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Abstract
One-step reinforcement learning explanation methods account for individual actions but fail to consider the agent’s future

behavior, which can make their interpretation ambiguous. We propose to address this limitation by providing hierarchical

goals as context for one-step explanations. By considering the current hierarchical goal as a context, one-step explanations

can be interpreted with higher certainty, as the agent’s future behavior is more predictable. We combine reward

decomposition with hierarchical reinforcement learning into a novel explainable reinforcement learning framework, which

yields more interpretable, goal-contextualized one-step explanations. With a qualitative analysis of one-step reward

decomposition explanations, we first show that their interpretability is indeed limited in scenarios with multiple, different

optimal policies—a characteristic shared by other one-step explanation methods. Then, we show that our framework retains

high interpretability in such cases, as the hierarchical goal can be considered as context for the explanation. To the best of

our knowledge, our work is the first to investigate hierarchical goals not as an explanation directly but as additional context

for one-step reinforcement learning explanations.

Keywords Reinforcement learning � Explainable AI � Reward decomposition � Hierarchical goals � Local explanations

1 Introduction

The black-box-like characteristics of neural networks [1]

and the increasing complexity of reinforcement learn-

ing (RL) agents [2] motivated numerous contributions in

the explainable artificial intelligence and explainable

reinforcement learning (XRL) fields [3–9]. However, by

explaining individual transitions, most of these methods

treat RL actions like isolated network decisions in super-

vised learning. Policy summarization methods [10–15], on

the other hand, only explain the policy’s overall strategy

but do not provide explanations for concrete transitions. On

their own, both of these approaches explain behavior only

partially, which is not satisfactory [16, 17]. Such incom-

plete explanations are prone to misinterpretation and do not

provide sufficient information to truly explain, validate and

debug RL agents, as user studies have shown [18–20].

More powerful XRL methods are needed to unify these

approaches and provide explanations for individual tran-

sitions while also considering the agent’s overall behavior,
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thereby explaining the agent on multiple levels of

abstraction.

In this paper, we propose an XRL method that unifies

one-step explanations and policy summarization by

extending one-step explanations with a context that cap-

tures the policy’s intermediate goals. We employ hierar-

chical reinforcement learning methods [21, 22] because

they can learn a sequence of hierarchical goals that solve

the overall RL problem. These hierarchical goals explicitly

reveal which intermediate targets the policy is pursuing and

hence can be exploited as context for local explanations,

increasing their interpretability. Thus, we propose to inte-

grate hierarchical RL and one-step XRL methods to thor-

oughly explain RL agents. Consider Fig. 1 for an

illustration of our approach.1

We demonstrate that one-step explanations inherently

depend on latent goals, even when no hierarchical archi-

tecture is employed. This implicit dependency on latent

goals makes the interpretation of one-step explanations

ambiguous when these goals are not directly observable.

We demonstrate how hierarchical goals can be used as a

context for one-step explanations to resolve their ambiguity

in non-hierarchical settings. We find a strong effect of

hierarchical goals on one-step explanations that yields

insights beyond what is conveyed by the goal directly. The

implication of our finding is that one-step RL explanations

cannot be accurately interpreted without consideration of

their context. This paper’s main contribution is a method to

obtain such a context, given slight adaptations of the

problem definition that allows for a goal-based hierarchical

partition.

2 Related work

Explainable artificial intelligence methods generally aim to

make the behavior of AI systems more understandable to

humans [4]. Unfortunately, important terms including

explainability and interpretability are only vaguely defined

in the explainable artificial intelligence field [8]. In this

paper, we use the definitions from Puiutta and Veith’s

survey on XRL [8]: An explanation is an artifact that gives

reasons for the occurrence of a phenomenon, while inter-

pretability refers to the degree to which that explanation

enables humans to predict the model’s behavior. For

example, the weights, biases, and activation functions of a

deep neural network could be considered an explanation

because this information directly determines the network’s

output. However, such an explanation would be uninter-

pretable because no human observer can predict the net-

work’s behavior from just the weights, biases, and

activation functions. In the following sections, we gener-

ally refer to the output artifacts of any XRL method as an

explanation and assess their different degrees of inter-

pretability only qualitatively. Lastly, explanations of con-

crete action selections (one-step explanations) are referred

to as local explanations, while global explanations aim to

explain the entire model-generated behavior. In these

terms, our work investigates the effect of hierarchical goals

on the interpretability of local RL explanations.

2.1 Hierarchical reinforcement learning

Hierarchical reinforcement learning provides an extension

to the classical RL problem that allows policies to operate

on multiple timescales. Sutton et al. [21] originally intro-

duced this extension in the Options framework to enable

the application of RL algorithms to complex scenarios that

require operations on different temporal scales and levels

of abstraction [23]. Based on the Options framework,

Kulkarni et al. [22] propose to use hierarchical RL for

efficient exploration in complex environments with sparse

reward signals. These methods, however, do not consider

hierarchical RL for explainability purposes, which is the

aim of our work.

Two previous works investigated hierarchical rein-

forcement learning for explainability. Beyret, -

Shafti, and Faisal [24] employ hierarchical reinforcement

learning to obtain an interpretable higher-level policy that

generates sub-goals for a lower-level policy. Shu, X-

iong, and Socher [25] annotated each sub-policy with

natural language labels, which results in explainable task

partitions. In both of these works, hierarchical RL and

hierarchical goals are directly used for explanation.

Although our approach is similar to [24], we propose to use

hierarchical goals as context for local explanation methods

and investigate the effect of hierarchical goals on local

explanations, instead of relying directly on hierarchical

reinforcement learning for explanations. Since hierarchical

RL is a central element of our method, we describe hier-

archical RL on a technical level in Sect. 3.2.

2.2 Local explanation methods

While local explanation methods offer a valid explanation

for the current action selection, most of these methods have

a drastic limitation because they disregard the agent’s

future behavior or only account for it implicitly (through

the recursiveness of the Bellman equations). For example,

saliency maps [6] are a popular local XRL

method [19, 26–29] that reveals which areas of the input

space cause the activations at the last layer of the policy

network, offering insight into what guided the action

selection. Intuitively, which part of the input is relevant for1 Code and data: https://github.com/frietz58/hdddqn.
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determining the best action depends on the agent’s future

behavior. For example, which pedestrians an autonomous

vehicle has to consider at an intersection depends on its

direction of travel. However, saliency maps do not take this

information into account, which limits their explanation

capabilities [18, 20, 30].

While saliency methods fully neglect the agent’s future

behavior, we also find that other local explanation methods

account for it only implicitly. For example, in [31, 32] the

authors provide local explanations by considering expected

future states. In [33], action consequences are captured

through forward-simulation on a learned environment

model. Even though these methods consider the policy’s

behavior in future states, we argue that hierarchical goals

would increase the interpretability of such methods as well.

Considering again the autonomous navigation case, even

when an explanation based on forward-simulation indicates

no collision, we must still verify whether this explanation

is indeed acceptable or whether intervention is required,

considering the agent’s heading.

Our work is also similar to Huber et al. [34], who pro-

pose the joint employment of local and global XRL

methods by extending policy summaries with local sal-

iency map explanations. We instead investigate how hier-

archical goals can be used to extend and contextualize local

reward decomposition explanations. In the next section, we

introduce reward decomposition as the concrete local

explanation method through which we investigate the

effect of hierarchical goals on interpretability.

2.3 Reward decomposition for interpretability

Russell and Zimdars [35] introduce reward decomposition

as an extension to the classical RL framework, where a

number of sub-agents each provide different state-action

values, accounting for smaller and different aspects of the

overall problem. For example, consider a robotic agent that

shall navigate to an arbitrary location in a dynamic envi-

ronment. The agent has access to a static map of its envi-

ronment, but this map does not contain dynamic obstacles,

e.g. humans or lightweight furniture. This problem can be

decomposed into two simpler problems: Navigating on the

static map and dynamic obstacle avoidance based on sensor

data, with one reward function for each problem. Reward

decomposition allows the definition of multiple reward

component functions, one for each sub-problem.

Juozapaitis et al. [36] propose to use reward decompo-

sition for more interpretable RL and introduce the drQ

algorithm, based on the intuition that a decomposed value

function is more interpretable than a non-decomposed one.

Although reward decomposition explanations result in

significantly better mental models compared to solely

observing agent behavior [37], reward decomposition

produces one-step explanations and thus shares the previ-

ously mentioned limitation of local explanation methods.

Thus, we propose hierarchical RL as an extension to

reward decomposition and analyze the effect of hierarchi-

cal goals on the interpretability of local reward decompo-

sition explanations. We describe reward decomposition on

a technical level in Sect. 3.3.

3 Method

In this section, we describe how our method uses hierar-

chical goals to contextualize local explanations. We begin

by establishing the classical RL problem formulation

through a Markov Decision Process (MDP), then extend

the MDP to a Semi-MDP to allow for hierarchical RL. We

describe reward decomposition on a technical level and

lastly describe how hierarchical RL and reward decompo-

sition can be merged into a hierarchical XRL framework.

3.1 Reinforcement learning

Reinforcement learning is a computational framework for

learning solutions to sequential decision-making problems,

in which an agent interacts with an environment to maxi-

mize reward through trial-and-error search. The formal

framework for sequential decision-making problems is a

finite, fully observable, discrete-time MDP given by the 5-

tuple ðS;A; T ;R; cÞ, where S is the state space, A is the

smt =

πmGoal q

. . .

Goal p

sat =

Obstacle
+

Navigation
=

Overall

πa

Fig. 1 Our hierarchical and locally explainable framework. The meta-

controller pm selects exemplary goals q or p for the state smt . The

atomic-controller pa learns to satisfy different goals, which are part of

sat . The atomic-controller is locally explainable because it employs

reward decomposition based on an obstacle and navigation compo-

nent. The local explanations are contextualized by and can be

interpreted with respect to the current goal
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action space, T : S �A� S ! ½0; 1� is the probabilistic

transition function, R : S �A� S ! R is the reward

function, and c 2 ½0; 1� is a discount factor. S also contains

terminal states which end an episode when the agent

reaches those states. At any point in time t, the agent

perceives the current state st 2 S of the MDP and selects

the action at 2 A for the given state, according to its policy

pðsÞ : S ! A. Upon execution of the action, the MDP

transitions to the next state stþ1 based on its transition

function Tðst; at; stþ1Þ and emits the reward

Rðst; at; stþ1Þ ¼ rt, corresponding to the desirability of the

transition ðst; at; stþ1Þ, which numerically quantifies the

cost or bonus of action at in st. The discounted return Gt of

a policy p is defined as the discounted sum of future

rewards Gp
t ¼

P1
k¼0 c

k
t rtþkþ1 when following policy p from

time t. Generally, the goal of RL is to find an optimal

policy p� that maximizes the expected discounted return.

While some methods learn policies directly [38, 39],

value-based RL methods instead construct policies based

on value functions. The state-action value function Q :

S �A! R of a policy p gives the value for taking action

a in state s, thereafter following p:

Qpðs;aÞ¼Ep Gtjst¼s;at¼a½ �

¼
X

s0
Tðs0js;aÞ Rðs;a;s0Þþc

X

a0
pða0js0ÞQpðs0;a0Þ

" #

ð1Þ

Thus, learning an estimate Q function for the optimal

policy p� enables the agent to always take the action with

the highest value, which is the central idea behind the Q-

learning algorithm [40]. Q-learning is a form of temporal-

difference learning and employs the following update rule

to estimate the Q-function of an optimal policy:

Qðst; atÞ  Qðst; atÞ þ a rt þ c max
a0

Qðstþ1; a
0Þ � Qðst; atÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
temporal�difference error

ð2Þ

Of particular relevance for this paper is Mnih et al.’s [41]

DQN algorithm, which employs deep neural networks to

learn an approximation of Q and provides the algorithmic

basis for our method. In the next two sections, we elaborate

on extensions to DQN that we ultimately combine into our

hierarchical XRL framework.

3.2 Hierarchical reinforcement learning
with goals

Hierarchical reinforcement learning provides an extension

to the classical RL problem by introducing multiple time-

scales into the framework, allowing policies to operate on

different levels of abstraction. In such a framework, higher-

level policies can learn a sequence of intermediate task

goals, while lower-level policies learn to satisfy different

goals. Based on this concept, Kulkarni et al. [22] propose

hierarchical-DQN (h-DQN), extending Mnih et al.’s [41]

DQN algorithm with hierarchical goals and policies, to

boost exploration in complex environments with sparse

rewards. In h-DQN, the higher-level policy is represented

by a DQN, whose action space is a set of goals g 2 G.

These goals are passed to a lower-level DQN, by con-

catenating the goal to the MDP’s state representation, so

that a lower-level DQN learns to implement different

behaviors, depending on the goal. Thus, the state repre-

sentation for the lower level policy is extended by addi-

tional dimensions for the hierarchical goal, so that

st ¼ ½st; gt�. Both the higher- and lower-level DQNs are

updated according to Eq. 2, where the lower-level transi-

tions are implicitly depending on the goal as part of the

state, while the higher-level transitions are generated at a

slower timescale.

Importantly, implementing h-DQN requires the defini-

tion of multiple reward functions, one for each level of the

hierarchy. The agent’s overall goal is to maximize the

(global) reward at the highest level of the hierarchy, while

an intrinsic reward function Rðst; at; stþ1; gÞ ¼ rgt 2 R is

used to provide goal-dependent rewards for implementing

the lower-level behaviors. Although h-DQN requires

additional, manual design steps to transform the original

problem into a hierarchical one, these steps are worthwhile

for explanation purposes because they unlock goals as

context for local explanations. Intuitively, the benefits that

hierarchical RL affords in terms of providing a global

context are independent of the choice of local XRL method

and we assume that different XRL methods can be exten-

ded with hierarchical, goal-based context mechanisms. The

other way around, existing hierarchical agents could be

extended with local explanation methods to obtain more

interpretable agents, which motivates investigating this

approach. The key attribute of hierarchical RL is that

lower-level policies depend on explicit goals, which can be

exploited for increased interpretability, either directly (as

in [24, 25]) or, as we propose, as context for local

explanations.

3.3 Reinforcement learning with reward
decomposition

Reward decomposition provides another extension to the

classical RL problem that decomposes the reward function

R into a number C 2 N of smaller and simpler functions.

Then, individual agents can be trained to maximize each

individual reward function Rc; 0� c\C that accounts for a
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certain aspect of the overall reward function. The overall

reward function Rþ is obtained from the sum of the indi-

vidual reward functions such that

Rþðs; aÞ ¼
PC

c¼0 Rcðs; aÞ. Russell and Zimdars [35] prove

that it is possible to train individual RL agents on the

individual reward functions Rc so that the summed action-

value function yields globally optimal behavior. Juoza-

paitis et al. [36] exploit this idea for interpretability and

propose drQ, which uses a vector-valued reward function

R : S� A 7!RC, that stores the C decomposed reward

functions. Then, dedicated action-value functions Qcðs; aÞ
can be learned for each decomposed reward function Rc.

The global policy pþ, that selects actions to solve the

overall problem, is implicitly defined by

Qþp ðs; aÞ ¼
PC

c¼0 Qcðs; aÞ. As pointed out by Rus-

sell and Zimdars [35], the updates of the component value

functions Qc must reflect the global policy pþ because

otherwise the components maximize their local reward

functions Rcðst; at; stþ1Þ and their sum is not guaranteed to

yield globally optimal behavior, a phenomenon referred to

as tragedy of the commons. To account for this, drQ

bootstraps the action aþ, which the global policy would

select for the next state stþ1 by

aþ ¼ arg max a0
PC

c¼0 Qcðstþ1; a
0Þ, when calculating the

TD-error. The update rule for drQ’s component Q-func-

tions is almost identical to the Q-learning update rule in

Eq. 2, except the action for stþ1 is changed to the boot-

strapped action aþ of the global policy:

Qcðst; atÞ  Qcðst; atÞ þ a rct þ c Qcðstþ1; a
þÞ � Qcðst; atÞ

� �

ð3Þ

Juozapaitis et al. [36] define the Reward Difference

Explanation (RDX) as explanation metric. The RDX is

simply the vectorized value difference between two actions

and is given by Dðs; a1; a2ÞC ¼ QCðs; a1Þ �QCðs; a2Þ. The

resulting vector contains positive or negative quantities that

represent advantages or disadvantages of action a1 over a2

in state s, explaining the action selection in terms of trade-

offs between the decomposed Q-functions. In our follow-

ing analysis, we consider the decomposed Q-values and the

RDX as explanations. Figure 4 provides examples for both.

In the next section, we show how to merge reward

decomposition and hierarchical RL to obtain more inter-

pretable, goal contextualized local explanations.

3.4 Our hierarchical XRL framework

Our framework extends local drQ explanations with a

hierarchical context, for increased interpretability. Fol-

lowing h-DQN, we employ a two-level hierarchy, where a

higher-level DQN agent learns a sequence of goals that

solve the task, while a lower-level DQN agent learns to

satisfy the different goals. We refer to the higher-level

agent as meta-controller pm and the lower-level agent as

atomic-controller pa, since the former learns the task at a

meta-level, while the latter implements atomic control

actions.

To integrate reward decomposition via drQ into h-DQN,

the meta- and atomic-controller are vertically decomposed,

meaning each controller is obtained by joining multiple

decomposed DQNs, according to drQ. Thus, at the atomic

level, instead of training one agent, we train a number

Ca 2 N of agents, each still depending on the goals g

selected by the meta-controller. For example, Qa
cðs; a; gÞ

refers to the c-th component on the atomic level and learns

the state-action values for the reward signal

Rcðst; at; stþ1; gÞ ¼ rgc;t. The combined atomic-controller is

obtained by summing up the local Q-functions on the

atomic level Qa
þ ¼

PCa

c¼0 Q
a
cðs; a; gÞ. Analogously, on the

meta-level, we have a number Cm 2 N of DQNs, one for

each reward component on that level and their sum pro-

vides the overall meta-controller.

We only extend drQ by integrating hierarchical goals

into the framework, which are part of the atomic-con-

troller’s state representation. Hierarchical goals remain

fixed for each rollout of the atomic-controller and only ever

change after the end of an atomic rollout and before the

next one starts. Thus, the hierarchical goal can be thought

of as a fixed index for a larger MDP during each atomic

rollout. This index allows drQ to learn different policies for

different values of the hierarchical goal, which is also

illustrated in Fig. 1. Thus, our method simply learns many

local drQ policies, and the convergence properties of drQ

directly apply to our method. In practice, we apply a

number of well-established methods to facilitate learning

and stabilize convergence when training the above-men-

tioned DQNs. Firstly, we pretrain the atomic-controller

with random goals before training the meta-controller, as

suggested by Kulkarni et al. [22]. Furthermore, we employ

target networks and experience replay when optimizing the

individual DQNs through stochastic gradient descent, as

described by Mnih et al. [41]. Lastly, we employ priori-

tized experience replay [42] for faster learning and double

DQN [43] to combat the typical overestimation in Q-

learning and DQN. Through this jointly hierarchical and

decomposed architecture, each action selected by the

atomic-controller can be explained locally through vertical

reward decomposition, while that local explanation is

contextualized by the currently given hierarchical goal g.
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4 Experiments

With our experiments, we investigate and compare the

interpretability of goal-contextualized local explanations

with the interpretability of local explanations that do not

have such a context. We hypothesize that a goal-based

context increases the interpretability of local explanations.

To evaluate our hypothesis, we train a classical and a

hierarchically extended drQ agent so that we can qualita-

tively analyze and compare the interpretability of the two

agents.

We illustrate our approach on a simple 2D navigation

environment with a discrete action space. The agent has to

reach two specific locations to successfully terminate the

episode while avoiding a static obstacle. Episodes end

when both locations have been visited or a number of time

steps is exceeded. The order in which the agent visits the

two locations does not matter, while close proximity with

the obstacle yields increasingly negative rewards. The

obstacle is mainly relevant for driving to the left side and

largely irrelevant for driving to the right side, depending on

the current position of the agent. To train a classical (flat,

non-hierarchical) drQ agent and a jointly hierarchical and

decomposed agent (our method), the environment features

two slightly different versions that account for the differ-

ences between these two agents, which we describe in the

following.

4.1 Non-hierarchical testbed

To solve the environment outline above, for the non-hier-

archical agent, the state has 10 dimensions and is given by

st ¼
h
i; j; a; o; l; r

i
; ð4Þ

where i and j are binary indicator variables that switch from

0 to 1 once the agent was within a threshold distance of

d ¼ 0:4m of the respective target location, while a; o; l, and

r are the absolute 2D positions of the agent, the obstacle,

and the left and right target locations. States in which i ¼ 1

and j ¼ 1 are terminal states. From this state representa-

tion, the non-hierarchical policy maps to a discrete action

space of positional increments, which correspond to taking

0.25 m steps in the directions North, South, East, or West

in a 12 m �12 m arena. Although non-hierarchical, we are

still training a reward-decomposed agent, thus we define

several reward functions. In line with our example in

Sect. 2.3, the first component R0 : R10 ! R rewards the

agent for decreasing the distance between the two target

locations and is given by

R0ðstþ1Þ ¼ �10� ð1� iÞjja� ljj � ð1� jÞjja� rjj; ð5Þ

where jj. . .jj represents vector magnitude. R0 only depends

on stþ1 (instead of the entire transition) because stþ1 gives

access to all symbols required to calculate the reward for

the transition ðst; at; stþ1Þ. Under R0, the agent loses reward

for each target location that has not yet been visited, pro-

portional to the distance to that location. We add �10 as a

constant cost so that an optimal agent should finish the

episode with as few steps as possible, at the same time

balancing the magnitude of reward component R0 with

respect to the second reward component R1. The second

reward component R1 : R10 ! R punishes the agent for

being in close proximity of the obstacle and is given by

R1ðstþ1Þ ¼ �20
1

2pr2
exp �1

ða� oÞ2

2r2

 !

; ð6Þ

which is a 2D normal distribution with constant standard

deviation r, for which we calculate the density at a� o,

which is scaled by 20. This reward decomposition yields

local explanations which reveal how the chosen compo-

nents (R0 and R1) contribute to the policy’s action selec-

tion, for example, when the obstacle has a strong effect. In

accordance with drQ, the overall reward signal at time t

corresponds to rt ¼ ðR0ðstþ1Þ;R1ðstþ1ÞÞT , depending on the

transition ðst; at; stþ1Þ of the MDP.

4.2 Hierarchical environment adaptation

To obtain goals that are informative with respect to the

local explanation, we manually select a domain-dependent

hierarchy, for which we design the state- and action spaces.

For our simple 2D navigation environment, we select a

hierarchical task partition that yields intermediate naviga-

tion goals. These goals provide an informative context for

local explanations because they reveal the target coordinate

to which the agent will attempt to navigate.

For the meta-controller, we define the action space as

discrete indices to a 2D, 11� 11 grid of the environment,

with amt 2 f0; 1; . . .; 120g: The 2D coordinate indexed by

amt is the hierarchical goal gt that is used in the atomic-

controller and as context for local explanations in the fol-

lowing sections. To determine amt , the meta-controller uses

the same state representation as outlined in the previous

section, so that smt ¼ st. The reward function for the meta-

controller is scalar-valued with

Rmðsmtþ1Þ ¼

�10; if jja� gtjj[ d

�4; if jja� gtjj\d

þ2; if jja� ljj ^ i ¼ 0

þ2; if jja� rjj ^ j ¼ 0

þ10; if i ¼ 1 ^ j ¼ 1;

8
>>>>>><

>>>>>>:

ð7Þ

where d ¼ 0:4 is a distance threshold scalar. Thus, the

meta-controller is guided to select navigation goals that the
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atomic-controller can reach (within 10 steps), and that

causes the agent to visit the two target locations. Given the

meta-controller that selects goals, the atomic-controller’s

task is to drive to those goals. For this and following h-

DQN, the state representation for the atomic-controller is

obtained by concatenating the hierarchical goal to the state

representation of the meta-controller, so that sat ¼ ½smt ; gt�.
We point out that other variables of the atomic controller’s

state can act as confounding factors with respect to the

hierarchical goal and the atomic policy. The action space

for the atomic-controller is identical to that of the non-

hierarchical agent in the previous section, meaning it still

selects small positional increments. For the atomic-con-

troller, the reward decomposition is conceptually the same

as for the non-hierarchical agent, except Eq. 5 changes to

Ra
0ðstþ1Þ ¼ �10� jja� gjj; ð8Þ

as the atomic-controller is only concerned with satisfying

the hierarchical goal given by the meta-controller, while

the meta-controller must learn to select goals that solve the

overall task modeled by the environment. The overall

reward signal for the atomic-controller is given by

rat ¼ ðRa
0ðstþ1Þ;R1ðstþ1ÞÞT , depending on the transition

ðst; at; stþ1; gtÞ of the MDP.

To summarize, our hierarchical environment version

features state and action spaces for a two-level hierarchical

agent, where the higher-level policy selects 2D navigation

goals to reach terminal states, while the lower-level policy

learns to drive to goals given by the higher-level policy.

Additionally, the lower-level policy is reward-decomposed

so that its action selections are locally explainable, while

the hierarchical goal gt provides a context for those local

reward decomposition explanations. Images of the envi-

ronment are provided in Fig. 2.

4.3 Results

We trained a classical and a hierarchically extended drQ

agent on the respective environment versions in Sects. 4.1

and 4.2 until both reached a running success rate of 100%.

We then compared and qualitatively analyzed the inter-

pretability of these agents, which, as shown in the

following sections, revealed two core results. Firstly, we

found that purely local (one-step) explanations were

insufficient to explain RL agents because they failed to

account for the context of action selections. Secondly, we

found that hierarchical goals could resolve this issue by

providing an explicit context for the local explanation. In

addition, we discuss properties of value functions that have

problematic implications for value-based XRL methods.

4.3.1 One-step explanations are ambiguous

We argue that local one-step explanations, in the form of

decomposed Q-values, do not provide sufficient informa-

tion to evaluate or interpret RL agents because they do not

consider the agent’s future behavior. To illustrate this, we

place the non-hierarchical drQ agent in the state of the

environment shown in Fig. 2a. In this state, the agent is

located at exactly the center of the arena, while both

indicator variables i and j are zero, meaning both of the

target locations must still be visited to successfully termi-

nate the episode.

Given the agent is perfectly centered between the two

target locations, an optimal policy should not have a clear

preference for either side to drive to first. Indeed, the

decomposed values in Fig. 3a only feature a marginal

preference for driving East instead of West, with very low

values under the obstacle component. However, the

important thing to note is that the local explanation in

Fig. 3a only accounts for the current transition, we cannot

draw any conclusions regarding the agent’s future behav-

ior, which makes the interpretation of the explanation

ambiguous. For example, we might assume that the agent

will continue to drive east until it reaches the right target,

which is why we see very low activations under the

obstacle component. Without explicit knowledge about the

agent’s future behavior, however, we might also assume

that, after taking one step away from the obstacle, the agent

will drive to the left side. And if the agent would drive to

the left side, should the obstacle not be more relevant for

selecting the current action? When it is unclear how the

chical goal. cal goal.
(a)State without hierar- (b)State with hierarchi- (c) State with different

hierarchical goal.

Fig. 2 Cropped views of our simple 2D navigation environment. The

green squares represent the locations the agent must visit. The orange

circle represents the obstacle that must be avoided. If present, the

magenta diamond represents the hierarchical goal selected by the

meta-controller (Color figure online)

Q-values with high
navigation values and low obstacle val-
ues in the initial state with i, j = [0, 0].

(a) Decomposed (b) Decomposed Q-values with lower
navigation values and higher obstacle
values with i, j = [0, 1].

Fig. 3 Decomposed Q-values for the non-hierarchical agent and state

in Fig. 2a
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agent behaves in the near future and in close proximity of

an obstacle, a human observer cannot infer whether inter-

vention is required.

To underline this further, consider the decomposition in

Fig. 3b, which is obtained by setting the state variable j ¼
1 (which indicates that the right side was already visited).

Directly editing the state is not suitable in real systems and

at runtime, but acceptable for illustration purposes in this

example. The action-values under the obstacle component

in Fig. 3b are noticeably higher than in Fig. 3a, which

shows that the local explanation is, in fact, different

depending on which side was already visited. Even when

we assume that the agent will behave optimally and drive

to the left side to complete the task, it remains impossible

to interpret from the local explanation why the agent is

selecting South over North or West. Thus, without having

access to a goal-like context, local one-step explanations

are prone to be misinterpreted even by domain experts,

especially considering human (confirmation) biases and

often unexpected but valid behaviors emitted by artificial

agents.

Of course, in a simulated setting, we can simply con-

tinue the roll-out and solidify our understanding of the

agent. However, this is not an option in real-world,

potentially safety-critical scenarios where we must be able

to intervene before observing the consequences for not

intervening. Thus, as this example illustrates, local reward

decomposition explanations can be ambiguous because

they do not consider the agent’s long-term behavior. This

observation motivates us to consider a mechanism that

reveals the agent’s future behavior and provides a context

for the interpretation of local explanations.

4.3.2 Hierarchical goals contextualize local explanations

In this section, we demonstrate that hierarchical goals can

provide an informative context for local explanations that

addresses the limitation outlined in the previous sec-

tion. Consider the environment states in Fig. 2b and c,

where the only difference between the two states is the

location of the hierarchical goal. Contrary to the state

representation of the non-hierarchical agent in Fig. 2a, we

now have explicit knowledge about the navigational goal

given by the meta-controller. Even without consideration

of additional local explanations, we can already see how

knowledge about the hierarchical goal improves the agent’s

interpretability, as we know explicitly where the agent

attempts to navigate to. However, we argue that hierar-

chical goals alone are not sufficient explanations either, as

they do not explain concrete action selections but only

provide a general context.

For the two states in Fig. 2b and c, we obtain the

respective decomposed Q-values shown in Fig. 4, where

largely different Q-value decompositions are obtained and

explained by the varying hierarchical goal. Where, in the

case of the non-hierarchical agent, we had to form vague

hypotheses about the agent’s future behavior, now, our

hierarchical framework directly provides the necessary

information to interpret a given explanation. The context

that the goal provides resolves the ambiguity in the

obtained local explanation and allows us to determine

whether the explanation is acceptable for a trained agent.

For example, when the obstacle lies between the agent and

the hierarchical goal, we expect the obstacle to affect the

agent’s behavior, which thus must be reflected in the

explanation. Whereas, when the obstacle does not lie

between the agent and the goal, the obstacle component

should not affect the action selection. Indeed, such a

characteristic is reflected in the explanations in Fig. 4. In

Fig. 4a, action South has the highest value not because it

brings the agent closer to the goal but because it avoids the

larger punishments for driving closer to the obstacle, which

is underlined by the RDX plot in Fig. 4c. In Fig. 4b, on the

other hand, the action East has the highest value, inde-

pendently of the values under the obstacle component, as

the obstacle does not lie between the agent and the goal.

This is underlined in the RDX plot in Fig. 4d, which shows

that the advantage action South has over action East under

the obstacle component does not outweigh the disadvan-

tage of South over East under the navigation component.

As this example shows, different predictions and explana-

tions can occur depending on the hierarchical goal which,

reversely, implies that local explanations are likely to be

misinterpreted without an explicit context that indicates the

agent’s future behavior.

Thus, the context that hierarchical goals provide is

clearly beneficial for local explanations, as it allows us to

interpret the given explanation with respect to the current

hierarchical goal. While some environments might have

(a) Decomposed Q-values for state and
meta goal in Figure 2b.

(b)Decomposed Q-values for state and
meta goal in Figure 2c.

(c)RDX plot for Q-values in Figure 4a. (d)RDX plot for Q-values in Figure 4b.

Fig. 4 Different Q-value decompositions and respective RDX plots

depending on the hierarchical goal
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such small sets of optimal policies that the goal is

implicitly apparent for every optimal policy (e.g. Cartpole,

where the pole must always be in an upright orientation),

whenever multiple optimal policies are equally valid (e.g.

which side to visit first in our environment) this must be

accounted for by explanation methods. Our method is one

possible way to maintain the interpretability of local

explanations given environments with multiple different

optimal policies.

But our approach of exploiting hierarchical goals for

improved interpretability still has a limitation: It is predi-

cated on the choice of a task hierarchy. As such, the main

insight that is conveyed through the hierarchical goal is

predicated on this choice as well. For example, for our 2D-

navigation environment, we chose a hierarchy that seg-

ments the episode into intermediate coordinates, which is

thus the main information that is obtained from the hier-

archical goal. However, our method yields insights beyond

just the hierarchical goal because we also have access to

local explanations and can capture the effect of different

goals on the explanation. As we illustrated earlier, when

reward decomposition is employed as explanation method,

the goal also reveals the differences between local policies

and the trade-off these policies make when satisfying dif-

ferent goals.

4.3.3 Value-based explanations are flawed

In this section, we outline fundamental flaws of value-

based explanation methods, including reward decomposi-

tion. The key problem regarding the interpretation of

value-based explanations is that they reflect the expected

return of some (unknown) policy. The interpretation of

value-based explanations only makes sense when we

assume an optimal policy as otherwise the set of non-op-

timal policies that could generate the values in the expla-

nation is near-limitless. For example, when the obstacle

lies between the agent and the current goal, we might

observe only very small activations under the obstacle

component because the agent did not yet learn the negative

rewards in close proximity of the obstacle. But it is also

possible that the agent already learned to evade the

obstacle perfectly and thus avoids the punishment alto-

gether. Hence, the interpretation of value-based explana-

tion strongly depends on the assumptions we impose on the

policy (e.g. optimality). However, even when we assume

an optimal policy, we do not know the value function for

that optimal policy, hence it is difficult to access whether

the value-based explanation is appropriate for the given

state and the hierarchical goal.

The relation between the value-based explanation and

the associated policy can also be observed in Fig. 4. The

value of action East under the obstacle component is ten

times greater in Fig. 4a than in Fig. 4b, which might appear

unintuitive at first, given that the action puts the agent in

exactly the same position in both cases. The reason for this

value difference is that the optimal policy for the two goals

is different, hence the values are different. When we

interpret the explanations in Fig. 4 we assume that the

agent will behave optimally with respect to the different

goals, in which case the different explanations seem

adequate.

Additionally, it is well known that policies converge

faster than value functions ([23], page 82). Thus, even if

the policy achieves a 100% success rate, its value function

might still contain exploration artifacts, see Fig. 5. We

could have stopped the training at any point in time where

the meta-controller’s success was satisfactory and (espe-

cially in the second half of training) might have gotten very

unexpected explanations from the atomic-controller, based

on the volatile value function.

Thus, RL value-functions are poor candidates for

explanations because they are associated with an unknown

policy. Our method is not intended to fix these issues,

although hierarchical goals partition the trajectory in

smaller segments with local value functions that have

expectations over shorter horizons which often have clear

optimal policies. Although the relationship between poli-

cies and value functions is a basic, well-understood prop-

erty, related work fails to point out the implications of this

attribute for XRL. Independent of this, our finding that

hierarchical goals can provide an important context for

local RL explanations still holds true.

5 Conclusion

We propose to use hierarchical goals as context for local

explanations for increased interpretability. We developed a

jointly hierarchical and decomposed RL framework that

allows us to interpret local reward decomposition expla-

nations in the broader context of hierarchical goals, which

DQN.
(a)Convergence of the meta-controller (b)Atomic decomposed value function for

obstacle avoidance remains volatile after
policy converged.

Fig. 5 Convergence behavior of policy compared to value function.

Value estimations of the atomic-controller for states S0 to S5 keep on

changing drastically long after the meta-controller converged to

almost 100% success
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are obtained from a higher-level policy. Our experiments

show that local explanation methods, which only explain

one-step decisions, are ambiguous and potentially mis-

leading in environments that have multiple valid solutions.

However, we also find that this shortcoming of local

explanations can be mitigated by hierarchical goals

because they resolve the ambiguity of local explanations by

revealing which goal the agent is currently satisfying. This

makes hierarchical goals (or other context-like mecha-

nisms) a strictly necessary extension for local explanation

methods when the environment features multiple different

optimal policies. Lastly, we highlight significant flaws of

value-based explanations for RL agents that have strong

implications for the field.

We did not conduct an empirical evaluation of the level

of interpretability of goal-contextualized local explanations

in this paper and leave a user-study as the most important

future work. A user study should validate that the goal

context is beneficial for human observers to interpret the

agent, especially for an industrial-level robustness and

safety analysis. Additional future research could investi-

gate approaches for learning the hierarchy and reward

decomposition since, in this work, we relied on a hand-

crafted hierarchy as well as a handcrafted reward

decomposition.
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