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A Unifying Complexity Certification Framework for
Active-Set Methods for Convex Quadratic
Programming

Daniel Arnstrom and Daniel Axehill

Abstract—In model predictive control (MPC) an optimization
problem has to be solved at each time step, which in real-
time applications makes it important to solve these efficiently
and to have good upper bounds on worst-case solution time.
Often for linear MPC problems, the optimization problem in
question is a quadratic program (QP) that depends on parameters
such as system states and reference signals. A popular class of
methods for solving such QPs is active-set methods, where a
sequence of linear systems of equations is solved. We propose
an algorithm for computing which sequence of subproblems an
active-set algorithm will solve, for every parameter of interest.
These sequences can be used to set worst-case bounds on how
many iterations, floating-point operations and, ultimately, the
maximum solution time, the active-set algorithm requires to
converge. The usefulness of the proposed method is illustrated on
a set of QPs originating from MPC problems, by computing the
exact worst-case number of iterations primal and dual active-set
algorithms require to reach optimality.

Index Terms—Quadratic Programming, Optimization algo-
rithms, Predictive control for linear systems

I. INTRODUCTION

N model predictive control (MPC) an optimization problem

has to be solved at each time step, which for linear
MPC often is a quadratic program (QP) which depends on
parameters such as system states and reference signals, making
it a multi-parametric QP (mpQP). Often, these mpQPs are
solved offline parametrically for a set of parameters and the
pre-computed solution is then used online [1]. However, the
pre-computed solution grows exponentially in complexity with
the dimensions of the problem and, for high-dimensional
problems, limited memory can restrict the use of a pre-
computed solution online. For such problems, the QP has
to be solved online and the limited time and computational
resources often at hand in real-time MPC require the employed
QP solver to be efficient and to have guarantees on the time
needed to solve the QPs within a given tolerance.

Popular methods for solving QPs encountered in MPC
are active-set methods [2]-[6], interior-point methods [7], [8]
and gradient projection methods [9]-[11]. Active-set methods
easily integrate warm-starting of the solver, i.e., the use of a
previous solution to start the solver in the next iteration, which
often reduces the number of iterations needed by the solver
[12], [13]. A well-known drawback of active-set methods is,
however, that the complexity can be exponential in the worst-
case [14], although, polynomial complexity is often observed
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in practice [15]. In contrast to active-set methods, theoreti-
cal polynomial bounds on the computational complexity of
some interior-point and gradient projection methods have been
proven in, e.g., [7], [9], [16], [17].

To close the gap between the possible exponential complex-
ity and the often experienced polynomial complexity, methods
for determining the exact complexity of the active-set QP
methods presented in [2], [3] and [4] have been proposed
in [18], [19] and [20], respectively. Similarly, a method for
determining the complexity of a primal active-set method for
linear programs (LPs) has been proposed in [12]. This paper
extends the result in [18], which handles the strictly convex
case, to also handle positive semi-definite mpQPs, leading to
additional theoretical as well as numerical results. In addition
to being able to certify the complexity of primal active-set
methods applied to positive semi-definite mpQPs, we show
that this extension allows for certification of dual active-set
QP methods and active-set LP methods, enabling the results
in [18], [19] and [12] to be viewed in a unified framework.

The main contribution is, hence, a method for analyzing
exactly which subproblems a primal active-set algorithm will
solve in order to compute an optimal solution, for any set of
parameters in a positive semi-definite mpQP. The knowledge
of these subproblems can be used to determine worst-case
bounds on number of iterations, floating-point operations and,
ultimately, solution time. These worst-case bounds can, hence,
be determined before the active-set algorithm is employed
online by using the proposed method offline on a given
mpQP. Furthermore, exact knowledge about the encountered
subproblems can be used to reduce the online computational
cost by tailoring the solver for the mpQP at hand.

A challenging aspect of the analysis of the primal active-
set QP algorithm considered in this work is that all iterates
are not necessarily affine in the parameter, in contrast to the
methods studied in [19], [20] and [12]. Nonaffine iterates are
shown to lead to a partition of the parameter space consisting
of both linear and quadratic inequalities, in contrast to only
linear inequalities which is the case in [19], [20] and [12]. We
also show how these quadratic inequalities can be dealt with
and, in some cases, circumvented.

II. PRELIMINARIES

It is well-known (see, e.g., [1]) that a linear MPC problem
can be cast into an mpQP on the form
1
minimize §zTHx +(ff + 07 fH)x 0
subject to Az < b+ W4,



where the iterate x € R" is related to the control action and the
parameter 6 € ©y C RP is related to the state of the plant. The
feasible set of the problem is defined by A € R™*" b € R™,
W € R™*P and the objective function is defined by f € R",
fo € R"*P and H € S’}. For convenience, we also introduce
the compact notation b(6) = b+ W6 and f(8) = f + fe0 to
clean up some expressions.

Another way of expressing the feasible set is in terms
of each constraint as [A];x < [b]; + [W]:0,i € K, where
the notation [-]; extracts the i:th row and K = {1,2,...,m}.
Finally, a constraint holding with equality is said to be active.

The active-set algorithm considered is an iterative algorithm
which searches for the active constraints at the optimum,
motivating the following notation. The iterate at iteration k is
denoted x; and Wy denotes a subset of the constraints, called
the working set, that are active at xp. Moreover, we define
Ak, b, and Wy, to denote the rows of the matrices indexed by
Wi and we denote the complement of Wy, as W, = K\ W,

A. Equality constrained mpQP

The active-set algorithm considered in this paper solves a
sequence of equality constrained QPs (EQPs) on the form

o 1 7 T
minimize oz Hx+ f(0) x )
subject to  Agx = br(6).
The optimizer z; of this subproblem, which we will call a
constrained stationary point (CSP), and the dual variable Ay
can be obtained by solving the following linear system of
equations, also known as a KKT system,

(e )G -Glo) @

If there exists a unique solution to (3) the inverse of the KKT
matrix can be partitioned as

H AN _(H T @
Ap 0 Tr Uy

and the solution to (3) is, hence, given by
wp = —H{ f(0) + Tibr(0), Ak = =Ty f(6) + Uxbi(6). (5)

The inverse in (4) exists iff the so-called reduced Hessian
H, & ZI'HZ), is nonsingular (see, e.g. Theorem 16.2 in
[2]), where Zj is a matrix with columns forming a basis for
the null space of Ag. Furthermore, if the reduced Hessian is
nonsingular H;', T}, and U}, are given by

Hp = Zp(ZEHZ,) " 2T,
Ty, =Yy — Zp(ZEHZ,) ' ZL BY,, (6)
Up =Y,  HZy(Z] HZy) " Z{ HY;, — Y, HYx,
where Y, is a matrix with columns spanning the range space
of Ay and satisfying Y, A, = I [21].
A well-known property of the solution in (5), which is
exploited in explicit MPC [1], is that it is affine in 6

oh =Fi0+ Gy, A= Fpo+Gy, (7)

where F}, G}, F, and G} are given by
Fi = —Hjfo+ TiWe, Gy = —Hj f + Tiby,
)2 Tl g+ UWy,  Gr2 —TLf + Ugby.

(8a)
(8b)

> 1>

B. A primal active-set algorithm

There are plenty of different primal active-set methods
in the litterature, e.g., [2][22][23], and numerous of these
are mathematically equivalent [24], in the sense that they
produce the same iterates given the same starting conditions,
but differ numerically. In this paper we consider the primal
active-set algorithm given by Algorithm 1, described in detail
below. This algorithm formulation is chosen to make the
certification method, described in Section IV, more succinct
and the definition of an iteration of the algorithm sound, which
is important for the certification. However, it would be possible
to instead consider any other equivalent formulation, such as
any of the primal active-set methods cited above. For example,
this is done in [18] where the algorithm formulation presented
in [2, Sec.16.5] is considered. The algorithm in [2] is, however,
limited to strictly convex QPs, while Algorithm 1 also works
for H > 0.

Algorithm 1 Primal Active-Set Method for QP

Input: xy, Wy, 0,k = 1, dual tolerance ¢; > 0
Output: z;, \p, Wi
1: So (—b+W9—AIO
2: while true do
3: if (2) is unbounded then SINGULARITERATION
4: else
5 Compute x;, by solving (3)
6: if s > 0 then
7
8
9

Compute \j by solving (11)

if A\ > —eq4 then return x;, A\p, Wi,

I+ argmin [Ag]i; Wi < We\ {{}
1€EWg

10: Tht1 — TLS

else
E3
Sk+1 < S,

11: else Pr < JUZ — Tk, [O'k]wk — [A]Wkpk

12: m < argmin [[j’z]], Wig1 < Wi U {m}
i€EWg:[s5]: <0
13: Thtl < Tk + QL'PE;  Sk41 ¢ Sk — Q'O

14: k—k+1

15: procedure SINGULARITERATION
16:  Compute p; from (12)

17 [orlw, < [Alw,Pr

18: if 5, > 0 then

19: break unbounded

20: else m << argmin %, Wet1 — Wr U {m}
iEWRiEK]i<0 )

21: Thyl < T + QL'DE;  Sk41 < Sk — Q. Ok

22 k+k+1

Algorithm 1 starts with a feasible point xy and a correspond-
ing working set WV, containing a subset of the constraints that
are active at xg. For the later analysis, we allow z( to be affine
in the parameter 6, i.e., xg = Fy0 + G.

In an iteration of the algorithm, constraints are added to or
removed from the working set V), while maintaining primal
feasibility and updating the iterate xj. The update of the iterate



is different depending on if the EQP defined by the current
working set Wj, is unbounded or not.

1) Bounded EQP subproblem: 1f Hj, = 0, the EQP in (2)
(defined by W) has a unique solution and the search direction
pi is defined as the Newton step direction, given by p; =
x}, — ), where x is the solution to (2). In an iteration, primal
feasibility is retained while attempting to move along the line
segment from xj to xj,. Because of the convexity of Az < b,
primal feasibility can be retained if x}, is primal feasible, i.e.,
if b(0) — Az} > 0. Let the primal slack of x} be denoted

sy 2 (9) — Azp = b(@) — Az, — Apy = s — o, )

where we in the last equality have defined s, = b(6) — Az
(the primal slack of the current iterate) and o), £ Apj, (how
much the step p;, affects the primal slack). With this notation,
x}, being primal feasible < s > 0.

If x is primal infeasible, i.e., if s 7,)} 0, there will be at
least one hyper-plane corresponding to an inactive constraint
that separates x3 and zj. The move from x; to x} cannot,
hence, be completed without breaking feasibility. Instead, a
step is taken in the direction of pj until the first blocking
constraint m € W, is encountered. The maximal step length
ay, that retains feasibility is explicitly given as
[b); + [W1]i0 — [Alszy

[Alipr ’
| (10)
where ai can be seen as a measure of the distance from xy,
to the hyper-plane [A];2 = [b(6)]; in the direction of py,.

In addition to updating the iterate, x;1 = T + Dk, the
working set is updated by adding the first blocking constraint,
i.e., the minimizing index of (10). Concretely, if m is the
minimizing index in (10), Wi11 = Wi U {m}.

If zj is feasible, ie., if sj; > 0, global optimality for
xy, is checked by examining the dual variables Aj. x
will be a global optimum if A\, is dual feasible, i.e., if
[Ak]i > —€q, Vi € Wy, where €4 is the dual feasibility toler-
ance. From the first row in (3), A can be obtained by solving

A A = —(Hazj, + f(0)). (1D

If the A\, #? —eq, a constraint corresponding to the most
negative dual variable [\;]; is removed from the working set,
resulting in Wy11 = Wi \ {I}.

After the working set has been updated, a new search
direction is computed by solving (3) with the new working
set and the algorithm reiterates the steps described above until
global optimality is ensured.

Remark 1: A straightforward way for terminating the algo-
rithm earlier is to increase €4, which is considered in [25].

2) Unbounded EQP subproblem: If the EQP in (2) is
unbounded at iteration k, which is equivalent to H, k # 0, the
Newton direction is not well-defined and the search direction
must, hence, be determined in another way. Instead of taking a
step in the Newton direction, a step is taken in an unbounded
direction of (2). Such a direction py, satisfies

Hp, =0, Appr=0, (Hzyp+ f(0)" b <0,

where the condition (Hxy, + f(0))Tpr. < 0 ensures that py, is
a descent direction.

% %
ak ) ak

A [Sk]z o

min
[Uk]i

A = _
1€EWh:[s5]i<0

12)

When deciding the step length along the unbounded direc-
tion, two different scenarios can occur. If there is a blocking
constraint along the ray zj + apg, o > 0, the first blocking
constraint can be added to Wy, similar to the line search in
the bounded case, and the iterations can proceed as usual.
Otherwise, if there are no blocking constraints along the ray,
the objective function can be decreased by an arbitrary amount
by moving along the descent direction pj, resulting in an
unbounded problem. Concretely, there will be no blocking
constraint if &, £ Apy > 0 since then the updated slack
Sk+1 = S+ cannot become negative for any positive step
length «, i.e., any positive « gives a primal feasible iterate.

III. PROPERTIES OF PRIMAL ACTIVE-SET ALGORITHMS

To certify the complexity of Algorithm 1, we will make
use of some inherent properties of its search directions and
iterates. These properties are derived in this section and will
later be used in Section IV, where the proposed complexity
certification method is presented.

We consider properties of search directions and iterates after
constraints are added to W (Section III-A), removed from
W (Section III-B), and when the reduced Hessian is singular
(Section III-C).

Remark 2: Since some of the properties are similar to the
ones used in [18], where H > 0 was assumed, the reader
is referred to [18] for some of the proofs and only brief
comments about how to amend these to also handle the semi-
definite case are given.

A. Addition of a constraint to W

When a constraint is added to WV there will be a relationship
between the subsequent and previous search direction in terms
of H} (recall that H; was defined in (6)).

Property 1: If a constraint is added to W in iteration k,
Prr1 = (1 — o) Hy Hpy,

Proof: Cf. Lemma 1 in [18] and replace 7y, with H; H.
|

A lot of important properties of the search directions follow
from Property 1 and the following projective property of Hj..

Lemma 1: Wy C Wy = Hj HH] = HJ .

Proof: If Wi, C W1, a null space basis for Apyq is
a subset of a null space basis for Ay, i.e., Zy = [Zx+1, Z+)-
Using the inversion formula for 2 x 2 block matrices then gives

-1 1
LTz = |G B2 Zg HZ 5 UV
; ZfHZk+1 ZII{Z+ vT W
_[v'u+vsvTiut) —UT'vS
B _SVTUfl S )

. 13)
with S £ (W — VTUV)™ being the inverse of a Schur
complement. Multiplication with Z] from the right then gives

U (z,givgz)

(ZFHZ),) ' ZT =
k k _&z

; (14)

with Z £ (VU™ ZL,, — Z;). By definition we have that
Z \HZy = [U, V] and multiplying (14) from the left with



this expression and recalling the definition of Hj} from (6)
gives, after some cancellations,

Zr L HH} =ZI \HZ(ZFHZy) ' ZF = 2L, (15)
Finally, we get the desired result by recalling the def-
inition of Hj, , from (6) together with (15), result-
ing in Hf  HH; = ZL,,(ZF,HZpu) 20 HH; =
2y (2 H )7 20, = H . u

Remark 3: When H = 0, H;;H will be equivalent to the
operator 7 used in [18].

By using the projective property of H}, Property 1 can be
used iteratively for a relationship between search directions
when constraints are added to YV in consecutive iterations.

Property 2: If constraints are added to W from iteration k
until iteration k + N, ppyn = (1 —7(0))H}; yHpy for some
7(6) € 0,1).

Proof: Cf. Corollary 1 in [18] and replace 7}, with H}H
and iteratively apply Lemma 1. ]

If only additions to YV have been made since the start of
Algorithm 1 up until iteration k, Property 2 can be used to
get an explicit expression of x in terms of zg and py.

Property 3: If constraints are added to WV from iteration 0
until iteration k, xy = H}H(zo + mpo) + T;b(0)

Proof: Cf. Corollary 2 in [18] and replace 7, with H; H
and () with —H} H(-) + T},by(0). ]

B. Removal of a constraint from VW

When a constraint is removed there will be a relationship
between the subsequent search direction and the normal of the
removed half-plane.

Property 4: If constraint [ is removed from W}, in iteration
k and Wy \ {l} leads to the EQP in (2) being bounded,
Pk+1 = *[)\k]lHl:H[A]lT-

Proof: Cf. Lemma 2 in [18] and replace 73, with H}H.
|

Property 4 together with Property 2 give the following,
fundamental, property of the search directions computed by
Algorithm 1.

Property 5: At iteration k+ N, let [ be the index of the latest
removed constraint from YV, removed in iteration k. Then
pran = —(1 = 7(0)) Mol Hp: n[A]f for some 7(6) € [0, 1].

Proof: The property follows by combining Property 2 and
Property 4 together with Lemma 1. ]

Since the direction of the step in Property 5 only depends on
Hj, y and the normal [A]] of the latest removed constraint,
the parameter 6 does not affect the direction of the step after
a constraint has been removed, only its magnitude.

Not only the search directions, but also the iterates have
additional structure after a constraint has been removed.

Property 6: If a constraint is removed in iteration x,
xp = FrL0 + Gg, Vk > k for some F, € R"*P G € R™.

Proof: Cf. Lemma 4 in [18] and use Property 5. ]

Explicitly, if the normal of the latest removed constraint
is denoted p and we add constraint j to W in iteration k,
Tpy1 = (Fk + AFk)O + (Gk + AGk) with

AG), = [b];—[A]; Gk H;p.

x A [W];—[A]l; F)
AR, = Hip M hrs, (AT, 75

(AT, HEp (16)

C. Parameter independence of singular search directions

Another property which will be important in Section IV is
that the search direction when H is singular can be determined
independently of the parameter 6.

Property 7: Assume that constraint [ was removed from
Wi at iteration k — 1 and let pj be a solution to (12). Then
(Hzy, + f(0))" pr < 0 [A]Tpr < 0.

Proof: Since a constraint was removed in the previous
iteration it holds that x3 = xj_,, which satisfies Hxy_, +
AL Ne—1 = —f(0). Hence, Hz} | + f(0) = —AT A1
and, moreover, (Hzy, + f(0)Tpr = —-N_,As_1pp =
— k1 (O)i[A) pi, where the last equality follows from
Ay, = [A]_af]" since | was removed in iteration k — 1 and
from Axpr = 0 since pg is a solution to (12).

Taken together, (Hzy, + f(0))Tpr = —[Ae—1)i[A)F P < 0
and, since constraint [ was removed in the previous iteration,
[Me—1]; < 0, resulting in [A]] px < 0. ]

From (12) and Property 7 the singular direction py, is, hence,
a solution to Hp, = 0, Axpr = 0,[A]Fpr, < 0, which is
independent of the parameter 6.

IV. COMPLEXITY CERTIFICATION

In this section we propose a method which exactly identifies
which working-set sequence {Wk(ﬁ)}ﬁ(jg different parameters
6 will generate when Algorithm 1 is applied to the mpQP
in (1). As a by-product the method, hence, also indentifies
the number of iterations k() Algorithm 1 will perform as a
function of 6. The method is an extension of [18] and similar
to the ones presented in [19], [20], and [12], in the sense that
the parameter space is iteratively partitioned depending on how
the working set changes in each iteration. In fact, as will be
described in Section VI, the certification methods covered in
[18], [19] and [12] can all be seen as special cases of the
proposed method.

A. Overview

The main idea behind the complexity certification method
is to track how the working set VW changes parametrically
in terms of A. An interpretation of this is running Algorithm
1 parametrically and partitioning ©q into regions containing
parameters which yield the same working-set changes. To do
this partitioning, Algorithm 1 is decomposed into three distinct
modes (illustrated in Figure 1):

a) Checking for global optimality and removing constraints,

performed at Steps 7-10.
b) Checking for local optimality and adding constraints,
performed at Steps 5-6 and 11-13.
¢) Checking for unboundedness and adding constraints, per-
formed at Steps 16-21.
A switch from mode a) — b) or ¢) occurs when a constraint is
removed, depending on if the new reduced Hessian is positive
definite or not, respectively. Likewise, the algorithm goes from
mode b) — a) when a constrained stationary point is primal
feasible. Finally, a switch from mode c) — b) occurs after a
constraint is added in mode c).

In each mode, a parameter region is partitioned into finer

regions, where all parameters contained in a certain region
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Fig. 1: Flowchart characterizing Algorithm 1.

indicate that they generate the same change to the working
set. For each finer region, the partitioning is repeated recur-
sively, corresponding to executing iterations of Algorithm 1
parametrically, leading to an increasingly finer partitioning.
Explicitly, the partitioning done in each mode are:

In mode a) a region © is partitioned into the regions

« O*: Global optimality obtained

e ©7: j removed from W

Likewise, in mode b) a region O is partitioned into the regions

o O%SP: A primal feasible CSP reached
e ©%: j added to W

Finally, in mode c) a region © is partitioned into the regions

e ©°: The problem is unbounded

e ©%: j added to W
Each new region will enter a new mode for further partitioning
or be marked as optimal or unbounded. If marked optimal
or unbounded, the region will not be partitioned further. The
partitioning made in each mode is illustrated in Figure 2 and
will be discussed in more detail in the upcoming sections.

In summary, ©y will iteratively be partitioned into the
above-mentioned subsets until all parameters have reached
global optimality or have been identified to result in an
unbounded problem. In the final partition, parameters in the
same region signify that they produce the same sequence
of working-set changes before terminating. The method is
summarized in Algorithm 2, where each region of the partition
is represented by a tuple (©, W, F, G, s, k, ) containing the
following data:

e O C Oy C RP - The subset of the parameter space that

defines the region.

e W - The working set in the region.

e F € R™P and G € R"*! - Matrices that define the

affine mapping z, = F0 + G for 0 € ©.

e 5 - A status flag that marks if the region has reached

a CSP °CSP’, global optimality *OPT’, results in an
unbounded problem "UNB’, removed a constraint in last
iteration 'RM’ or neither "'NUL’.

e k - Number of iterations performed by Algorithm 1 to

reach the current state.

e p - The normal of the latest removed constraint.

Furthermore, S in Algorithm 2 is a stack containing tuples
corresponding to regions of O that are yet to terminate.

The subroutines MODEA, MODEB and MODEC in Al-
gorithm 2 partition the parameter space depending on what

happens in mode a), mode b), or mode c), respectively. These
subroutines will now be described in detail in Section IV-B,
IV-C and IV-D, respectively.

Algorithm 2 Partition ©( based on working-set changes

Il'lpllt: @Oa WOa F07 G07 meP

Qutput: FinalPartition, UnboundPartition
1: Push (@0, W, Fo, Gy, 'NUL’, O,NaN) to S
2: while S is not empty do
3: Pop p. from S

4 if reduced Hessian for p. is positive definite then
5 if p. has reached a CSP then

6: Partition = MODEA(p., mpQP)
7 else Partition = MODEB(p,., mpQP)
8 else

9: Partition = MODEC(p., mpQP)

10: for p in Partition do

11: if p is global optimum then

12: Append p to FinalPartition

13: else if p is unbounded then

14: Append p to UnboundPartition
15: else Push p to S

16: return FinalPartition, UnboundPartition

B. Removing constraints and checking for global optimality

First we consider how the parameter space is partitioned in
mode a). If mode a) is entered at iteration k, the dual variable
A determines whether global optimality has been reached or
if a constraint has to be removed. Recall from Algorithm 1 that
a global optimum has been found if all components of A\ (6)
are nonnegative (within a given tolerence €4). Otherwise, a
constraint ! corresponding to a negative component of Ay is
removed from the working set. From Algorithm 1 Step 9, [
is chosen as the most negative component of A\ (f), i.e., | =
argmin, ¢, [Ar(6)]; (Dantzig’s selection rule). The set ©/ of
all parameters in iteration k resulting in constraint j € Wy
being removed from the working set is, hence, given by

@g:{ee@k

—€q . .
Me(0)]; < VieW ;
O < (i) i €W\ 3
7)
i.e., 6 for which the dual variable corresponding to constraint
7 is negative and more negative than any other dual variable.
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Fig. 2: Conceptual illustrations of the partitioning of a parameter region ©; done in mode a), b), and c). In mode a), removing
j results in a singular reduced Hessian while removing ¢ does not.

Likewise, the set ©; of all parameters in iteration k resulting
in a global optimum is given by

p=1{0 € OklAk(0)]; = -€a, Vie Wi}, (18)

i.e., # for which all dual variables are nonnegative.

In summary, a region O, in mode a) will be partitioned into
O3 and O, Vi € Wy, illustrated in Figure 2a.

To get more explicit expressions of these sets, recall from
(7) that A\, (6) is affine in 6, i.c., \p(0) = F0 + Gj. Hence,
the regions © in (17) can be equivalently expressed as all
0 € O such that

[F210 + (G < —ea (192)
([FR1;-1FR1:) 6 < (IGRli~[GRly) » Yie Wi\ {j} (19b)
Likewise, the region ©j defined in (18) can be expressed as
F=1{0 € OL|F)0+ G > —e4} (20)

How regions of the parameter space are partitioned in mode
a) is summarized in Algorithm 3.

Algorithm 3 (MODEA) Partition © based on if global opti-
mality is reached or if a constraint is removed from W

1: MODEA((©, W, F,G, s, k,p) , mpQP)

2: Calculate F* and G* according to (8b)

3: for all 7 in W do

4:  Calculate O~ according to (19)

5: if©7"#£( then

6: Append (07 W\{i}, F,G,"RM’, k+1, [A]T) to P
7: Calculate ©* according to (20)

8: if ©* £ () then

9:  Append (0, W, F,G,”OPT’ | k,p) to P

10: return P

C. Adding constraints and checking for local optimality

We now turn our attention to how the parameter space is
partitioned in mode b). If j is the minimizing index of the
minimization in (10), it will be added to W;y1 and ap =
af. The set ©,7 of all parameters in iteration k leading to
constraint j being added to Wy is, hence, given by

OF £ {0 € Oxllsi]; <0, a(0) < aj,(6),¥i € W \ {7}}

21

where j being a blocking constraint is ensured by [sf]; <O,

while o () < . (0), Vi € W, \ {j} ensures that it is the
first encountered blocking constraint.

Furthermore, the constrained stationary point is primal
feasible if [s}]; > 0 Vi € W;. The set @gsp of all parameters
in iteration k leading to a constrained stationary point being
reached is, hence, given by

OSSP £ {9 € O4[s1]; > 0,Vi € Wy} (22)

In summary, a region O in mode b) will be partitioned into
@gsp and 9?,% € W, illustrated in Figure 2b.

The rest of this section is dedicated to deriving explicit
expressions for GgSP and @;ﬂ . First, we formulate an explicit
expression for ©$>F, which is straightforward since s} is affine
in 0, ie.,

sy = FLO0+ G5

Sk’

F; £W —AF;, Gi £b— AG;. (23)
An explicit expression for OF%F is, hence, all 6§ € Oy, such that

Next we formulate an explicit expression for O, which
will prove to be more complicated. From (21), the quantities
that define ©;’ are s}(f) and o} (6), where we know from
above that sj(0) is affine in 6. The main complication for
deriving an explicit expression for @zj is, hence, to establish
explicit expressions for ok (#), which in turn requires explicit
expressions for py(f) and x(6).

Because of Property 5 and 6, both py, and =, depend on 6 in
a straightforward way after a constraint has been removed from
W, while their dependence on 6 will be more intricate before
a constraint has been removed. Therefore, we derive explicit
expressions for ©;” in two different cases: Case bl considers
the case when a constraint has been removed from WV in an
earlier iteration, whereas Case b2 considers the case when no
constraint has been removed since the start of Algorithm 1.

1) Case bl - A constraint has been removed from W: If
constraint [ is the latest constraint removed from W at iteration
k <k, pi can from Property 5 be expressed as

pe(0) = —(1 — 7(O) [N Hi [Al =~v(0)Hip,  (25)

with the scaling factor y(6) = —(1 — 7(0))[\;]; and the latest
removed normal p = [A]7. Also note that () > 0 since
7(0) € [0,1) and [A;]; < 0.
Furthermore, from Property 6, the iterate z; is affine in 6,
ie. xp = F,0 + Gy. _
Using these expressions for py and xy, the step length «v],
defined in (10) is given by

(26)



with F, LW — AF,, Gs, L£p— AGy, and G, e AHp
By inserting expression (26) for ai and expression (9) for

s} in (21), ©7 can be explicitly stated as all § € O, satisfying

K0 < LI, vie Wi\ (5). @)
[F:k]je + [G:k]J <0 (27b)
where K ’ch and Liz are given by
K]JCJ é [Go'k]l[Fsk]] - [Gak}j[FSk]ia (283)
L?C’l 2 *[Gak]i[Gsk]j + [Gnk]j [ngL (28b)

Remark 4: As can be seen in (27), all partitioning in Case
b2 will solely be made by linear inequalities.

2) Case b2 - No constraint has been removed from W:
When formulating an explicit expressions for @;] when no
constraint has been removed from W, we will, instead of
. (0), use the quantity & () defined as

&l (0) 2 [b); + [W1;6 — [Al; (H Heo(6) + Trb(9))

: (Al Hy Hpo(0)
where g is the starting iterate and po(0) = z{(0) — xo(0).
&) can be seen as a measure of the distance between the
half-plane [A];z = [b(#)]; and the projected starting iterate
H} Hzxg along the search direction py. ‘

The main reason for considering ak(d) instead of «),(6)
is that ak(d) is related to 6 in an intricate way, whereas @,
simply is a linear fraction of 6

[FSk]ja + [ésk}j

(29)

50 —
ak(e) ; [ng]je + [GUI\]] 7 G
f?‘ é Ngk and égk defined as
F AW - A(H;HFy + T, W), (31a)
é 2p— (HkHGO + Tyb), (31b)
. 2 AH;H(F; — Fy), Gy, 2 AH}H(GY — Go). (3lc)

The following lemma makes the relationship between di and
. more explicit.

Lemma 2: 1If no constraint has been removed by Algorithm
1 up until iteration k, &7, =7 + (1 — T)ak, T €[0,1).

Proof: If only constraints have been added to W since
Algorithm 1 started, it follows from Property 2 and 3 that
xp = HH(zo+ mpo) +T3b(0) and py, = (1 — 7)H} Hpy for
some 7 € [0,1). This inserted into (10) gives

ol (0) = [b(0)]; — [Al;(Hy Hzo + T1,b(0)) — T[A]; Hy Hpo(0)
* [A;(1 = 7)Hj Hpo(6)
e (e
which is equivalent to 07,;(0) =74+ (1- T)aé(g) -

Next, we use Lemma 2 to prove that ©;; 7 can be equivalently

expressed in terms of &, instead of o,
Theorem 1: If no constraint has been removed in Algorithm
1 up until iteration k, @” defined by (21) equals

{0 € Okllsil; <0, a4(0) < aj.(9),Vi e Wi\ {j}}

Proof: From Lemma 2 we have that ak < ap e
T+ (1- T)Oék <7+ (1-7)a & o < a}, where the last

(32)

equivalence follows from (1 —7) > 0 since 7 € [0,1). We
can, hence, replace o) and of with &; and &} in (21). =
@;J can now be explicitly stated, by inserting (30) in (32)
and rearranging terms to remove the fractions, as all € ©y
satisfying
0TQu' 0+ RO+ S <0,
[F3)50 + 1G5, 1 <0
with definitions Q)" 2 [F,,|T[Fy,]; — [ng]f[ﬁsk]z R £
[Gsk]][Fak]l ‘t [G ] [F ] ([Gskji[Fo'k]j + [Gak]j[FSk]i)’
and S7* £ [Gy,]j[Go,)i — [Gs.)i[Goyl;- The constraints in
(33b) ensures that [A];z < [b()]; is a blocking constraint
and (33a) ensures that it is the first blocking constraint.
Remark 5: As can be seen in (33), the parameter space
will be partitioned by linear and, in contrast to Case bl (see
Remark 4), quadratic inequalities when a constraint is added
to the working set under Case b2. Quadratic inequalities make
the analysis less tractable compared to only linear inequalities
and we will, hence, give some alternatives to circumvent these
in Section V-B and V-C.
The results from Section IV-C1 and IV-C2, i.e., how regions
are partitioned in mode b), are summarized in Algorithm 4.

vie Wi\ {j},  (33a)

(33b)

Algorithm 4 (MODEB) Partition © based on if a CSP is
reached or if a constraint is added to WV. (Case bl/Case b2)

MODEB((©, W, F, G, s,k,p) , mpQP)
Compute F* and G* according to (8a)
for all i in W do

Calculate ©* according to (27)/(33)

F+ — F+ AF, G+ +— G+ AG using (16)/(-)

if © £ () then

Append (0% WU{i}, Fy,G4,’NUL’, k+1,p) to P

Calculate ©SP according to (24)
if ©°5P =£ () then

Append (OSSP W, F* G* °CSP’,k +1,p) to P
: return P

R I A A A

_ =
s ¢

D. Adding constraints when the EQP is unbounded

In mode c) the singular direction py, is central in determining
both unboundedness or which constraint that will be added
to W. Since pj is independent of 6, see Property 7, the
unboundedness is binary: Either it holds for all parameters
or no parameters in Oy, formalized in the following theorem.

Theorem 2: Let O be a region for which f{k became
singular after constraint [ was removed in iteration k — 1.
Furthermore, let ©7° C ©;, be the parameters in ©; which
result in an unbounded problem. Then either ©° = () or
O = 0y.

Proof: By combining (12) and Property 7, pp solves
Hpy, = 0, Agpr, = 0,[A]f' pr < 0, which is independent of
the parameter 6. Moreover, the parameter independence of py,
also implies that the unboundedness condition 7, 2 Ap, >0
is independent of 8 so either 65, > 0,0 € Oy, implying that

= Oy, or 5 # 0,V0 € Oy, implying that OF° = [

Furthermore the possible constraints that can be added to
Wy are all i € W, such that [54]; < 0, which, again, is
parameter independent since 75, = Apy,.



Additions to W in mode c) are similar to additions in
mode b), the only difference is which step direction is used
(pr. in mode b) and py, in mode c)). The partition will, hence,
be similar to the one described in Section IV-C1. The only
change needed is to replace p with py. Hence, if the problem
is unbounded (6 % 0), the region of ©y in which j is added
is given by

0} = {0 € Orlo/(0) < a'(0),Vi: [64)i <0},  (34)

which can, similar to (27), be written as all # in ©y, such that

K9 <L, YieWe\{j}:[6xi <0,  (35)
with the definitions K7' £ [5]i[Fy,]; —
L' 2 —[ox]ilGs,]j + [04);(Gs, )i

In summary, a region ©f in mode c) is partitioned into
regions @Zl,w : [ok]i < 0, or the entire ©, is marked as
unbounded if 6, > 0, illustrated in Figure 2c and summarized

in Algorithm 5.

[0k);[Fs, )i and

Algorithm 5 (MODEC) Partition © based on if an unbounded
problem is identified or if a constraint is added to W.

1: MODEC((©,W, F, G, s, k,p) , mpQP)

2: Compute p by solving Hp =0, [Alwp =0, pIp <0

3: &(4'Aﬁ

4: if 6 > 0 then

5: Append (O, W, F,G,”UNB’, 0o, p) to P

6: return P

7: for all i : [6]; < 0 do

8:  Calculate ©* according to (35)

9:  Calculate AF, AG using (16) (with p replacing H} p)

100 Fy « F+AF, Gy<+ G+AG

11:  if O™ #£( then

12: Append (0% Wu/{i}, F,,G,,’NUL’ k+1,p) to P
return P

V. EXTENSIONS AND PRACTICAL ASPECTS
A. Certifying number of floating-point operations

As previously mentioned, there are many primal active-set
algorithms in the literature which are mathematically equiva-
lent [24], in the sense that they produce the same sequence of
iterates. The main difference between algorithms is how, and
which, matrices are factorized for solving the KKT system. In
Algorithm 2 we have deliberately abstracted away, e.g., how
the KKT system is solved to cover numerous of these active-
set algorithms simultaneously. To determine the flops for a
specific algorithm, however, one needs a mapping F(Wy)
which, given a working set, computes the required number of
flops to, e.g., solve the KKT system for the particular solver
of interest. By using such a mapping, the exact number flops
for the particular solver can be determined since the exact
sequence of working-set changes is determined by Algorithm
2Vl € Q.

Furthermore, by using multiple mappings corresponding to
different solvers, their complexity can be compared simulta-
neously. Through such a simultaneous comparison, the choice
of which solver is best, in terms of the least number of flops,
for the specific problem at hand can be determined.

B. Special cases with simplified partition

As has been shown in (33), the application of the proposed
method to a general mpQP might result in a partitioning of
the parameter space using not only affine but also quadratic
inequalities. The significance of this is during the pruning
of empty regions, done at Step 5 and 8 of Algorithm 3,
Step 6 and 9 of Algorithm 4 and Step 11 of Algorithm 5,
since to check consistency of a combination of linear and
quadratic constraints is non-trivial. However, there are some
relevant cases when the partitioning is solely composed of
affine constraints, resulting in easier feasibility checks (a single
LP solve per check). Such special cases are described below.

1) No state constraints: When there are no constraints on
the states, a linear MPC problem can be formulated as an
mpQP with W = 0. Additionally, an admissible control input
can be picked as a fixed starting point, i.e., Fo = 0. This will
result in [F,]; = 0 in (31a) which in turn results in Q7" = 0.
Therefore, all partitioning of the parameter space will be done
using half-planes, leading to a polytopic partition.

2) Starting in a constrained stationary point: When the
initial point is a CSP, partitioning according to Case b2
will never occur since either the CSP will be dual feasible,
resulting in the algorithm directly terminating with a global
solution, or a constraint will be removed. All partitioning will,
hence, be made be affine inequalities since partitioning with
quadratic inequalities only occurs under Case b2 (see Remark
5). Hence, under the assumption that © is a polyhedron, the
final partition will be polytopic.

3) Reformulate QP using a quadratic penalty method:
All inequality constraints that depend on parameters can
be transformed to equality constraints by introducing slack
variables. These equality constraints can then be moved to the
objective function under a quadratic penalty, cf. e.g., [26][2,
Sec.17-1]. The resulting QP will be on the form which was
discussed in special case 1), described above.

C. Outer approximations of quadratic inequalities

If the problem does not fall into any of the special cases
above, the comparison of step lengths o (6) < c.(6) to find
the first blocking constraint when a constraint is yet to be
removed from W, i.e. under Case b2, results in the quadratic
inequalities (33a) on the form 7 Q6 4+ RO + S < 0.

An alternative to handle these quadratic constraints is to
make an affine outer-approximation with the half-plane

RO < —S — min 67Q0 (36)

[ASSIR

where Oy, is the current region. Hence, by solving an indefinite
QP in relatively low dimension, an affine relaxation can be
obtained. Ultimately, this relaxation might lead to some re-
gions overlapping, giving a conservative result since all regions
produced by the certification method might not correspond to
how Algorithm 1 performs in practice. ‘

An interpretation of relaxing of (0) < «.(9) with (36) is
that the ¢:th constraint might not be the first blocking constraint
for that particular parameter region in iteration k. This would
result in a primal infeasible iterate, which can be used in
the certification algorithm to prune some of the redundant



regions which the outer-approximation might yield. Checking
for infeasibility of the iterate during Case b2 will, again, lead
to quadratic regions and is therefore of no use. As soon as a
constrained stationary point is reached, however, the iterates
become affine in 6, see Property 6, and the affine constraint
Ax;(0) < b+ W6 can be added to the current region to
prune infeasible iterates. In the end, the only redundant regions
that remain will correspond to iterates that regained primal
feasibility before the first CSP was reached.

D. Constraint selection rules

In Algorithm 1, Dantzig’s selection rule, i.e., picking the
most negative component of A, has been used when select-
ing which constraint to remove from . Convergence can,
however, be guaranteed if any constraint corresponding to a
negative component of X is removed from W. To retain the
tractability of the certification method though, the partition-
ing made by the selection rule should not be too complex,
preferably with half-planes (as Dantzig’s rule). A class of
selection rules which leads to partitioning with half-planes are
combinatorial rules described in [27], including Bland’s rule
which, together with Dantzig’s rule, were considered in [19].

As a final remark, the framework presented in this work
could also be used to determine if it is beneficial to remove
more than one constraint corresponding to a negative dual
variable at a time or if it leads to more computations as
the active-set algorithm progresses. This would, however, lead
to some of the nice properties under Case bl, described
in IV-C1, being lost, making the certification method less
tractable (because of partitioning with quadratic inequalities).

E. Warm-starting

In the derivation of Algorithm 2 in Section IV, we have
used an arbitrary Wy, zg = Fypf + Gy and ©y C RP being
any polyhedron. This general setup can be used for certifying
the complexity of semi-explicit warm starts for a given mpQP,
akin to the semi-explicit method presented in [12] for mpLPs.
Moreover, the setup also allows for using the explicit solution
to analyze warm starts, assuming the solution in the previous
time step is used to warm-start the solver online and it is
known how it is used, e.g., if it is shifted or not.

Complexity certified warm starts for active-set methods is
an area for future research, where the presented certification
method herein is an important first step.

VI. RELATIONSHIP TO OTHER METHODS
A. Dual active-set methods for Quadratic Programming

As is noted in [21, p.244] and [3], the popular dual active-
set method presented in [3] is mathematically equivalent to
Algorithm 1 applied to the dual of (1) when H > 0. The dual
problem to (1) can be stated as the mpQP

1
minimize 5ATATH—lAA +(b(0) + AHF(0)T N, (37)

where the optimal primal solution z* can be recovered from
the optimal dual solution A\* by z* = —H " 1(f(0) + AT)\*).
The complexity certification method for the dual method in

[3] which is provided in [19] can, hence, be seen as a special
case of Algorithm 2 applied to the mpQP in (37).

The certification of dual active-set methods which are not
started in the unconstrained optimum is not considered in [19].
However, viewing the method in [19] as Algorithm 2 applied
to (37) allows for complexity certification of dual active-set
methods with arbitrary, dual feasible, starting iterates. Being
able to do the certification from an arbitrary starting iterate is
necessary when analyzing warm starts.

In [19] the certified number of iterations is shown to
be constant over a polyhedral partition. This is in contrast
with the results in Section IV where, in general, both affine
and quadratic inequalities partitions the parameter space for
Algorithm 2. There are two factors that, separately, lead to
the lack of quadratic partitioning in [19]. First, since the dual
active-set method considered in [19] is always initialized in the
unconstrained optimum, it falls into the special case described
in Section V-B2. Another reason reason for a final polyhedral
partition is that (37) has more structure than the generic
mpQP in (1), i.e., that there is no parameter dependence in
the constraints. This additional structure can, with the same
reasoning as in the special case described in Section V-BI,
lead to a polyhedral partition.

B. Active-set methods for Linear Programming

Using another formulation, more concretely using the 1-
and oco-norm instead of the 2-norm in the cost function, linear
MPC problems can be cast as mpLPs, see, e.g., [28, Sec.2-3].
mpLPs can be seen as a special class of mpQPs with H = 0.

A well-renowned method for solving LPs is the simplex
method [23, Sec. 5] which can also be seen as an active-set
method. In fact, Algorithm 1 applied to an LP is mathemat-
ically, but not numerically, equivalent to the simplex method
with Dantzig’s pivot rule [29]. The iterates of the simplex
method are vertices of the feasible set and we will now briefly
describe how this translates to the behaviour of Algorithm
1. Since a vertex is a constrained stationary point, we will
check for optimality or remove a constraint from our working
set (mode a)). Removing a constraint leads to mode c) being
entered since the reduced Hessian is trivially singular (H = 0).
This will either lead to unboundedness being detected or a
constraint being added. In the latter case, the iterate is a new
vertex and mode a) is entered again. Because of the above-
mentioned equivalence, the complexity of the simplex method
can, hence, also be certified using Algorithm 2.

An alternative to the simplex method for solving LPs are
other active-set algorithms which do not restrict all iterates to
vertices. Such a method is considered in [12] and uses the
gradient of the objective function as search direction. Hence,
by computing the search direction by solving the KKT system

I AL (pe) _ (—1(0)

A, O Ak 0 ’
and modifying Algorithm 2 accordingly, the LP method in
[12] can also be certified using Algorithm 2.

(38)



C. Explicitly solving mpQP

The proposed method is also similar to computing the
explicit solution to the mpQP, which is used in explicit
MPC [1], since the explicit solution is a by-product in the
final partition of Algorithm 2. The method therefore shares
the complexity of explicit MPC which has the well-known
drawback of growing quickly as the problem size grows.

An important advantage of the proposed -certification
method is, however, that this growth in complexity only has
to be dealt with offline, while it has to be dealt with offline
and online for explicit MPC (since the critical regions have
to be stored and looked up online). Not only is the storage a
limitation for the use of explicit MPC on embedded system
with limited memory, but the point location can also be more
demanding than solving the problem online, as is shown in
[19]. The proposed method is therefore applicable to problems
which are out-of-bounds for explicit MPC, for example, one
could use Algorithm 2 on problems with a vast number of
critical regions which might take hours, or even days, to
certify. Once Algorithm 2 completes, however, the active-set
method can be used online with real-time guarantees. The
additional memory and computational requirements online due
to that the QP algorithm has been certified is zero, i.e., the
requirements are identical to if the online QP algorithm would
not have been certified.

Moreover, since the complexity is in offline computations
for the proposed method, high-performance computing (HPC)
can be used to further increase the problem sizes which
can be handled, especially since Algorithm 2 is well-suited
for parallelization by distributing the stack S over multiple
processors.

VII. NUMERICAL EXAMPLES

Some benchmark problems from the MATLAB Model Pre-
dictive Control Toolbox will be considered to test the proposed
certification method. These MPC problems are the control
of a double integrator, a DC-motor, an inverted pendulum,
a linearized nonlinear multiple-input-multiple-output system
and an ATFI-F16 aircraft. The tracking problem is considered,
resulting in a parameter vector § containing the state vector,
the previous control input and the reference signal. The same
problems were also considered in the context of real-time
certification for other QP methods in [19] and [20], where they
were considered a good representation of the kind of problems
encountered in real-time MPC. For further details about the
problems see [19] and [20]. Additionally, the method is tested
on a randomly generated mpQP to accentuate the possibility
of quadratic partitioning of the parameter space. This problem
will be called ”Contrived mpQP” and is given by

0.97 0.19 0.15 0.38 2.20 0.43

=019 098 005], A= (049 057 022],
0.15 0.05 0.99 0.77 046 0.41

f=0 0 0", b= (41 37 43)7,
0.19 —0.89 113 —44.3

w=|{ 062 —154]|, fo=[-366 —119
~0.59 —1.01 —326 781

The certification method presented in Section IV is applied
to the resulting primal mpQP problems on the form (1) for
all of the MPC examples, with the starting iterate being the
origin, i.e. g = (0,...,0)7 and the starting working set
being the empty set, i.e. Wy = {. Since the DC motor and
ATFI-F16 aircraft examples contain state constraints, these
constraints are softened (see, e.g., [30]) to ensure the existence
of primal feasible solutions. Furthermore, the initial slack is
set large enough to ensure primal feasibility of the origin for
all parameters of interest.

In addition to the primal problems, the certification method
is applied to the dual problems on the form (37), which are
positive semi-definite. For all of the dual experiments, the
starting iterate is chosen as Ao = (0, ..., 0)7 and all constraints
of the dual problem are active in the initial working set, i.e.,
Wo = K = {1,...,m}, corresponding to starting in the
unconstrained primal solution.

Gurobi 9.0 [31] was used to decide if regions described by
both linear and quadratic inequalities were empty or not.

A. Complexity certification

To give a taste of the final result from Algorithm 2, Figure 3
depicts a low-dimensional slice of the resulting regions which
lead to the same number of QP iterations when the primal
problems are solved with Algorithm 1, determined by Algo-
rithm 2. However, this is only a subset of the information con-
tained in the final partition since every region also contains the
exact sequence of working-set changes performed to reach the
solution. As an example, the parameters in the final region of
the contrived mpQP example which contains 6 = [0.5,0.5]7,
(the purple region in the middle of Figure 3a), have undergone
the following working-set changes: § — {1} — {1,3} — {3}
before reaching optimality.

The dimensions of the resulting mpQPs for the examples
are shown in Table I together with the maximum number
of QP iterations Nl and Ngpar needed for the active-set
algorithm to provide a solution when solving the primal and
dual problem, respectively, determined by Algorithm 2. The
table also includes the time taken for the certification ¢*"* and
the number of regions N'™¢ in the final partition. Furthermore,
the maximum number of QP iterations observed when running
Monte Carlo (MC) simulations, denoted NyX, were obtained
by random sampling of ©¢ and applying Algorithm 1 to the
resulting QPs. For the MC simulations, as many samples
as possible were drawn during " to compare with the
certification method.

By comparing Nl with Njir in Table I it can be seen
that the dual method needs fewer iterations in the worst-
case for most of the examples, which is in accordance with
what is noted in [3]. However, for the ATFI-F16 example
the primal method needs fewer iterations in the worst-case.
Hence, whether the primal or dual active-set approach is to
be preferred, from a real-time perspective, is, not surprisingly,
problem dependent and the proposed certification method can
be used to decide which one gives the fewest iterations in the
worst-case for a given problem.

It can also be seen that Nye ., <Ngb and
NyCaua < Naugy  for some of the examples, highlighted



TABLE I: Dimensions of the resulting mpQPs for the examples, the worst-case number of QP-iterations N™* determined
by Algorithm 2 and the worst-case number of QP-iterations Ny& determined by extensive simulation. N is the number of
regions in the final partition and ¢°" is the time taken by a MATLAB implementation of Algorithm 2 executed on an Intel 2.7
GHz i7-7500U CPU. The subscripts “prim” or ”dual” denote results when the primal or the dual QP were solved, respectively.

p_n m | Nob o Naa | Gl Gl | MmN | Micpin  NVCaual
Contrived mpQP 2 3 3 4 4 0.08 0.01 6 5 4 4
Double integrator 4 3 6 6 6 0.13 0.08 39 43 6 6
Inverted pendulum | 8 5 10 19 14 15 7.6 2499 1839 19 14
DC motor* 6 3 10 14 14 46 11 2309 1865 10 10
Nonlinear demo 100 6 12 14 11 56 41 10166 8669 12 11
ATFI-F16* 10 5 12 21 24 541 558 41971 93064 14 15

* For the primal problem, quadratic inequalities were outer-approximated by affine inequalities as described in Section V-C.
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(d) Inverted pendulum, p = 8
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(e) Nonlinear demo, p = 10 (f) ATFI-16, p = 10

Fig. 3: 2D-slice of the resulting parameter regions with
0; =0, ¢ > 2, produced by Algorithm 2 for the primal prob-
lems. The same color means same number of QP iterations.

in red in Table I. This either means that the certification
method is conservative or that the MC simulations are
optimistic, (or both). However, since the certification method
provides a region in parameter space for which the worst-
case number of iterations is obtained, a parameter in the
worst-case region for each example was extracted and by
applying Algorithm 1 to the resulting QP it could be proven
that the certification method did not provide a conservative
result. Instead, the discrepancies are due to MC simulations
not being able to cover the parameter space densely enough
with samples during the allotted time. Even if more samples
could be taken to improve the MC results, this would require
more time than the certification method and, still, there are

no guarantees for sufficient coverage for any finite number
of samples. This underlines an important advantage of the
proposed certification method compared to MC simulations,
namely that the proposed method covers a continuum
of points, which becomes increasingly beneficial as the
dimension of the parameter space increases.

Remark 6: The execution time ¢°" is based on an im-
plementation of Algorithm 2 in MATLAB. Modifications
to the implementation, such as low-rank modifications and

parallelizing computations, are expected to significantly reduce
tcert.

B. Affine approximations of quadratic inequalities

The affine outer-approximations of quadratic constraints,
described in Section V-C, were tested by using Algorithm
2 with and without these relaxations on the problems which
lead to quadratic partitioning of the parameter space, i.e., the
contrived mpQP, DC motor and ATFI-16 aircraft example.
Table II summarizes the result, where it can be seen that
approximating the quadratic constraints results in the final
partition containing more regions, given by N™&, for all of the
examples. This is expected since, as is discussed in Section
V-C, the relaxations might lead to redundant regions. For the
contrived mpQP, the relaxation results in an upper bound on
the number of QP iterations N2®* of 6 instead of the tight
upper bound 4. However, for both the DC motor and ATFI-F16
example the upper bounds provided by the relaxation coincide
with the tight upper bound. Table II also shows that, for large
problems, the computation time ¢ for the certification can be
significantly reduced by forming affine outer-approximations
of the quadratic constraints. In conclusion, relaxing quadratic
constraints with the method described in Section V-C can pro-
vide good, even tight, upper bounds on worst-case behaviour
while reducing the certification time for large problems.

TABLE II: Comparison of the certification method when linear
outer-approximations of quadratic constraints are/are not used.

iln;?x Nreg tCel'[ [S]
Contrived mpQP _ 6/4 15/6 0.76/0.08
DC motor 14/14  2309/1765 46/263
ATFI-F16 21/21  41971/31831  541/4689

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented a method which extends,
and unifies, complexity certification results for active-set QP



and LP methods. The method computes exactly which se-
quence of working-set changes, as a function of the parameters
in an mpQP, a primal active-set QP algorithm will undergo to
find an optimum. This can be used to determine an upper
bound on the number of QP iterations the algorithm will
need when it is applied online, which is of importance in the
context of real-time MPC where hard real-time requirements
have to be fulfilled. The method partitions the parameter
space into regions, defined by affine and quadratic inequalities,
representing parameter sets which generate the same sequence
of working-set changes to reach a solution. Furthermore, by
considering positive semi-definite QPs, the proposed method
poses previous complexity certification results for primal and
dual active-set QP methods, as well as active-set LP methods,
in a unified framework. The proposed method was successfully
applied to a set of linear MPC problems to illustrate how it
can be used to determine the worst-case number of iterations
needed by primal and dual active-set algorithms online.

Future work includes using the framework to compare the
worst-case number of FLOPs different active-set algorithms
require, e.g., to consider the difference between different
range-space and null-space methods.
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