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Exact Complexity Certification of a Nonnegative
Least-Squares Method for Quadratic Programming

Daniel Arnström, Alberto Bemporad and Daniel Axehill

Abstract—In this paper we propose a method to exactly
certify the complexity of an active-set method which is based on
reformulating strictly convex quadratic programs to nonnegative
least-squares problems. The exact complexity of the method is
determined by proving the correspondence between the method
and a standard primal active-set method for quadratic program-
ming applied to the dual of the quadratic program to be solved.
Once this correspondence has been established, a complexity
certification method which has already been established for the
primal active-set method is used to also certify the complexity
of the nonnegative least-squares method. The usefulness of the
proposed method is illustrated on a multi-parametric quadratic
program originating from model predictive control of an inverted
pendulum.

Index Terms—Optimization algorithms, Predictive control for
linear systems

I. INTRODUCTION

An optimization problem has to be solved in each time-
instant when model predictive control (MPC) is used for
control. The optimization problems in question are often
quadratic programs (QPs) and to be able to use MPC in
embedded systems, the employed QP solvers need to be sim-
ple, fast and have real-time guarantees. Popular methods for
solving QPs originating from MPC are interior-point methods
[1][2], gradient projection methods [3][4][5], the alternating
method of multipliers (ADMM) [6] and active-set methods
[7][8][9][10][11]. The active-set method in [11], which is
based on reformulating strict convex quadratic programs to
nonnegative least squares (NNLS) problems, is simple to code
and has been shown to be efficient for solving QPs originating
from MPC. However, since it is an active-set method, its
complexity can be exponential in the worst case.

To be able to provide tight real-time guarantees for active-
set methods, complexity certification methods which deter-
mine the worst-case behaviour for the active-set methods in
[7],[8] and [10] have been presented in [12],[13] and [14], re-
spectively. For a given MPC problem, these methods determine
exactly which subproblems, i.e., systems of linear equations,
that have to be solved to find the solution, for every possible
QP that needs to be solved. A unifying complexity certification
framework for a class of standard active-set methods, which
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covers both the methods from [12] and [13], is available in
[15].

In this paper we extend the possibility to also certify the
complexity of the efficient QP method presented in [11],
adding to its simplicity and efficiency the possibility to deter-
mine its exact complexity, increasing its practical applicability.
This is done by proving that the working-set changes of the QP
method are equivalent to a standard primal active-set method
applied to the dual of the QP to be solved. This equivalence
allows direct use of the complexity certification framework
in [15]. The main focus of this paper is, hence, not to
devise another complexity certification method from scratch,
but to relate the method presented in [11] to the active-set
method considered in [15], for which there exists a complexity
certification method. In summary, the main contribution of this
paper is proving the equivalence between the QP methods
in [11] and [15], and from this equivalence the technical
contribution of a method which certifies the exact complexity
of the QP method in [11] follows.

II. PROBLEM FORMULATION

Consider a multi-parametric quadratic program (mpQP) in
the form

minimize
x

1

2
xTHx+ (fT + θT fTθ )x

subject to Ax ≤ b+Wθ,
(1)

where x ∈ Rn and the parameter θ ∈ Θ0 ⊆ Rp, with Θ0 being
a polytope (such as a box). The mpQP is given by A ∈ Rm×n,
b ∈ Rm, W ∈ Rm×p, f ∈ Rn, fθ ∈ Rn×p, and H ∈ Sn++.
The minimizer of (1), given θ, is denoted x∗(θ). It is well-
known that a linear MPC problem can be cast in the form (1),
where the parameter θ contains the measured/estimated states
and reference signals [16].

In [11] it is shown that by introducing

M , AL−1, d(θ) , b+Wθ +AH−1(f + fθθ), (2)

where L is the Cholesky factor of H , (1) can be restated as
the nonnegative least-squares problem

minimize
y≥0

1

2

∥∥∥∥[ MT

d(θ)T

]
y +

[
0
γ

]∥∥∥∥2

2

(3)

where γ is any positive scalar, M ∈ Rm×n, d(θ) ∈ Rm and
y ∈ Rm. Furthermore, the relationship between x∗(θ) and the
minimizer of (3), y∗(θ), is

x∗(θ) = −H−1
(
f + fθθ +

1

γ + d(θ)T y∗(θ)
AT y∗(θ)

)
(4)



Remark 1: It is straightforward to extend the ideas in this
paper to also handle equality constraints in (1) by using the
results in [17]. However, for the sake of a clean presentation,
we will only consider inequality constraints.

A. Notation

Since the algorithm to be studied is iterative, we use a
subscript k to denote the value at iteration k for quantities
that change between iterations. E.g., yk denotes the value of y
at iteration k. Of importance is also the so-called working set
Wk which contains a subset of the components of yk that are
free to vary. Likewise, the set of components that are not inWk

is denoted W̄k and contains components that are fixed at zero.
For indexing of matrices, [N ]i denotes the ith row of matrix N
and [N ]Wk

denotes the submatrix obtained by extracting the
rows of N indexed by Wk. The shorter notation Nk , [N ]Wk

for matrices that do not change between iterations is also
introduced for convenience.

B. Nonnegative least-squares method

The nonnegative least-squares method for solving (1) pre-
sented in [11] is described briefly below and summarized in
Algorithm 1. For a more detailed description, see [11] or [18,
Sec. 23.3]. The main objective of Algorithm 1 is to retain
nonnegativity of the iterate y while updating the working set
W . At iteration k, the least-squares (LS) problem

minimize
y

1

2

∥∥∥∥[ MT

d(θ)T

]
y +

[
0
γ

]∥∥∥∥2

2

subject to [y]i = 0, i ∈ W̄k

(5)

defined by the current working set Wk is solved, with the
solution of (5) being denoted y∗k. The iterate yk is then updated
to yk+1 by a line search from yk to y∗k. To retain nonnegativity,
the first component of yk which becomes negative during
this line search is removed from Wk. If no such component
exists, i.e., if y∗k ≥ 0, global optimality is checked for y∗k
by investigating the dual variable wk. If wk is nonnegative, a
global optimum has been found, otherwise, the index of the
most negative component of wk is added to W . When the
working set has been updated, another LS problem defined by
the new working set is solved and the steps above are repeated
until global optimality is reached.

The choice of γ is not critical since any γ > 0 is sufficient
for the algorithm to work. In [18, Sec. 23] γ = 1 is used,
and in [11] γ is adaptively updated by adding or removing
the absolute value of [d]i when i is added or removed from
W , respectively. In this paper we consider γ to be constant
for simplicity. However, the results also extends to an adap-
tively changing γ since the working-set changes produced by
Algorithm 1 are independent of γ.

Remark 2: The presentation of Algorithm 1 is slightly
modified compared with [11] to make the definition of an
iteration in the algorithm clearer. Furthermore, some checks
for infeasibility that are included in [11] have been omitted
to clean up the algorithm, i.e., we assume that (1) is primal
feasible for all θ of interest. This condition can be immediately

verified, for example, by checking that QP (1) is feasible for
all vertices θi of Θ0, as is shown in Lemma 1.

Lemma 1: Let {θi}Mi=1 be the vertices of the polytope Θ0

and let Xi , {x ∈ Rn : Ax ≤ b + Wθi} be the feasible set
for (1) when θ = θi. Then problem (1) is feasible ∀θ ∈ Θ0 ⇔
Xi 6= ∅, ∀i ∈ {1, . . . ,M}.

Proof: Since θi ∈ Θ0, ∀i, the left-to-right implication
follows immediately. For the right-to-left implication we have,
since Θ0 is convex, θ =

∑M
i=1 αiθi,

∑
αi = 1, αi ≥ 0.

Let xi ∈ Xi and consider x =
∑M
i=1 αixi. Then Ax =∑

αiAxi ≤
∑
αi(b + Wθi) = b + W

∑
αiθi = b + Wθ.

Algorithm 1 Given θ, solve the mpQP (1) with NNLS [11]

1: v ← L−T (fθθ + f); d← (b+Wθ) +Mv
2: k ← 1; Wk ← ∅; yk ← 0
3: while true do
4: y∗k ← solution to least squares problem (5)
5: if y∗k ≥ 0 then
6: wk ←M(MT

k [y∗k]Wk
) + (γ + dTk [y∗k]Wk

)d
7: if wk ≥ −(γ + dTk [y∗k]Wk

)ε then
8: go to step 15
9: else i← arg min

i∈W̄k

[wk]i,Wk+1 ←Wk ∪ {i}

10: yk+1 ← y∗k
11: else l← arg min

h∈W:[y∗k]h<0

{ [yk]h
[yk]h−[y∗k]h

}

12: αk ← [y]l
[y]l−[y∗k]l

; yk+1 ← yk + αk(y∗k − yk)

13: Wk+1 ←Wk \ {l}
14: k ← k + 1

15: return λ∗ ← y∗k
γ+dTk y

∗
k

, x∗ ← −L−1(MT
k λ
∗
k + v),Wk

III. PROPERTIES OF NNLS ALGORITHM

This section describes properties of Algorithm 1 that will be
central in Section IV, where a complexity certification method
for Algorithm 1 is outlined.

Analyzing the parametric behaviour for Algorithm 1 does
not immediately follow from previous work on the topic since
there is parameter dependence in the quadratic term in the
objective function of (3) due to d(θ). All of the complexity
certification methods in [13],[14] and [15] rely on parameter
dependence only appearing in linear terms. Hence, the main
objective in this paper will be to disentangle the parameter
dependence in the quadratic term and to show that Algorithm 1
will be equivalent, in terms of working-set changes, to another
algorithm which operates on a problem with only parameter
dependence in the linear term. This disentanglement is done
by considering λ which is a linear fractional transformation
of y defined as

λ ,
y

γ + dT y
. (6)

The following scalars will also prove useful

σk , γ + dT y∗k, ρk , γ + dT yk. (7)

With these scalars we have yk = ρkλk and y∗k = σkλ
∗
k if

ρk 6= 0 and σk 6= 0, respectively.



For clarity, we initially deduce properties of Algorithm 1
under the assumption that MkM

T
k is nonsingular. In Section

III-D we discuss properties of the algorithm in the singular
case.

A. Least-squares subproblems

The solution y∗k to the subproblem (5) can be found by
solving the following KKT-system(

MMT + ddT [I]TW̄k

[I]W̄k
0

)(
y∗k
wk

)
=

(
−γd

0

)
, (8)

where I is the m×m identity matrix. (8) has the solution

y∗k = −γITk (MkM
T
k + dkd

T
k )−1dk. (9)

Recall from Section II-A that Mk, dk and Ik is shorthand
notation for submatrices obtained when indexing with Wk,
i.e., [M ]Wk

, [d]Wk
and [I]Wk

, respectively. Another way of
finding the solution to (5) is to directly set all components of
y∗k that are not in Wk to zero, resulting in an unconstrained
optimization problem which is solved by the linear system

(MkM
T
k + dkd

T
k )[y∗k]Wk

= −γdk, (10)

This can be rewritten as

MkM
T
k [y∗k]Wk

= −dk(γ + dTk [y∗k]Wk
) = −σkdk, (11)

where the last equality follows from [y∗k]W̄k
= 0 which gives

γ + dTk [y∗k]Wk
= γ + dT y∗k = σk. (12)

Our goal is now to formulate a corresponding KKT-system
for λ∗k , y∗k

σk
and µk , w

σk
instead of y∗k and wk, respectively.

First, to ensure λ∗k and µk are well-defined, we ensure that
division of σk is valid, i.e., that σk is nonzero when MkM

T
k

is nonsingular. Even more strongly, σk is positive, as proved
by the following lemma.

Lemma 2: σk , γ + dT y∗k > 0, if MkM
T
k is nonsingular.

Proof: When MkM
T
k is nonsingular, (11) gives that

[y∗k]Wk
= −σk(MkM

T
k )−1dk. (13)

Inserting this into the definition of σk gives

σk = γ + dTk [y∗k]Wk
= γ − σkdTk (MkM

T
k )−1dk ⇔

σk = γ/(1 + dTk (MkM
T
k )-1dk).

(14)

By definition, γ > 0 and the denominator is nonnegative since
MkM

T
k is positive definite, resulting in σk > 0.

Now a KKT-system in terms of λ∗k and µk, instead of y∗k and
wk, can be formed by subtracting ddT y∗k from both sides of
the first equation of (8) and dividing both sides with σk 6= 0,
resulting in (

MMT ITW̄k

IW̄k
0

)(
λ∗k
µk

)
=

(
−d
0

)
. (15)

The solution to the KKT-system in (15) is

[λ∗k]Wk
= −(MkM

T
k )−1dk, (16a)

[µk]W̄k
= [M ]W̄k

MT
k [λ∗k]Wk

+ [d]W̄k
, (16b)

and [λ∗k]W̄k
= 0, [µk]Wk

= 0.

B. Checking for global optimality and adding index to W
In Algorithm 1 the global optimum has been found if

wk ≥ −(γ + dT y∗k)ε. (17)

Otherwise, an index corresponding to the most negative com-
ponent of wk is added toW , according to Line 9 of Algorithm
1.

The following lemma shows that the dual variable of the
KKT-system in (15), µk, can be considered instead of wk when
checking for global optimality and for deciding which index
that should be added to W .

Lemma 3: When MkM
T
k is nonsingular

1) wk ≥ −(γ + dT y∗k)ε⇔ µk ≥ −ε.
2) argmin

j∈W̄k

[wk]j = argmin
j∈W̄k

[µk]j .

Proof: Since MkM
T
k is nonsingular, σk > 0 from Lemma

2. Dividing both sides of wk ≥ −(γ+ dT y∗k)ε with σk proves
1). Furthermore, the positiveness of σk gives argmin [wk]j =
argmin [wk]j/σk = argmin [µk]j .

C. Updating iterate and removing component from W
The iterate yk is updated in Line 12 of Algorithm 1

according to the line search

yk+1 = yk + αk(y∗k − yk), (18)

where αk = minh∈Wk:[y∗k]h<0 α
h
k , with αik being defined as

αik , [yk]i/([yk − y∗k]i). (19)

αik can be interpreted as the step length taken from yk in the
direction yk − y∗k which makes the i:th component of y zero.
Also, note that [y∗k]h < 0 =⇒ αhk ∈ [0, 1).

Now, we are interested in the corresponding update of λ
when y is updated according to (18). Inserting (18) in the
definition of λ in (6) gives

λk+1 =
yk+1

γ + dT yk+1
=

yk + αk(y∗k − yk)

γ + dT (yk + αk(y∗k-yk))
. (20)

We will now show that the update of λk also can be seen as
a line search.

Lemma 4: If MkM
T
k is nonsingular, ∃βk ∈ R such that

λk+1 = λk + βk(λ∗k − λk). (21)

Proof: The lemma follows from linear fractional trans-
formations conserving convex sets cf., e.g., [19, Sec. 2.3.3].
Concretely, picking

βk =
αkσk

αkσk + (1− αk)ρk
(22)

and inserting it into (21) results in (20) by using (7).
Furthermore, βik is defined by (22) when αik is used instead of
αk. Before considering properties of βik, we prove that, similar
to σk, ρk > 0 when MkM

T
k is nonsingular.

Lemma 5: If MkM
T
k is nonsingular, ρk , γ + dT yk > 0

Proof: The lemma is proven by induction. First, inserting
yk+1 from (18) into the definition of ρ in (7) gives

ρk+1 = γ + dT (yk + αk(y∗k − yk))

= γ + dT yk + αk(dT y∗k − dT yk + γ − γ)

= (1− αk)ρk + αkσk.

(23)



Now, assume that ρk > 0. Then ρk+1 > 0 since αk ∈ [0, 1]
and σk > 0 from Lemma 2. The base case is satisfied since
y1 = 0 =⇒ ρ1 = γ > 0. Hence, the lemma follows by
induction.
This nonnegativity property of ρk, together with the nonneg-
ativity property of σk, can be used to prove the following
lemma which establishes a relation between αik and βik.

Lemma 6: If MkM
T
k is nonsingular and αik, α

j
k ∈ [0, 1],

αik ≤ α
j
k ⇔ βik ≤ β

j
k. (24)

Proof: Directly using the definition of βik from (22), and
dropping the subscript k for convenience, gives

βi ≤ βj ⇔ αiσ

αiσ + (1− αi)ρ
≤ αjσ

αjσ + (1− αj)ρ
⇔ αiσρ ≤ αjσρ⇔ αi ≤ αj ,

(25)

where the nonnegativeness of ρk and σk has been used in the
second and third equivalence.

We are now ready to state the main result for the nonsingular
case. The following lemma shows that λ∗k can be considered
instead of y∗k when checking for local optimality and for
deciding which index that should be removed from W .

Lemma 7: If MkM
T
k is nonsingular

1) y∗k ≥ 0⇔ λ∗k ≥ 0.
2) argmin

h∈Wk:[y∗k]h<0

αhk = argmin
h∈Wk:[λ∗

k]h<0

βhk .

Proof: First, since MkM
T
k is nonsingular we have that

σk > 0 which gives

Hk , {h ∈ Wk : [y∗k]h < 0} = {h ∈ Wk : [λ∗k]h < 0},

since y∗k
σk

= λ∗k. I.e., the same indices of y∗k and λ∗k will
be negative, and these components are given by the set Hk,
which proves 1). Next, [y∗k]h < 0 inserted into (19) gives
αhk ∈ [0, 1),∀h ∈ Hk. Hence, Lemma 6 gives the same
ordering of {αhk}h∈Hk

and {βhk}h∈Hk
which means that the

same index will give a minimum.

D. Singular case

MkM
T
k only becomes singular after a component is added

to W in Algorithm 1. In this case, the solution to (5), [y∗k]Wk
,

will be a singular eigenvector to MkM
T
k as is shown by the

following lemma.
Lemma 8: If MkM

T
k becomes singular in Algorithm 1,

MkM
T
k [y∗k]Wk

= 0 and σk = 0.
Proof: If MkM

T
k is singular, ∃λ̃k 6= 0, λ̃k ∈ Rm such that

MkM
T
k [λ̃k]Wk

= 0, [λ̃k]W̄k
= 0. Now, define δk , dT λ̃k.

Then y∗k = − γ
δk
λ̃k leads to the objective function of (11)

being zero and hence, since norms are nonnegative, this is a
minimizer of (11). Inserting this y∗k into the definition of σk
gives σk = 0 by construction.

What remains to prove is that δk 6= 0, so y∗k from above
is well-defined. Since MkM

T
k only becomes singular after an

addition to W , let i be the component that was added to W
at iteration k − 1, i.e., Wk = Wk−1 ∪ {i}. From (15), µk−1

is given as
MMT

k−1λ
∗
k−1 + d = µk−1. (26)

Multiplying this equation with λ̃Tk from the left gives

λ̃TkMMT
k−1λ

∗
k−1 + λ̃Tk d = [λ̃k]i[µk−1]i ⇔ (27a)

λ̃Tk d = [λ̃k]i[µk−1]i, (27b)

where we have recalled the partitions of λ∗ and µ from (16a)
and (16b), respectively. Furthermore, we have also used that
λ̃k is a singular eigenvector of MT by construction.

Since i was added to W at iteration k − 1, [µk−1]i < 0.
Furthermore, [λ̃k]i 6= 0 since [λ̃k]TWk

Mk = 0 and [λ̃k]i = 0

would imply that [λ̃k]TWk−1
Mk−1 = 0, which is impossible

since Mk−1M
T
k−1 was nonsingular, hence, δk , λ̃Tk d 6= 0.

Remark 3: We will, without loss of generality, assume that
λ̃k is such that δ < 0. This is valid since MkM

T
k λ̃k = 0 =⇒

MkM
T
k (−λ̃k) = 0. Hence, we can always change the sign of

δk by changing the sign of λ̃k.
Using Lemma 8 together with (20) gives the following

update of λ in the singular case

λk+1 =
yk + αk(y∗k − yk)

γ + dT (yk + αk(y∗k − yk))

=
(1− αk)yk + αky

∗
k

(1− αk)ρk
= λk +

αk
(1− αk)ρk

y∗k

=λk −
αkγ

(1− αk)ρkδk
λ̃k = λk + β̃kλ̃k,

(28)

where σk = 0 is used in the second equality, y∗k = − γ
δk
λ̃k is

used in the fourth equality and β̃k , − αkγ
(1−αk)ρkδk

has been
defined in the last equality. Similar to αik and βik, we introduce
the definition

β̃ik , − γ

ρkδk
· αik

(1− αik)
= − [λk]i

[λ̃k]i
(29)

to denote the step length which results in [λk+1]i = 0 when
a step is taken in the direction λ̃k during iteration k.

Remark 4: The definition of β̃ik in (29) is well-defined
since ρk > 0, δk < 0 and αik ∈ [0, 1). δk < 0 has been
established in Lemma 8, ρk > 0 follows from MkM

T
k only

becoming singular after a constraint has been added to Wk,
which implies that yk = y∗k−1 =⇒ ρk = σk−1 > 0 since
Mk−1M

T
k−1 was nonsingular.

Analogous to Lemma 6 for the nonsingular case, we establish
the following properties for β̃ik

Lemma 9: If αik, α
j
k ∈ [0, 1) then

αjk ≤ α
i
k ⇔ β̃jk ≤ β̃

i
k (30)

Proof: Using the definition of β̃ik in (29)

β̃jk ≤ β̃
i
k ⇔ −

γ

ρkδk
·

αjk
(1− αjk)

≤ − γ

ρkδk
· αik

(1− αik)

⇔ (1− αik)αjk ≤ (1− αjk)αik ⇔ αjk ≤ α
i
k,

(31)

where − γ
ρkδk

> 0 and αik, α
j
k ∈ [0, 1) have been used in the

second equivalence. − γ
ρkδk

> 0 follows from Remark 4.
The following lemma is analogous to Lemma 7 but for the
singular case. It shows that λ̃k can be considered instead of
y∗k when removing indices from W in the singular case.

Lemma 10: If MkM
T
k is singular

1) y∗k ≥ 0⇔ λ̃k ≥ 0.



2) argmin
h∈Wk:[y∗k]h<0

αhk = argmin
h∈Wk:[λ̃k]h<0

β̃hk .

Proof: If MkM
T
k is singular we have from Lemma 8 that

y∗k = − γ
δk
λ̃k, hence,

Hk , {h ∈ Wk : [y∗k]h < 0} = {h ∈ Wk : [λ̃k]h < 0},

since − γ
δk

> 0. I.e, the same indices of y∗k and λ̃k will
be negative, and these components are given by the set Hk,
which proves 1). Next, [y∗k]h < 0 inserted into (19) gives
αhk ∈ [0, 1),∀h ∈ Hk, hence, Lemma 9 can be used and gives
the same ordering of {αhk}h∈Hk

and {β̃hk}h∈Hk
which means

that the same index will give a minimum.

Remark 5: From Farkas’ lemma it is necessary for at least
one component of y∗k, and hence of λ̃k, to be negative if
the QP is feasible, cf. Theorem 1 in [11]. Therefore, since
we assume that (1) is feasible, at least one constraint will
be removed from Wk at iteration k if MkM

T
k is singular,

regaining nonsingularity of Mk+1M
T
k+1.

IV. CERTIFICATION OF NNLS ALGORITHM

We will now use the properties of Algorithm 1, which
have been established in Section III, to certify its iteration
complexity for all parameters in Θ0. This is done by proving
that Algorithm 1 produces the same working-set sequence as
a standard primal active-set method, e.g., [7][20][21], applied
to the dual of (1).

After this equivalence has been established, the result from
[15] can be used to determine the working-set changes and
the number of iterations any θ ∈ Θ0 produces, which is done
by applying the certification method presented in [15] to the
dual of (1). The dual problem of (1), using the definitions of
M and d(θ) from (2), is given by

minimize
λ≥0

1

2
λTMMTλ+ dT (θ)λ, (32)

Algorithm 2 presents a standard primal active-set method
which is applied to solve (32). A complexity certification
method for Algorithm 2, which determines the working-set
sequences that are produced by Algorithm 2 for every θ ∈ Θ0,
is presented in [15]. We are now ready to state the main result
of this paper, namely that Algorithm 1 will produce the same
working-set sequence as Algorithm 2, for which there exists
a certification method to determine exactly which working-set
sequence any parameter will generate [15].

Algorithm 2 A standard primal active-set quadratic program-
ming method applied to (32) [15].

1: v ← L−T (fθθ + f); d← (b+Wθ) +Mv
2: k ← 1,Wk ← ∅;λk ← 0;
3: while true do
4: if MkM

T
k is singular then go to step 16

5: λ∗k ← solution to KKT-system (15)
6: if λ∗k ≥ 0 then
7: µk ←M(MT

k [λ∗k]Wk
) + d

8: if µk ≥ −ε then
9: return λ∗, x∗ ← −L−1(MT

k λ
∗
k + v),Wk

10: else i← arg min
i∈W̄k

[µk]i; Wk+1 ←Wk ∪ {i}

11: λk+1 ← λ∗k
12: else l← arg min

h∈W:[λ∗
k]h<0

{ [λk]h
[λk−λ∗

k]h
}; Wk+1 ←Wk \ {l}

13: βk ← [λ]l
[λ−λ∗

k]l
; λk+1 ← λk + βk(λ∗k − λk)

14: k ← k + 1

15: end while
16: λ̃k ← solution to MkM

T
k λ̃k = 0, dTk λ̃k < 0

17: if λ̃k ≥ 0 then
18: return primal infeasible
19: else l← arg min

h∈W:[λ̃k]h<0

{− [λk]h
[λ̃k]h
}; Wk+1 ←Wk \ {l}

20: β̃k ← − [λk]l
[λ̃k]l

; λk+1 ← λk + β̃kλ̃k
21: k ← k + 1
22: go to step 5

Theorem 1: Let k̃(θ) be the number of iterations needed
by Algorithm 2 to terminate and let {W̃k(θ)}k̃(θ)

k=1 be the
corresponding working-set sequence produced by Algorithm
2. Then Algorithm 1 terminates in k̃(θ) iterations and produces
the working-set sequence {W̃k(θ)}k̃(θ)

k=1, ∀θ ∈ Θ0.
Proof: The theorem will be proven by using the properties

derived in Section III to map an iteration of Algorithm
1 to an iteration of Algorithm 2. Table I summarizes the
correspondence between each line of Algorithm 1 to lines of
Algorithm 2 and which equation, Lemma or Remark proves
each correspondence. Both the case when MkM

T
k is singular

and nonsingular is shown in Table I.

Alg. 1 Alg. 2 nonsingular Alg. 2 singular
#1-3 #1-3 - #1-3 -
#4 #5 (15) #16 Lemma 8
#5 #6 Lemma 7 #17 Lemma 10
#6-10 #7-11 Lemma 3 #18 Remark 5
#11-13 #12-13 Lemma 7 #19-20 Lemma 10
#14 #14 - #21 -
#15 #9 (6) Impossible if primal feasible

TABLE I: Mapping from Algorithm 1 to Algorithm 2

A direct consequence of Theorem 1 is that the worst-case
number of iterations when (1) is solved with Algorithm 1 can
be certified by applying the complexity certification method
from [15] to the dual mpQP given in (32).

Remark 6: There are numerous active-set algorithms that
are equivalent, cf. [22]. As is discussed in [15], Algorithm 2
is equivalent to, e.g., Dantzig’s active-set method for QPs [21]



# of iterations 1 2 3 4 5 6 7 8 9 10

θ1-20 20

θ2

-20

20

(a) Certification

θ1-20 20

θ2

-20

20

(b) Simulation

Fig. 1: Number of iterations determined by: (a) Applying the
certification method presented in [15] to the dual mpQP; (b)
Executing Algorithm 1 over a two-dimensional grid in the
parameter space. θi = 0 for i 6= 1, 2.

applied to the dual QP. Theorem 1 together with this equiva-
lence explain the empirical observation in [11] that Algorithm
1 produces the same number of iterations as Dantzig’s method.

V. NUMERICAL EXAMPLE

To exemplify the complexity certification method for Algo-
rithm 1, an mpQP originating from the application of MPC
to an inverted pendulum was considered. The resulting mpQP
had the dimensions, m = 10, p = 8, and n = 5. Further
details about the problem are given in [14].

The certification method was compared with results ob-
tained by drawing samples from Θ0 and executing Algorithm
1 on the resulting QPs. Figure 1 compares such simulations of
Algorithm 1 for θ taken on a grid on a 2-dimensional subspace
of Θ0, with a slice of the partition, corresponding to the same
subspace, obtained by applying the certification method from
[15] to the dual of the mpQP. As Theorem 1 predicts, the
resulting number of iterations is equal for the simulation and
the certification. In addition, 108 random samples of the entire
Θ0 were taken and Algorithm 1 was applied to the resulting
mpQPs. As before, these simulation results were compared
with the results from applying the certification method from
[15] to the dual of the mpQP. Again, as predicted by Theorem
1, both the simulation and the certification resulted in the same
number of iterations.

The computation time required for the complexity certifi-
cation of the inverted pendulum example was 7.6 seconds
when executed on an Intel R© 2.7 GHz i7-7500U CPU. For
more details about the certification method itself, such as
complexity, see [15].

VI. CONCLUSION

This paper has proposed a complexity certification method
for a simple and efficient QP method. The complexity certifica-
tion was done by relating the QP method to a standard primal
active-set method applied to the dual of the QP, allowing
the complexity certification method in [15] to be directly
applicable. Future research includes certifying the complexity
of the extended method presented in [17], which improves the
numerical stability of the QP method considered in this paper.
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