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Abstract—Despite the great success of neural networks (NN)
in many application areas, it is still not obvious how to integrate
an NN in a sensor fusion framework. The reason is that the
computation of the for fusion required variance of NN is still a
rather immature area. Here, we apply a methodology from system
identification where uncertainty of the parameters in the NN are
first estimated in the training phase, and then this uncertainty
is propagated to the output in the prediction phase. This local
approach is based on linearization, and it implicitly assumes
a good signal-to-noise ratio and persistency of excitation. We
illustrate the proposed method on a fundamental problem in
advanced driver assistance systems (ADAS), namely to estimate
the tire-road friction. This is a single input single output static
nonlinear relation that is simple enough to provide insight and
it enables comparisons with other parametric approaches. We
compare both to existing methods for how to assess uncertainty
in NN and standard methods for this problem, and evaluate on
real data. The goal is not to improve on simpler methods for this
particular application, but rather to validate that our method is
on par with simpler model structures, where output variance is
immediately provided.

I. INTRODUCTION

Vehicles today have an increasing level of autonomy, many
of which rely on the progress of computer vision algorithms
for situational awareness. Examples of ADAS that rely on
computer vision include lane keeping assistance, intelligent
speed control and collision avoidance systems. The latter one
is enabled by the impressive performance of NN to classify
different road objects such as other vehicles, humans, bicycles,
animals and other hazards. Though objects are mostly correctly
classified, commercial autonomous cars have also suffered
from spectacular failures, several leading to fatal accidents [1],
[2]. In many of these cases, the radar has had the ability to
detect the obstacle, but the system relied on the NN assessment
based on vision sensors. If all obstacle detection systems could
provide reliable uncertainty to its output, then proper sensor
fusion could be applied.

We do not attempt to attach the full ADAS challenge in this
contribution, but rather start on one simple but fundamental
sub-problem, namely to estimate the tire-road friction. Knowl-
edge of the friction level is crucial for which manoeuvres
that can be applied and the minimum braking distance. It is
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of utmost importance that an ADAS do not overestimate the
friction, while it is also important to not be too conservative
if the friction is good. If an NN eventually is to be used in
an end-to-end ADAS design, uncertainty assessment must be
solved successfully internally in the NN, which uncertainty the
friction estimation is one component of.

A method to compute output variance from an NN was
proposed in [3]. It relies on well-established methodology
in system identification [4]. During the training phase, the
covariance of the parameters (i.e. weights in the NN) are
estimated using a local approach. This covariance can be
computed with little extra computational cost by utilizing the
gradient from a back-propagation algorithm. In the prediction
phase, the covariance of the parameters can be transformed to
a variance of the output, again using a local approach based
on linearization of the NN.

The tire-road friction curve is usually modeled as a static
nonlinear mapping from one input (wheel slip) to one output
(maximum traction force) [5], [6]. The simplicity of the model
makes it possible to visualize the computed uncertainty, and
compare to the many standard methods that exist for this
particular application. Our ambition is not to compete with
these tailored methods, or the other methods we compare
with, but rather to validate that the local approach provides a
variance of the friction which is as reliable as other methods;
[71, [81, [9], [10], [11]. This makes it plausible that NNs can
eventually be developed for autonomous braking and steering
ADAS.

II. PROBLEM FORMULATION

Consider the following nonlinear static model

(1a)
(1b)

Ym = Sm + €m
Sm = f*(xm>

where 7,, € R% is the observation of the output s, € R%,
X,, € R% is the input, and the function f*(x,,) describes the
relation between the input and the output of the true system
S under consideration at time index m. Furthermore, e, is
the observation noise which is identically and independently
distributed according to some distribution with variance A
and mean Ele,,] = 0. Given a set of data consisting of the
observations y1.y = (y,)2_; and inputs x;.x = (x,)Y_4,



Fig. 1: Single wheel dynamics.

a parametric model in some model set, f(x,,,0) € M*,
with parameter vector § € © C R? containing d parameters
is fitted to the data. This can be done by e.g., minimizing
a least-squares cost function between the model and the
data. Then, at new time instances a prediction of the signal,
Sm =171 (xm,éN) can be created. Here, the parameters On
are estimated! as,

O = argmin Vy (), (2a)
2]
1 N
Vn(0) £ N Z llyn — f(xn,0)||* (2b)
n=1

The aim of this paper is to quantify the uncertainty in the pre-
diction for parametric models, and to compare the expression
for different methods for quantifying the uncertainty as well
as the use of different models. This is equivalent to comparing
the prediction error variance, where prediction error is given
as e(x1.n, éN) £ 9.y — §1.5. Through out the analysis, it is
assumed that the model set includes the true system, S € M*.

The true system under consideration describes how the
normalized traction force (NTF) depends on the wheel slip
of a car, which is a central component in ADAS. Here slip,
s = (wR —v)/v, and NTF, u = Fy /Ny, are computed using
the angular velocity of the driven wheel w, the wheel radius
R, the velocity of the vehicle v, the traction force between
the tire and the road F, and the normal force Ny. This can
be derived from the single wheel dynamics seen in Fig. 1. In
practice, Iy and Ny are not directly measurable, and need
to be estimated by using data from sensors measuring other
quantities, for details see [12].

III. LINEARIZATION METHOD TO QUANTIFY UNCERTAINTY
IN PREDICTION FOR NEURAL NETWORKS

The linearization method is a commonly used method in
system identification and statistics to quantify the uncertainty
in the prediction from a model [4], [13], but not a standard for
NNs. One reason for this is a consequence of the ambiguities
in the parameterization of NNs that are required to be taken
in consideration for the linearization method.

! Also referred to as learning the parameters.

A. Neural networks

One example of nonlinear black-box models are NNs [14].
They can be described by the recursion

h® =x,,, (3a)
al™ = (O 1)TwO, 1=0,---.L, (b
h) =¢(@l), 1=1,--- L, (30)
$m = alP), (3d)

where a nonlinear transformation, o(.) is done in every layer.
The nonlinearity is called activation function, commonly used
choices of activation functions are e.g., the sigmoid function,
the hyperbolic tangent, the rectified linear unit (ReLU).

Here, the number of layers in the network is denoted L,
the weights of the Ith layer W), the contribution from layer
(I —1) to layer I al¥), and the activation of the contribution
from the (I— 1)th layer at the /th layer h(!), which are referred
to as the hidden node. Collecting the biases and the weights
of the NN into a parameter vector, i.e.,

0 = (vec(W) VCC(W(L)))T , 4)

an NN can be written as a parametric model, $,, = f(x,,8).
The notation [d,dy,--- ,dr,ds] is used, where d, is the
number of inputs, d, is the number of outputs and d; is the
number of nodes in /th hidden layer.

B. Linearization method

By solving (2a), the parameters O is found, which is used to
create an estimate of the signal §,,. Given knowledge about
the covariance of the parameters Cov (6 ), the prediction error
variance of the signal can be calculated as

Var(8,n) = f(%n, On)Cov(On) fo (0. Ox) T, (5)

i.e., the prediction error variance is found by linearizing the

N A D ..
model, Where. fo(xn,0n) = %f(xn,0)|0:éN. In [3], it is
shown that given that the model set for the choose model
is flexible enough to include the true system, the parameter
covariance is computed as

N N
A AN 2 1 A
Cov(On) ~ g Av =5 D & (xn.0n),  (60)
N N &~
1 N
To =+ ;(fé(xmejv))Tfé(XmaN) (6b)

This method is valid for any parametric model, in particular
if the model is linear in its parameters, such as Laplacian poly-
nomials. For NNs, due to ambiguities in the model structure
of NN, the parameter covariance might be singular (or close
to singular). Previously, the linearization method have been
applied to NNs under the assumption of minimal representation
and identifiability [15], [16], [17], [18], [19], and in [3], the
method has been extended to handle ambiguities stemming
from the model structure of NNs as well as handle the case
when an overparameterized NN is used. Hence, even though
it might exist ambiguities in the model structure of the NN,



the linearization method can efficiently be used to quantify the
uncertainty in the prediction for NNs.

IV. RELATED METHODS TO QUANTIFY UNCERTAINTY

The subject of assessing uncertainty in the prediction of NNs
have recently received increased attention [20], [10], [21],
[22], [23]. Two of the most commonly used methods in the
literature to quantify uncertainty in the prediction of NNs
are; an ensemble technique, and an NN that learns its own
uncertainty.

A. Ensemble techniques

A straightforward approach to quantify the uncertainty in the
prediction from a model is to generate multiple realizations
and calculate the variance of the ensemble of realizations.
To create these realizations, either the data used to create
the models should be perturbed by, e.g., adding noise to
the observations, or changing the split between training data
and validation data, or the parameter initialization should be
different between the different realizations. For NN, the idea
of combining models has also been shown to improve the
prediction performance [24], [25].

This method is however not feasible for NNs, since already
training a network using a single realization can be very time-
consuming. Therefore, clever ways to create these ensembles
have been proposed, e.g., using regularization techniques that
are already used in training of NNs to prevent overfitting.
Two such methods are Monte Carlo (MC) dropout and MC
batchnorm, [26], [8].

In system identification for nonlinear models, it is also dif-
ficult to obtain uncertainty bounds, and if there is a structural
model error, one must rather rely on variability obtained from
repeating the experiment with varying excitation, i.e., ensem-
bles [27]. Hence for any suggested method for quantifying
the uncertainty in the prediction, it is essential to compare the
results to the variance of an ensemble of models.

B. Learning prediction uncertainties in neural networks

Another method to obtain the prediction error variance from
a black-box model is to include the variance as an output of
the model [11], [10], [9]. Then, the loss function has to be
modified, as well as some assumptions of the distribution of
the prediction is required.

Assuming that the likelihood of the data is Gaussian, let the
NN learn the logarithm of the variance and the mean, i.e.,

P(Ym|Xm; 0) = N (ym; [(0,xm)]1,exp([f(0,%m)]2)), (T)
F(8, %) = [y, log(o)] T (7b)
where (1, and 05 is the mean and the variance of the signal y,,
at time instance m, respectively. Here, the notion [f(0,x,,)]
is used for the ith element of f(6,x,,). The maximum

likelihood estimate (MLE) could then be found by minimizing
the cost function

1N
-

n=1

0 Xn)]1)2
f(6,%5)]2)

+ [f(0,%x,n)]2. (8)

exp(]

The model described in (7b) is referred to as the Gaussian
model [10], [9].

V. MODELING NORMALIZED TRACTION FORCE

In this paper, comparison is also made between NNs and
models from other model sets. The choices of models include
both black-box models, i.e., universal approximators, as well
as gray-box models, were physical insights have been used to
create the model.

A. Magic tire formula

Extensive modeling of the tire-road friction has resulted in the
gray-box model called magic tire formula, [5], given by

1 = Dsin (C arctan((1 — E)s + % arctan(Bs))),  (9)

where the parameters B,C, D, E depend on the surface. In
this paper, a bias term is added to the model, i.e., removing
the assumption that zero slip does not necessarily result in
zero NTF. This is necessary since the observed data is quite
noisy.

B. Laplacian polynomials

When estimating a model that describes the relationship be-
tween the input x,, and the output s,,, it is a good practice
to start by restricting the model set to simple models, then
complexity can be added to the model. This is of particular
importance when the model set consists of black-box models,
i.e., universal approximators of functions. For example, models
that are linear in the parameters, i.e., f(X,,,0) = @' (x)0,
are good choices for simpler models to start with. Here
@' (X,) is called the regressors (or basis function), which
is some transformation of the input x,,,. The result from more
complex models can then later be compared against these
simpler models, this to validate the use of the more complex
models.

A choice of model linear in the parameters with orthogonal
basis functions is the Laplacian polynomials [31], which are
given by

[ (xm)]; = sin (15 (xm + L)/(2L))/VL,  (10)

where L is a hyperparameter set by the user.

C. Gaussian processes

An example of a non-parametric model is Gaussian processes
(Gps), [32]. The concept of uncertainty is naturally included
in Gps, where the kernel function represents some covariance
function for the learned function. A GP is a collection of
random variables that have a joint Gaussian distribution. It
can be described completely by a mean function and a kernel
function. Assuming f(x,,) to be some process, it can be
approximated with a GP as f(X,,) ~ GP(m(Xm), k(Xm, X)),
where m(x,,) is the mean of the real process, k(X,,x’) is
the covariance (called kernel function), and x’ is data from
x1.y Which is data used to train the GP. This interpretation of



TABLE I: Settings for the different models used to estimate the friction data. Including: implementation specifications such as chosen optimization algorithm,
which model order (or model setting) that is used, and classification of the model into linear black-box (LBB) models, nonlinear black-box (NLBB) models,

and nonlinear gray-box (NLGB) models.

Model Learning algorithm Model order Classification
Laplacian polynomials, Section V-B linear least squares solution 4 basis functions LBB
Fully-connected NN, Section III-A ADAM [28] sigmoid activation function, [1,2,1] NLBB
NN with learned uncertainty, Section IV-B RMS-prop [29] sigmoid activation function, [1, 6,6, 6, 2] NLBB
Magic tire formula with bias, Section V-A  Levenberg-Marquardt algorithm [30]  See (9) with added bias NLGB
GP, Kernal: (11), Section V-C MATLABs SML toolbox L= L% /Varlmli, of = % Var(y) NLBB
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Fig. 2: Prediction with quantification of the uncertainty of the prediction for different models describing the relationship between the NTF and the wheels
slip. For NNs three different methods of quantifying the uncertainty are presented.

a GP is sometimes referred to as the function-space view. One
example of such kernel is the squared exponential®

- X/)Q/(2L2))7

where L is the length scale, and 0]20 the signal variance.

an

k(xm,x') = 0]% exp (— (xm

VI. EXPERIMENTS

To compare the performance of the different models, the
commonly used numeric measure model fit is used [4]. Under
the assumption that the prediction error is Gaussian distributed,
a 95% confidence interval is calculated for all the models, i.e.,
a 20 interval where o,, = y/Var(9,), i.e., the variance of the
estimated signal. This variance is calculated as the sum of the
variance of the model and the variance of the measurement

noise, i.e.,
Var(g,) = Var($,) + An. (12)

The five different models used to approximate the relationship
between the wheel slip and NTF are:

2Sometimes called Radial Basis Functions or Gaussian.

1) Laplacian polynomials described in Section V-B, which
are a black-box model linear in the parameters with
orthogonal basis functions.

2) Fully-connected NN describe in Section III-A with sig-
moid as activation function.

3) NN with learned uncertainty described in Section IV-B,
where there is assumption on Gaussian distribution on
the prediction.

4) The magic tire formula with an added bias term de-
scribed in Section V-A.

5) GP described in Section V-C with the squared exponen-
tial kernel.

As well as an ensemble of NNs as described in Section IV-A,
which the mean of the ensemble is used as the prediction.

The data in the paper comes from tire-road friction exper-
iments on snow conducted by NIRA Dynamics. Neither the
wheel slip nor the NTF is measured but instead calculated using
measurements of the wheel speed, acceleration of the vehicle,
engine speed, and engine torque, for details see [12].

For the parametric models, the uncertainty in the prediction



TABLE II: Model fit on validation data for different models used to
represent the relationship between the NTF and wheel slip.

Model Fit to validation data
Laplacian polynomials, Section V-B 68.87
Fully-connected NN, Section III-A 67.04
NN with learned uncertainty, Section IV-B 63.30
Ensemble of NNs, Section IV-A 68.10
Magic tire formula with bias, Section V-A 68.26
GP, Section V-C 68.03

is calculated using the linearization method described in
Section III-B , while for the Bayesian models the uncertainty
is obtained by sampling from the posterior. For the different
models, the model order is chosen such as the true system is
included in the model set. In Table I the selected model order,
classification if the models are linear or nonlinear, black-box or
gray-box, and how the model is fitted to the data, are presented.
The fit to the data for the different models and the ensemble of
NNs are seen in Table II. All the model have similar fit. This
is also seen in Fig. 2, where the prediction and prediction
error variance for the different models are plotted. Since
the fit is similar to the gray-box model magic tire formula,
this would indicate that all models are suitable to model the
relationship between the NTF and the wheel slip. The similarity
between the prediction error variance also highlight the close
connection between GPs, NNs, and Laplacian polynomials,
[33], [34]. This indicates the usefulness of the linearization
method to quantify the uncertainty in the prediction, since it
gives similar results as to a non-parametric model, Gps, which
natural includes a measure of uncertainty in the prediction.
Studying the prediction together with the prediction error
variance seen in Fig. 2a, Fig. 2c, and Fig. 2e, the results look
similar for the different methods to quantify the uncertainty in
the prediction presented. If instead only the prediction error
variance is studied, which is seen in Fig. 3, the linearization
method and ensemble approach produce similar result, while
the NN that learns its own uncertainty has problems to capture
the uncertainty in the model. This might be a consequence
of the high noise level of the data, where the NN learns the
variance of the noise rather than the variance of the model.

VII. CONCLUSION

In search for a way to quantify the uncertainty in the pre-
dictions produced by NN, the application of methods for
uncertainty estimation in system identification tools, has been
investigated. More precisely, the feasibility and challenges of
estimating the prediction error variance of the NN by lineariz-
ing the model and then propagating the uncertainty of the
learned model parameters to the output have been investigated.
The results show that, compared to existing methods based
upon creating ensembles of NNs or extending the NN structure
to also learn the uncertainty, the linearization method produces
similar results for the estimated prediction error variance.
The result also shows that NNs are suitable to model the tire-
road friction problem, this since they show similar results for
both the prediction, compared to a collection of other models.
The usefulness of the linearization method to quantified of
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Fig. 3: Prediction error variance for NNs using ensemble of models, the
linearization method, and an NN with learned uncertainty.

uncertainty in the prediction of NNs are further motivated by
the similarity of the prediction error variance, compared to
other models.

A challenge with the linearization method is that for a model
with a large number of parameters, the required inversion to
calculate the parameter covariance can be very computation-
ally costly. This is something that will be considered in our
future work.
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