00 3.12E-02 6.73E+01 5.43E-01

Table 5.4: Metric result for text classification
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Figure 5.8: 20 newsgroups - Accuracy
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Figure 5.9: 20 newsgroups - Model Size Efficiency
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Figure 5.10: 20 newsgroups - Training Time Efficiency
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Figure 5.11: 20 newsgroups - Training Energy Efficiency
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Figure 5.12: 20 newsgroups - Inference Time Efficiency
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Figure 5.13: 20 newsgroups - Inference Energy Efficiency
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Figure 5.14: 20 newsgroups - Training energy in relation to accuracy

The last metrics Inference Time Efficiency and Inference Energy Efficiency can be seen in Figure
5.12 and Figure 5.13. Also, they are looking quite similar. The inference time and inference
energy are almost constant no matter the number of epochs. Therefore it is only the accuracy
that contributes to the change of the metric. The higher the accuracy, the higher the metric.
Even if CNN has higher accuracy than MLP after one epoch, the MLP has higher metrics
because it has much better values when it comes to inference time and inference energy.
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6 Discussion

In this chapter, the work as a whole is discussed. The first section is about the results of this
thesis. The second section is discussing the method used. The last is about the work in a
wider context.

6.1 Results

The results presented in Chapter 5 are an example of how the metrics presented in Section 4.1
can be used. This section discusses two topics, both how to interpret the measurements and
also the resulting metrics. The discussion is made both with these results in mind but also
how to interpret them in general.

Interpretation of measurements

The measurements that are going to be discussed can be seen in Table 5.1 and Table 5.3. In
general, these measurements depend a lot on the implementation of the algorithms and the
pre-processing of the data. Therefore, these measurements are not ground truth for these
algorithms but are a result of these specific implementations of the algorithms used on these
classification tasks.

Some of the models did have very low accuracy, for example, SVM on 20 newsgroups, which
only had 7.45% accuracy. Since this dataset has 20 classes, a model that is randomly guessing
would have an accuracy of 5%. A problem with this low accuracy is that it may not be a
realistic use case to test, because very few would see that as an acceptable result. The SVM
models could maybe get better accuracy if the number of iterations was tweaked.

The neural networks sometimes had an accuracy that also could be seen as too low for a
realistic use case. For example, on the datasets CIFAR-10 and 20 newsgroups, where MLP
had 35.06% and 20.54% accuracy, and CNN had 57.83% and 30.63% accuracy respectively.
An explanation for the neural networks low accuracy on a few datasets is that they were only
run for one epoch. It was a deliberate decision only to do one epoch to keep the different
runs consistent and not trying to tweak them based on the results. However, if looking at
the accuracy when the epochs increases, in Figure 5.1 and Figure 5.8, it can be seen that the
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6.1. Results

accuracy can more than double after just a few more epochs. Especially MLP on the dataset
20 newsgroups, where the accuracy goes from 19.94% accuracy up to 71.49% accuracy when
going from 1 to 25 epochs. That is an increase of over 350%. Based on this kind of graph, it
is possible to decide how many epochs are needed to satisfy any accuracy requirement. So
even if the accuracy presented here does not meet a realistic use case, it can in some cases, be
easy to change the implementation to fit the requirements and make the evaluation on that
implementation. Another thing that could have increased the accuracy is if the datasets had
been pre-processed in another way, which is discussed in more detail in Section 6.2.

In an ideal world, one should have tested models that had approximately the same accuracy.
However, this is hard to accomplish with this many models and a limited amount of time. In
some cases, especially for the text classification tasks, the SVM had a remarkably low accuracy
compared to the neural networks and still had a very long training time. In that case, it
would take a lot more resources to increase the accuracy to the level of the neural networks,
if even possible. To avoid having to deal with tuning of the models, the easiest way to make
consistent comparisons was to keep the tuning parameters for the algorithms constant and to
train on the same pre-processed datasets.

In most cases, there is a big difference in training time for the SVM compared to CNN
and MLP. Especially for the text classification tasks, but also the image classification task
CIFAR-10. The SVM can take more than 350 000% longer to train compared to the MLP. Thus,
the SVM does not scale well on large datasets. The difference in training time between the
neural networks is not as significant. The training time for CNN is never more than 70%
longer than for the MLP. These training times are relatively short, but would probably be
significantly longer if one would try to get the best accuracy possible.

The energy consumption for both training and inference correlates to a great extent to the
time of training and inference. That is quite natural since Energy = Power ˚ Time. The SVM
seems to have approximately the same power consumption on CPU regardless of the used
dataset. While the neural networks have different power consumption on GPU depending on
what dataset they are training on. That could indicate that the implementation of the neural
networks in this thesis are better suited and can utilize the GPU in a better way for some
datasets. This is one example of why energy consumption is measured and not exclusively
time. There is other hardware out there that could improve the training and inference time.
However, it is not certain that it would decrease the energy consumption.

In all of the cases, the models that have a small model size also have a shorter inference time.
Generally, a smaller model takes less time to traverse. Because of inference time being so
short, a high percentage of the time is likely being spent on overhead. An exception to this
is the inference time for the IMDB dataset. Even if the model sizes for all of the algorithms
are quite small, it has the longest inference time. As an example, CNN has almost the same
model size for both IMDB and Reuters, but the inference time for IMDB is more than 900%
longer than for Reuters. This increased inference time is related to the number of samples
that are used. For IMDB, it is 25 000, while Reuters have 2 246. The number of samples in
IMDB is more than 10 times the ones in Reuters and explains the 900% increase in inference
time.

In general, the model size for the different datasets follows the same pattern. The model
size for all algorithms is largest on one of the datasets, and smallest for another dataset.
This pattern is true for every dataset except for CNN on 20 newsgroups, which for the other
algorithms is the medium-sized model, but for CNN it is by far the largest. We do not find
any explanation for this.
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Interpretation of metrics

The metrics that are going to be discussed can be seen in Table 5.2 and Table 5.4. How the
metrics for the neural networks change with an increasing number of epochs will also be
discussed and two examples can be seen in Figure 5.2-5.6 and Figure 5.9-5.13. This thesis
resulted in a lot of metric values, but how should they be interpreted? Generally, the values
of the metrics are most interesting compared to each other. By their own, they do not say
much and are hard to interpret.

Models that have a low Model Size E f f iciency can be seen as oversized and that they do
not utilize their parameters to their full potential. This metric can be crucial when using a
machine learning model in an environment where there is a limited amount of memory. In
this case, the model size of the neural networks does not change even when running more
epochs during training. The only measurement making the Model Size E f f iciency change is
the accuracy. So if the model size is of concern, and the training time and energy are not,
the models can be trained until satisfying accuracy is met. The SVM always has the highest
Model Size E f f iciency, due to its outstanding model size. However, it is possible that the
SVM could benefit in terms of accuracy if it could use a bigger model. The CNN and MLP,
on the other hand, does not seem to utilize the model size to its fullest. It may be due to the
design of the models.

The Training Time E f f iciency is an interesting metric. It is a metric that can tell how well
the algorithm is using the time to learn. This metric could improve a lot by parallelizing the
training, for example, using more GPUs. On the other hand, the Training Energy E f f iciency
would probably get a lower value, due to the overhead energy needed to run the GPUs. In
this case, the CNN and especially the MLP always has a higher Training Time E f f iciency
than the SVM. One of the reasons may be because the neural networks can train in parallel to
a greater extent on a GPU than the SVM can on a CPU.

The Training Energy E f f iciency is interesting in the sense that there are impressing
state-of-the-art machine learning models out there, but it is often unknown how much
energy that have been used to train these models. As stated in the article "Energy and
Policy Considerations for Deep Learning in NLP" by Strubel et al., described in section 3.4,
training a state-of-the-art NLP model can require up to 1.5 Gigajoule. In this thesis, the
models are quite simple and do not consume that much energy during training. The
Training Energy E f f iciency for these models is therefore quite large. However, because
different tasks can vary in difficulty, this metric is always the most interesting when
comparing different algorithms training on the same set of data.

It is possible that In f erence Time E f f iciency does not say much about the model. Accuracy
and inference time can be crucial by their own, but it is possible that turning them into a
metric does not add anything. For some use cases, both the accuracy and the inference time
can have strict requirements, which makes it more or less useless to turn them into a metric.
In this case, the SVM gets the best In f erence Time E f f iciency every time. This score is not
due to its accuracy, but rather it is inference time, which always is a lot shorter than for the
neural networks. Even if the SVM gets the best results, one would in most cases probably
not use that model even if the inference time is important, because the inference time does
not matter if the accuracy is too low. If several models would have the same accuracy, it is
enough to only look at the inference time.

The In f erence Energy E f f iciency may not be that important in most cases. The time it takes
to do inference is often not that long and therefore does not require a significant amount of
energy. On the other hand, inference is something that can happen daily, while the training
is often only during the development of the model. Inference can, therefore, be relevant in
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some cases. Primarily if the model should be used on a device that, for example, runs on
batteries. In this thesis, the SVM always has the best In f erence Energy E f f iciency, due to its
small inference energy consumption. Since the models are small, they do not take long to
traverse and therefore also consume less energy. At this scale, the numbers are quite low, but
it may be of importance if the inference energy would increase because of a more complex
task.

An alternative to measuring the total energy consumption is only to use energy consumption
from their respective platform. Thus, only the CPU energy usage for the SVM and only the
GPU energy usage for the neural networks. By doing this, we can neglect the ineffective
energy used during training. For example, removing the 90 000 Joule for SVM on CIFAR-10
from the total training energy consumption a better Training Energy E f f iciency score would
show. Of the total energy consumption for SVM, around 25 ´ 26% comes from the GPU.
While for MLP and CNN, 24 ´ 31% and 18 ´ 27% of the total energy consumption comes
from the CPU. The metrics would look different if one did not count the energy consumed by
the hardware that the algorithm does not directly use. However, since the percentage of the
total energy consumption that this hardware consumes are quite similar, the outcome would
not look that different after all.

All of these metrics can change if the models are trained differently. The resulting metrics
when running the neural networks on two different datasets for more than one epoch
is shown in Figure 5.2-5.6 and Figure 5.9-5.13. The metrics that increase if the neural
networks run for more epochs are Model Size E f f iciency, In f erence Time E f f iciency and
In f erence Energy E f f iciency. On the other hand, the Training Time E f f iciency and
Training Energy E f f iciency decreases with more epochs. It may not be the case for other
models, but in this case, it looks like this because the model size does not change when
increasing the number of epochs. The time and energy usage during training always increase
with more epochs. Depending on the requirement for accuracy, and the important metrics,
these models should be trained for different numbers of epochs. In most cases, the models
are trained until they converge.

A pretty clear trend can be seen in Figure 5.7 and Figure 5.14 concerning the training energy
required and the accuracy. For the neural networks, it requires a lot of training energy to
increase accuracy.

The metrics look a lot different depending on the problem the algorithm is aiming to solve.
Therefore it is not possible to use these metrics to compare different machine learning
problems to each other. The choice of what model to use for the problem should be informed
and well thought through.

6.2 Method

This section discusses the method of this thesis. It involves the implementation of the
different machine learning algorithms, the used datasets and the efficiency metrics that these
models were tested against.

The goal of this thesis was to come up with a methodology for a fair comparison between
machine learning models, taking resource consumption into account. When thinking about
fair, the first thought that came to mind was to give all algorithms the same prerequisites and
settings. However, we realized that it was not possible when comparing neural networks
that utilize the GPU to classic machine learning that only uses the CPU. One idea was to, in
some way, normalize the measurements with specifications of the hardware that the machine
learning algorithms used. That could become a complicated task, and there was no time for
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that. Considering that they utilize different hardware, we measured energy consumption
instead.

The problem with giving the algorithms the same prerequisites and settings is that they
perform very differently. Some of the models having an accuracy that makes them close
to unusable. In the end, it may have been fairer to tune the algorithms to either perform
as good as possible or above a specific threshold. The latter option could be better to avoid
unnecessary resource consumption by the algorithms. Achieving a specified level of accuracy
could have been done by optimizing every algorithm for every dataset. However, due to time
constraint, that was not possible. It is hard to define what a fair comparison is, but one sure
thing is that models with too low accuracy are not interesting to compare to very accurate
models. An insufficient model is not relevant.

Implementation

The algorithms were not optimized based on every dataset or optimized at all. That was not
the goal of this thesis. However, it may result in that the tests of our metrics could be better
if the algorithms were tuned in different ways for every dataset. It is important to remember
that this is only a test of the proposed metrics and not an evaluation of these machine learning
algorithms on these specific datasets. A more in-depth discussion about the datasets is done
in one of the following sections.

The algorithms surely could perform better if they were tuned in another way, or even
implemented on other frameworks than Tensorflow and Scikit-learn. The performance is
affected by various parameters, such as the number of iterations, epochs, loss function,
optimizer, number of neurons, number of layers, types of layers, and much more. Since
there was no optimization in the implementation of the algorithms, it was natural to use as
many default values as possible. Using default values was easier to do with the SVM since
that model had default values for penalty parameter, penalty functions and loss functions.
There was no experimentation done with these values to see how the result would change
using other values than the default ones. However, two default values were changed, dual
and max_iter. Dual was set to false, and this was due to the documentation of the SVM that
said that if there are more samples than features in the dataset, dual should be false. Since
the SVM is trying to find the optimum between the data points in the dataset, it is more of
an optimization solver, and in this case, it is easier to find the primal solution over the dual
solution.

The property max_iter was set to 10 000 instead of the default 1 000, and this was done so
that the optimizer would have enough iterations to find the optimum. It was observed that
even though the algorithm had over 10 000 iterations to find optimum, it sometimes did not
converge. When the SVM did not converge, it performed poorly on accuracy for the different
datasets. The problem of not converging could either be because of having too few iterations
or that the dataset was unfavorably pre-processed. It is most likely that the pre-processing of
data, especially for text classification, was the major contributor to the non-converging SVM.

If the default values of the SVM are changed, the result would be different. It is not possible
to say how much it would change without experimenting with the parameters. However,
changing the loss function, the penalty norm or the penalty parameter will, without doubt,
affect the SVM and its results. If the result would be better or worse is not possible to say.
There are not as many parameters that can be changed for the SVM as there is for the neural
networks.

There are so many possible combinations when designing a neural network. It is possible to
choose how many neurons each layer should have, how many layers to have in the neural
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network, and what type of layers to use. Since there are so many possible ways to configure
the neural network, it is almost impossible to find the optimal configuration for every dataset
in such a short time. In this thesis, the design of the neural networks is influenced by tutorials
from the Tensorflow website and information gathered from researchers.

A neural network has many different configurations. Starting with the optimizers, in
Tensorflow there are at least 8 optimizers out of the box. These optimizers come with a
few configurable variables making it hard to tweak them for perfect results. Except for
these 8, it is possible to implement your own and use that during training, this can give
huge advantages but also drawbacks. To be able to make a better optimizer than those
provided, the developer must have a vast knowledge of how to implement it. The possibility
of implementing your own optimizer also gives good prerequisites for researchers to come
up with better optimizers. In this thesis, one of the optimizers that Tensorflow provides out
of the box was used since the knowledge of implementing our own optimizer is not sufficient
to make a good one.

It is often the case that the more epochs, the better, since the accuracy of models usually
increases for every epoch. However, it is possible to run too many epochs and get a lower
accuracy. This problem is called overfitting and causes the model to fit the training data
too much that it does not perform as expected on real data. In this thesis, only one epoch
was used. It was probably not the right way to go, but it was because every epoch requires
approximately the same amount of time and energy but does not improve the accuracy
significantly. The other possibility was to run as many epochs as possible while still having
an increasing accuracy. It would probably end up with worse metric values, but it would still
utilize the neural networks to its full potential and therefore be more realistic.

The configuration of the neural networks for text classification was the same for all the
text datasets except for the loss function. The loss function used for IMDB dataset was
binary_crossentropy, and this was due to the binary structure of the IMDB dataset.
The classes were either positive or negative. While sparse_categorical_crossentropy
were used for the other datasets, since they are categorized into 20 and 46 different classes. It
is possible that using other loss functions for these datasets would have given other results.

The neural networks used for image classification are different for every dataset. The number
of neurons in the input layer differs for every dataset since they are dynamically changed
based on the image size. This dynamic input layer is probably impacting the results. It is
hard to say how much impact it has. However, this can be seen as tweaking the algorithms to
achieve better results, and therefore, be a reason for the outperformance in accuracy against
the SVM. A fairer result might be achieved if the algorithms did not have this dynamic input
layer.

With all the number of possible configurations that can be made for the neural networks by
tweaking all these different parameters, it is hard to debug and find what is not working as
expected.

Test suite

The test suite that has been designed and used for this thesis is running on the same
machine as the algorithms, and this can cause issues with some measurements. The energy
consumption that the CPU and GPU monitors report could turn out to be compromised. Since
these monitors are running simultaneously in different processes compared to the actual
training, but on the same CPU, they could affect the energy consumption of the CPU. To
make this comparison fair for both the neural networks and the SVM, since they are utilizing
different hardware for training both the total CPU- and GPU-energy for the entire system

47



6.2. Method

were collected. It is also possible that any interaction with the system either over ethernet
or physically, by using the mouse, keyboard, and screen can cause distortions. To make sure
that these kinds of distortions did not have a significant effect on the result, all measurements
were done 10 times and averaged.

It is possible to question the reliability of the tools used to measure the energy usage of the
system. However, there are a lot of different papers that show the use of the same underlying
tools as the tools used in this thesis. Some researchers have used another tool for measuring
the energy usage on Intel CPUs, the Intel Process Counter Monitor (PCM). This tool could
have been used in this thesis as well, but with the fact that most of the papers found that
measure CPU energy were using the RAPL tool, it seemed most reliable to use that instead.
In the paper by Strubell et al. (2019) [28], they used NVIDIA System Management Interface
(SMI) to measure the power consumed on the GPU. However, SMI uses the NVML library1

under the hood to extract the consumed power, which is the same library as used in this
thesis. All of the tools used are provided by the hardware producers and should be seen
as the most reliable source out there. Therefore, it is natural to believe that the tools are
thoroughly tested and correct.

The measured training time and inference time in the test suite is something that should
be seen as reliable. There could be some millisecond delay in the measurements that could
impact the total time. However, it is not that likely since the time module in python is
commonly used. The only place where there could arise some delay is if there are any process
scheduling occurring just before saving the end time variable. Except for that, there is nothing
else that, to our knowledge, could impact the training and inference time.

When measuring the inference time, it is possible that the reason why the neural networks
are notably slower than the SVM can be overhead from memory transfer combined with a
larger model size. The entire model must be transferred to the GPU before being able to do
inference. It is shown on older Nvidia GPUs that approximately 2 MB of data transfer takes 1
ms to do.2 How much of the inference time is related to actual inference and memory transfer
is not known.

The model size is measured by multiplying the number of parameters in the model with the
parameter size. The parameter size in Tensorflow is 4 bytes while the size in Scikit learn is
8 bytes. Section 3.4 shows that there are at least two different ways of measuring the model
size. In this thesis, the method counting all parameters has been used. It is possible that
the other way, that only measures the non-zero parameters, could be a more precise way of
retrieving the actual model size. On the other hand, it could be seen as more accurate to have
the actual number of parameters in the model counted, even if they are zero. Otherwise, as
an example, the algorithm could be trained on one set of data and produce a model where
10% of the parameters are zero. An IoT device is created to fit this model precisely. After
creating this device, the training data changes for some reason and the model ends up having
100% use of all parameters, then the model does not fit on the device. Therefore, it should be
more reasonable to measure the model size by also counting the unused parameters.

The accuracy of the trained models is gathered from the framework where the respective
algorithm is implemented. By using these methods from the frameworks, it is safe to assume
that the values retrieved are correct. Since these are such big frameworks, and if these vital
methods would not return correct values, it would be severe. Therefore, it feels safe to use
these methods and not implement our own method to retrieve accuracy.

1 https://developer.nvidia.com/nvidia-system-management-interface
2 https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html
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Datasets

To increase the accuracy, the data could, in most cases, be trimmed or pre-processed in
another way more suited for the specific algorithm. As an example, a huge improvement
in accuracy and training time was observed on the SVM when the dataset 20 newsgroups
was pre-processed using Term Frequency-Inverse Document Frequency (TF-IDF) instead of using
sequences of words. However, since the datasets provided by Keras were pre-processed
using a sequence of words, it felt natural to use the same pre-processing for 20 newsgroups
as well. Another reason for not implementing TF-IDF in this thesis is because there was not
enough time remaining and not that easy to apply TF-IDF to the datasets provided by Keras.
However, since Keras is a framework used to build neural networks, it could be seen that the
way they have pre-processed the datasets is favoring neural networks.

It is possible that our pre-processing of the 20 newsgroups dataset differs from the way that
Keras have pre-processed the other text datasets. This can be seen in the model size for CNN.
Since the IMDB and Reuters have a similar model size even though the datasets are divided
into 2 and 46 classes respectively while the 20 newsgroups dataset are almost double the size.
On the other hand, there is a more logical relationship between the different model sizes on
the SVM. The model size using Reuters and 20 newsgroups is simply a multiple of classes
of the IMDB model size. This relationship could imply that the pre-processing indeed is the
same for 20 newsgroups as it is for the other datasets provided by Keras.

To make sure that there was no difference in pre-processing of the datasets, raw datasets
could have been downloaded and processed. By doing this, the pre-processing would have
been consistent for all the datasets, no matter where they come from. With consistent
pre-processed data, the evaluation of the algorithms would be fairer. Now, when two of
the three datasets already are pre-processed, it is hard to be assured that we have the same
behavior in our implementation.

If we had downloaded a few different datasets and used our own pre-processing of the
datasets, then the final datasets that were used to evaluate the algorithms could have been
selected to be the ones that performed best. However, the used datasets were not selected by
performance, but rather because they were already pre-processed. By picking datasets that
already were pre-processed, it freed up time that could be spent on actual evaluation of the
selected algorithms and not spent on pre-processing.

To the best of our knowledge, there is no other way to pre-process the image datasets to
receive better results.

There is a possibility that the size of the chosen datasets is affecting the results to a great
extent. The algorithms score low accuracy on some datasets. This can be because of the
low number of samples in these datasets. For example, the Reuters dataset has around 180
training samples per class, while IMDB has 12 500 per class. These low number of samples
is not sufficient enough to get an acceptable level of accuracy. For a binary classification
problem approximately a total of 2 500 samples is needed to reach a converging level of
accuracy3. In this thesis, the Reuters and 20 newsgroups datasets are multiclass classification
problems and would require even more samples. However, the datasets are the same for all
algorithms, and this gives the best algorithm for just that dataset the best metrics. It is also
good that the metrics are tested for all different levels of accuracy, which gives diversity to
the test of these metrics.

3 https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-
skill-and-performance-estimates/
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6.3. The work in a wider context

Efficiency metrics

An algorithm that predicts the result by just guessing may get pretty good efficiency metrics
because it requires a small amount of resources. These measurements may, therefore, be
misleading when the accuracy is too low. Hence it is essential to make these measurements
on implementations that provide satisfying results. A way of making sure that the algorithm
provides satisfying results could be to use F1 score as the numerator in these metrics instead
of accuracy. Since F1 score is being more vulnerable to wrong predictions than accuracy is,
it is possible to get a worse F1 score from just guessing than accuracy could provide. A
future build-on to these metrics may, therefore, be a metric that gives a much lower score for
algorithms that do not come up to a certain level of accuracy.

All of these algorithms have different strengths and weaknesses and are designed to operate
in different ways. The neural networks are running on the GPU and are designed to utilize as
much memory as possible. While the SVM, that runs on the CPU, only uses as much memory
as needed. It would, therefore, be unfair to use memory consumption during training as
a measurement. Since using memory consumption in a metric would punish the neural
networks and benefit the SVM, only the model size is evaluated.

The advantage of measuring several resources and turn them into different efficiency metrics
is that they can be used individually if one is looking for specific qualities. It is possible to
decide what metrics to put more attention to and what metrics to ignore. The metrics of
interest depend on what environment the model is intended to be used in.

The biggest downside with these metrics may be that they have to be measured on ready
implementations and have an acceptable quality. One may be interested in knowing before
implementing these algorithms how they perform with respect to these efficiency metrics.
Having to make the models before being able to test them is hard to come around, and
this is because there is an uncountable number of ways of implementing machine learning
algorithms.

To make the metrics more comprehensive, more measurements related to the accuracy could
be included, like precision and loss. These qualities could, for some models, be more desired
than the accuracy.

6.3 The work in a wider context

One of the main reasons for doing this thesis was to shed light on the fact that machine
learning, in general, is consuming a lot of resources. State-of-the-art models get more complex
to develop, and there is little focus on efficiency. It is easy to get blinded by the drastically
increasing performance of the models. The ImageNet classification challenge is an excellent
example of that. The goal of the challenge is to provide a model that can classify a set of
images as accurately as possible, not caring about inference time or power consumption.
Canziani, Paszke, and Culurciello (2016) [4] criticize that the resource utilization for the
winning models in this challenge has not been taken into consideration. They believe that
the memory footprint, parameters, operations count, inference time and power consumption
are of great importance if these models actually should be used in practical applications.
By measuring these qualities, they conclude that the last percentage of accuracy to achieve
these state-of-the-art models costs a lot in inference time and that setting an energy constraint
during inference sets a maximum achievable accuracy. Therefore, achieving the accuracy that
these state-of-the-art models have requires a lot of time and energy during inference, and
there is an interest in making these models more efficient.
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6.3. The work in a wider context

Figure 6.1: Expected energy usage by datacenters from 2010-2030 8

Using cloud computing for machine learning is popular and seems to be growing rapidly 4.
Infrastructure as a Service (IaaS) tools provided by big companies, for example, Google Cloud
Machine Learning Engine5, Azure Machine Learning service6 and Amazon SageMaker7, are
all running in data centers. Research done by Andrae and Edler (2015) [2] that can be seen
in Figure 6.1 shows that data centers used approximately 1% of the global electricity in 2010,
and are expected to use 3´ 13% by 2030. It is hard to stop this development entirely, but
what we can do is to ensure that we use this electricity efficiently. The hope is that with
these metrics proposed in this thesis, one can make a more informed choice on what machine
learning model to use.

By using the equation for estimated CO2 emissions in pounds given by Strubell et al. (2019)
[28], CO2 = 0.954 ˚ P where P is measured in kilowatt hours. It is possible to see that the
estimated CO2 emissions that the most energy expensive algorithm in this thesis produces
is 0.954 ˚ 0.1502 = 0.1433, if it was run in a US data centre. These emissions may not be a
large number in this context. However, this model is run on a very small scale. The energy
consumed by these machine learning algorithms must be seen in a larger context, where it
takes many iterations of training to produce a state-of-the-art machine learning model.

4 https://blogs.flexera.com/cloud/cloud-industry-insights/cloud-computing-trends-
2019-state-of-the-cloud-survey

5 https://cloud.google.com/ml-engine/
6 https://azure.microsoft.com/en-gb/services/machine-learning-service/
7 https://aws.amazon.com/sagemaker/
8 "Global electricity demand of data centers 2010–2030" by Andrae and Edler is licensed under CC BY 4.0
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7 Conclusion

The purpose of this thesis was to come up with a methodology that could be used for a
fair evaluation of machine learning algorithms with respect to resource consumption. The
concerning resources include time, energy consumption and model size. These resources
were compared with the accuracy of the model. To evaluate the models, we decided to use
the following efficiency metrics:

• Model Size E f f iciency = Accuracy
Model size

• Training Time E f f iciency = Accuracy
Training time

• Training Energy E f f iciency = Accuracy
Training energy

• In f erence Time E f f iciency = Accuracy
In f erence time

• In f erence Energy E f f iciency = Accuracy
In f erence energy

7.1 Research questions

This thesis was based on two research question asked in the introduction.

1. How can we make a fair comparison between machine learning algorithms with respect
to resource consumption?

The five efficiency metrics we have presented are one way of evaluating machine learning
models, with respect to the following resources: model size, training time, training energy,
inference time and inference energy. To make a comparison between these metrics fair, we
suggest that the models tested should reach an acceptable level of accuracy. It is then up to
the consumer to decide what efficiency metrics are of interest in each case.
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7.2. Future work

These metrics could also be altered depending on what qualities the consumer is interested
in. The numerator, accuracy, could be changed to another measurement of quality, and the
denominator could be changed to another resource of interest.

To demonstrate an example of how to use these metrics, a comparison between the algorithms
SVM, MLP, and CNN using image and text classification tasks were made. All of the
algorithms were given roughly the same prerequisites, which we from the beginning thought
would be fairest. The models which we tested these metrics on had unfortunately far from
the same accuracy.

Even if there are flaws when evaluating machine learning models in this way, the purpose is
to shed light on the increasing resource consumption of machine learning.

2. How to compare machine learning algorithms to each other using efficiency metrics
based on resource consumption?

Three machine learning algorithms, CNN, MLP, and SVM were compared using six
public and well-known image and text classification tasks. This comparison was made
using our five efficiency metrics. The SVM had the best Model Size E f f iciency,
In f erence Time E f f iciency and In f erence Energy E f f iciency for all used datasets. The MLP
had the best Training Time E f f iciency and Training Energy E f f iciency in five out of six
datasets. The CNN had the best Training Time E f f iciency and Training Energy E f f iciency
once. Despite that, CNN had the best accuracy for all datasets.

7.2 Future work

To get a realistic use case for these metrics, the algorithms would preferably be optimized
for the problem they are to solve. Future work could be to tune the parameters to see how
they affect these metrics using the same algorithm for one problem. To see this problem
from a more energy efficiency point of view, it would be interesting to run one algorithm on
CPU, GPU and a Google Edge Tensor Processing Unit (TPU). The Edge TPU is designed to
be energy efficient and still provide high-performance1.

Schwartz et al. (2019) [26] suggest using the number of floating point operations (FPO) as a
measurement of efficiency. FPO is the two base operations, ADD and MUL, and therefore an
estimate of the work done. Using our metrics, the resource could be replaced by FPO. Using
FPO would make for a comparison not depending on hardware.

1 https://cloud.google.com/edge-tpu/
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