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ABSTRACT

Concurrency and synchronization are two topics that are becoming
increasingly important for computer science students due to the
high number of cores available in most modern devices. These are
topics that many students struggle with at first, perhaps partially
due to the inherent nondeterminism and the difficulty to test for
absence of race conditions. Furthermore, previous research indi-
cate that some common mistakes when working with concurrency
might be due students not connecting the concurrency concepts
(such as synchronization) to the data that needs to be protected,
especially when pointers and references are involved.

To address these issues, we propose Progvis, which is a visu-
alization tool aimed specifically at concurrency using the shared
memory model. It provides a detailed visualization of objects in
memory and their relation to the running threads in order to help
students connect concurrency issues with the affected data. We
have performed an initial, small scale evaluation on whether using
the tool helps students solve synchronization problems during vol-
untary problem-solving sessions. The preliminary results indicate
that students who used the tool did indeed perform better.
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1 INTRODUCTION

Concurrency is an important topic for students to learn to be able
to fully utilize the many cores available in most modern systems.
Concurrency is, however, often experienced as a difficult subject, at
least when working with synchronization and shared memory [18].
This might at least partially be due to a lacking understanding of the
semantics of the language being used. One such area that is known
to be difficult but important in introductory programming courses
is pointers and references [3]. These concepts are known to be
important in later courses, such as CS2 [20], and in courses covering
concurrency [18]. One possible way to aid students in their learning
of these concepts is to illustrate the behavior of programs by using
suitable visualizations, ideally where students are able to interact
with the visualization to a high degree to improve learning [12].

Furthermore, we have informally observed that many students
who failed the exam and subsequently seek advice from the instruc-
tor struggle with relating synchronization primitives to data in con-
current programs. This is often in cases where multiple instances
of some data type are involved. After discussing these matters with
the instructor, these students typically score high marks on the next
exam, indicating that this is an important aspect in a visualization
tool in addition to other synchronization concepts.

In this paper we introduce a visualization tool called Progvis,
which aims to help students learn concurrency by addressing these
difficult aspects. Thus, Progvis focuses on showing how multiple
threads interact through an object graph that represents the shared
memory between the threads. We will also present the results of
a pilot study in which students are asked to synchronize a piece
of C code, both with and without the tool. From the pilot study,
we hope to see whether using the tool helps students to arrive at
correct solutions or not.

The remainder of this paper is organized as follows: Section 2
introduces concurrency and other related work in program visu-
alization. The tool used in this paper is presented in Section 3. In
Section 4, we describe how the evaluation was conducted, after
which we present the results in Section 5. Finally, in Section 6, we
discuss the results and conclude the paper in Section 7.

2 BACKGROUND

In this section, we first provide a brief introduction to the parts of
concurrency that are relevant to this study, as well as research on
teaching concurrency. Next, we present related work in program
visualization in general and for concurrency in particular.
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2.1 Concurrency

In this paper we focus on the concurrency model where multi-
ple threads communicate using shared memory. This is the model
used in many imperative languages (e.g., C++, Java, Python) and
is supported by most major operating systems. In general, few
assumptions can be made about the relative execution speed of dif-
ferent threads or the ordering of memory operations in relation to
other threads [1]. To communicate safely, threads need to use some
synchronization primitive, such as locks, semaphores, or condition
variables or use atomic operations.

Students’ experiences with concurrency has been previously
studied by for example Kolikant [4, 5], who studied high-school
students’ solutions to concurrency problems. Kolikant found that
many students failed to identify some synchronization goals, but
that solving the problem was generally easy once the synchro-
nization goals were identified. Lawson and Kraemer [7] have also
studied students’ solutions to similar problems, and found that stu-
dents sometimes use sleep functions to avoid concurrency issues
rather than proper synchronization primitives.

Aside from examining students’ solutions, Lénnberg et al. [10,
11] have also investigated students’ experiences with developing
concurrent programs, and found a number of different approaches
to developing concurrent programs, for example trial and error and
adapting a known technique [11]. This was also done for concur-
rency in general by Stromback et al. [19]. The same authors also
examined students’ mistakes when solving an exercise involving
synchronizing a data structure [18], and found a number of dif-
ferent common problems. The authors also hypothesized that a
potential issue is lacking knowledge of parts of the semantics of
the programming language. This is in line with results from Valstar

et al. [20], who found that lacking skills in concepts introduced in
CS1 have an impact on students’ performance in CS2. As such, it is
reasonable to believe that this is true for concurrency courses as

well.

2.2 Program Visualization

A number of program visualization tools have been developed and
studied with the aim to help students understand what their pro-
gram is doing, and to help students develop an accurate representa-
tion of how their program is executed (i.e., an accurate model of the
notional machine). Jeliot [8] and UUhistle [16] are two examples of
such tools aimed at introductory programming in Java and Python
respectively. Both of these tools visualize program execution at
a great level of detail, and clearly illustrate how references work,
which is a known to be a difficult concept [3]. Other tools include
PlanAni [14], which visualizes variables differently according to
how they are used, and OpenDSA [15], which visualizes higher
level data structures interactively. Contrary to Jeliot and UUhistle,
these tools are aimed at showing pre-defined examples rather than
arbitrary code supplied or modified by the student (for PlanAni,
this was planned but not complete [14]).

There are also a number of visualization tools aimed at concur-
rency. For example, a tool called The Deadlock Empire,! which
provides the user with two or more pieces of source code and asks
the user to interleave execution of the pieces (by single-stepping a

!https://deadlockempire.github.io/
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Table 1: Summary of the capabilities of existing visualiza-
tion tools and Progvis. These are described in further detail
in Section 2.2 and Section 3. Note: Different visualizations in
OpenDSA behave differently, which is why illustrates refer-
ences is left blank.
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Jeliot [8] Java X X v v
UUhistle [16] | Python X X 7/
PlanAni [14] | Custom X X X X
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The Deadlock Empire C# X
ConEE [13] | Custom X

Eludicate [2] Java X
Atropos [9] Java X

Progvis | C/C++ v

piece) in a way that exposes a concurrency issue. While this is an
excellent introduction to concurrency issues, it does not allow users
to modify the code or test their own code, nor does it support ref-
erences or pointers. A similar tool, called ConEE, was proposed by
Offenwanger and Lucet [13]. This tool does allow loading arbitrary
programs and automatically proving whether or not the code is free
from race conditions, but does not address the issue of illustrating
references. Another approach is explored by Eludicate [2], which
provides execution traces that users may use to reason about the
program. Lonnberg [9] has also examined a number of tools, for
example a train simulation to introduce semaphores, and a tool
called Atropos, which visualizes the program flow as a graph and
allows executing the program both forwards and backwards. All
of these tools, both ones aimed at concurrency and introductory
programming, are summarized in Table 1.

Using visualizations does not necessarily help student learning.
The visualization must also make sure to engage the students, as
described by the engagement taxonomy proposed by an ITiCSE
working group [12]. This taxonomy suggests that just looking at a
visualization has little or no benefit for learning, while the ability to
interact with and modify the visualization are much more beneficial.
One possible way of enabling such interaction is to allow students
to modify the source code of the programs that are visualized.

3 OUR TOOL: PROGVIS

In this section we introduce our tool, which is called Progvis. In
contrast to the other tools summarized in Table 1, the aim of Progvis
is not only to help students learn concepts related to concurrency;
it also allows illustrating how concurrency interacts with other
aspects of a concurrent program. For example, considering whether
it is the responsibility of the caller or the callee to ensure that no
data races occur when calling a function that accepts a pointer or
reference to some data, and take this into account when specifying
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the interface of the function. In order to be able to illustrate such
higher-level concerns, Progvis takes inspiration from the strengths
of the tools mentioned in Section 2.2, and aims to provide a vi-
sualization that includes concurrency concepts as well as more
fundamental concepts like references by providing a clear and cor-
rect representation of the underlying notional machine. Progvis
does this by visualizing the data in the running program as an
object graph, and shows how multiple threads interact with it.

In order to illustrate interactions between concurrency and other
aspects of a concurrent program, Progvis currently supports visual-
izing programs written in a subset of C and C++. The decision to
support a subset of C and C++ in favor of some other simpler lan-
guage is to lower the barrier of entry for students to experience on
their own. Since the course examined in this paper involves solving
computer labs in C, students do not need to learn another language
to use the visualizations. However, since the tool is implemented
as a visual debugger in the polyglot Storm platform [17], it can be
used to visualize any language supported by the Storm platform.
This means that it is also possible to visualize programs written
in a language called Basic Storm. Support for Java is also planned,
and it is further possible to add support for more languages. Both
Progvis and the Storm platform are available for Windows (x86)
and Linux (AMD64).2 For Linux, pre-compiled binaries are avail-
able for Debian-based systems, but it is known to work on other
distributions as well, such as Arch Linux.

3.1 Object Graphs

As previously mentioned, Progvis aims to provide a clear and correct
visualization of the notional machine. Of particular importance is
the ability to correctly visualize pointers and references, which is
known to be a difficult but important concept [3]. This is especially
true when working with concurrent programs. Without a basic
understanding of pointers or references, it is difficult to correctly
identify shared data, which in turn makes synchronization difficult.

Figure 1 shows how Progvis visualizes the notional machine
while running a single threaded program. The large box labeled
Thread 1 contains everything related to a single thread. It consists
of two major parts: the current state of the execution stack, and the
current location in the source code. The five buttons in the bottom
of the box allow controlling the program execution by either pro-
ceeding a single step at a time, or by letting Progvis automatically
step through the program at a specific rate. Since Progvis is aimed
at students who are already familiar with sequential programs, it
does not attempt to visualize each step of the computation in detail
like UUhistle [16] or Jeliot [8], as can be seen in Table 1. Instead,
Progvis focuses on individual statements, as that level of detail is
more suitable when focusing on higher-level behaviors of a pro-
gram, such as how it interacts with objects in memory or other
threads.

The second, and perhaps most important, part of the box labeled
Thread 1 is the visualization of the execution stack. This part con-
sists of one box for each stack frame on the call stack. In Fig. 1, only
one such frame is active for the main function. If more functions
would be called, more boxes will be shown on top of the current one,
partially covering the variable names (as can be seen to the left in

Zhttps://storm-lang.org/progvis.php

125

ACE 22, February 14-18, 2022, Virtual Event, Australia

Thread 1

data

2 [d]

main(...)

array

] b

a :
b
int main{void) { a

struct data *array
= malloc(sizeof(struct data)*3); b[;;:]
struct data *p = array + 1;

int *p_a = &p-»a;

p_a
p_b

int **p_b = &p->b;

*p_b = &array[2].a;

array[2].b = malloc(sizeof(int)*2);
printf("%d\n", array[1].a);

return 8;

Figure 1: An object diagram generated by Progvis during ex-
ecution of a single-threaded program.

Fig. 2). Each box contains a list of all local variables in the current
function and a box that represents the storage allocated for the
variable. In this case, all local variables are pointers, and they are
therefore represented by arrows. For non-pointer variables, the box
will instead contain a (possibly nested) representation of the data
structure. In this way, the difference between values and pointers
is clearly visible in the visualization. Furthermore, as can be seen
in Fig. 1, Progyvis is able to visualize many aspects of C pointers. In
particular, the pointer p points to element 1 of the array pointed
to by array, p_a and p_b point to variables inside an element of
the array. It is worth noting that even though p and p_a technically
contain the same address, Progvis visualizes them differently as the
pointers have different types, and thereby logically refer to different
parts of the data structure.

Even though Progvis was designed to be used in the context
of concurrency, the detailed visualizations of pointers and objects
allow it to be used in other contexts as well. One such example is
to illustrate how pointer arithmetics work in C and C++. Another
example is the difference between copy- and move-semantics in
C++.

3.2 Concurrency

When concurrent programs are executed in Progvis, one box for
each thread is shown, as can be seen in Fig. 2. This allows the user to
control the different threads individually, which in turn lets the user
explore different interleavings of the concurrent program, much
like in The Deadlock Empire. In Fig. 2, the user let the first thread
(Thread 1) execute until it created two instances of a data structure
and spawned two threads (Thread 2 and Thread 3) that were each
given a reference to an instance of the data structure. Finally, the
thread reached a sema_down statement which caused the thread to
wait. This is indicated by the color in the source listing, and by a new
frame in the call graph labeled Waiting, which indicates what the
thread is currently waiting for. From the visualization, we can then
see that only thread 2 has (indirect) access to the semaphore that
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work_data
param work_data
result EI param 100
done §eq|aph0re result EI
S / count EI done. [semaphore
; count[]
a3
|waitt.. ,Z,| Thread 2 Thread 3
Waiting... [ thread-main(..)| thread_main..)|
For data [:::] data [:::]
sema_init{&data->done, 0); int param; int param;

thread new(&thread main, data);
return data;

int wait(struct work_data *data) {
sema_down{&data->done);
int result = data->result;
free(data);
return result;

int result;
struct semaphore done;

void thread_main(struct work_data *da
data->result = do_work(data-=param)
sema_up(&data-=>done);

struct work_data *spawn(int param) {

int result;
struct semaphore done;

void thread_main(struct work_data *da
data-=result = do_work(data-=param)
sema_up(&data-=>done);

struct work_data *spawn(int param) {

1 struct work_data *data struct work_data *data
= malloc(sizeof(struct work_data) = malloc(sizeof(struct work_data)
L] [[op [ L o [0 | 33

Figure 2: An object diagram generated by Progvis during execution of a multi-threaded program. The leftmost thread is blocked
on a call to sema_down, and the semaphore waited for is shown in the Waiting box.

thread 1 is waiting for. Thread 3 has a pointer to another instance
of the same data structure, and is therefore not able to wake thread
1. This is an example of the strengths of Progvis compared to many
other tools aimed at visualizing concurrent programs.

As indicated in Fig. 2, the implementation of the C language in
Progvis supports a number of concepts related to concurrency. In
addition to the function thread_new for spawning threads, three
synchronization primitives are supported: locks, semaphores and
condition variables. To minimize the effort required by students
when working with Progvis, these synchronization primitives fol-
low the same interface as the one used by the educational operating
system Pintos used in the course. Support for other interfaces, such
as pthreads can of course be implemented as well, but we have not
yet found the need to do so.

This functionality combined with the visualization of object
graphs and pointers provides a detailed visualization of concurrent
programs. This allows students to explore how different interleav-
ings affect the behavior of the visualized concurrent program. Based
on this, students are also able to find interleavings that cause the
program to misbehave, and thereby find concurrency errors. Since
Progvis allows visualizing (almost) arbitrary C code, students are
also able to attempt to solve the problems found by adding syn-
chronization, and then see how the synchronization affects the
execution of the concurrent program. This freedom means that
students are able to engage to a high degree with the visualizations
in Progvis, which as previously noted helps learning [12].

3.3 Limitations of the Tool

While Progvis allows visualizing a large number of programs, there
are some limitations to consider. Some of these are inherent to
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the approach of detailed visualizations, and some are due to cur-
rent shortcomings in the implementation. We will discuss these
limitations in more detail here.

The largest limitation, which is inherent to the approach and
thereby also applies for other similar tools, is that a detailed visual-
ization of the object graph of a program quickly gets cluttered for
more complex programs. For example, creating a linked list with a
couple of hundred elements in, or indeed an array of a similar size,
will make the visualization almost unusable. Furthermore, even
though Progvis attempts to not visualize each step in the program,
it quickly becomes tedious to step through large programs. Progvis
addresses this by providing mechanisms to skip entire blocks of
code, but more can be done to address this. As such, it is important
to keep these limitations in mind when creating examples to visu-
alize in Progvis. Otherwise, the visualization may be too cluttered
to clearly illustrate the desired concurrency issues.

The remaining limitations are shortcomings in the current imple-
mentation, and can thus be addressed as needed. First and foremost,
only a subset of C (and C++) is supported by the tool. Most notably,
generic pointers (i.e., void #*) and arbitrary pointer casts (some-
times referred to as type punning) are not supported. There are two
reasons for this. First and foremost, the visualization needs to know
the types of all data in memory. Allowing arbitrary typecasts (either
through void * or through pointer casts) would make it impos-
sible to reliably pick a sensible representation of data in memory.
Secondly, Progvis executes programs in the same process as the
visualization. Since student programs might crash, Progvis need to
be able to reliably detect these issues and report them to the user
rather than crashing the entire visualization. For this reason, the C
implementation uses fat pointers (a pointer to the start of the allo-
cation and an offset). This way, the implementation is able to verify
that all memory references are safe before they are executed. The
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stronger type safety imposed by disallowing arbitrary pointer casts
help hiding these fat pointers from the user, as well as ensuring
memory safety. These limitations has not been a problem so far, as
the focus of the tool is visualizing how concurrent programs behave,
rather than the intricacies of low level memory manipulation.

The last limitation of the implementation is that it does not
currently implement all details of the C memory model [1]. The
version of the tool used in this study implements sequential consis-
tency [6], meaning that reads and writes are guaranteed to happen
in program order. This means that the tool does not report an error
when two threads access shared data without proper synchroniza-
tion. Rather, the tool treats each line (each step) as a unit that is
executed atomically, and let students see cases where this lead to
incorrect program behavior. We have found this to be enough at an
introductory level of concurrent programming, as many programs
still need synchronization to work properly. It does, however, give
an incorrect picture of the memory model, as both the hardware
and the compiler are allowed to reorder reads and writes that are
not otherwise synchronized. To address this, we have later imple-
mented support for Progvis to track and show reads and writes
performed by the program. This helps to illustrate what the pro-
gram is doing, and also lets Progvis to detect and report cases where
a particular interleaving would cause multiple threads to access
shared data concurrently. While this implementation is a step closer
to the actual C memory model, it is not yet entirely accurate, as
reads and writes are only tracked for individual statements. We
plan to further develop this aspect of Progvis in the future.

4 PILOT STUDY

We evaluated Progvis in a pilot study during a course on concur-
rency and operating systems taught by the first author. The course
is given at the end of the second year of a three year bachelor
program in computer science. It follows a course on operating sys-
tems theory, and is therefore focused on laboratory work in the
educational operating system Pintos>. The course also introduces
concurrency and synchronization (which is not taught in the previ-
ous course). An outline of the course is presented in the right side
of Fig. 4.

To evaluate the tool, we invited students to (virtual) problem-
solving sessions. In the invitation students were informed that their
participation is voluntary and that they would remain anonymous.
Out of the approximately 80 students taking the course, 12 students
signed up for participating in the problem-solving sessions. These
12 students were then randomly assigned to one of two 105 minute
sessions. In the end, only 3 students in the first session and 5 in the
second session showed up.

Each session started with a 15 minute introduction where the
first author briefly introduced the goal of the tasks, and where to
hand in their solutions. Students were then given four tasks and
80 minutes to solve them. The problem-solving session ended with
a 10 minute discussion of the solutions to each of the tasks. Each
of the four tasks presented students with a piece of code contain-
ing some concurrency problem. A comment at the top of the file
described the intended behavior of the code, and briefly outlined

3http://www.scs.stanford.edu/07au-cs140/pintos/pintos.html
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an observable problem with the incorrect implementation. The stu-
dents were then asked to solve the concurrency issue by adding
suitable synchronization. The tasks were designed to be solvable
using only semaphores, as that was the only synchronization prim-
itive introduced at the time of the problem-solving sessions. The
tasks are presented in further detail below.

As the tasks were designed to be progressively more difficult,
students were asked to solve the four problems one by one, in
order. Furthermore, students were asked to hand in their solution
to the current task before starting the next one. Students were
able to ask for help with technical issues (e.g., not able to compile)
during the sessions, but not with the tasks themselves. Students
in the first session (group A) were asked to compile and run the
given code using the supplied makefile in the terminal, similarly
to what is done in the labs. Students in the second session (group
B) were instead asked to run the code in Progvis. These students
did not have the ability to use command-line tools (the makefile
and other header files were not given to group B). At this point,
both groups had seen Progvis used at the first lecture to visualize
pointer arithmetics.

For each session, we recorded when each student handed in each
of their solutions. We also graded the solutions. When grading, we
first examined if the solution was correct (i.e., behaved according
to the specifications and with no possible concurrency issues). For
solutions that were not correct, we also recorded why the solutions
were not correct.

After the problem-solving sessions, a modified version of Progvis
was published on the course webpage. This modified version tracked
each time it was started, which allows us to see to what extent the
tool was used by students.

1 int do_work(int param) {

2 // Heavy work performed here...
3 return param * param;
4}

s int param;
¢ int result;
7

s void thread_main(int xdummy) {

9 result = do_work(param);

10}

1 int main(void) {

12 param = 100;

13 thread_new(&thread_main, NULL);

14

15 int here = do_work(50);

16 printf("From other thread: %d\n", result);
17 printf("From here: %d\n", here);

18 printf("Sum: %d\n", result + here);
19 return 0;

20 }

Listing 1: First task, comments omitted for brevity.
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4.1 The Four Tasks

The first task, shown in Listing 1, attempts to execute the function
do_work (which is assumed to take a long time to compute) in
two threads concurrently. Due to a lack of synchronization, the
result may be printed before it is computed by the spawned thread.
The fact that the result was incorrect sometimes was noted in
the description. Group A were also given a hint to insert a call to
sleep(param) in the do_work function to better see the issue.

int do_work(int param) {
// Heavy work performed here...
return param * param;
3
struct work_data {
int param;
int result;
3
void thread_main(struct work_data xdata) {
data->result = do_work(data->param);
3
struct work_data *spawn(int param) {
struct work_data xdata
= malloc(sizeof(struct work_data));
data->param = param;
thread_new(&thread_main, data);

return data;

}

int wait(struct work_data =*data) {
int result = data->result;
free(data);
return result;

3

Listing 2: Second task, comments omitted for brevity.

The second task, shown in Listing 2, is described as a gener-
alization of the first task. It implements the functions spawn and
wait, which have semantics similar to fork and wait in POSIX.
The spawn function spawns a thread, returning a data structure
that can be passed to wait to retrieve the result when it is com-
puted. A main function that spawns and waits for two threads was
provided as an example along with a comment indicating that the
main function should not need to be modified. Students in group A
were encouraged to insert a sleep call here as well.

The third task, shown in Listing 3, implements a very simple
ring buffer (similar to a POSIX pipe) containing only one element.
The buffer_put function shall wait for the buffer to become empty
and then insert an element. The buffer_get function shall wait
for the buffer to contain an element and then remove and return
that element. A main program with one producer thread and one
consumer thread was given as well, once again that it should not
need any modifications.

The final task, shown in Listing 4, implements a simple future
object, which is essentially a generalization of the data structure in
the second task. The difference is that it should be possible to call
future_get multiple times for each future instance, while wait
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struct buffer {
// Single value in the buffer.
int value;
}
struct buffer xbuffer_create(void) {
struct buffer xbuf
= malloc(sizeof(struct buffer));
buf->value = 0;
return buf;

}

void buffer_destroy(struct buffer xbuf) {
free(buf);

}

void buffer_put(struct buffer xbuf, int value) {

buf->value = value;
}
int buffer_get(struct buffer *buf) {

return buf->value;

Listing 3: Third task, comments omitted for brevity.

struct future {
// Result stored in the future.
int result;
3
struct future xfuture_create(void) {
struct future =*f
= malloc(sizeof (struct future));
f->result = 0;

return f;

3

void future_destroy(struct future *f) {
free(f);

3

void future_post(struct future *f, int val) {

f->result = value;
3
int future_get(struct future *f) {

return f->result;

Listing 4: Fourth task, comments omitted for brevity.

could be assumed to be called only once. A main function that
created two future objects and used them to wait for two threads
to complete was supplied with the customary note that it should
not need any modifications.

5 RESULTS

Figure 3 shows the time taken for each of the students to solve each
task. Students from group A are labeled A1, A2, and A3, and students
from group B are labeled B1, B2, B3, B4 and B5. From the graph, we
can see that none of the students in group A completed task 3, while
four out of five in group B completed it. Furthermore, three out of
five students in group B solved all tasks within the allotted time.
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Figure 3: Time taken for each of the students to solve each
of the four tasks out of the 80 minutes available. The num-
ber inside each bar indicate the task being worked on. Tasks
marked with an asterisk were not submitted before the al-
lotted time was up. Students marked with a dagger did not
submit their solutions as they were completed, but when all
of them were completed.

The times for individual tasks are slightly inaccurate for group B,
since three students (B1, B2 and B5) did not submit each solution as
soon as it was completed, but at the end when they were done with
all tasks. For these students, the time distribution between the four
tasks are based on self-assessments by the students. The total time
taken is, however, available for these students and is used in Fig. 3.

Table 2 summarizes the correctness of students’ solutions to the
individual tasks. Each solution was marked as correct if it properly
solved all issues in the code. Cases were the solution could be
improved, or was incorrect, are noted using the numbers (1) to
(9), which refer to the list below. Note that a correct solution in
Table 2 might still not work as intended when dealing with multiple
instances of the data structure in the task since the semaphore might
have been declared globally, as shown in Table 3. Also note that
task 1 from student A3 contained almost no modifications, and
could therefore not be graded. The following problems were found
in the solutions:

(1) Calling sema_up before the return statement in do_work,
rather than when the return value is actually stored at its
final location.

(2) Using the semaphore as a lock inside do_work (around the
sleep statement) with no additional synchronization.

(3) Calling sema_down before performing computations that
could be done in parallel (i.e., either calling do_work or start-
ing additional threads). This does eliminate race conditions,
but essentially executes the program in serial.

(4) Calling sema_up and sema_down twice in a row without af-
fecting the behavior of the program in any way.

(5) Only calling sema_down when the thread should wait (i.e.,
when the buffer is known to be full or empty) while always
calling sema_up. The semaphores will stay above zero and
therefore never wait.
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Table 2: Summary of correct (v) and incorrect (X) solu-
tions. Dashes (-) indicate solutions incomplete enough to tell
whether or not they are correct. Numbers in parentheses re-
fer to the list in Section 5.

|A1 A2 A3 |Bl B2 B3 B4 B5
Task 1 | X(1) X@2) - O/ /B X1 /
Task2 | V(&) X2 v |v V VB / V/
Task3 | X5) X(67) X6) | X8 X@8) X()
Task 4 | - - - v X9 - - v

Table 3: Summary of whether the semaphore was placed lo-
cally, inside the data structure, (L) or globally (G). Task 1
offered no alternative to global primitives and is therefore
omitted. Submissions marked with an asterisk were possi-
bly not complete as they were submitted at the end of the
allotted time.

| A1 A2 A3|B1 B2 B3 B4 B5
Task2 | G G G L L G L L
Task3 |G* G* L* |L L G L* L
Task 4 | - - - L L G* - L

(6) Incorrect initialization of a semaphore (e.g., -1 or a value that
does not match how it is used).

(7) Calling sema_up before sema_down in buffer_put rather
than the other way around.

(8) Using only one semaphore to wait for an empty buffer to
become filled, forgetting to wait for a full buffer to become
empty.

(9) Introduces data races in the future implementation by adding
a variable that is not synchronized (not modeled by the tool).

As previously mentioned, Table 3 shows whether students de-
clared the semaphore as a global variable or inside the data structure.
As task 1 did not contain a data structure, it has been omitted from
the table. In cases where students declared the semaphore globally,
their solution will not work properly if multiple instances of the
data structure is used concurrently, even if their solution is marked
as correct in Table 2. From this table, a clear difference between
the two groups is visible. Almost all of the students declared the
semaphore at a global level in group A, while almost all declared it
inside the data structure in group B.

Figure 4 contains the data collected from the logging in the
modified version of the tool. The tool was published to students
after the problem-solving session on day 11. The version containing
logging was, however, not finished until day 17. Thus, there may
be students who used the tool during these few days that are not in
our data set. The unique identifier recorded by the logging allows
differentiating between individual students, but does not allow
identifying individuals. Furthermore, a new identifier is generated
if the student removes the tool and downloads it again, so different
users in Fig. 4 could be the same student. From this data, we can
see that the tool was indeed used during the course, but not much.
Additionally, one of the TAs in the course noted that one student
pair had used the tool to solve a part of deadline 3 that involves
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Tool usage Course overview
65: User G 65: Exam
64: User F
58: Deadline 3 — Synchronization
54: User E
39: User Dx2
37: 2xUser C 36: Deadline 2 - exec and wait
32: User C
31: User C 30: Lecture 6 — Deadlocks
. 25: Lecture 5 — Atomics
2223 gssgllig 22: Lecture 4 — Locks, conditions
17: Logging started 16: Deadline 1 — System calls
11: Group B
10: Group A 9: Lecture 3 — Semaphores

4: Lecture 2 — System calls
1: Lecture 1 - Intro to C

Figure 4: Timeline describing lectures and lab deadlines in
the course (right), when the study was conducted (left) and
when students started the tool (left). The number indicates
number of days since the start of the course.

implementing a reader-writer lock. The students had created their
own testbed and experimented with different implementations in
order to solve the problem.

6 DISCUSSION

Based on the data presented in Section 5 we can see a number of
notable differences between the two groups. First and foremost,
Fig. 3 shows that three out of the five students in group B managed
to solve all four tasks during the allotted time, while none of the
three students in group A completed the third task. This is note-
worthy on its own since the number of tasks was deliberately high
to make it unlikely for students to run out tasks. This also gives a
clear indication that the tool might help the students to solve the
synchronization issues at hand, perhaps at least by helping students
to find the problems in the original code, but maybe also in showing
how the synchronization in the students’ proposed solution avoid
the problems.

Given that three out of the five students using Progvis did not
submit their solutions as they were completed, it is difficult to
observe trends in the times for individual tasks. By comparing the
times for students B3 and B4 (who did submit their solutions as
they were completed) to the times for students in group A, a small
decrease in the time used for task 2 is observable, while the time
used for task 1 might be slightly increased, perhaps since students
were initially not familiar with Progvis. We can also see that the
time distribution between tasks as reported by students B1, B2 and
B5 seem to be in line with students B3 and B4, meaning that the self-
reported times are likely not entirely unreliable. However, due to
the limited data regarding the times for individual assignments, and
the uncertainty of the data, we will not try to draw any definitive
conclusions from this part of the data.

The trend that students in group B performed better than group
A is also visible in Tables 2 and 3 when comparing solutions to
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the first two tasks (that were completed by both groups). While
many solutions in group A did not solve the synchronization issues
correctly, almost all students in group B managed to arrive at correct
solutions. One notable synchronization error from group A that
would perhaps be illustrated well by the tool is student A2’s solution
to tasks 1 and 2. The student attempted to use a semaphore as a
lock to make sure that only one thread could execute do_work
at the same time. However, the student failed to realize that the
main thread needs to wait for the other threads in order for the
program to work correctly. For task 3 (which students in group
A did not finish) we can see that students in group A struggled
with the semantics of the semaphore (initialization, when to call
up and down), while students in group B supplied correct solutions
except for forgetting to wait when the buffer was full. A similar
trend is visible in Table 3, where most solutions from group A
used a global semaphore while most solutions from group B used
a semaphore declared inside the data structure. This gives a fairly
clear indication that it is beneficial to clearly visualize instances of
data structures when working with concurrency in order to help
students realize the connection between synchronization primitives
and the data they protect. This is one of the ways in which students
experience critical sections found by a Phenomenographic study of
concurrency [19].

As all of these results indicate that group B, who used the tool,
performed better than group A, we feel positive that using the tool
to learn synchronization is beneficial, at least in these early stages
of learning concurrency. It is, however, not possible to attempt to
quantify the benefits, or to draw definitive conclusions due to the
small data set. The results could also be skewed by the fact that the
session for group B was held one day after the session for group
A. There were, however, no difference in the number of scheduled
activities. Both groups had one laboratory session right after the
lecture that introduced semaphores and nothing more.

Some students did use the tool outside of the problem-solving
sessions, as shown by Fig. 4, but at most seven student pairs (labs
are done in pairs). This rather low usage was in spite of the tool
being used during lectures to illustrate concepts like pointers, syn-
chronization and deadlocks, and making the source code from the
lectures available to students. As the tool only records whenever
it is started (in order to not be too invasive on privacy), it is not
possible to tell for how long the tool was used for each startup. In
the unlikely extreme, this might mean that students left the tool
running for days at a time, thus “hiding” their activity. Another
possible reason for the low usage is that the logging was not com-
pleted when the tool was first published, and thus any initial spikes
of interest would have been missed, and some students might have
kept using the old version without logging throughout the course.
The latter is unlikely as the tool was improved during the course,
meaning that some latter examples did not work in the old version
of the tool. Based on previous experience with the course and the
students who take the course, the likely explanation for the low
usage is that students need to spend much of their time working on
the lab assignments, and therefore feel like time not spent working
on the lab assignments is wasted. Thus, since it is not possible to
visualize parts of the large codebase of Pintos directly in Progvis,
they feel like the upfront cost of creating a small example that is
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possible to visualize is not worth the gains. This likely also ap-
plies to spending time exploring the concepts by solving one of
the numerous examples available on the course webpage. Based on
experience from other courses with the same group of students, it
is usually necessary to provide some (small) incentive for students
to explore material that is perceived as “not required for passing”,
even if it would help students learn. We plan to further explore this
possibility in the future.

As previously mentioned, one of the TAs noted that one pair
of students did find the tool useful when solving one of the lab
assignments. This indicates that at least some students see the
benefit of using the tool, and that one possible way of increasing
the usage of the tool is to provide small examples where students
are able to prototype their solutions before incorporating them
into the Pintos codebase. Since it is not possible to directly run
code from the labs in the tool (it is not built to visualize an entire
operating system, albeit a small one) the effort required to use the
tool might not be considered worth the benefits. The situation could
most likely be remedied by providing some pre-made testbeds for
testing parts of the labs that might benefit from using the tool.

6.1 Future Work

As previously mentioned, this small pilot study of Progvis is only
able to show that using the tool for this kind of exercises is promis-
ing, and at the very least does not make students perform worse
than without the tool. This is a good starting point for further eval-
uation of the tool in a more comprehensive study in the future.
Ideally, such a study would attempt to find whether the tool help
students learn concurrency, or if its value is that it helps students
uncover concurrency issues. This could, for example, be done by
further incorporating the tool in a course and comparing scores on
the final exam.

In order to motivate students to utilize the tool, there are many
areas that can be explored. One option is to integrate the tool in the
lab assignments, which would show the benefits to students at an
early stage and hopefully encourage using the tool later on in the
course as well. As previously mentioned, providing skeletons for
parts of the lab assignments where students are known to struggle
in order to lower the effort required to use the tool is also worth
investigating.

Another venue worth exploring to motivate students to explore
concurrency using Progvis is to add optional exercises with gami-
fication elements. For example, awarding points to students who
solve problems. Perhaps also awarding extra credits for collecting
a specified amount of points. This is not entirely trivial depending
on how the exercises are designed, however, as automatic grading
of concurrent programs is a difficult problem in the general case.

Finally, as previously mentioned, we aim to extend the tool to
better illustrate the intricacies of the C memory model. Currently,
the tool emulates a strict memory model (sequential consistency),
which might lead students to believe that this memory model holds
in general. We have already started this work by reporting con-
flicting reads and writes for single statements that are executed
concurrently. While this is closer to the true semantics, it is still
not entirely accurate.
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7 CONCLUSION

In this paper we have presented the visualization tool Progvis,
aimed at helping students learn concurrency and synchronization,
as well as results from a pilot study in a course setting. In addi-
tion to concurrency concepts, the tool makes an effort to provide
a clear model of the data manipulated in the system to help stu-
dents identify shared data and associate the data with appropriate
synchronization primitives. The focus on the data also allows the
tool to be used to clarify other known difficult concepts in earlier
courses as well. For example, pointers and references, the difference
between a class and an instance, and pointer arithmetics. This versa-
tility is further aided by the tool being designed to allow visualizing
multiple languages, with support for Java currently planned.

Since only eight students participated in the pilot study, it is
difficult to draw definitive conclusions. The results from the limited
data is, however, promising. The data shows that students who used
the tool did not perform worse than students using only command-
line tools in terms of the number of problems solved and the time
required to do so. Three out of the five students who used the tool
solved all tasks well within the allotted time, while none of the
three students without the tool managed to do so. The solutions
produced by the students using the tool were also better than the
students not using the tool. This is an indication that the tool does
indeed aid in some part of the problem-solving process. We are,
however, not able to tell if this helps students learn concurrency, as
we have not studied whether using the tool while learning improves
performance in other settings at later stages.
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