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Abstract—Robust and highly accurate position estimation in
underground mines is investigated by considering a vehicle
equipped with 2D laser scanners. A survey of available methods
to process data from such sensors is performed with focus
on feature extraction methods. Pros and cons of the usage
of different methods for the positioning application with 2D
laser data are highlighted, and suitable methods are identified.
Three state-of-the-art feature extraction methods are adapted
to the scenario of positioning in a predefined map and the
methods are evaluated through experiments conducted in a
simulated underground mine environment. Results indicate that
feature extraction methods perform in parity with the method
of matching each ray individually to the map, and better than
the point cloud scan matching method of a pure ICP, assuming
a highly accurate map is available. Furthermore, experiments
show that feature extraction methods more robustly handle
imperfections or regions of errors in the map by automatically
disregarding these regions.

Note to Practitioners: Robust positioning in GNSS denied
environments is a complex and real problem experienced
by practitioners in many fields. The focus of this paper is
underground mining; however, the findings and discussions
have bearing on many other applications where reliable GNSS
is unavailable and lidar is used for positioning in unstructured
environments. An important take home message, of interest in
any application with dynamically changing environments, is
that by using feature extraction map errors are automatically
handled as features are simply not matched in erroneous
regions. The experiments in this paper are performed with a
realistic laser simulation model trained on real data; hence the
gap between simulation and reality is relatively small ensuring
the results are relevant for practical purposes. In general,
the feature extraction methods are sensitive to the parameter
settings, and would have to be properly tuned for the specific
application. Furthermore, the computational complexity, which
is only mentioned briefly in this paper, varies a lot between the
methods and has to be investigated further to ensure meeting
real-time requirements. Since the feature extraction methods
robustly handle errors in the map, future research will explore
how this can be used to enable automatic updates of the map.

Index Terms—underground positioning, 2D lidar, feature ex-
traction, position estimation, scan matching, data association

This work was partially supported by the Wallenberg AI, Autonomous
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Wallenberg Foundation.

I. INTRODUCTION

Estimation of the position of a mobile platform is an impor-
tant part of many autonomous systems, which is specifically
targeted as a challenge for the underground mining industry
[1]. In an underground mine there is no coverage from global
navigation satellite systems (GNSS) and the dynamic and
harsh environment demands as little infrastructure as possible.
A self contained localization system is therefore preferred [2].

Existing commercial autonomous mine vehicles are
equipped with 2D lidars, odometry and inertial measurement
units (IMUs) [2-5], and fuses the information from the dif-
ferent data sources by filtering algorithms to determine the
position of the vehicle in a map. Matching all laser rays from a
lidar scan individually to a predefined map is computationally
expensive, and methods for selecting sub-sets of available
rays without losing estimation precision are developed in [6].
However, these methods are sensitive to outliers in the data and
imperfections in the map. Alternatively, direct scan matching
algorithms that seek a transformation which aligns two point
clouds can be used. For this the iterative closest point (ICP)
algorithm is the de-facto standard and many variations have
been developed [7].

The computer vision community has successfully built an
arsenal of feature extraction methods for exactly the purpose
of getting robust data associations in noisy data with low
computational effort [8]. Inspired by this, feature extraction
methods specifically adapted to 2D laser data have been
developed in the last decades [9-11], which are also proved
to perform well in clean indoor environments.

The feature extraction procedure consists of first detecting
interest points, also known as keypoints, in the sensor data.
Secondly, computing a distinctive signature for each of them,
called a descriptor. A keypoint is ideally viewpoint invariant,
repeatable, and descriptive over the region of detection. The
descriptor is usually a vector encoding the neighborhood of
the keypoint enabling more robust matching among points
acquired from different viewpoints, with different sensor noise,
which might also be affected by occlusion. Incorporating the
feature extraction procedure into the positioning problem gives
the workflow of a measurement update, as depicted in Fig. 1,
starting with the input sensor data, resulting in a position
estimate of the moving object.

This paper investigates how available feature extraction
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Fig. 1. The work-flow when a feature extraction method is used for
positioning. A detector searches the input sensor data for keypoints, and a
descriptor computes a distinctive signature for each of them. The descriptors
are used in the data association step to enable more robust correspondence
matching when data is acquired from different viewpoints.

methods can improve the robustness of an underground posi-
tion estimate, in comparison to process each lidar ray individ-
ually, or to direct scan matching algorithms. The contributions
are the following:

o A survey of available feature extraction methods suitable
for 2D laser data. The survey is focused on the detection
of keypoints, which is identified as the most crucial step
for state estimation performance.

o Three selected feature extraction methods are adapted to
fit the problem of positioning in a predefined map. Also
evaluation metrics are adapted to this scenario to enable
fair comparison of feature detectors.

o Estimation experiments conducted in a simulated mine
environment that show that feature extraction methods
perform on a par with the method of matching each
ray individually and better than ICP assuming a good
map. However, feature extraction methods are much more
robust to errors in the map.

The structure of this paper follows the work-flow of feature
based position estimation, see Fig. 1. In Sec. II, the type
of sensor data is presented. Available feature detectors and
descriptors are presented in Sec. III and IV, respectively. How
correspondences between identified keypoints can be found is
discussed in Sec. V, followed by a systematic evaluation of
(for this application) suitable feature detectors and descriptors
in Sec. VI. Sec. VII presents how position estimates can be
obtained utilizing feature extraction methods in the context
of a predefined map and Sec. VIII contains an experimental
evaluation of the complete work-flow. Finally, concluding
remarks are given in Sec. IX.

II. SENSOR DATA

The sensor data considered in this paper is from 2D lidars,
which can easily be converted to point clouds. Often when a
point cloud is considered it is assumed to be compact, dense,
and, in many cases, 3D point cloud [14], see Fig. 2 for an
example. A point cloud produced by a 2D lidar contains much

Fig. 2. 3D point cloud produced by a RGB-D (Kinect-style) camera, showing
a scene containing furnitures. [12]

less information and is very sparse in comparison to a 3D point
cloud. The point cloud is, at least approximatively, describing
a 2D plane, and depending on the environment the data is
more or less scattered.

2D range datasets suitable for feature extraction purposes
are presented in [9] and later used in [10, 11]. The datasets
are either from indoor environments with well-defined (often
90°) corners connecting structured walls with smooth surfaces,
as in Fig. 3(a) which is a snap-shot from the Inrel-dataset.
Or, the datasets are from open outdoor environments without
continuous walls resulting in scattered points with lots of
no-return measurements in between, as in the Victoria park-
dataset, shown in Fig. 3(b).

A point cloud produced by a 2D lidar in an underground
mine is provided in Fig. 3(c), with a map of the operation
area overlaid. The corners are not as well-defined as in the
indoor dataset and the surfaces of the walls are not smooth,
yet they are continuous. This distinguishes the underground
mine environment from the typical indoor- as well as outdoor-
scenario. As seen in the figures, the characteristics of measure-
ment outliers and no-return data, follows the indoor datasets,
while the scale of the operation area (a couple of 100 m) have
more in common with the outdoor environment.

III. DETECTORS

Detectors and descriptors are typically presented in pairs as
complete feature extraction methods. However, it is in general
possible to use any detector in combination with any arbitrarily
chosen descriptor, since a detector merely finds points of
interest in the data [8]. Therefore, the detectors and descriptors
are here presented separately. It should though be noted that
it might be more computationally efficient to use a specific
detector-descriptor pair since partial results from computations
might be reused.

A substantial amount of research effort is put into object
detection and recognition in images. For 3D point clouds,
several keypoint feature detectors have been proposed that
mainly originates, or at least are strongly influenced by,
methods from image processing, see for example [15-18].
Since this type of data is not the focus of this paper we will
merely refer to some of the many surveys and performance
evaluations available on this topic [19-21]. From now on, only
2D point clouds are considered.
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(a) The Intel dataset is freely available in the Radish repositiry and the

github repository accompanying [9] provides the ground truth data used
to obtain this picture.
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(b) The Victoria park dataset, available through [13] and the ground truth
data used to generate this picture is provided in the github repository
accompanying [9].
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(c) Laser data from Epiroc’s underground test area in Kvarntorp outside of
Orebro in Sweden, with a map of the operation area overlaid.

Fig. 3. Examples of point clouds acquired by 2D lidars in different
environments. Blue circles mark sensor positions.

A. Detectors Inspired by Image Features

The computer vision community has done major progress in
detecting general keypoints in an image. Through rasterization,
2D laser data can be converted into an image, and feature
detectors designed for images can be applied. Detailed de-
scriptions of different algorithms for image feature detection
can be found in [8]. Some worth mentioned by name are:

e The Harris corner detector [22], which defines a corner
as the crossing of two different edge directions, where an
edge is a sudden change in image intensity. A structure
tensor is computed consisting of the covariance of direc-
tional derivatives in the local neighborhood of a pixel.
From the eigenvalues of this tensor it can be identified if
the pixel is uninteresting, on an edge, or a corner point.

o The Shi-Tomasi detector [23], optimizes the Harris corner
detection. By only considering the minimum eigenvalue
the computational complexity is considerably reduced.

o In the scale-invariant feature transform (SIFT) [24], a
raw image is convolved by Gaussian kernels at different
scales, t, forming blurred or smoothed images. Differ-
ences of successive smoothed images at different scales
are formed, and keypoints are taken as extreme points of
the difference images.

In [25, 26], 2D laser data is converted to an image and
Shi-Tomasi corner detection is applied. This approach en-
ables the re-use of computer vision algorithms, however it
is computationally expensive to perform rasterization of laser
measurements and the rasterization introduces inaccuracies.

B. 2D Range Data Detectors

Data acquired from a 2D range finder consist of relatively
few points, the point density is highly non-uniform and not
view-point invariant. The nature of the data affects how to
extract stable and distinguishable keypoints, and there are few
publications specialized on 2D laser data keypoint features.

One of the first attempts to detect and describe keypoints
in 2D range data is [27], where keypoints are selected at
locations of high curvature in submaps defined as a collection
of multiple laser scans. In the subsequent work [28] different
types of keypoint detectors are tested, but all of them search for
keypoints in a submap rather than in a single scan. This makes
their approach more of a submap characterization technique
for place recognition rather than a feature extraction method.

Although, general feature detectors specialized on 2D range
data are few, there exists three quite recently developed such
methods:

1) FLIRT: In [9] the fast laser interest region transform
(FLIRT) is presented as a detector for locally defined keypoints
for 2D laser data. The FLIRT method adopts the scale space
theory used in SIFT. First, the original data is represented by
a family of smoothed signals parametrized by ¢, the size of a
Gaussian smoothing kernel. Then, differences of the smoothed
signals are formed and peaks are identified to locate keypoints.
Three different detectors are presented in [9]. The first one
operates on the raw range data and the second one on a local
approximation of the normal direction in each point. The third,
and also the best performing one, according to simulations



performed in the paper, adapts the work done for 3D point
clouds in [18] to 2D range data. The range data defines a curve
in Cartesian 2D space and the scale space theory is applied
to this curve. An integral operator maps the input curve into
a multi-scale parametrization

S(a(s);t):/Fk(s,u;t)a(u)du, (1

where T is the curve, «(s) is the parametrization of the curve
by the geodesic coordinate s, and k(s,u;t) is a Gaussian
kernel with mean s — v and standard deviation ¢. The integral
is approximated by a sum and to compute the Gaussian kernels
in the sum the geodesic distance between each observed point
pair is required. As suggested by [18], disjoint minimum
spanning trees (DMST) are used for this purpose in the FLIRT
algorithm. This introduces a design parameter that defines
how many disjoint trees to use. When DMST is used for
the curvature approximations, the range data is considered an
unordered point cloud, and extreme outliers such as no-return
data are automatically ignored, see [29] for details.

Keypoints are then detected as local maxima of the expo-
nential damping expression

_ 2||pi — St(a(s),t)H o Hlzi= Sl R

where p; represents each scan point. To find peaks of F(z,t)
two design parameters are defined, the minimum value of
F(z,t) to be considered a peak (Fin) and the minimum
separation between peaks (Fyist)-

The scales to consider for the curve fitting are determined
by

t=to(t:)", Q)

where ty and ¢; are scalar design parameters, k €
0,1,...n; — 1 is the current scale, and n; gives the number
of scales.

2) FALKO: 1In [10] a novel keypoint detector specialized
on 2D range data is proposed, the fast adaptive laser keypoint
orientation-invariant (FALKO) detector. This method focuses
on finding stable view-point invariant keypoints like corners,
rather than gaps and isolated points which could be a result of
occlusion. The detector is designed to be orientation invariant
and measurement sparsity independent by considering neigh-
boring data points within a variable radius of the candidate
point. A set of neighboring points of an observed point p;, is
defined as

C(pi) = {p; € S: llpj — pill <ri}, 4)
where the radius r; is computed as
r, = acblpill (5)

with [|p;|| defines as the distance from the observed point
to the sensor origin. The design parameters a and b scale
the neighborhood radius, ¢ has most effect on short range
measurements whereas b has a greater impact on longer ranges.
The two endpoints in each neighbor set p; . and p; do,
together with the point p; itself, form a triangle. As a first
rough approximation of a corner, this triangle is used to discard
many points as keypoints candidates. If the base or the height

of the triangle is less than ¢ the point is discarded. Greater
values of 3 allows both wider and sharper corners as candidate
points.

For the remaining candidate points, the set C(p;) is divided
into two subsets

Cr(ps) = {p; € C(ps) : j < i},
Cr(pi) ={p; € C(pi) : j > i}.

For each point in any of the sets, a quantized orientation ¢;,
with respect to the candidate point is computed by forming a
grid with s,, circular sectors centered on the candidate point.
The orientation is then defined as in which circular sector
the point p; lays in, and a discrete distance function dg; g,
is defined as how many sectors are between 6; and 0. A
cornerness score is then computed for each of the two subsets
in (6) as the sum of all point pair distances in the subset

(6a)
(6b)

Jmin Jmin

scorey, (p;) = Z Z |do(on, Px)| (7a)
h=i—1k=h—1
Jmax  Jmax

scorer(p;) = Z Z |do(on, dr)|- (7b)
h=it1k=h+1

Such a score is small if the points in the subset are aligned with
each other. A total score for a candidate point is then defined
as the sum of scorey,(p;) and scorer(p;) and keypoints are
chosen as local minima of the sum. To avoid ambiguous key-
points a non-maxima suppression (NMS) procedure is applied
defining a minimum distance between keypoints, NMS ;.

3) BID: The B-spline based interest point detector (BID)
is introduced in [11]. It uses the same concept as FALKO
by extracting high curvature candidate points using a set of
neighbor points defined as in (4) with a radius growing with
measured range as in (5). The points in C'(p;) are used to
approximate a B-spline curve that in turn is used to determine
corner existence. First a B-spline curve is constructed with
four control points, evenly distributed along the axis corre-
sponding to the largest eigenvalue of the covariance matrix of
C(p;). Then, the iterative point distance minimization (PDM)
algorithm is applied to the initial B-spline to fit it to the data
points in C(p;). This resulting B-spline is denoted S(¢). The
normalized Euclidian distance between the two median control
points P, and P, defined by the construction of the B-spline,
of the approximated curve S(¢),

[ 2||Pl Pl ’ )
> im0 1P = Pia|
is used as a measure of curvature. Keypoints are defined
as local maxima of the inverse of the normalized Euclidean
distance E~! with scores above a threshold Ty,.

An advantage with the BID method is that the approximated
curve can be interpolated along the B-spline to get a more
precise location of the keypoint, that also depends less on the
point density. A disadvantage is the computational effort it
takes to approximate the B-spline curve. This computational
burden is somewhat lowered by a threshold when PDM is
applied. If the error, according to (8), of the initial curve,
is lower than a threshold Ey;, the PDM is not applied and




the candidate point is disregarded. Such situation occurs in
low curvature regions. As for the FALKO detector a NMS
procedure is suggested to avoid ambiguous keypoints.

4) Computation Time Comparison: The FALKO method
includes only simple computations and is therefore well suited
for real-time applications. This is experimentally verified in
[11], where computation times for FLIRT and FALKO are
compared to their own contribution BID. FALKO is roughly
50 times faster than FLIRT and 100 times faster than BID
[11].

C. Geometric Detectors

The extraction of various high-level geometric features have
been used in association with 2D laser scanners, e.g., line
segments [30-33], poly-lines [34], curve segments [35], circles
[36, 37], Bezier curves [38] or B-splines [39]. Strictly, these
are not feature keypoints as they are not view-point invariant
points of interest with an associated descriptor. Due to the
use of dedicated geometric features, these approaches do not
provide robust solutions in a general environment of any shape,
since they are design and tailored to a specific environment or
application, e.g., indoor or outdoor environments. Because of
this, these methods are not expected to perform well with the
special characterization of data from an underground mine.

IV. DESCRIPTORS

A good descriptor should capture the signature of a keypoint
regardless of view-point, sensor noise, and occlusions. When
used for localization or place recognition, the detector is
usually defined as a fixed-length vector or a histogram, ac-
companied by a distance metric. This is to make the descriptor
computationally efficient when the intention is to robustify the
data association step. Although, for image processing there
exists more complex descriptors. Two examples are the basis
space descriptors, where the descriptor is defined in another
basis, and the polygon shape descriptors, where the features
are based on the perimeter of a polygon shape [8].

Since the same feature can be perceived from different view-
angles, descriptors can also include additional information
about the orientation of the keypoint. Thus, for matching,
the descriptors can be rotated and aligned before the distance
metric is evaluated.

As for detectors there are substantial work performed in the
computer vision community [8, 40, 41], and in [26] the SIFT
descriptor is used for 2D range data. However, the results in
[10, 11] indicate that stable detection of feature points is much
more important than a sophisticated description to obtain good
feature matching in 2D laser data. Therefore the main focus of
the reminder of this section is on the descriptors accompanying
the FLIRT, FALKO, and BID detectors in [9], [10], and [11],
respectively. All originating from the same concept of a shape
context.

A. Shape Context

In the early range data feature extraction attempt in [28],
multiple detectors are discussed and evaluated. They consider

(a) Log-polar histogram  (b) Linear-polar histogram

Fig. 4. Histograms used by a shape context descriptor, both with r, = 4
and oy, = 12.

a region with a fixed radius of 9m and include data from
multiple scans when computing description vectors. This is
suitable for their place recognition purpose, but it cannot really
be viewed as a local keypoint feature descriptor. Nevertheless,
one of the best performing descriptors in the experiments
conducted in [28] is based on the concept of shape contexts,
which is also the case for the descriptors used in state-of-the-
art range data feature extraction work [9—11]. The concept of
shape contexts is developed for object recognition in images
in [42]. Objects are treated as a set of points sampled from the
internal or external contours of the object. Then a reference
point is chosen and the distribution of the relative coordinates
of the remaining points is represented in a histogram. The bins
of the histogram are uniform in log-polar space with r,, bins
in the radial direction and «,, bins in the angular direction,
see Fig. 4(a). This histogram is defined as the shape context
descriptor. This type of descriptor suits the range data well
since the data is already points and detected keypoints are
natural choices of reference points.

B. (-grid

The (-grid descriptor is introduced in [9]. A linear-polar
histogram (see Fig. 4(b)) is suggested to reduce the impact
of measurement noise that typically occurs in radial direction
in lidar data. This noise would be captured in the bins near the
centre in a log-polar histogram. The radius of the histogram
Pmax as well as an inner threshold py,;, for when data points
are ignored and assumed ambiguous, are design parameters
for the (§-grid descriptor, together with r,, and «,, defined in
Sec. IV-A above. The symmetric x2-distance function defined

as ) )

d — Z (xl yl) , (9)
where x; and y; are elements in different histograms, is used
to compare descriptors. The [-grid descriptor also encodes
the probabilities of free-space into the histogram by applying
Bayesian parameter learning. This gives a distinction between
a concave and a convex structure, but it only gives slightly im-
proved performance in experiments, and it could be questioned
if the increased computational complexity is worth it.

C. Binary Shape Context (BSC)

The binary shape context (BSC) descriptor accompanying the
FALKO detector is introduced in [10]. This descriptor uses
the same structure with the linear-polar histogram as the (-
grid descriptor, to reduce the risk of capturing measurement



noise in the bins close to the centre. However, BSC limits the
histogram to be binary. With bins that are either filled or empty,
the influence of the point density is reduced. A natural choice
of pmax 18 the region for where the set of neighboring points
are defined, resulting in different histogram sizes for different
keypoints, pmax = 7;. The distance metric associated with this
descriptor is a Hamming-like function and the orientation of
each keypoint can be computed using a variant of the intensity
centroid presented in [43].

D. Spline Distribution Histogram (SDH)

In [11] the similar spline distribution histogram (SDH) de-
scriptor is proposed, again using the linear-polar histogram
to minimize measurement noise impact. The SDH descriptor
utilizes results from the accompanying B-spline based detector
(BID). Since B-spline approximations of the curve in the
vicinity of a keypoint is performed in the detection step,
the curve can be interpolated to remove the point density
dependency. The histogram can be kept non-binary not to
lose information about the alignment of neighboring points.
The interpolation is done with equal distance d; between
points along the spline. The symmetric y>2-distance is used
to measure the distance between two SDH descriptors. The
orientation of keypoints are computed using the centroids as
in [10], but now applied to uniformly sampled points along
the approximated spline instead of neighboring points from
the point cloud.

V. DATA ASSOCIATION

The purpose of data association is twofold; it should match
keypoints detected in different point clouds corresponding to
the same actual feature, and it should filter out and ignore
outliers not having a true match in any of the point clouds.

A. Feature Matching

Even though feature descriptors are designed to provide robust
feature matching between scans, pure descriptor association
usually gives poor results in experiments [9, 10, 44]. Therefore
some other data association technique is often used in con-
junction with the feature descriptors. For position estimation
purposes, where a good initial estimate is known, the descrip-
tors can be used as a gating rule for geometric associations.
For place recognition and loop closure applications other data
association algorithms are often used, e.g., geometrical land-
mark relations (GLARE) [10, 11, 45], where 2D laser scans
are transformed into pose invariant histogram representations,
or, as in [11, 46], a graph theoretic approach. The relative
geometry between points in a scan is used to build graphs and
then the maximum common subgraph is used to match different
scans. In [47] a comparison of different data association tech-
niques based on extracted FALKO features is performed. The
Hungarian algorithm, a combinatorial optimization method for
solving assignment problems, is suggested as a data associa-
tion method well suited for shape context descriptors [8, 10],
but no experiments provide any insight of the performance
when applied to 2D laser data.

B. Outliers and Occlusions

Data association in noisy data containing outliers or occlusions
can be a serious problem for robust state estimation. When in-
dividual matching of laser rays are used, an outlier or occlusion
gives false information as input to the state estimation method.
In scan matching algorithms acting on raw data, outliers or
occlusions can cause inaccurate transformations or possibly
incorrect matching. Random sample consensus (RANSAC)
[48] is an iterative method designed to robustly handle outliers
in data. This method is general and applies to various kinds of
data. It is a common strategy to increase robustness towards
outliers in scan matching algorithms, and in [9] it is used for
loop closure detection on keypoint features.

Using a feature extraction approach, sporadic outliers can be
filtered out by a sophisticated detector/descriptor (as e.g., the
DMST in FLIRT). In the case of more regular or continuous
outliers within a scan, e.g., as the result of occlusion, the effect
is keypoints that cannot be matched and therefore ignored for
further processing. If many outliers or occlusions are present
this can of course result in severe information loss, but a
state estimation method will in neither case be fed with false
information. In addition to this already built in robustness
against outliers, RANSAC can of course also be applied to
detected keypoints to further improve the outlier rejection
capabilities.

VI. DETECTOR AND DESCRIPTOR EVALUATION

In the literature the stability is emphasized as the most impor-
tant property of a feature, i.e., the detection of features in the
same location after changing viewpoint, and regardless of laser
sensor properties such as noise level and resolution. In [9] a
set of metrics are assessed, which in turn follows the approach
in image processing [44, 49]. This set of metrics is also used
later in [11, 47]. Using these criteria as a starting point, this
section presents quality metrics for feature extraction methods
adapted to the situation with a predefined map.

A. Evaluation Data

2D laser data for feature evaluation is obtained in a simulated
environment. Fig. 5 depicts a map of Epiroc’s underground
test area outside of Orebro in Sweden, an area having many
attributes of a typical underground mine. A path is defined so
that all parts of the operation area are in the field-of-view of
the lidar at some point along the trajectory. For 2504 poses
along the trajectory, lidar scans are simulated in two different
ways. First, a virtual range finder is placed in the environment
resulting in noise-free lidar scans simulating a perfect scenario
with no uncertainties neither in the map nor the measurements.
Secondly, measurement errors are added utilizing a support
vector machine (SVM) model, trained on real data collected
by a vehicle located in the physical area the map is covering,
as described in [50]. In this model the bias and variance
of the error depends on range and inclination angle to the
wall, resulting in each simulated laser measurement being one
realization of a stochastic distribution. The model also includes
a probability of producing no-return measurements, resulting



TABLE I
PARAMETER VALUES IN THE SVM MODELS USED TO SIMULATE RANGE

MEASUREMENTS.
ks e C
Y 1.92 0.026 45.6
Sy 0.145 0.025 0.248
Pho 2.71 0.0047 4.33

in a very realistic simulation of laser data, representative for
this particular environment.

In detail, three separate SVM model are trained. One for the
mean value of a range measurement 7/, one for the variance %,
and, one for the probability of no-return P,,. The models use
Gaussian kernel functions where the kernel scale k;, residual
margin ¢, and, a box constraint constant C' controlling the
penalty imposed on observations that lie outside the residual
margin, are all hyperparameters determined by a five-fold
cross-validation optimization. Values for the three models are
presented in Table 1.

B. Adaptations to Map Positioning

In [9-11] the evaluation metrics are applied to datasets con-
sisting of 2D lidar scans. For the underground application
where a predefined map is available, every scan can instead be
matched to interest points extracted in the map. The procedure
is therefore adapted, resulting in:

1) Find keypoints in the map. The map consists of poly-
gons whose edges represent walls. To extract keypoints,
the map is first converted to a single point cloud by
equidistant interpolation along the polygon edges. Then,
a feature detector is applied to the point cloud to identify
interest points.

2) Define a path in the map that will make as many
keypoints as possible visible to the vehicle at some
point along the path. It is possible to use real data
collected along the path, but here simulated laser scans
are obtained as described in Sec. VI-A.

3) Extract keypoints in each of the laser scans using the
feature detector.

4) Associate a keypoint in a scan to a keypoint in the map if
the Euclidean distance is smaller than a threshold, dy,.x.

Note that the association is performed without using the
descriptors, hence this procedure only measures how well
different detectors can detect features in this particular en-
vironment. If the descriptors are to be evaluated the last step
has to be adjusted.

C. Detector Quality Measures

This section presents quality metrics for the detectors only.
1) Global Detector Stability Test: In [26] a procedure
associate extracted features from different scans is presented.
Ideally a keypoint should always be detected when in the field
of view of the sensor. In practice this is not the case since
no detector can perfectly find keypoints from different view
points, occlusions or in noisy data. However, some keypoints
are more often found than others by a specific detector,
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Fig. 5. The blue line is the path sampled with poses used for global stability
test of feature detectors. The four vehicle poses marks the positions where
the measurement update experiments are performed.

and these are referred to as stable keypoints. The covariance
matrix of all keypoints in the different laser scans associated
to the same feature in the map provides a measure of the
stability of the feature point. The maximum eigenvalue Ap,,x
of the covariance matrix defines a scalar metric. By taking the
average over all scans in a path, this gives a measure of how
sensitive a detector is to data sampling.

Another stability measure is the percentage of single points.
That is the ratio of map keypoints never matched to a keypoint
in any scan and gives an indication of how many unnecessary
keypoints a detector finds.

How many scans along a complete path that have zero
matching features is of special importance for the localization
application, since in a dynamic filter approach this leads to no
new information in the measurement update. Therefore, this
is also included here as an additional stability measure.

2) Detector Repeatability: The repeatability of a point de-
tected from two different scans is a frequently used metric for
the stability of a feature point. Consider the sets of keypoints
K r and g which are detected from a reference scan and from
a similar scan, respectively. Assuming correct associations, the
repeatability is defined as the ratio of common keypoints over
the smaller of the two keypoint sets [9], i.e.,

IKrNKs|
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where |KC| denotes the cardinality of K.

When matching laser data to a predefined map repeatability
is defined as the ratio between the number of associated
interest points in a scan and the total number of feature points
in the map visible from a particular pose of the vehicle.
Again the association is purely geometric without utilizing
any descriptor, to keep this as a metric for the detectors only.

3) Detector Evaluation: The methods FALKO and BID
are evaluated both using the parameter setup suggested in the
corresponding papers [10, 11], and with parameters manually
chosen. Good parameter values are determined according to
the noise levels in the input data, to the quality and smoothness
of the walls in the environment/map, and to the average range
of the measurement in this environment. The goal is to have as
few scans without matching features in the map as possible,



TABLE II
PARAMETER CONFIGURATIONS USED FOR THE DETECTORS.

Detector to t; ng Fhin Flyist
FLIRT [9] 0.2 1.4 5 0.34 0.001

a b ,8 Sn NMSmin
FALKO [10] 0.2 0.07 4.0 16 0.2
FALKO Tuned 0.2 0.1 2.25 16 0.2

a b Tth Eth NMSmin
BID [11] 0.2 0.07 3.1 0.03 0.2
BID Tuned 0.4 0.1 0 0.03 0.2

but without including insignificant keypoints that are never
matched. With the environment used for all simulations in
this paper (see Fig. 5) this amounts to increasing b, which
results in larger neighboring areas for longer measurements.
The value in the original paper is designed to fit indoor range
measurements of ~ 10m, but in the underground application
valid range measurements can be up to ~ 70 m, see Fig. 3. For
BID also a is increased to allow for larger neighborhoods also
for shorter ranges, and Tiy is lowered, since BID otherwise
finds relatively few keypoints. On the contrary, the 3 parameter
for FALKO is adjusted to only detect the most significant
keypoints.

There is always a trade-off between detecting many key-
points and only detecting the most significant ones. From the
aspect of repeatability, a theoretically perfect detector would
consider every point in the point cloud a keypoint, as this
maximizes the repeatability score in (10). However, this is not
desirable in practice since the keypoints will not be distinctive
and thus difficult to match. The detectors are therefore tuned
to detect as few keypoints as possible without leaving large
areas of the map without keypoints. To give a fair comparison
of the three methods equal effort has been put into the non-
trivial task of hand tuning the parameter values for each of the
methods. However, the sensitivity in parameter values differs
for specific parameters and the different methods, resulting in
varying changes of parameter values. The suggested parameter
setup in the corresponding papers is worst suited for the BID
method for this particular application. Therefore, this is the
method where the parameter values are changed the most. See
Table II for a complete list of parameter values.

All detectors have been implemented by the author in
Matlab. For the FLIRT method a C++ implementation is
provided together with the paper [9]. Unfortunately this imple-
mentation cannot be used with the subsampled map as input,
since it assumes laser scans containing range information.
The range information is not used for the detector but only
later to compute the [S-grid descriptor. Therefore a Matlab
implementation of a FLIRT detector taking a point cloud as
input is used here, with all parameters set according to [9].

Global stability is evaluated on data produced according
to Sec. VI-A and results are presented in Table III based
on dpax = 0.1m. It is in general hard to fine-tune the
methods. The tuned version of FALKO performs worse than
the standard version on all measures, but still gives a slightly
better position estimate as will be presented later in Sec. VIIIL.
The repeatability scores are in absolute values significantly

TABLE III
GLOBAL STABILITY OF IDENTIFIED KEYPOINTS WITH DIFFERENT
FEATURE DETECTION METHODS.

Scans

Detector I(i?lyiz);;ts Amax ?,g:rgli without l:ebri)ﬁ?;
match
FLIRT 892 0.0006 32.7% 0.8% 0.080
FALKO Std 1434 0.0019  48.1% 0.0% 0.084
FALKO Tuned 827 0.0016  55.5% 1.0% 0.070
BID Std 363 0.0020  60.9% 19.1% 0.066
BID Tuned 557 0.0020  60.0% 11.2% 0.067
(a) Noise-free laser simulation
Keypoints < Single Scans Repeat-
Detector . Amax . without e
in Map Points ability
match
FLIRT 892 0.0024  35.9% 8.7% 0.042
FALKO Std 1434 0.0024  47.6% 0.2% 0.057
FALKO Tuned 827 0.0022  53.5% 5.0% 0.048
BID Std 363 0.0022 59.8%  28.6% 0.049
BID Tuned 557 0.0024  59.8% 17.4% 0.053

(b) SVM laser simulation

lower than the results in [9-11]. That is because they are
comparing scans, while the keypoints are extracted from a map
in a slightly different way. The FLIRT method looks promising
but is sensitive to noise. The repeatability score is halved when
using the realistic laser simulation. On the contrary, BID is the
worst performing method, but it is also the least sensitive to
noise.

D. Descriptor Quality Measures

This section presents quality measures for descriptors.

1) I-Precision-Recall: To evaluate the performance of fea-
ture descriptors a 1-precision-recall curve is often used [9-
11, 44]. Recall is defined as the number of correctly matched
keypoints with respect to the total number of true correspond-
ing keypoints between two scans, and 1-precision is defined as
the number of false matches with respect to the total number
of matches found in two scans.

2) Descriptor Evaluation: The [-grid, BSC, and SDH
descriptors designed for 2D laser data, are evaluated according
to the I-precision-recall criteria in [10, 11] with weak and
comparable results. Conclusions are unison in that a pure
descriptor data association is not recommended for positioning
purposes, but should rather be used as gating rule in a
geometric association method.

All techniques studied in this paper are designed to compare
two scans, when instead a scan is matched to features extracted
in a map, the concept of a “true” correspondence is nontrivial.
Furthermore, it is problematic that the 5-grid descriptor cannot
be computed according to its original definition in this setting.
The construction of the (-grid descriptor takes the nature
of the laser ray into consideration, where the approaching
angle of the ray is used to estimate probabilities of sectors
in the linear-polar histogram being occupied or not. With
features extracted from a map, this data is not available. This
inflexibility is a huge drawback for this technique and in
this study the descriptor gated association for FLIRT-3-grid
is performed by matching detected keypoints to a noise free



scan, simulated at the true position. This can only overestimate
the performance causing correspondences to be better, since
this decreases the demands on view-point invariance.

Further, since the descriptors are designed to perform well
on features found by a specific detector, it is hard to define
an objective quality measure that does not also depend on
the quality of the detector. Therefore, the descriptors are in
this paper only evaluated according to how they perform
together with their accompanying detector, as a gating rule in
a geometric association method. This is done in Sec. VIII-Al,
once details for the position estimation procedure have been
presented.

VII. UNDERGROUND POSITIONING APPLICATION

For the study of the underground positioning problem a mid-
articulated vehicle equipped with odometry, inertial measure-
ment unit (IMU) and two 2D lidars is considered. The pose
is represented by the state vector x = [&y,ﬁ]T compris-
ing the Cartesian (x,y)-coordinates and the heading, 6. An
unscented Kalman filter (UKF) [51] performs the estimation
with the lidar data being utilized in the correction step. This
section provides details on how the measurement update is
implemented.

A. Pose Estimation from Feature Points

When a feature extraction method is applied to the raw lidar
data, the measurement in each update makes up a point cloud
in the vehicle coordinate frame (see Fig. 6 for definitions of
coordinate systems),

T
} . (11)
Each p;, ¢ = 1,..., N, is a point in the vehicle coordinate
system represented by its Cartesian coordinates,

» = [y
) Yi|

N is the number of feature points where a matching feature in
the map is found. The number of found features in each laser
scan varies and not all detected features will have a match in
the map.

To perform the UKF correction step with this setup the
following preprocessing steps are performed.

y=[p{ p? PN

12)

1) The map is preprocessed by applying the feature detec-
tion method of choice on an interpolated version of the
map, see Fig. 6. If the method requires, descriptors for
each detected feature are computed. This is done once
and for all with a specific map.

2) For each new available laser scan, features are extracted
according to the chosen feature extraction method. The
identified features are then converted to points in the
vehicle coordinate frame.

3) For each found feature a descriptor is computed accord-
ing to the chosen feature extraction method.

4) The features from the laser scan are then matched to
features in the map and saved as a list of currently
visible map features, m, represented as points in the
global frame.

The measurement equation can then be formulated as a trans-
form of visible feature points in the map, given in the global
coordinate system, to points in vehicle coordinate frame for a
given state X,

y=R(x)(m —x12) +e. (13)

The Cartesian components (z, y) of the state vector is denoted
by X1 2, R is a rotation matrix, and e ~ N'(0,R) is additive
measurement noise, assumed white with covariance matrix R.

B. Direct Scan Matching

There are many examples of methods for scan matching of 2D
range data that use the sensor data directly for data association,
without first extracting features, see Fig. 1. The output from
these direct methods is often a rigid body transform (R, t) of
the position. A well established method worth introducing is
the iterative closest point (ICP) algorithm [52, 53], which is
included in this paper for validation purposes.
Given two point clouds

pr = (P} (14a)
pi={p} (14b)
with p; € R, the following optimization problem is solved
Ny, N
min C(px, pr) = I%I?Z > wiy |k - (RoS+ 1)

i=1 j=i

15)
where w; ; is 1 if point p¥ and point pfj are assumed to describe
the same point in space, and O otherwise. The ICP algorithm
iteratively finds the nearest neighbor point pair, then computes
(R,t) by solving the optimization problem and repeats until
convergence.

The ICP algorithm is fast and in general produces good
results when the initial offset between the scans is small [54].
The original version of the algorithm provides no estimate of
the uncertainty of the resulting transform, but various versions
have been developed over the years to improve performance
and specializations for specific applications [7, 27, 55-58]. In
[59] ICP is used for underground navigation.

Other scan matching algorithms are e.g., the normal distri-
bution transform (NDT) [60] where the 2D plane is divided
into cells and each cell is assigned a normal distribution
modelling the probability of obtaining an observation, or the
conditional random field (CRF) [61] used in [54]. Locally
defined features such as, relative distances between points in
the scan, angle between the segments connecting a point to its
neighbors, or sum of distances to neighboring points, together
comprise a descriptor for a complete scan.

If one of these direct data association methods are used,
a linear measurement equation can be used in the filter, that
now acts as a low pass filter for the estimate. The outcome
from a method operating directly on the raw lidar data is often
formulated as a transform and can be converted to an indirect
measurement of the state variable. The measurement equation
is then reduced to the identity matrix,

y=x+e. (16)
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(c) Features found with tuned BID detector.

Fig. 6. Detected features in a laser scan (red circles), are represented as a point cloud in the coordinate system with origin on the front wheel axis of the
vehicle. Blue crosses marks the features found in the map and are defined in the global coordinate frame. Note that for the FLIRT detector only keypoints
associated to the same scale are considered for matching even though all detected keypoints have the same notation in this figure.

with the same assumption on the measurement noise e, as
in (13). In this paper a UKF is always used even when the
measurement equation is linear. This is partly to keep all
experiments homogeneous and comparable, but also because
the time update is nonlinear for this application. Note that
a UKF update basically reduces to a standard Kalman filter
update in case of a linear function.

VIII. POSITIONING EXPERIMENTS

This section presents results from experiments conducted in
the simulated mine environment described in Section VI-A.
All laser data used in this section is simulated using the SVM
model.

The UKF parameterization with «, (3, and « as suggested in
[51] is used in this evaluation. The suggested parameter values
in [51] proved to perform poorly in initial tests, whereas o =
0.8, 8 = 2.0, kK = 0.0 obtained from hand tuning of the filter
perform significantly better. Hence, these values are used in the
experiments together with the process noise covariance matrix
set to @ = diag (0.002,0.002,1076), and the measurement
noise R = 0.5°1.

A. Measurement Update

Monte Carlo simulations of a single measurement update in
the UKF algorithm is performed to analyze what accuracy
the different feature extraction methods give in a position
estimation application. The vehicle is positioned in four dif-
ferent poses, see Fig. 5, with different capabilities of obtaining
informative laser measurements. The initial pose is perturbed
from the true state with xg = X¢rue + 0x, With 85 ~ N(0, Py),
to simulate the position uncertainty originating from prior
odometry errors.

1) Descriptor Data Association: As mentioned in
Sec. VI-D2, an evaluation of the descriptors is conducted
by comparing pure geometric data association to geometric
association using the descriptors for gating. The descriptors
B-grid, BSC, and SDH are used in conjunction with the
detectors FLIRT, FALKO and BID, respectively, and 10000
realizations of a complete UKF measurement update are
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Fig. 7. RMSE after one measurement update based on 10000 realizations
in each of the four poses in Fig. 5. Different feature detectors paired with
a descriptor-gated or pure geometric data association are used. The blue
horizontal line represents the a priori error, \/tr(Pg). The edges of the
boxes indicates 25th and 75th percentiles, and the median is marked with
a horizontal line. The whiskers extend to the most extreme data points not
considered outlier, and outliers are marked individually with a cross.

performed with an initial perturbation of the position obtained
by sampling from dx ~ N(0, Pg) with,

01 0 0
Po=|0 0.1 0 (17)
0 0 0.00076

Each realization also sample its own laser scan measurement
noise from the SVM model. All descriptor histograms are
constructed with r, = 4 and a,, = 12 as suggested in
the original papers, and features in the map within a radial
distance (dyax) of three standard deviations of the a priori
uncertainty are considered matching candidates. For keypoints
with a difference in orientation smaller than a threshold d,,, the
keypoint with the minimum distance according to the distance
function associated with the used descriptor, is considered a
match. Matched features are then used as measurements in the
UKF update. For FALKO-BSC, d, = 7/6 and for FLIRT-$-
grid and BID-SDH, d,, = 7/10 is used. The values are chosen
manually by performing simulations and with knowledge of
the methods and the characteristics of the specific problem. A
larger threshold is used for FALKO-BSC since the orientation



TABLE IV
DESCRIPTOR DATA ASSOCIATION. NUMBER OF LASER SCANS UNABLE TO
FIND A SINGLE KEYPOINTS MATCH IN THE SET OF KEYPOINTS
EXTRACTED IN THE MAP, AND THE MEAN NUMBER OF MATCHED FEATURE
IN EACH SCAN IS PRESENTED FOR EACH OF THE METHODS.

Scans without match

# % #matches/scan
FLIRT-8-grid 38 0.1 14.7
FLIRT-geom 5 0.01 20.4
FALKO-BSC 283 0.7 8.1
FALKO-geom 5 0.01 14.9
FALKO-Std-BSC 32 0.08 10.6
FALKO-Std-geom 1 0.003 20.0
BID-SDH 267 0.7 5.4
BID-geom 4 0.01 16.8
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Fig. 8. RMSE for 10000 realizations of a measurement update step using
different methods. The horizontal blue line is the square-root of the trace
of the initial covariance matrix Po. The edges of the boxes indicates 25th
and 75th percentiles, and the median is marked with a horizontal line. The
whiskers extend to the most extreme data points.

of these features is more uncertain, due to how they are
computed.

In Fig. 7 the root mean square error (RMSE) for the
descriptor gated data association is compared to pure geo-
metric nearest neighbor data association with dp,,x = 0.1m
as threshold, and Table IV presents numerical data. Fig. 7
confirms earlier results that the descriptors do not add much
value when a fairly good initial value can be fed to a pure
geometric association. FLIRT is the only method where the
usage of the descriptor actually makes a significant difference.
However, the descriptor experiment is in this case expected to
overestimate the performance due to the customization that
had to be made to the evaluation of the [-grid descriptor
described earlier in Section VI-D2. The tuned parameter setup
of FALKO is in this experiment, unlike the results in Table III,
resulting in marginally lower errors than the default parameter
setup. This is despite the fact that there are on average a lower
number of matches with the tuned parameter setup, which
implies that the standard parameter setup for FALKO results
in many erroneous matches since the detected keypoints are
not significant enough. For BID, the tuned parameter setup in
Table II is used. With standard parameter values, BID gives
so few keypoints in the map that for many of the poses there
exists no keypoints in the field-of-view.

2) Compare to Raw Range Data Association: In this sec-
tion the feature extraction methods are compared to the case
when raw range data is sent to the UKF, ie., each ray
is matched individually to the map. This is similar to the
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Fig. 9. The vehicle travels along the blue line starting from left to right. The
trajectory both starts and stops with zero velocity and light grey areas show
modification done to simulate errors in the map. (1) A tunnel is filled with
material since the map was created. (2) The tunnel is shortened as if rocks
have fallen down. (3) A small chunk of material is cut-off in a corner. (4) A
larger chunk of material is cut-off in a corner.

navigation system described in [4], but instead of matching
the rays to locally created occupancy grid maps, the data is
matched to a given global metric map of the operation area.
The approach of matching raw lidar data is also used in the
sensor selection methods described in [6], where the aim is to
cut computational complexity. The methods are also compared
to a standard ICP variant using the point-to-plane error metric
without outlier rejection. The implementation used is provided
as an open-source project [62] where details are provided in
the related paper [63].

The RMSE of 10000 realizations is depicted in Fig. 8§,
again using the SVM to simulate laser data. (Note that this
is not 10000 replicated laser scans, but 10000 realizations of
the distribution given by the SVM model.) Data association
for FALKO and BID are performed with the descriptor gated
geometric data association, and for FLIRT a pure geometric
association is used. For FALKO, the tuned parameter setup is
used in this case.

The results are presented in Fig. 8. Note that the methods
UNI, LDM, and, GAR also uses raw range data association,
but only utilizing a subset of available data in each scan. The
feature extraction methods perform in this evaluation in parity
with the ‘Raw lidar’-method. It is worth noting that FALKO
requires significantly less computational resources than all of
the other methods, still performing better than the methods of
selecting subsets.

B. Trajectory

A trajectory is prepared with accompanying laser data, sim-
ulated using the SVM model, to investigate how the feature
extraction methods perform in realistic dynamic position esti-
mation. The trajectory is given in Fig. 9 and the vehicle starts
from standing still at the leftmost point. This trajectory is rep-
resentative for movements of the vehicle in this environment,
exposing the system to, e.g., long tunnels, cross-sections, and
irregularities of the walls captured in the laser data. Since the
UKF outputs an estimate of the state covariance in each time
increment, the radial distance dp,,x Will change dynamically.



TABLE V
MEAN RMSE AND THE MEAN NUMBER OF MATCHED FEATURE IN ONE
SCAN IS AVERAGED OVER ALL MODIFICATIONS PRESENTED IN FIG. 10.
THE MEAN NEES IS GIVEN FOR THE ORIGINAL MAP (FIG. 10A) AND
WHEN ALL MODIFICATION ARE APPLIED (FIG. 10F).

Method RMSE  # matches  NEES (orig) NEES (mod)
Raw lidar 1.17 - 320 1000000
FLIRT-geom 0.023 3.4 0.17 0.21
FALKO-BSC  0.042 6.2 1.3 0.94
BID-SDH 0.053 5.1 6.3 8.1

ICP 0.27 - 7.0 26

For FLIRT where only pure geometric association is used, the
threshold is fixed to 0.1 m.

In Fig. 10(a) the RMSE of the estimated state is presented
for each time increment along the trajectory. The poor result
for the basic ICP variant [63] could probably be improved
by a sophisticated outlier rejection principle. For example, as
mentioned in Sec. VII-B many variations of the algorithm
addressing specific properties do exist, or as discussed in
Sec. V-B, ICP can be used in conjunction with RANSAC
to decrease the influence of outliers. However, this adds
complexity to the system and it is something that is somewhat
automatic in the feature extraction approach. Since RANSAC
can also be used to boost the performance of the feature
extraction approach, a better understanding of the performance
of the actual methods is given by comparing the pure versions
of them, without adding extra steps.

In Fig. 10(b)—(f), laser data is still simulated in the original
map but the UKF is handed a modified version to perform the
position estimate in. This mimics a situation when a tunnel is
extended/closed, a corner is worn down, or some other change
in the environment that is not updated accordingly in the map.
The ICP approach has a relatively high RMSE in this setting.
It is somewhat robust to small changes, while the performance
is considerably worse for larger modifications. The estimates
produced by the feature extraction methods are all relatively
unaffected by the modifications in the map, while the approach
where each ray individually enters the measurement equation
is highly sensitive to imperfections in the map. For some of
the modifications the filter diverges with this approach.

Out of the feature extraction methods evaluated in this ex-
periment FLIRT-geom performs the best, despite the fact that
only a pure geometric data association is used. In Table V the
mean RMSE for all maps and time increments are presented
for each of the methods, and FLIRT gives an estimate with
only half the error of the others. Note here that the average
number of matched features in each scan is significantly lower
for the FLIRT method, compared to Table IV, this is since the
prior uncertainty, that now changes in each time step, highly
affect the possibility to extract stable keypoints. However, the
FLIRT method still manages to find the most significant ones,
since the position estimates still has a high quality.

Table V also presents the normalized estimated error square
(NEES) averaged over the trajectory states and realizations
for the case with the original map (Fig. 10a) and when all
modifications are added (Fig. 10f). The NEES is defined as

NEES = (Xtrue - j)Tpil(Xtrue - i')a (18)

where # and P are the state and covariance estimates obtained
from the UKF. Under the Gaussian assumption this becomes
x2-distributed with mean dim(x) = 3 [64]. NEES-values
above 3 indicates inconsistent estimates and values below 3
indicates an over-conservative uncertainty estimate. All fea-
ture extraction methods have NEES values unaffected by the
modifications whereas ‘raw lidar’ and ICP gives inconsistent
results with errors in the map. The NEES measure is highly
dependent on the tuning of the UKF itself (this also applies to
the RMSE measure), especially the process and measurement
noise, () and R, respectively. There is a potential to improve
the performance of the ‘raw lidar’ method by tuning these
matrices or even making it less sensitive to errors in the map by
using an adaptive tuning technique such as the ones described
in [65, 66].

IX. CONCLUSION

In this paper we have addressed the problem of robust and
highly accurate position estimation in an underground mine.
By considering a vehicle equipped with 2D laser scanners we
have surveyed available methods to process data from such
sensors with the goal of positioning the vehicle in a predefined
map.

In particular, methods of extracting features from 2D laser
data have been investigated and three state-of-the-art methods
have been identified, FLIRT-5-grid, FALKO-BSC and BID-
SDH. The methods have been adapted to fit the scenario of
localization in a predefined map. Experiments conducted in
a simulated underground mine environment have shown that
all of these methods perform better than the point cloud scan
matching method of a pure ICP, and in parity with the method
of matching each ray individually to the map in situations
without map modifications. Results also demonstrates that all
the feature extraction methods are much more robust to errors
and imperfections in the map, simply because no matches are
found in those regions. This is an important advantage since
the underground mine environment changes dynamically and
with a method insensitive to errors, the predefined map is not
forced to change accordingly.

In general, the feature extraction methods are sensitive to
parameter settings. Hence, all parameters have been manually
tuned to fit this particular application. The best performing
method is the FLIRT feature detector in combination with
a pure geometric data association with default parameters
suggested in [9]. The used nearest neighbor geometric data
association could probably be improved by applying a more
sophisticated method for outlier rejection e.g., RANSAC.

Since the feature extraction methods are robust to errors in
the map, they have a great potential of performing well in
a dynamic environment. Future work will explore how such
methods can be used to enable automatic updates of the map.
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