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Abstract The paper contains a discussion of earlier work on Total Model Errors and Model Valida-

tion. It is maintained that the recent “change of paradigm” to kernel based system identification has

also affected the basis for (and interest in) giving bounds for the “total model error”.
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1 Introduction

The purpose of this note is twofold:

First, the note is my congratulation to Lei Guo on his 60th birthday with deep appreciation

and respect for his fundamental contributions to system identification and adaptive control.

Second, the paper will give my comments to a re-reading of some articles we wrote together

in the 1990’s on model validation and bounds on the total error. How do they fit in with the

development of the area in the last quarter of century?

I have known Lei Guo since we met at the IFAC congress in Sydney 1993. We were both

working on convergence issues of recursive algorithms and their implications for adaptive con-

trol. Lei had published the books [1, 3] and we had intense discussions on these problems. Lei

worked further on these issues, which led to the fundamental contributions [4, 5]. He visited

me in Linköping on two occasions in 1993-94 and also in 1995 and we wrote a few papers on

recursive algorithms [6–8]. We also worked on model error issues, [17–19], which was a hot topic

at the time. This is what I like to add a few comments on, in the light of the later development.

2 Total Model Errors

We limit the discussion to linear systems/models. The problem is as follows: Given a true

system with transfer functionG0(q), from discrete time input-output data u(t), y(t), t = 1, . . . .N

we build a model ĜN (q). Give a bound on the total model error G̃N = G0− ĜN . Let it be said

right away that the problem as such is impossible: The linear system/model is characterized

LJUNG Lennart
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by an infinite impulse response g0k, k = 1, . . . ,∞; y(t) =
∑∞
k=1 g

0
ku(t − k). After having seen

N data we have no information at all about the tail G(tail) = {g0k, k = N + 1, . . . ,∞}. Any

statement about the total model error thus must hinge upon an assumption about G(tail).

3 Bounds for the Total Model Error

Many approaches exist about dealing with the problem of giving useful total error bounds.

3.1 Using estimates of bias and variance

A traditional approach is to see total error as the sum of the variance of the estimate and

the bias error of the estimate, e.g. [12], [9] , that is the MSE (mean square error). While the

variance can be evaluated with standard probabilistic estimation techniques, e.g. [14] the bias

error may require innovative approaches, e.g. [23].

3.2 Model error models

Another approach is to focus on the model residuals ε(t) = y(t)− ŷN (t) where ŷN (t) is the

model output ĜN (q)u(t). For a perfect model ε(t) should be independent of the output. To

analyse model deficiencies, a model error model GMEM(q) can be built as ε(t) = GMEM(q)u(t).

The total model error is then characterized by evaluating the “size” of GMEM(q), This idea is

pursued e.g. in [13].

3.3 Stochastic embedding

Graham Goodwin and coworkers introduced the concept of stochastic embedding, e.g. in

[2]. The idea is that the unknown model error is seen as a random variable with unknown

distribution (often Gaussian). The problem of characterizing the total model errors is thus

embedded in a stochastic framework where this distribution is estimated at the same time as

a nominal model. There are links between stochastic embedding and the kernel methods of

Section 4, which are discussed in [16].

3.4 Total model errors and model validation

It is in this problem environment Lei and I undertook the research that led to the publi-

cations [17–19]. In short, the idea is to characterize the total error G̃(q) of a model Ĝ(q) as

follows:

Let the filtered residuals be ε(t) = L(q)[y(t) − Ĝ(q)u(t)] and define the traditional model

validation test quantity which measured the correlation between residuals and past inputs:

ξMN =
1

N

∣∣∣∣∣
N∑
t=1

ϕ(t)ε(t)

∣∣∣∣∣
2

R−1
M

(1)

where ϕ(t) is the vector of the M most recent inputs and RM its covariance matrix.
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Then the total model error obeys[
1

2π

∫ π

−π

∣∣∣G̃(eiω)
∣∣∣2 |L(eiω)|2|UN (ω)|2dω

]1/2
(2)

≤[
1

N
ξMN ]1/2 + xN + 2Cu

∞∑
k=M

|ρk| (3)

Here ρk is the impulse response of L(q)G̃(q), |UN |2 is the periodogram of the input, which is

assumed to be tapered. xN is the correlation between ϕ and the filtered additive noise in the

system, Cu is a bound on the input.

The right hand side is basically known and computable. The two essential terms are

ξMN which is the model validation residual quantity which is computed as in (1)

and the impulse response tail, which is unknown which is a basic flaw when total model

errors are computed, as we said at the end of Section 2.

In [18] this error expression is applied to estimates of a model with the impulse response of

Figure 1.
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Figure 1: The impulse response of the tested system

That example and various choices of model structures and prefilters are used in [18] to discuss

and illustrate the usefulness of the results for control design.
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4 The Kernel Approach to System Identification (Regularization)

We will limit this discussion in this section to Finite Impulse Response (FIR) models:

y(t) =

M∑
k=1

gku(t− k) = θTϕ(t) (4)

θT = [g1. . . . , gM ] (5)

ϕ(t) = [u(t− 1). . . . , u(t−M)]T (6)

The least squares FIR model will be

θ̂ = arg min
θ

∑
‖y(t)− θTϕ(t)‖2 (7)

An immediate idea to come to grips with the problem of unknown tails G(tail) is to make M

large. The problem with that is that the estimates of gk will be uncertain (have large variance),

especially if the input u has poor excitation. We generate 1000 data point from the system in

Figure 1 with an input that is low pass filtered white noise, and add Gaussian white noise with

variance 1 to the output, and then estimate a FIR mode of order 100. The resulting model has

an impulse response shown in Figure 2, left pane.

The high variance can be curbed by adding some regularization to the criterion

θ̂ = arg min
θ

∑
‖y(t)− θTϕ(t)‖2 + θTRθ (8)

for a suitable positive definite matrix R. For a particular choice of R we get a regularized FIR

model, whose impulse response is shown in Figure 2, right pane.
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Figure 2: left pane: least squares model impulse response and true impulse response. Right

pane: regularized least squares model impulse response and true impulse response.

Clearly the basic LS estimate is useless, while the regularized one gives a good estimate.

This example is a very simple illustration of the basic idea of the important contribution [22].
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This deals with a general identification problem, approached by the “kernel” methods that had

been around for a decade in the statistics literature. The matrix R is then the kernel. The

link with the kernel approach and regularization also makes contacts with statistic techniques

(Ridge regression and Tikhonov regularization) which had been around for a while.

A third interpretation is also important: We recognize in the argument of (8) the posterior

density of θ with a prior distribution being Gaussian with zero mean and covariance matrix R.

The regularized estimate θ̂R is thus the MAP - maximum a posteriori estimate, given the prior

and the observations. This gives a link to Bayesian estimation theory.

The interest in the kernel approach increased further when it turned out that the methods

outperformed classical system identification, [21]. One could really talk about a “change of

paradigm”, [15].

5 Concluding Remarks

There is nothing wrong in the work on total model errors described in Section 3, but in a

way the interest has faded in “total model errors” as the discrepancy between the true system

and the model. With the kernel framework of Section 4 which essentially is a Bayesian world,

there is not really any “true system”. All system descriptions are random variables which have

a mean and a variance. There is a prior distribution encompassing what we believe about the

system before we have seen the data and a posterior distribution that includes the information

about the system gathered from the data measurements. The posterior distribution is a total

model including both prior and data information. The variance of this posterior distribution is

really a measure of the total model error.

Thus the interest in system identification has shifted to focus on forming effective and flexible

prior distributions, e.g. [20].

At the same time Lei Guo’s interest has shifted to fundamental limitations of adaptive

control, e.g. [10], [24] and [11].

6 Finally...

I admire Lei Guo not only for his fundamental and innovative contributions to system

identification and adaptive control. He is also a good friend of mine and of the Swedish control

community. He has served as chairman of several of the Chinese-Swedish Control Conferences.

We are proud to have him as a foreign member of the Royal Swedish Academy of Engi-

neering. We wish him a very happy 60th birthday and we look forward to many years of new

groundbreaking insights from him.
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