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Obtaining Consistent Parameter Estimators for
Second-order Modulus Models

Fredrik Ljungberg and Martin Enqvist

Abstract—This work deals with the issue of obtaining consis-
tent parameter estimators in nonlinear regression models where
the regressors are second-order modulus functions, which is
a structure that is often used in models of marine vessels.
It is shown that the accuracy of an instrumental variable
estimator can be improved by conducting experiments where
the input signal has a static offset of sufficient amplitude and the
instruments are forced to have zero mean. The proposed method
is then evaluated in a simulation example.

Index Terms—Nonlinear system identification, Grey-box mod-
eling, Maritime control.

I. INTRODUCTION

MATHEMATICAL modelling of marine vessels is a
rather involved task. The couplings between different

motion components in the six degrees of freedom are often
complex and rarely negligible. The modelling is further com-
plicated by the nonlinear hydrodynamic forces and moments
affecting the vessel. System identification at sea can therefore
prove to be challenging. Classical techniques for system iden-
tification applied to ship maneuvering include least squares
[1], the extended Kalman filter [2], maximum likelihood [3]
and model reference adaption [4]. During the past decades,
these techniques have been refined in several ways.

In [5] identification of a high-speed trimaran ferry was done
using a nonlinear prediction-error method with the unscented
Kalman filter. In [6] an offline system identification algorithm
was proposed that used a genetic algorithm to minimize a
measure of the difference between the reference response
and the response obtained with the identified parameters.
Another recently suggested technique for parameter estimation
is support vector machine regression (SVR). This was applied
to ships in [7].

Sometimes the unknown model parameters are obtained in
non-data-driven ways. In [8] a nonlinear model of a scale
ship was obtained by first having some of the parameters
being measured directly, during what is called towing tests.
Very accurate parameter estimates can be obtained in this way
but the experiments are often expensive and time consuming,
especially when carried out in full scale. In [9] a nonlinear
model of an underwater vehicle in the shape of a fish was
developed. In that work a nonlinear prediction-error method
was used to find values for the parameters connected to the
frontal part of the robotic fish whereas the tail was modelled
using beam theory. Recently there have also been advances in
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development of methods using computational fluid dynamics
for ship hydrodynamics. In [10] such a method was used
to model maneuvers of both a model ship and its full-scale
equivalent.

Two main approaches for dealing with nonlinearities in ship
models exist in the literature. The first is using a truncated odd
Taylor series expansion which was proposed by [11]. Only odd
terms are considered because the model must behave in the
same way for positive and negative relative velocities due to
ship symmetry. The models usually include nonlinear terms of
orders one and three.

The second alternative was first proposed in [12] and later
in [13] and provides another nonlinear representation called
second-order modulus models [14]. The second-order modulus
models do, as the name suggests, include second-order terms.
The constraint that the model must be based on an odd function
is resolved by including absolute values. These models are not
necessarily continuously differentiable, and strictly speaking
they can therefore not represent the physical system. Expe-
rience has however shown that they can describe the water’s
damping effects quite accurately and they are therefore often
used anyway [8].

The ship model

(m−Xu̇)u̇ = X|u|u|u|u+ (1− t)T + (m+Xvr)vr

+Xδδδ
2 +Xext,

(m− Yv̇)v̇ + (mxG − Yṙ)ṙ = −(m− Yur)ur
+ Yuvuv + Y|v|v|v| v + Y|v|r|v| r + Yδδ + Yext,

(mxG −Nv̇)v̇ + (Iz −Nṙ)ṙ = −(mxG −Nur)ur
+Nuvuv +N|v|v|v| v +N|v|r|v| r +Nδδ +Next,

proposed in [15] is simpler than the earliest ones but re-
tains most of the important properties regarding propulsion
and steering. This model serves well as an example of a
continuous-time second-order modulus model. Here u is the
forward velocity (surge) and should not be confused with
the propeller thrust, T , and the rudder angle, δ, which are
the system’s control signals. The other state variables are v,
which is the side-ways velocity (sway) and the yaw rate, r.
Furthermore, m is the ship’s mass, xG the distance to the
center of gravity, t is called the thrust deduction number
and Xext, Yext and Next are external forces. The remaining
parameters are in ship literature referred to as hydrodynamic
derivatives, see for example the second chapter in [16] for
further details about this. The nonlinear damping effects are
similar for surface vessels and underwater vehicles. Second-
order modulus models are therefore common in both cases.



A continuous-time second-order modulus model, like the
one presented in [15], can be cast as a discrete-time model
with the same type of terms, using a forward Euler scheme.
The accuracy of the approximation depends on the length of
the sampling time in comparison to the frequency of the signal
variations. The remainder of the paper will deal with discrete-
time models.

Identification of nonlinear ocean vehicle models has been
done before, e.g. in [5], [6], [7], [8] and [9]. In this paper the
focus is instead on obtaining consistent parameter estimators
for general second-order modulus models. The work serves as
a continuation of [17], where the instrumental variable (IV)
method was successfully applied for estimating the parameters
of a linear ship model. It will be shown that the accuracy of
an IV estimator can be improved by conducting experiments
where the input signal has a static offset of sufficient amplitude
and the instruments are forced to have zero mean.

II. MOTIVATING EXAMPLE

Obtaining a consistent parameter estimator of even a small
scale single-input single-output second-order modulus system
can prove to be a bit cumbersome. Consider the system

x(k + 1) = n0x(k)
∣∣x(k)

∣∣+ f0u(k) + w(k),

y(k) = x(k) + e(k),

where the two noise sources are mutually independent, sta-
tionary, uniformly distributed stochastic processes with zero
mean, −ηw < w(k) < ηw, −ηe < e(k) < ηe. Assume that the
input is Gaussian and white, also with zero mean and that the
system is operating in open loop, i.e. that the input, u(k), is
not dependent of the measured state, y(k), and consequently
assumed to be independent of the noise signals, w(k) and
e(k). Let θ0 =

[
n0 f0

]T
denote the true system parameter

vector. A simple way of modelling this system is to ignore the
fact that only noisy measurements of x(k) are available and
to consider the one-step ahead predictor model

ŷ(k|θ) = ny(k − 1)
∣∣y(k − 1)

∣∣+ fu(k − 1)
∆
= ϕT (k)θ.

Here ϕ(k) =
[
y(k − 1)|y(k − 1)| u(k − 1)

]T
denotes the

regression vector and θ =
[
n f

]T
is the unknown parameter

vector. The least squares (LS) estimate can be formed as

θ̂LSN = argmin
θ

N∑
k=1

[y(k)− ϕT (k)θ]2, (1)

where N is the number of data points. Thus, the asymptotic
LS estimate for the system parameters can be obtained as

lim
N→∞

θ̂LSN = lim
N→∞

[
1

N

N∑
k=1

ϕ(k)ϕT (k)]−1[
1

N

N∑
k=1

ϕ(k)y(k)]

= Ē{ϕ(k)ϕT (k)}−1Ē{ϕ(k)y(k)}.

The notation Ē{.} = limN→∞
1
N

∑N
k=1E{.} was adopted

from [18]. Due to the causality of the system and the fact that

the input and noise sequences are zero mean, it is assumed to
be the case that

Ē{u(k)x(l)} = 0 ∀ k ≥ l,
Ē{e(k)x(l)} = 0, ∀ k, l,
Ē{w(k)x(l)} = 0, ∀ k ≥ l.

Using this and the fact that the system is operating in open
loop gives

Ē{ϕ(k)ϕT (k)} =

[
Ē{y(k − 1)4} 0

0 Ē{u(k − 1)2}

]
,

Ē{ϕ(k)y(k)} =

[
Ē{y(k)y(k − 1)

∣∣y(k − 1)
∣∣}

Ē{u(k − 1)y(k)}

]
.

It is the case that

Ē{y(k − 1)4} = Ē{(x(k − 1)4

+ 6x(k − 1)2e(k − 1)2 + e(k − 1)4},

because the expected value of any odd moment of a zero-
symmetric distribution (if it exists) is zero. This holds for x(k)
and e(k) alike. Also,

Ē{y(k)y(k − 1)
∣∣y(k − 1)

∣∣} = Ē{(n0x(k − 1)
∣∣x(k − 1)

∣∣
+ f0u(k − 1) + w(k − 1) + e(k))(x(k − 1) + e(k − 1))

·
∣∣x(k − 1) + e(k − 1)

∣∣} = n0Ē{x(k − 1)
∣∣x(k − 1)

∣∣
· (x(k − 1) + e(k − 1))

∣∣x(k − 1) + e(k − 1)
∣∣},

where the properties that u(k), w(k) and e(k) are mutually
independent and white have been used. Lastly,

Ē{u(k − 1)y(k)} = Ē{u(k − 1)(n0x(k − 1)
∣∣x(k − 1)

∣∣
+ f0u(k − 1) + w(k − 1) + e(k))} = f0Ē{u(k − 1)2},

making use of the same properties. All in all this means that

lim
N→∞

θ̂LSN =

[
n0Ē{x|x|·(x+e)|x+e|}
Ē{x4+6x2e2+e4}

f0

]
,

where the time index was dropped for simplified notation.
This means that in presence of measurement noise, e 6= 0, the
LS estimator is inconsistent. It is however a known fact that
the LS estimate is inconsistent under errors-in-variables (EIV)
conditions, see for example [19]. An estimation technique that
has proven to work well under EIV conditions before, is the
IV method [20].

The IV estimate is

θ̂IVN = sol

 1

N

N∑
k=1

ζ(k)[y(k)− ϕT (k)θ] = 0

 , (2)

where ζ(t) is called the instrument vector and the nota-
tion sol

{
f(x) = 0

}
is used for the solution to the equation

f(x) = 0. It has been shown in [21] that having the instrument
vector represent a noise-free version of the regression vector is
a good choice, at least in the linear case. Assume for a moment
that completely noise-free regressors are available for use as
instruments

ζ(k) =
[
x(k − 1)

∣∣x(k − 1)
∣∣ u(k − 1)

]T
.



If Ē{ζ(k)ϕT (k)} is nonsingular, the asymptotic IV estimate
can be obtained as

lim
N→∞

θ̂IVN = Ē{ζ(k)ϕT (k)}−1Ē{ζ(k)y(k)}

=

 Ē{y(k)x(k−1)|x(k−1)|}
Ē{x(k−1)|x(k−1)|·y(k−1)|y(k−1)|}

Ē{u(k−1)y(k)}
Ē{u(k−1)2}

 .
For the new expressions it holds that

Ē{y(k)x(k − 1)
∣∣x(k − 1)

∣∣} = Ē{(n0x(k − 1)
∣∣x(k − 1)

∣∣
+ f0u(k − 1) + w(k − 1) + e(k))x(k − 1)

∣∣x(k − 1)
∣∣}

= n0Ē{x(k − 1)4},

and

Ē{x(k − 1)
∣∣x(k − 1)

∣∣ · y(k − 1)
∣∣y(k − 1)

∣∣} = Ē{x(k − 1)

·
∣∣x(k − 1)

∣∣ · (x(k − 1) + e(k − 1))
∣∣x(k − 1) + e(k − 1)

∣∣},
so that, again omitting the time index

lim
N→∞

θ̂IVN =

[
n0Ē{x4}

Ē{x|x|·(x+e)|x+e|}
f0

]
,

which is inconsistent as well. From (2) it can be noted that
for the IV estimate to be consistent it must be the case that

Ē{ζ(k)ϕT (k)} is nonsingular,

Ē{ζ(k)[y(k)− ϕT (k)θ0]} = 0,

i.e. that the instruments are correlated with the regressors but
uncorrelated with the optimal residual. For this system the
second requirement means that

Ē{ζ(k)[n0x(k − 1)
∣∣x(k − 1)

∣∣+ w(k − 1) + e(k)

− n0(x(k − 1) + e(k − 1))
∣∣x(k − 1) + e(k − 1)

∣∣]} = 0.

If the instruments are uncorrelated with w and e this implies
that

n0Ē{ζ(k)[x(k − 1)
∣∣x(k − 1)

∣∣
− (x(k − 1) + e(k − 1))

∣∣x(k − 1) + e(k − 1)
∣∣]} = 0,

which is not easily fulfilled, while keeping Ē{ζ(k)ϕT (k)}
nonsingular, for any choice of ζ(k). This means that despite
the fact that the instruments are uncorrelated with the noise
sequences, the IV estimator is inconsistent.

An inconsistent estimate can however be avoided by using
an input with an offset. Remember that the amplitude of the
measurement noise has an upper bound,

∣∣e(k)
∣∣ < ηe. The input

should be such that it excites the system to the extent that its
state, x(k) has an amplitude that is bigger than the worst-case
amplitude of the measurement noise. Consider the case where
the input u(k) = ū+ ũ(k) is applied, where ũ(k) is uniformly
distributed with zero mean, −ηũ < ũ(k) < ηũ. If the system
is stable this will yield an output that, with the notation that
Ē{x(k)} = x̄, can be written like

x(k) = x̄+ x̃(k), Ē{x̃(k)} = 0.

Further assume that ū > 0, x̄ > 0 and

x(k) = x̄+ x̃(k) > ηe > 0.

Under the stated circumstances can it be concluded that x(k)+
e(k) > 0 and consequently that

lim
N→∞

1

N

N∑
k=1

ζ(k)[y(k)− ϕT (k)θ0] = Ē{ζ(k)[w(k − 1)

+ e(k)− 2n0x(k − 1)e(k − 1)− e(k − 1)2]}.

This will equal zero for all instruments that are indepen-
dent of the noise sequences, w and e, while also fulfilling
Ē{ζ(k)} = 0. For example the instrument vector

ζ(k)=
[
x(k−1)2−Ē{x(k−1)2} u(k−1)−Ē{u(k−1)}

]T
=
[
x̃(k−1)2+2x̄x̃(k−1)−Ē{x̃(k−1)2} ũ(k−1)

]T
,

gives

Ē{ζ(k)ϕT (k)} =

[
mx̃ 0
0 Ē{ũ2}

]
,

Ē{ζ(k)y(k)} =

[
n0mx̃

f0Ē{ũ2}

]
,

where mx̃ = Ē{x̃4}+4x̄Ē{x̃3}+4x̄2Ē{x̃2}−Ē{x̃2}2. These
computations are also based on the fact that x̃(k) and ũ(k)
are independent. Ē{ζ(k)ϕT (k)} is clearly invertible as long as
the input is persistently exciting, so the asymptotic parameter
estimator is

lim
N→∞

θ̂IVN = Ē{ζ(k)ϕT (k)}−1Ē{ζ(k)y(k)} =

[
n0

f0

]
= θ0,

i.e. the consistency has been shown.

III. THE GENERAL CASE

As mentioned in the introduction, the couplings between dif-
ferent motion components in a ship’s six degrees of freedom,
are often not negligible. The presented method of obtaining
consistency generalizes to multiple-input and multiple-output
(MIMO) systems, provided that a couple of assumptions are
fulfilled. First a definition is needed.

Definition 3.1: A second-order modulus function is a func-
tion, f : Rn+p → Rm that can be written as

f(x, θ) = ΦT (x)θ,

where each element of the p×m matrix Φ(x) is on one of the
forms xi, |xi|, xixj , xi

∣∣xj∣∣ for i, j ≤ n or zero and θ ∈ Rp is
a vector of coefficients.

Consider a nonlinear discrete-time state-space system with
n states, m inputs and n outputs

x(k + 1) = f(

[
x(k)
u(k)

]
, θ0) + w(k),

y(k) = x(k) + e(k),

where all the states are measured directly (with noise) and the
following assumptions are imposed.
A1. f is a second-order modulus function and its structure is

known.
A2. w(k) and e(k) are mutually independent stationary white

noise sequences with zero mean and well-defined mo-
ments of any order. The amplitude of the measurement
noise is limited, −η < e(k) < η.



A3. The system is globally identifiable according to the
definition in [18].

Following Definition 3.1, this system can be expressed as

x(k + 1) = ΦT (

[
x(k)
u(k)

]
)θ0 + w(k),

y(k) = x(k) + e(k).

Since the structure of the true system is known by As-
sumption A1, it is reasonable to consider the one-step ahead
predictor model

ŷ(k|θ) = ΦT (

[
y(k − 1)
u(k − 1)

]
)θ.

Furthermore some premises regarding the data collection are
assumed to be imposed.
A4. The system is operating in open loop, i.e. the input,

u, does not depend on the measured states, y, and is
consequently assumed to be independent of the noise
signals w and e.

A5. NE experiments are performed, where in each ND data
points are collected. The input in each experiment is
such that it excites the system to the extent that each
of its states, x1(k), . . . xn(k), continuously has an
amplitude that is bigger than the corresponding worst-
case amplitude of the measurement noise∣∣xi(k)

∣∣ > ηi >
∣∣ei(k)

∣∣ , k = 1, . . . ND, i = 1, . . . n.

Assume that for each experiment, E, there is an p × n
instrument matrix

ZE(k) =
[
ζE,1(k) . . . ζE,n(k)

]
,

that fulfills the following assumptions.
A6. ZE(k) and w(k) are mutually independent.
A7. ZE(k) and e(k) are mutually independent.
A8. Ē{ZE(k)} = 0 and the moments of any higher order are

well-defined.
The IV estimate is the least-squares solution to the system of
pNE equations

1
ND

ND∑
k=1

Z1(k)[y(k)− ΦT (

[
y(k − 1)

u(k − 1)

]
)θ] = 0,

...

1
ND

NEND∑
k=(NE−1)ND+1

ZNE
(k)[y(k)− ΦT (

[
y(k − 1)

u(k − 1)

]
)θ] = 0.

Lastly assume that when ND → ∞, the data from all the
experiments combined is informative such that the parameters
can be determined uniquely.

A.9 Ē{


Z1(k)

...
ZNE

(k)

ΦT (

[
y(k − 1)
u(k − 1)

]
)} is full rank.

Lemma 3.1: For a system that fulfills Assumptions A1-A3,
an experiment design that fulfills A4-A5 and an instrument
matrix that fulfills A6-A9, the IV method defined above is a
consistent estimator of θ.

Proof: Under Assumptions A1-A9, the consistency of the
IV method can be investigated by analyzing the unbiasedness
of the asymptotic IV estimator. Due to Assumption A9, a
sufficient condition for consistency is that

Ē{ZE(k)[y(k)−ΦT (

[
y(k − 1)
u(k − 1)

]
)θ0]} = 0, E = 1, . . . NE .

(3)
Denoting the columns of the regression matrix as

Φ(.) =
[
ϕ1(.) . . . ϕn(.)

]
,

it can be seen that (3) is fulfilled if

Ē{ζE,i(k)[yi(k)− ϕTi (

[
y(k − 1)
u(k − 1)

]
)θ0]} = 0,

for i = 1, . . . n and E = 1, . . . NE . Here

yi(k)− ϕTi (

[
y(k − 1)
u(k − 1)

]
)θ0 = ϕTi (

[
x(k − 1)
u(k − 1)

]
)θ0

+ wi(k − 1) + ei(k)− ϕTi (

[
y(k − 1)
u(k − 1)

]
)θ0.

Since Ē{ζE,i(k)wi(k − 1)} = Ē{ζi(k)ei(k)} = 0, by
Assumptions A2, A6 and A7, it remains to show that

Ē{ζE,i(k)[ϕTi (

[
x(k − 1)
u(k − 1)

]
)− ϕTi (

[
y(k − 1)
u(k − 1)

]
)]} = 0, (4)

holds for all i = 1, . . . , n. and E = 1, . . . , NE . This
residual vector will consist of a combination of different kinds
of elements. Elements on the form uj ,

∣∣uj∣∣, ujul or uj |ul| are
trivially zero since the input is assumed to be perfectly known.
Elements on the form

∣∣xj∣∣ give

Ē{ζE,i(k)[
∣∣xj(k − 1)

∣∣−∣∣xj(k − 1) + ej(k − 1)
∣∣]}

= Ē{ζE,i(k)[xj(k − 1)− (xj(k − 1) + ej(k − 1))]} = 0,

if xj > ηj . This follows by A2, A5 and A7. For the case when
xj < −ηj only the sign of the expression changes. Cross-
elements on the form xj |ul| give

Ē{ζE,i(k)[xj(k − 1)
∣∣ul(k − 1)

∣∣− (xj(k − 1) + ej(k − 1))

·
∣∣ul(k − 1)

∣∣]} = −Ē{ζE,i(k)ej(k − 1)
∣∣ul(k − 1)

∣∣} = 0,

which follows from A2, A4 and A7. Cross-elements on the
form uj |xl| give

Ē{ζE,i(k)[uj(k−1)
∣∣xl(k−1)

∣∣− uj(k−1)
∣∣xl(k−1)

+ el(k−1)
∣∣]} = Ē{ζE,i(k)[uj(k−1)(xl(k−1)− (xl(k−1)

+ el(k−1)))]} = −Ē{ζE,i(k)uj(k−1)el(k−1)} = 0,

if xl > ηl. This follows by A2, A4, A5 and A7. For the
case when xl < −ηl only the sign of the expression changes.
Finally elements on the form xj |xl| give

Ē{ζE,i(k)[xj(k − 1)
∣∣xl(k − 1)

∣∣− (xj(k − 1) + ej(k − 1))

·
∣∣xl(k − 1) + el(k − 1)

∣∣]} = Ē{ζE,i(k)[xj(k − 1)xl(k − 1)

− (xj(k − 1) + ej(k − 1))(xl(k − 1) + el(k − 1))]}
= −Ē{ζE,i(k)[xj(k − 1)el(k − 1) + ej(k − 1)xl(k − 1)

+ ej(k − 1)el(k − 1)]} = 0,



if xl > ηl. This follows by A2, A4, A5, A7 and A8. For the
case when xl < −ηl only the sign of the expression changes.

First and second-order elements without the modulus oper-
ator can be seen to equal zero following to the same type of
reasoning. Hence, all elements in (4) will be zero, regardless
of i, j, l and E. Conclusively (3) is fulfilled so the estimator
for θ is consistent. This concludes the proof.

Remark 1: It is important that the input is informative
such that the parameters can be determined uniquely. If for
example both the regressors xj |xl| and xl

∣∣xj∣∣ are present in
ϕi, both experiments where xj and xl are of the same sign
and experiments where they are of opposite sign are needed.

Remark 2: If a whole experiment does not fulfill the
requirement that all the states continuously has an amplitude
that is bigger than the corresponding worst-case amplitude
of the measurement noise, it is possible to form new shorter
datasets, only including the parts that do. Only two sequential
data points are needed from each set in order to contribute to
the estimate. This is due to the nature of the system following
Definition 3.1, where the state at sample time k only depends
on the state and the input at sample time k − 1.

IV. SIMULATION STUDY

As shown, the proposed method also works in the MIMO
case. However, in order to make succinct comparisons between
the proposed IV approach and the LS method, two simulation
studies have been carried out using the small-scale system

r(k + 1) = a0r(k) + n0r(k)
∣∣r(k)

∣∣+ f0τ(k) + w(k),

y(k) = r(k) + e(k),

which is describing the yaw dynamics of an underwater vehicle
[16]. Here r is the yaw rate, τ is an input force that can be
generated either with thrusters or using a rudder and w is some
disturbance force, for example caused by underwater currents.
It is assumed that the input is perfectly known and that the
yaw rate is measured with an additive disturbance. Similar to
earlier, the one-step ahead predictor model

ŷ(k|θ) = ay(k − 1) + ny(k − 1)
∣∣y(k − 1)

∣∣+ fτ(k − 1),

is considered.
In the motivating example it was unrealistically assumed

that exact noise-free versions of the regressors were available
for use as instruments. A common way of obtaining instru-
ments in practice is by simulation of a nominal model. In this
work it was assumed that a nominal model

r̂′(k) = a′r̂′(k − 1) + n′r̂′(k − 1)
∣∣r̂′(k − 1)

∣∣+ f ′τ(k − 1),

with crude parameter values was available for this.
Two sets of simulations were carried out, corresponding to

two different experiment designs. The baseline input, τ̃(k),
was a set of pulses with amplitudes between -0.3 and 0.3.
The pulses were of varying width and excited the system well.
In the first set of simulations this input was used right away
τ(k) = τ̃(k), i.e. the input had zero mean. In the second set
it was combined with a static positive offset

τ(k) = τ̄ + τ̃(k), τ̄ = 0.4,

TABLE I
SYSTEM PREMISES FOR SIMULATION.

a0 n0 f0 a′ n′ f ′

[0.85, 0.95] [-0.15, -0.05] [0.75, 1.25] 0.8 -0.2 1.5

Fig. 1. Normalized LS estimation errors for the set of Monte Carlo
runs without excitation offset (τ̄ = 0). The mean errors plus/minus one
standard deviation are εâ = −0.0766 ± 0.0883, εn̂ = −1.4237 ± 0.5312,
εf̂ = 0.9603 ± 0.1670.

Fig. 2. Normalized IV estimation errors for the set of Monte Carlo
runs without excitation offset (τ̄ = 0). The mean errors plus/minus one
standard deviation are εâ = 0.0307 ± 0.0207, εn̂ = −0.1416 ± 0.1289,
εf̂ = 0.0002 ± 0.0321.

which means that the pulse amplitudes were instead vary-
ing between 0.1 and 0.7. The two noise sources were in
both cases sampled from zero mean Gaussian distributions
e(k) ∼ N (0, 0.1), w(k) ∼ N (0, 0.01). This means that the
distribution of the measurement noise did not have finite
support, a choice made in order to test the robustness of the
method. Each of the simulation sets used N = 104 data points
for each parameter estimation step, and was repeated 1000
times, using new system parameters and new noise sequences,
in a Monte Carlo manner. Both the simulation studies were
carried out under the premises stated in Table I. The true
system parameters were varied uniformly within the provided
intervals whereas the nominal model was fixed.

For the first set of simulations, where τ̄ = 0, histograms
showing the parameter errors of LS and IV estimates are
provided in Figure 1 and 2, respectively. The IV estimates
were obtained using the instrument vector

ζ(k) =
[
r̂′(k − 1)

∣∣r̂′(k − 1)
∣∣ r̂′(k − 1) τ(k − 1)}

]T
. (5)

Neither the LS nor the IV estimator seems to be consistent in
this setup. The bias is however more substantial for the LS
estimator.

For the second set of simulations, where τ̄ = 0.4, the
LS method gave the estimation errors in Figure 3. For the
IV method with (5) as instruments, the estimation errors are
provided in Figure 4. By comparing these results with those



Fig. 3. Normalized LS estimation errors for the set of Monte Carlo runs
with excitation offset (τ̄ = 0.4). The mean errors plus/minus one standard
deviation are εâ = −0.1369 ± 0.0574, εn̂ = −0.8528 ± 0.2860,
εf̂ = 0.9853 ± 0.1879.

Fig. 4. Normalized IV estimation errors for the set of Monte Carlo runs
with excitation offset (τ̄ = 0.4). The mean errors plus/minus one stan-
dard deviation are εâ = 0.0180 ± 0.0107, εn̂ = −0.0560 ± 0.0707,
εf̂ = 0.0020 ± 0.0532.

Fig. 5. Normalized zero-mean-instrument IV estimation errors for the
set of Monte Carlo runs with excitation offset (τ̄ = 0.4). The mean
errors plus/minus one standard deviation are εâ = 0.0002 ± 0.0236,
εn̂ = −0.0026 ± 0.0927, εf̂ = 0.0011 ± 0.0531.

obtained earlier, it can be noted that just applying the static
offset reduces the bias for the IV estimator. In Figure 5 the
IV estimation errors, where the instrument vector

ζ(k)=

 r̂′(k − 1)− 1
N

∑N
k=1 r̂

′(k − 1)∣∣r̂′(k − 1)
∣∣r̂′(k − 1)− 1

N

∑N
k=1

∣∣r̂′(k − 1)
∣∣r̂′(k − 1)

τ(k − 1)−τ̄


was used, are presented. This choice gives instruments with
zero mean. It can be noted that removing the mean from
the instruments did eliminate the bias. At the same time it
increased the variance of the estimates.

V. CONCLUSIONS

A method for obtaining consistent parameter estimators
for second-order modulus models has been proposed. This is
primarily of interest for maritime applications, where these
type of models are common. The tradeoff between variance
and bias is unavoidable in system identification and in this
work the primary focus has been to eliminate the latter. A
potential future work is a more thorough investigation of the

usefulness of the proposed method for smaller datasets. It
would also be of interest to estimate a more complete ship
model using real data.
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[19] T. Söderström, “Errors-in-variables methods in system identification,”
Automatica, vol. 43, no. 6, pp. 939–958, 2007.

[20] S. Thil, M. Gilson, and H. Garnier, “On instrumental variable-based
methods for errors-in-variables model identification,” in Proceedings of
the 17th IFAC World Congress, Seoul, Korea, 2008, pp. 426–431.

[21] M. Gilson, H. Garnier, P. C. Young, and P. M. Van den Hof, “Optimal
instrumental variable method for closed-loop identification,” IET control
theory & applications, vol. 5, no. 10, pp. 1147–1154, 2011.


	Försättsblad
	cdcArticle2019_v3_0

