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Improved Path Planning by Tightly Combining Lattice-Based Path
Planning and Optimal Control

Kristoffer Bergman, Oskar Ljungqvist and Daniel Axehill

Abstract—This paper presents a unified optimization-based
path planning approach to efficiently compute locally optimal
solutions to optimal path planning problems in unstructured
environments. The approach is motivated by showing that a
lattice-based planner can be cast and analyzed as a bilevel
optimization problem. This insight is used to integrate a lattice-
based planner and an optimal control-based method in a novel
way. The lattice-based planner is applied to the problem in a
first step using a discretized search space. In a second step,
an optimal control-based method is applied using the lattice-
based solution as an initial iterate. In contrast to prior work,
the system dynamics and objective function used in the first step
are chosen to coincide with those used in the second step. As an
important consequence, the lattice planner provides a solution
which is highly suitable as a warm-start to the optimal control
step. This proposed combination makes, in a structured way,
benefit of sampling-based methods ability to solve combinatorial
parts of the problem and optimal control-based methods ability to
obtain locally optimal solutions. Compared to previous work, the
proposed approach is shown in simulations to provide significant
improvements in terms of computation time, numerical reliability
and objective function value.

Index Terms—Control and Optimization, Motion Planning,
Autonomous Vehicles

I. INTRODUCTION

THE problem of computing locally optimal paths for
autonomous vehicles such as self-driving cars, unmanned

aerial vehicles and autonomous underwater vehicles has re-
cently been extensively studied [1], [2]. However, the task of
finding (locally) optimal motions for nonholonomic vehicles
in narrow, unstructured environments is still considered diffi-
cult [3]. In this paper, optimal path planning is defined as the
problem of finding a feasible and collision-free path from the
vehicle initial state to a desired goal state, while a specified
performance measure is minimized. This path is then intended
to be used as a reference for a path-following controller, such
as the ones described in [2], [4], [5].

There exist several methods to generate optimized paths
for autonomous vehicles. One common approach is to use B-
splines or Bezier curves for differentially flat systems, either
to smoothen a sequence of waypoints [6], [7] or as steering
functions within a sampling-based motion planner [8]. The
use of these methods are computationally efficient since the
model of the system can be described analytically. However,
these methods are not applicable to non-flat systems, such as,
e.g., many truck and trailer systems [9]. Furthermore, it is
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Fig. 1: Feasibility issues. The solution from a path planner based
on a simplified geometric model (dotted yellow) provides an ini-
tialization from where it is impossible for an OCP solver to find a
feasible solution. On the other hand, an initialization based on the
full nonlinear model (dashed blue) enables reliable convergence.

difficult to optimize the maneuvers with respect to a general
performance measure.

Another popular method is to formulate the problem as
an optimal control problem (OCP). One approach is to use
mixed integer formulations, which can be computationally
demanding to solve [10]. Another widely used approach is to
use direct methods for optimal control, where the problem is
transformed to a nonlinear program (NLP). Due to non-convex
constraints introduced by obstacles and the nonlinear system
model, a proper initialization strategy is crucial to converge
to a good local optimum [11]. A straightforward initialization
strategy is to use linear interpolation [12], this can however
often lead to convergence issues in cluttered environments [3],
[13]. A more sophisticated initialization strategy is to use
the solution from a sampling-based path planner. In previous
work in the literature, the vehicle models used by the path
planner for initialization are simplified; either they disregard
the vehicle model completely (geometric planning) [1], [14],
or partially (respecting only kinematic constraints) [3], [15].
Using a geometric path planning initialization is shown in [16]
to cause problems for vehicles with nonholonomic constraints
(illustrated in Fig. 1). Furthermore, initializations based on
simplified models will in general be infeasible in the actual
OCP to be solved, and potentially not homotopic to a feasible
solution [17]. Finally, the objective function in the sampling-
based planner can only consider states that are represented in
the chosen simplified model description, which might result
in a path far from a local minimum.



One commonly used approach for solving path planning
problems is to apply sampling-based path planners, which are
either based on random or deterministic exploration of the state
space [1]. Many sampling-based algorithms with random ex-
ploration are based on the standard Rapidly exploring Random
Tree (RRT) algorithm [18], which was originally developed
for solving motion planning problems without considering
dynamical nor nonholonomic constraints. One example where
this algorithm has been modified to account for these types
of constraints is RRT? for dynamical systems [19], [17].
In these methods, the orginal RRT algorithm is extended
with a rewiring step in each expansion of the search tree.
With this modification, the RRT? algorithm is shown to be
asymptotically optimal [19], i.e., it will almost surely find the
optimal solution as time approaches infinity. A limitation of
these methods is that an OCP is required to be solved between
each pair of states that are selected for connection online, a
process which can be very computationally demanding for a
general nonlinear system [17].

A popular deterministic sampling-based path planner is the
so-called lattice-based path planner, which uses a finite set
of precomputed motion segments online to find a resolution-
optimal solution to the path planning problem [20]. A major
benefit with this method is that efficient graph-search algo-
rithms can be used online such as A? [21] and ARA? [22],
making it efficient to use online [20], [23]. However, since
the lattice-based planner uses a discretized search space, the
computed solution can be noticeably suboptimal and it is
therefore often desirable to improve this solution [8], [15].

The main contribution of this paper is to combine a lattice-
based path planner and optimal control in a novel way to
compute locally optimal solutions to advanced optimal path
planning problems. While the combination of these methods
has been studied in previous work, this work significantly
improves the overall result when these methods are combined.
Motivated by arguments from bilevel optimization, all steps
within the proposed approach use the same system model
and objective function, which is in contrast to previous work
where, e.g., a simplified model and/or objective function is
used in the lattice-based planner. The resulting benefits of the
proposed approach are that the lattice-based planner provides
a better initialization for the second optimal control step
in terms of quality and feasibility. This is confirmed in a
simulation study where the proposed approach is used to solve
challenging path planning problems for both cars and truck and
trailer systems. The proposed approach results in a significant
reduction in overall computation time, more reliable conver-
gence of the OCP solver and generally improved solutions
compared to state-of-the art techniques based on simplified
initialization strategies or lattice-based planners alone.

II. PROBLEM FORMULATION

In this section, the continuous optimal path planning prob-
lem is formulated as an OCP. Furthermore, we pose a com-
monly used approximation of the original problem in terms of
a lattice-based path planner.

A. The optimal path planning problem

In this work, path planning problems for nonlinear systems
in the form

dx
ds

= x′(s) = fq(s)(x(s),u(s)), x(0) = xinit,

are considered. Here, s > 0 is defined as the distance traveled
by the system, x ∈X ⊆Rnx is the state vector, u ∈ U ⊆Rnu is
the continuous control input and xinit represents the initial state.
There is also a discrete input signal q(s) ∈ Q = {1,2, . . . ,N}
which enables the selection between N modes of the system.
The system mode determines the vector field fq ∈ F that
describes the current equation of motion [24]. The system
mode can for example represent the direction of motion (which
is the main use in this paper). However, the results presented
in Section III-IV also hold for a set F representing a more
general switched dynamical system. One such example is
morphing aerial vehicles [25]. Furthermore, the system should
not collide with obstacles, where the obstacle region is defined
as Xobst. Thus, in path planning problems, the state space is
constrained as x ∈ Xfree = X \Xobst.

The optimal path planning problem can now be defined
as the problem of computing feasible paths in x(·), u(·) and
q(·) that move the system from its initial state xinit ∈ Xfree
to a desired terminal state xterm ∈ Xfree while a performance
measure J is minimized. This problem can be posed as the
following OCP:

minimize
x(·),u(·),S f ,q(·)

J =
∫ S f

0
`(x(s),u(s),q(s))ds

subject to x(0) = xinit, x(S f ) = xterm,

x′(s) = fq(s)(x(s),u(s)), (1)

x(s) ∈ Xfree,

q(s) ∈Q, u(s) ∈ U .

Here, the decision variable S f is the total length of the path
and l(x,u,q) forms the cost function that is used to define the
performance measure J. Note that the cost function is allowed
to depend on the system mode, which enables the possibility
of associating each system mode with a unique cost function.

Example 1: Consider a car-like vehicle described by a
kinematic bicycle model [1] with augmented state vector
x(s) = (x̄(s),α(s),ω(s)), where x̄(s) = (x1(s),y1(s),θ1(s)).
Here, (x1,y1) denotes the position of the car’s rear axle, θ1
is the car’s orientation, α is the front-wheel steering angle
and ω is the steering angle rate. The vehicle model is

x̄′(s) = q
(

cosθ1(s),sinθ1(s),
tanα(s)

L1

)T

,

α
′(s) = ω(s), ω

′(s) = uω(s),

where uω is the continuous control signal which represents
the steering angle acceleration. Hence, the standard kinematic
bicycle model is augmented to account for rate and accelera-
tion constraints on the steering angle α . Furthermore, L1 is the
wheel-base of the car and q ∈ {1,−1} is the discrete decision
variable which represents the motion direction, where q = 1
implies forward motion and q =−1 backward motion.
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Fig. 2: Examples of motion primitives in forward motion computed
offline for the system in Example 1. These can be used to solve path
planning problems in the form (3) online. Each color represents an
initial heading θ1,d that is valid in Xd .

Due to that the problem of solving (1) contains the com-
binatorial aspects of selecting the system mode and the route
to avoid obstacles, as well as the continuous nonlinear model
of the system, finding a feasible and locally optimal solution
is a difficult problem. Hence, approximate methods aiming at
finding feasible, suboptimal solutions are commonly used [1],
where the lattice-based path planner provides one alternative.

B. Lattice-based path planner

The main idea with a lattice-based path planner is to restrict
the controls to a discrete subset of the available actions
(motion primitives) and as a result transform the optimization
problem in (1) into a discrete graph-search problem. In this
paper, the so-called state-lattice methodology will be used. The
methodology is mainly suitable for position-invariant systems,
since then motion primitives need only be computed from
states with a position in the origin, and can then be translated
to the desired position when applied online [26].

The construction of a state lattice is performed offline and
can be divided into three steps. First, a desired state space
discretization Xd is defined that represents the reachable states
in the graph. After the discretization has been selected, the
connectivity in the graph is chosen by selecting which neigh-
boring states to connect. Finally, the set of motion primitives P
is constructed by computing Nm motion segments (for example
using an OCP solver as in [20], [5]) needed to connect the
neighboring states, without considering obstacles. A motion
primitive m ∈ P is defined as

m =
(
x(s),u(s),q

)
∈ X ×U ×Q, s ∈ [0,S], (2)

and represents a feasible path of length S in a fixed system
mode q ∈ Q that moves the system from an initial state
x(0) ∈ Xd to a final state x(S) ∈ Xd by applying the control
inputs in u(·). Fig. 2 shows examples of motion primitives in
forward motion (q = 1) from different initial headings for the
car-like vehicle in Example 1. Once the set of motion primi-
tives has been computed, the original path planning problem
(1) can be approximated by the following discrete OCP:
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Fig. 3: A solution to a minimum path length problem computed by
combining motion primitives online. The applicable motion primi-
tives at three different states along the solution is also shown. The
infeasible motions (in collision) are marked in red, while the feasible
ones are marked in green.

minimize
{mk}M−1

k=0 , M
Jd =

M−1

∑
k=0

Lu(mk) (3a)

subject to x0 = xinit, xM = xterm, (3b)
xk+1 = fm(xk,mk), (3c)
mk ∈ P(xk), (3d)
c(xk,mk) ∈ Xfree. (3e)

The decision variables are the number of phases M and the
applied sequence of motion primitives{mk}M−1

k=0 . Note that the
combinatorial aspect of selecting the system mode sequence
{qk}M−1

k=0 , and the total length S f in (1) is implicitly encoded in
the selection of motion primitives. The state transition equation
in (3c) describes the successor state xk+1 ∈ Xd after mk is
applied from xk ∈Xd and (3d) ensures that mk is selected from
the set of applicable motion primitives at xk. The constraint
in (3e), ensures that the vehicle does not collide with any
obstacle when mk is applied from xk. Finally, the stage cost in
the objective function in (3a) is given by

Lu(m) =
∫ S

0
`(x(s),u(s),q)ds. (4)

Fig. 3 illustrates how a minimum path length planning problem
is solved using the lattice-based approximation in (3) for the
car-like vehicle defined in Example 1.

The approximation in (3) enables the use of graph-search
algorithms online, making it efficient to solve [20], [5]. The
solution is also guaranteed to be feasible. On the downside, the
solutions from a lattice-based planner often suffer from dis-
cretization artifacts [8], [15], making it desirable to smoothen
the state-lattice solution. Other limitations with graph-search
methods are that it is only possible to plan from and to states
within the selected state-space discretization, and that these
methods are resolution complete [1]. These limitations can
be alleviated by using multi-resolution lattice approaches in,
e.g., narrow passages [27].



III. BILEVEL OPTIMIZATION

In this section, the two problems in (1) and (3) will be
related by rewriting the original problem formulation (1)
into a bilevel optimization problem (BOP) [28]. It will be
shown that this new equivalent formulation of the problem
in (1) allows for an insightful interpretation of the standard
lattice solution methodology. In particular it will be used to
connect the methodology to parametric optimization, highlight
suboptimality properties, and discuss the choice of objective
function used at different parts of the lattice-based framework.

A BOP is an optimization problem where a subset of
the variables are constrained to be an optimal solution to
another optimization problem called the lower-level problem.
Analogously, the problem on the first level is called the upper-
level problem. A general BOP can be written as [28]

minimize
y,z

F(y,z)

subject to (y,z) ∈ ϒ
z ∈ argmin

z
{ f (y,z) : (y,z) ∈Ω}.

(5)

Here, y ∈ Rny and z ∈ Rnz are the upper and lower-level de-
cision variables, respectively. Furthermore, F(x,y) and f (x,y)
represent the upper and lower-level objective functions, re-
spectively, and

ϒ = {(y,z) | Gi(y,z)≤ 0, i ∈ {1, . . . ,C} },
Ω = {(y,z) | g j(y,z)≤ 0, j ∈ {1, . . . ,D} },

represent the upper and lower-level feasible sets, which are
represented by C upper (Gi) and D lower-level (g j) inequality
constraints, respectively. Typically, a subset of the optimiza-
tion variables in the upper-level problem are considered as
parameters to the lower-level problem. Seen from the upper-
level problem, the optimality requirement of the lower-level
problem is in general a non-convex constraint. Comparably
simple examples of bilevel problems, e.g., where the problems
on both levels are quadratic programming problems, can be
solved by representing the solution to the lower-level problem
by, e.g., encoding the Karush-Kuhn-Tucker (KKT) conditions
using mixed-integer optimization [28] or explicitly represent-
ing the lower-level solution parametrically using a solution
obtained from parametric programming [29]. It will be shown
in this work that the lattice-based planner can be interpreted
as a way of solving a bilevel formulation of (1) using the latter
alternative, i.e., representing the lower-level solution explicitly
as a (sampled) parametric solution.

A. Bilevel optimization problem reformulation

It will now be shown how the path planning problem in (1)
can be reformulated as a BOP. Let Lu(m) from (4) represent
the upper-level objective function and introduce lower-level
cost function `l(x,u,q). Assume that

Lu(m) =
∫ S

0
`l
(
x(s),u(s),q

)
ds. (6)

After dividing the path planning problem in (1) in M path
segments where along each one the system mode is kept

constant, it is possible to cast it as an equivalent bilevel
(dynamic) optimization problem in the form

minimize
{x0

k ,x
f
k ,qk,mk}M−1

k=0 , M
Ju =

M−1

∑
k=0

Lu(mk)

subject to x0
0 = xinit, x f

M−1 = xterm, (7)

x0
k = x f

k−1, qk ∈Q,
mk ∈ argmin

(xk,uk,Sk)

(8),

where the initial state x0
k , terminal state xg

k and system mode qk
for phase k are the upper-level optimization variables consid-
ered as parameters to the lower-level optimization problem.
The constraints given by x0

k = xg
k−1 ensure that the path is

continuous between adjacent path segments. Furthermore, the
corresponding lower-level optimization problem in (7) can
formally be specified as the following multi-parametric OCP
(mp-OCP)

J∗l (x
0
k ,x

f
k ,qk) = minimize

xk(·),uk(·),Sk

∫ Sk

0
`l
(
xk(s),uk(s),qk

)
ds

subject to xk(0) = x0
k , xk(Sk) = x f

k , (8)
x′k(s) = fqk(xk(s),uk(s)),
xk(s) ∈ Xfree,

uk(s) ∈ U .

where the initial and terminal states x0
k , x f

k and the system
mode qk are considered as parameters from the upper-level
problem. Note the similarities between this problem and (1).
Here, the main difference is that the system mode is fixed
by the selection of the upper-level parameter qk and the path
length Sk is typically shorter than S f (since S f = ∑k Sk).

Above, it was assumed that the objective functions are
related as in (6), which was necessary in order for the
equivalence between (1) and (7) to hold. An alternative is
to select the objective functions in the two levels more freely
in a way that does not satisfy (6), with the price of breaking
the equivalence between (1) and (7). If such a choice is still
made, the solution to (7) with (8) will in general no longer
be an optimal solution to (1). However, the use of different
objective functions allows in practice for a division of the
specification of the problem such as finding a minimum time
solution by combining, e.g., low-lateral-acceleration solutions
from the lower-level problem [23]. A bilevel interpretation
of this is that the lower-level problem restricts the family
of solutions the upper-level problem can use to compose an
optimal solution.

B. Analysis of solution properties using bilevel arguments

From a practical point of view, the BOP consisting of
(7) and (8) is in principle harder to solve than the standard
formulation of the optimal control problem in (1). However,
the formulation as a bilevel problem introduces possibilities
to approximate the solution by sampling the solution to the
lower-level mp-OCP as a function of its parameters. The result



of this sampling is that the solution to (8) is only computed
for Nm predefined parameter combinations (x0

p,x
g
p,qp) ∈ A,

p ∈ {1, . . . ,Nm}, where A is the user-defined set of com-
binations. These motion segments obtained by solving the
mp-OCP for Nm parameters together constitute the motion
primitive set P used in (3). An interpretation of this procedure
is hence that P used in a lattice-based planner is a coarsely
sampled parametric solution to the mp-OCP in (8) which can
be used to represent the optimal solution of the lower-level
problem when the upper-level problem is solved. The sampling
introduces the well-known suboptimality of only being able to
find solutions within the selected discretization [1]. However,
this approximation makes it possible to solve a significant
part of the bilevel problem offline and hence enables efficient
graph-search methods to be used during online planning.

To be able to compute the motion primitives offline, the
obstacle avoidance constraints in (8) are disregarded in the
lower-level problem and instead handled during online plan-
ning in the upper-level problem. After this rearrangement, the
BOP in (7) is equivalent to the lattice formulation (3). In
the following theorem, it is shown that this rearrangement of
constraints makes it in general impossible to obtain an optimal
solution to a problem containing obstacles within the selected
discretization since the lower-level problems are not required
to satisfy the obstacle avoidance constraints.

Theorem 1: Let P1 denote the BOP

minimize
y,z

F(y,z)

subject to z ∈ argmin
z
{F(y,z) : (y,z) ∈Ω}

(9)

with optimal objective function value F(y∗1,z
∗
1). Furthermore,

let P2 denote the BOP

minimize
y,z

F(y,z)

subject to (y,z) ∈Ω
z ∈ argmin

z
{F(y,z)}

(10)

with optimal objective function value F(y∗2,z
∗
2). It then holds

that F(y∗1,z
∗
1)≤ F(y∗2,z

∗
2).

Proof 1: The feasible set of P1 is Z1 = {(y,z) | z ∈
argminz {F(y,z) : (y,z) ∈ Ω}}, and the feasible set of P2 is
Z2 = {(y,z) | (y,z) ∈ Ω; z ∈ argminz {F(y,z)}}. Hence, any
point in Z2 is also in Z1, i.e., Z2 ⊆ Z1 =⇒ F(y∗1,z

∗
1) ≤

F(y∗2,z
∗
2).

Definition 1: The active set A(y,z) at a feasible pair (y,z)
of (9) consists of the inequality constraints that hold with
equality [11], i.e.,

A(y,z) = { j ∈ {1 . . .D} | g j(x,y) = 0}.
Definition 2: Let (y∗,z∗) be an optimal solution to an

optimization problem with KKT conditions satisfied with La-
grange multipliers λ ∗ associated to the inequality constraints
in Ω. A constraint g j(y,z) in Ω is then said to be strongly
active if g j(y∗,z∗) = 0 and λ ∗j > 0 [11].

Corollary 1: Assume that the optimal solution (y∗1,z
∗
1) to P1

in (9) is unique. Then, if there exists a j such that g j(y∗1,z
∗
1)

is strongly active in the lower-level problem, it holds that

F(y∗1,z
∗
1) < F(y∗2,z

∗
2) where (y∗2,z

∗
2) is the optimal solution to

P2 in (10).
Proof 2: Since there exists at least one constraint which is

strongly active at the lower level, it follows that (y∗1,z
∗
1) /∈ Z2,

since (y∗1,argminz {F(y∗1,z)}) /∈ Ω. Hence, (y∗1,z
∗
1) ∈ Z1 \ Z2.

Since (y∗1,z
∗
1) is the unique optimal solution to P1 over

Z1 ⊇ Z2, it follows that @ (y∗2,z
∗
2) ∈ Z2 : F(y∗2,z

∗
2) ≤ F(y∗1,z

∗
1).

Hence, F(y∗1,z
∗
1)< F(y∗2,z

∗
2).

An interpretation of Corollary 1 is that if the optimal
solution to (7) is “strongly” in contact with the environment,
then it is not in general possible to obtain an optimal solu-
tion using solutions to the lower-level problem (i.e., motion
primitives) computed without considering obstacles. Note that
these effects are beyond the fact that lower-level problems
are sampled on a grid. The lower-level family of solutions is
no longer optimal, instead the solutions need to adapt to the
surrounding environment to become optimal, which is not a
part of the standard lattice planning framework.

The approximate (but feasible) solution to (1) obtained by
solving (3) using a lattice-based planner will inherently suffer
from the suboptimality aspects shown in this section. One such
example is shown in Fig. 3, where the car-like vehicle has to
take an unnecessarily long route to avoid the obstacles because
of the restricted search space. In the following section, it will
be shown how to improve a suboptimal solution computed by
a lattice-based planner by using direct methods for optimal
control.

IV. IMPROVEMENT USING OPTIMAL CONTROL

In this section, we propose to use optimal control to
improve the approximate solution computed by the lattice-
based planner. By letting the system mode sequence {qk}M

k=1
be fixed to the solution from the lattice-based planner, the
following OCP is obtained:

minimize
{xk(·),uk(·), Sk}M−1

k=0

M−1

∑
k=0

∫ Sk

0
`
(
xk(s),uk(s),qk

)
ds

subject to x0(0) = xinit, xM−1(SM−1) = xterm, (11)
x′k(s) = fqk(xk(s),uk(s)),
xk+1(0) = xk(Sk),

xk(s) ∈ Xfree, uk(s) ∈ U ,
where the optimization variables are the states xk(·), control
inputs uk(·) and lengths Sk of the M phases. The difference
compared to the optimal path planning problem (1) is that the
combinatorial aspect of selecting the system mode sequence
{qk}M−1

k=0 is already specified. However, since the length of
the phases are optimization variables (with ∑k Sk = S f ), it
is possible that redundant phases introduced by the lattice-
based planner are removed by selecting their lengths to zero.
Furthermore, the second combinatorial aspect of selecting
how to pass obstacles is implicitly encoded in the warm-start
solution from the lattice-based planner. Finally, the difference
in (11) compared to the lattice-based approximation in (3) is
that the initial and terminal states for each phase are no longer
restricted to the discretized state space Xd , and the obstacles
are explicitly considered when the motion in each phase is
computed.



The problem in (11) is in the form of a standard multi-
phase OCP, where the subsequent phases are connected using
equality constraints. This problem can be solved using optimal
control techniques, for example by applying a direct method
to reformulate the problem as an NLP problem [12]. Today,
there exist high-performing open-source NLP software such
as IPOPT [30], WORHP [31], etc., that can be used to solve
these types of problems. Common for such NLP solvers is that
they aim at minimizing both the constraint violation and the
objective function value [11]. Hence, for fast convergence to a
local optimum, an initialization strategy should be selected that
considers both the objective function and feasibility. In this
work, the resolution-optimal solution {mk}M

k=1 from the lattice-
based planner is used to initialize the NLP solver. It represents
a path that is not only feasible, but also where each phase in
the path (i.e., each motion primitive) has been computed by
optimizing the same cost function `(x,u,q) as in (11). Hence,
the NLP solver is provided with a well-informed warm-start,
which in general will decrease the time for the NLP solver
to converge to a locally optimal solution [11]. Furthermore,
when the same objective function is used both in (3) and (11),
the NLP solver will often be initialized close to a good local
minimum. Finally, a benefit of using a feasible initialization
is that it is always guaranteed that a feasible solution exists
that is homotopic with the provided initialization (at the
very least the initialization itself), making it reliable to use
online. Due to all these properties, the step of solving (11)
is referred to as an improvement step in this work, which
is somewhat in contrast to previous work where this step is
commonly denoted “smoothing”. Its primary aim is to improve
the solution obtained from the lattice-based planner in terms
of the objective function value.

Remark 1: Note that the improvement step, in contrast to
only using the lattice-based planner, also can be used to enable
path planning from and to initial and terminal states that are
not within the specified state-space discretization Xd . Here,
the lattice-based planner can be used to find a path from and
to the closest states in Xd , and the improvement step can then
adapt the path such that it starts at the initial state and reaches
the terminal state exactly. However, in this case the warm-start
cannot be guaranteed to be feasible.

After the improvement step is applied, a solution with lower
objective function value compared to the solution from the
lattice-based planner will in general be obtained since, relating
back to Section III-B, the discretization constraints in the
bilevel formulation are removed, and the paths are constructed
while explicitly considering obstacles. One illustrative exam-
ple of this is shown in Fig. 1 where the improved solution
is noticably shorter compared to the suboptimal solution
computed by the lattice-based planner.

A solution to the path planning problem is found using
a preparation step offline and a two-step procedure online
according to Algorithm 1. In the offline preparation step, the
objective functions used in the motion primitive generation, the
graph search in the lattice-based planner and the improvement
step are specified. Furthermore, the system modes with asso-
ciated vehicle models (used in the motion primitive generation
and improvement step) are defined. Then, the motion primitive

Algorithm 1 Proposed path planning approach

1: Offline:
2: Specify x(s), X , u(s), U , q ∈ Q, fq(x(s),u(s)) ∈ F and

Lu(m), `l(x,u,q) and `(x,u,q).
3: Choose Xd and select (x0

p,x
g
p,qp), p = {1 . . .Nm}

4: P ← solve Nm OCPs (8) disregarding Xobst.
5: Online:
6: INPUT: xinit, xterm, Xobst.
7: LATTICE-BASED PLANNER : {mk,qk}M−1

k=0 ← Solve (3)
from xinit to xterm with P .

8: IMPROVEMENT : {xk(·),uk(·),Sk}M−1
k=0 ← Solve (11) with

{qk}M−1
k=0 , warm-started with {mk}M−1

k=0 .

set P is computed by solving the Nm OCPs defined by the
user without considering obstacles. For a detailed explanation
of this step, the reader is referred to [20], [32].

The online procedure is initiated whenever a new path
planning problem from xinit to xterm is requested be solved.
In this step, a lattice-based planner is first used to solve the
approximate path planning problem (3) using the precomputed
motion primitive set P and the current description of the
available free space Xfree. The lattice-based planner computes
a resolution-optimal path, where the system mode is kept
constant in each phase. This path is used as a well-informed
warm-start to the final improvement step, where the multiphase
OCP in (11) is solved to local optimality by improving the
continuous aspects of the path computed by the lattice-based
planner. The resulting path is then intended to be followed by
a path-following controller, e.g., as in [5].

Remark 2: The online procedure can also be used for re-
planning, e.g, if a new terminal state xterm is provided or if
the environment Xobst has changed.

V. NUMERICAL RESULTS

In this section, a proof-of-concept implementation of the
proposed path planning approach is applied to two different
vehicular systems: a car and a truck and trailer system. The
lattice-based planner is implemented in C++ using A? graph
search, where a precomputed free-space heuristic look-up table
(HLUT) [33] is used as heuristic function to guide the search
process. The HLUT is computed offline by solving path-
planning problems in an obstacle-free environment from all
discrete initial states x0 ∈ Xd with a position at the origin
to all final states x f ∈ Xd with a position within a square
centered around the origin with side length ρ . An appropriate
size of the HLUT is both system and application dependent. In
principle, a larger HLUT is required for less agile systems. In
the simulations, the size of the HLUT is selected as ρ = 40 m
for the car and ρ = 80 m for the truck and trailer system.
For states that are not represented within the HLUT, the
Euclidean distance is used as heuristic function. The motion-
primitive computation and the improvement step are both
implemented in Python using CasADi [34], where the warm-
start friendly SQP method WORHP [31] is used as NLP
solver. All simulations are performed on a laptop computer
with an Intel Core i7-5600U processor. The total computation
time for the offline steps, i.e., motion-primitive and HLUT
computation, is roughly 20 minutes.
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Fig. 4: A schematic illustration of the truck and trailer system
that is used in the simulations.

A. Vehicle models

In the numerical experiments in this work, low-speed ma-
neuvers are considered. As a consequence, kinematic vehicle
models are used. The truck and trailer system is a general
2-trailer with a car-like truck [35]. This system is composed
of three interconnected vehicle segments: a car-like truck, a
dolly and a semitrailer, which is illustrated in Fig. 4. The
state vector for this system is given by x(s)= (x̄(s),α(s),ω(s))
where x̄(s) = (x3(s),y3(s),θ3(s),β3(s),β2(s)). Here, (x3,y3) is
the center of the axle of the semitrailer, θ3 is the orientation of
the semitrailer, β3 is the joint angle between the semitrailer and
the dolly, β2 is the joint angle between the dolly and the car-
like truck. The constraints imposed on the states and control
signal are given by |α(s)| ≤ π/4, |ω(s)| ≤ 0.5 and |uω(s)| ≤ 40
(equal to the ones used in [5]). The model of this system can
be compactly represented as (see [5] for details):

x̄′(s) = q ft(x̄(s),α(s)),
α
′(s) = ω(s), ω

′(s) = uω(s),
(12)

where q ∈ {1,−1} represents the discrete decision variable
which corresponds to the direction of motion. The vehicle’s
geometry (illustrated in Fig. 4) used in this section coincides
with what is used in [5]. The cost function used for the truck
and trailer system is given by

`t(x,uω ,q) =
{

1+ γ(α2 +10ω2 +u2
ω ), q = 1,

1+ γ(β 2
3 +β 2

2 +α2 +10ω2 +u2
ω ), q =−1,

(13)

where the variable γ represents the trade-off between path
length and smoothness of the solution. Furthermore, quadratic
penalties for (large) joint angles β3 and β2 are added to the
cost function for paths in backward motion to avoid so-called
jack-knife states.

The model of the car is given in Example 1, where
L1 = 2.9 m is used as wheel-base. The car’s steering angle
α and its derivatives, ω and uω , are subject to the same
constraints as in the truck and trailer case. The cost function
used for the car is given by

`c(x,uω ,q) = 1+ γ(α2 +10ω
2 +u2

ω). (14)

Unless stated otherwise, γ = 1 is used in the cost functions
in (13) and (14) to define the objective functions in the
offline motion-primitive computation step (related to solving
Nm problems in the form of (8)), the lattice-based planner
in (3) and the improvement step in (11).

TABLE I: A description of the different motion-primitive sets used.
|Θ| defines the number of heading discretization points, ∆max

θ
defines

which neighboring headings to connect (from 1 to ∆max
θ

) and npar
defines the number of parallel maneuvers (per heading). Finally, nprim
defines the resulting total number of motion primitives.

P |Θ| ∆max
θ

npar nprim
Pgeo 16 2 N/A 240
Pkin 16 4 3 480
Pcom 16 4 3 480

B. State lattice construction

To be able to compare the proposed method with other
state-of-the-art initialization strategies, three different motion-
primitive sets for each vehicle are used by the lattice-based
planner. The sets are computed by using either simplified or
complete vehicle models. The first motion-primitive sets Pcom
use the complete vehicle models. The second sets Pkin do not
include ω and uω , making the steering angle α considered as
control signal (i.e., purely kinematic models), which is similar
to the initialization strategy used in [3]. The third sets Pgeo
are computed by completely neglecting the nonlinear system
model, further referred to as a geometric model, where instead
linear interpolation is used between the initial and final states
for each motion primitive.

Before computing the motion-primitive sets, the state space
of the vehicles need to be discretized. The positions, (x1,y1)
for the car and (x3,y3) for the semitrailer, are discretized onto a
uniform grid with resolution r = 1 m and the orientations θ1 ∈
Θ and θ3 ∈ Θ are irregularly discretized as proposed in [20].
The discretization of the steering angle α is only applicable
for the complete models. For simplicity, it is here constrained
to zero and its rate ω is also constrained to zero to ensure that
α is continuously differentiable, even when motion segments
are combined online [23]. For the truck and trailer system,
the joint angles β3 and β2 are also constrained to zero at each
discretized state in the state lattice. Note however that on the
path between two discretized states, the systems can take any
feasible vehicle configuration.

The motion-primitive sets are automatically computed using
the approach described in [32], where the sets are composed
of heading changes and parallel maneuvers according to Ta-
ble I. These maneuvers are optimized using the cost functions
defined in (13) and (14). For the simplified vehicle models,
the neglected states are disregarded in the cost functions. For
a more detailed description of the state-lattice construction,
the reader is referred to [32].

C. Simulation results

For the car model, a parallel parking scenario (Fig. 5) is
used. For the truck and trailer system, a loading-site area
(Fig. 6) and a parking scenario (Fig. 7) are considered.
The geometry of obstacles and vehicles are represented by
bounding circles [1]. The area of the car is described by three
circles, while the truck is described by one circle and the
trailer by two circles. This choice of obstacle representation
can be used in all steps used in the proposed framework since
the constraints can be described by smooth functions. An
alternative object representation that is compatible with the
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Fig. 5: Parallel parking scenario solved from several initial states
with θ i

1 = {0,π/4} (indicated by area within the dotted lines).
Solutions from one problem are illustrated for the three initialization
strategies (using the motion-primitive sets described in Table I) with
corresponding solutions from the improvement step.

TABLE II: Parallel parking scenario for the car-like vehicle (Fig. 5,
150 problems). P is the motion-primitive set used in the lattice-based
planner. tP is the average time for the lattice-based planner to find a
solution. rimp and t imp are the success rate and average time for the
improvement step to converge. t tot is the average total time. Finally,
JP and Jimp is the average objective function value for the solutions
from the lattice-based planner and improvement step, respectively.

P tP [s] t imp [s] t tot [s] rimp JP Jimp
Pgeo 0.0011 1.12 1.12 62 % N/A 30.8
Pkin 0.025 1.03 1.06 90.7 % N/A 28.7
Pcom 0.014 0.88 0.894 100 % 35.7 27.5

approach presented in this work is proposed in [16], where
vehicles and obstacles can be represented by convex sets.

The path planning problems are first solved by the lattice-
based planner, using the three different motion-primitive sets
described in Table I. Thereafter, the obtained solutions are
used to initialize the improvement step. For the initializations
based on the simplified models Pgeo and Pkin, all states that
are not represented are initialized to zero.

For the car scenario in Fig. 5, the results in Table II show
that the lattice-based planner achieves the lowest computation
times when the geometric model is used, compared to the
kinematic and the complete model. However, using this simple
initialization strategy results in a decreased reliability (only
62 %) and the total average computation time t tot becomes
higher than the two other cases due to a more computationally
demanding improvement step. The kinematic initialization
performs better than the geometric in terms of reliability, but
still fails to converge to a solution in almost 10 % of the
simulations. When the complete model is used in the lattice-
based planner, the computation time for the improvement step
is significantly reduced compared to when the simpler initial-
ization strategies are used. In particular, the total computation
time including the lattice-based planner is as much as halved
and the success rate is 100 % in all experiments. Furthermore,
the mean objective function value Jopt decreases significantly
compared to the solution from the lattice-based planner JP.
For the two simpler initialization strategies, no comparable
objective function values from the lattice-based planner exist
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Fig. 6: Loading-site scenario for the truck and trailer system, solved
from and to the states illustrated in the figure. See Fig. 5 for a further
description of the content.

TABLE III: Loading site scenario for the truck and trailer system
(Fig. 6, 270 problems). See Table II for a description of the variables.

P tP [s] t imp [s] t tot [s] rimp JP Jimp
Pgeo 0.69 18.4 19.1 43.7 % N/A 236
Pkin 6.5 15.0 21.5 98.9 % N/A 164
Pcom 5.35 9.45 14.8 100 % 184 164

since they are infeasible to the actual path-planning problem.
The results for the truck and trailer system (Fig. 6-7) are

summarized in Table III-IV. In these simulations, using a
feasible initialization (as proposed in this work) has an even
larger impact on the time spent in the improvement step. The
reason why such a large computational performance gain is
obtained in these more advanced scenarios is mainly due to
the complicated nonlinear system model, which also affects the
reliability when using a geometric initialization strategy where
the success rate is less than 50 % in the loading-site scenario.
It can also be noted that the computational effort required
to solve the problems in this scenario is significantly higher
compared to the parking scenarios. This is due to an increased
dimensionality of the resulting NLP caused by longer plans.
The online planning time can be reduced by, e.g., performing
the improvement step in a receding-horizon fashion. However,
this is out-of-scope in this work and left as future work.
Finally, the reliability for the kinematic initialization is higher
compared to the car scenario. However, the best overall
performance in terms of total computation time, numerical
reliability and objective function value is still obtained by
using the same model in both steps, which is the approach
introduced in this work.

In Fig. 8, the steering angles obtained along the paths
from the lattice-based planner and the improvement step for
one of the problems in the parking scenario (Fig. 7) are
compared. The results show that unnecessary steering effort
is removed by the improvement step, especially in backward
motion since large joint angles are penalized to avoid jack-
knife configurations when the plan is executed. Furthermore,
a redundant initial backward phase in the solution from the
lattice-based planner, caused by discretization artifacts, is
removed in the improvement step (as discussed in Section IV).
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Fig. 8: α(s) obtained from the lattice-based planner (dashed)
and the improvement step (solid) for one of the solutions to the
truck and trailer parking scenario in Fig. 7. Blue and red colors
represent forward and backward motion, respectively. Note that the
improvement step removes a redundant initial phase of backward
motion (highlighted by the magnified part).

In Table V, we evaluate the impact of using the complete
vehicle model and the same or different objective functions at
the three steps; the motion-primitive computation, the graph
search in the lattice-based planner and the improvement step.
The impact is investigated by varying the value of γ in
(13) used in the graph search (γu) and the motion-primitive
computation (γl), while it is kept constant in the improvement
step (γi). The results on row one in Table V (γu = γl = γi = 10)
represent the proposed approach where the same cost function
is used to define the objective functions in all steps. When
shortest path is used as objective function in the graph search
(γu = 0, row two in Table V), the average cost for a path after
the improvement step is increased by roughly 10 % compared
to the baseline, due to that the improvement step converges to
a worse local minimum. However, the total computation time
decreases, mainly as a result of a faster graph search. The
computation time for the improvement step is similar to using
γu = 10, which is reasonable since each motion primitive in the
warm-start is optimized using the same objective function as
in the improvement step. When also the motion primitives are

TABLE IV: Parking scenario for the truck and trailer system (Fig. 7,
306 problems). See Table II for a description of the variables.

P tP [s] t imp [s] t tot [s] rimp JP Jimp
Pgeo 0.016 6.17 6.18 86.6 % N/A 102
Pkin 0.016 2.72 2.74 99.0 % N/A 82.7
Pcom 0.020 2.08 2.10 100 % 96.2 82.3

TABLE V: Loading site scenario for the truck and trailer system
(Fig. 6, 270 problems). γu, γl and γi are the values of γ in (13) used in
the graph search, the motion-primitive computation and improvement
step, respectively. See Table II for a description of the other variables.

P γu γl γi tP t imp t tot rimp Jimp
Pcom 10 10 10 3.2 6.2 9.4 100 % 190
Pcom 0 10 10 2.2 5.9 8.1 100 % 208
Pcom 0 0 10 1.9 12.6 14.5 100 % 212

generated using shortest path as objective function (γu = γl = 0,
row 3 in Table V), not only the average solution cost increases,
but also the convergence time for the improvement step. The
reason is that each phase in the initialization is far from a
local minimum in terms of the objective function used in
the improvement step. This clearly illustrates the importance
of using the same objective function in the motion-primitive
computation and improvement step for fast convergence in the
latter step, which is what is proposed in this work.

VI. CONCLUSIONS AND FUTURE WORK

A unified optimization-based path planning approach to
compute high-quality locally optimal solutions to path plan-
ning problems is proposed. The first step of the proposed
approach consists of using a lattice-based path planner to find
a resolution-optimal path using a discretized search space. This
path is then used as a well-informed warm-start in a second
improvement step where an optimal control-based method
is used to compute a locally optimal solution to the path
planning problem. The use of these steps has been motivated
by showing that a lattice-based path planner can be cast and
analyzed as a bilevel optimization problem. To tightly couple
the two steps, the lattice-based planner uses a system model
and objective function that are chosen to coincide with those
used in the second improvement step. This new, more carefully
selected combination of a path planner and optimal control
makes, in a structured way, benefit of the former method’s
ability to solve combinatorial parts of the problem and the
latter method’s ability to obtain locally optimal solutions not
restricted to a discretized search space. The value of this new
tight combination is thoroughly investigated with successful
results in several practically relevant path planning problems
where it is shown to outperform state-of-the-art initialization
strategies in terms of computation time, numerical reliability,
and objective function value.

Future work includes to decrease the online planning time
by, e.g., optimizing the proof-of-concept implementation, per-
forming the improvement step in a receding-horizon fashion
and/or to use ideas from fast MPC such as [36]. Another exten-
sion is to investigate how to apply the approach in high-speed
and dynamic scenarios. Finally, another interesting direction
for future work is to apply the approach to systems with more
distinct system modes, such as morphable drones [25].
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