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Non-redundant high-integrity position estimation
robust to sensor bias jumps using MGLR

Gustav Öman Lundin, Philippe Mouyon, Augustin Manecy, and Gustaf Hendeby

Abstract: This paper presents and experimentally evaluates an algorithm named Multiple
Generalized Likelihood Ratio (MGLR) for detecting and estimating multiple consecutive
measurement biases appearing frequently, in the case of non-redundant sensors; typically
the case for a small drone or remotely piloted aerial vehicle. The algorithm itself is based
on the Generalized Likelihood Ratio (GLR) algorithm by Willsky for bias detection and esti-
mation, and introduces additional steps for continuously estimating, compensating, and
eliminating measurement biases after detection. An experimental campaign using a
car-mounted IMU and GNSS receiver in an urban environment shows the effectiveness
of the approach to increase accuracy, consistency, and integrity of the estimate in
non-redundant estimation with position measurements subject to time-varying bias.
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Résumé : Cet article présente et évalue expérimentalement un algorithme nommé « multi-
ple generalized likelihood ratio » (rapport de vraisemblance généralisé multiple, « MGLR »)
pour détecter et estimer de multiples biais de mesure consécutifs apparaissant
fréquemment, dans le cas de capteurs non redondants, généralement le cas d’un petit
véhicule aérien sans pilote (UAV). L’algorithme lui-même est basé sur l’algorithme du rap-
port de vraisemblance généralisé (« GLR ») de Willsky pour la détection et l’estimation des
biais, et introduit des étapes supplémentaires pour estimer, compenser et éliminer les biais
de mesure après la détection. Une campagne expérimentale utilisant un récepteur unité de
mesure inertielle (IMU) et systèmemondial de navigation par satellite (GNSS) monté sur une
voiture dans un environnement urbain montre l’efficacité de l’approche pour accroître la
précision, la cohérence et l’intégrité de la valeur estimée dans l’estimation non redondante
avec des mesures de position sujettes à un biais variant avec le temps. [Traduit par la
Rédaction]

Mots-clés : estimation de position, rapport de vraisemblance généralisé (« GLR »), mesures non
redondantes, intégrité.

1. Introduction

Navigation for drones often depends on non-redundant position sensors, such as Global
Navigation Satellite System (GNSS) receivers or vision sensors. The obvious problem that
arises is that sensor biases directly impact the accuracy of the position estimate.
Unlike large crewed aircraft, a drone has neither backup navigation systems nor a pilot that
can assess the situation and reject the faulty information.
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A common type of sensor faults impacting GNSS receivers and vision sensors is
quasi-constant biases. In the former case (GNSS), these can be due to loss and (or) addition
of one or several satellites in the solution, apparition of multipath for several satellites’
signals, or switching of operation mode (e.g., transition from Satellite Based Augmentation
Systems (SBAS) to single). In the latter case (vision) these can be due to, for example, image
feature tracking errors. A common factor for these faults is that they cannot be assumed to
be rare events for aerial vehicles operating in a complex (urban) environment.

In addition to impacting the accuracy of the consolidated, or estimated, position, these
biases have a direct impact on the integrity of the position estimate. Either the sensors
are considered fault-free, and all faults violate this assumption, or the sensors are poten-
tially faulty, and the unknown fault estimate must be accounted for.

To safeguard the accuracy and integrity of the position estimate one must therefore
apply methods capable of detecting and estimating quasi-constant biases appearing
frequently. At the same time, the integrity of the estimate must be handled to avoid
untimely mission interruptions.

The main problem of detecting and estimating biases in non-redundant sensor suits is
that the biases are only observable during a limited time after apparition. In the linear time
invariant case, such as position estimation, this can easily be seen by studying the
observability Gramian. The problem is therefore to detect the appearance time of the bias
to properly estimate it.

An important aspect of position estimation is the integrity of the estimated position. If
the position sensors are considered fault free, the integrity (through the protection level)
is simply proportional to the uncertainty of the estimate. In the case where the position
sensors are considered potentially biased, the uncertainty of the bias estimation also enters
into the calculation of the integrity. It is therefore important to assess this uncertainty and
also to be able to determine the absence of bias to guarantee high integrity over time.

Following the above points, any method for high-integrity non-redundant position
estimation needs to:

1. detect and estimate multiple biases appearing frequently on non-redundant position
sensors;

2. assess the integrity impact due to bias detection and estimation; and
3. detect the absence of bias on the measurement for maintained integrity over time.

1.1. State of the art
The Generalized Likelihood Ratio Test (GLRT) is conceptually a generalisation of the

likelihood ratio test (LRT), where the simple fault hypothesis of a fixed fault amplitude is
replaced by a composite hypothesis with a variable fault amplitude (van Trees 2001): a least
squares (LS) estimate of the fault amplitude at each instant of the monitored sequence.

The GLR algorithm, originally proposed by Willsky (Willsky and Jones 1974; Willsky 1976),
is a combination of a Kalman filter designed under the hypothesis of no fault (H0), and a
bank of LS estimators, to which is applied a GLRT to find a maximum likelihood estimate
of the fault time, k, and amplitude, b. In case a fault is declared by the GLRT, these estimates
are used to correct the state of the Kalman filter. The GLR algorithm fundamentally consists
of a linearly growing bank of LS filters. When implemented online, the filter bank is trun-
cated to a constant number of filters on a sliding window where a single bias appearing in
the observation window is considered. This obviously poses a problem when bias changes
appear frequently, which can often be the case for GNSS in urban navigation (Zhu et al.
2018). Some attempts to remedy this problem have been proposed (Jamouli and Sauter
2008; Jamouli et al. 2012) in the form of an active GLR algorithm (in the sense of continuous
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bias estimation) for fault tolerant control systems, and (Xu and Li 2007) for MIMO
(multi-input multi-output) radar tracking. In both these cases, the problem is treated in
an entirely sequential way, meaning that only the last appearing bias is continuously
estimated.

Despite its widespread use as a detector, the GLR algorithm has received criticism for
being limited to Gaussian noise models and linear or quasi-linear systems (Kerr 2006). In
response to this criticism, further developments of the GLR have been proposed to counter
nonlinearities and non-Gaussian noise. In Faurie and Giremus (2010), a detector combining
GLR and M-estimation is proposed to detect and estimate range biases, whereas in Liu and
Zhong (2014) a nonlinear version of the GLR is proposed and applied to a fault-tolerant
flight control system.

The GLR algorithm has found use in, among other applications, GNSS receiver bias
detection (Faurie and Giremus 2010), inertial navigation (Palmqvist 1996), radar target
tracking (Gao et al. 2016), and fault tolerant attitude estimation (Pirmoradi et al. 2009). In
many uses of the GLR algorithm, only the detection part is used, the GLR test (GLRT), and
no attention is given to the detected amplitude. Furthermore, biases are considered to be
rare events, thus the single bias hypothesis of the GLR is a valid assumption.

Other methodological approaches for bias estimation based on Kalman filtering have
also been proposed. Lu et al. (2015) used an aircraft kinematic model combined with an
air data sensor model that switches to alternately estimate states and biases. In Alcalay et al.
(2018), the filter uses the dynamic lift equation to add redundancy for air data sensor bias
estimation. Finally, in approaches such as Lesouple et al. (2019) and Jiang et al. (2022),
redundancy is recovered by assuming some measurements to be free from bias, which
can be true in the studied GNSS cases where some satellites have line-of-sight to the rover
whereas others do not. It cannot be said generally that observability can be recovered
through redundancy in all applications, which is one of the motivations behind the meth-
ods in this article.

Finally, the problem of pure position estimation using non-redundant measurements
subject to frequently appearing biases is largely unattended, possibly because so far, the
applications are either high-end with redundant measurements (large aircraft, GNSS receiv-
ers, autonomous vehicles), or low-end with little interest in high accuracy and integrity
(small unmanned aerial vehicles (UAVs)). The state of the art also shows little interest in
the integrity of the estimate in the non-redundant sensors case, the vast majority of the
integrity literature stemming from the GNSS domain (implying redundant range measure-
ments). To achieve high integrity navigation for non-redundant platforms, such as
unmanned vehicles and the like. This is clearly a topic that requires additional attention.

1.2. Contributions
Our contribution in this paper is the Multi-GLR (MGLR) – an extension of the GLR

algorithm – to improve the state estimate in cases of frequently occurring measurement
bias jumps. The main contribution is the addition of a re-identification stage for detected
bias jumps, allowing the continuous estimation of the amplitude of detected bias jumps
without sacrificing the ability to detect subsequent jumps. In addition, a mechanism for
reducing the drift of the corrected state estimate over time is introduced. This mechanism
consists of hypothesis tests of the accumulated bias jump sequence, globally or partially,
where the concerned estimated bias jumps are set to zero if the test passes. This avoids
accumulating residual errors due to imperfect estimations over time, if a combination of
detected biases comes close to zero. The effectiveness of these improvements of the GLR
algorithm are shown in simulations and using real data from a car-mounted inertial/GNSS
experimental setup.
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1.3. Paper outline
In Section 2 the non-redundant position bias estimation problem is introduced together

with an introduction to the GLR algorithm in Section 3 and the idea of sequential bias
detection and estimation. In Section 4 we define the MGLR algorithm for multiple sequen-
tial bias estimation. Section 5 presents three strategies for bias elimination to improve
the accuracy and integrity over time. A Monte Carlo simulation is performed in Section 6
showing the effectiveness of the MGLR and the bias elimination compared to the state of
the art. Section 7 shows an experimental evaluation of position estimation in an urban envi-
ronment. Finally, Section 8 concludes the obtained results and proposes a way forward.

2. Estimation with biased measurements

2.1. Fault modelling
Consider the linear stochastic discrete time system (t ≥ 0) with a vector-valued bias b ∈

Rnb×1 appearing on the measurement at time k

xt+1 = Axt + But + vx,t yt+1 = Cxt+1 + FΓt+1−kbt+1 +wy,t+1(1)

where xt ∈ Rn×1, yt ∈ Rm×1, ut ∈ Rp×1, bt ∈ Rnb×1, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and F ∈ Rm×nb .
The process and output noise are vx,t ∼N ð0,Q Þ ∈ Rn×1 andwy,t+1 ∼N ð0,RÞ ∈ Rm×1, where Q ∈
Rn×n ≥ 0 and R ∈ Rm×m > 0. This system representation is typical for the problem of transla-
tional position kinematics, where acceleration or speed measurements expressed in an
inertial frame are used as inputs and position measurements (e.g., GNSS measurements)
are expressed in the same frame, in which case we get the classical linear double-integrator.

The function Γt–k is the output fault signature, representing the appearance of measure-
ment bias at time t = k. The signature of a constant bias vector is modelled as Γt–k = IYt–k,
and for a drift it is Γt–k= (t – k)Yt–kΔt, where Yt–k is Heaviside’s step function. F is the fault dis-
tribution matrix indicating which measurements are subject to bias. Note that a single bias
can affect several sensors, or different sensors can be affected by different bias. Whatever
the distribution, this model assumes that the biases all appear at time k.

To force a non-redundant sensor case, the fault distribution matrix is set to F= I, mean-
ing that all measurements are potentially biased. This is not a unique solution though since
we can, for example, measure position and velocity, and only consider biases on the posi-
tion (i.e., F ≠ I), but still end up with a non-redundant system in terms of the position.

2.2. Observability
If no bias can be found, the observability of the nominal system (1) is given by the pair

(A, C). It is assumed to be fulfilled. If a bias can exist and must be estimated, it can be
integrated in the state vector, we obtain the augmented system defined by the matrices
A′, B′, C′ as follows:

�
x
b

�
t+1

=
�
A 0
0 I

�zfflfflfflfflfflffl}|fflfflfflfflfflffl{A
0 �

x
b

�
t
+
�
B
0

�zfflffl}|fflffl{B
0

ut +
�
vx,t
vb,t

�
yt+1 = ðCFΓt+1−kÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

C
0

�
x
b

�
t+1

+wy,t+1(2)

This augmented system is uniformly observable for a known k and with redundant
measurements. Then a Kalman filter can be designed to estimate x and b; however, with
non-redundant measurements, the system is not uniformly observable, and the filter will
diverge.

A Kalman filter, or any unbiased estimator, based on the system (1) will produce a biased
state estimate if a bias appears on a non-redundant measurement (Pei et al. 2019). A typical
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response of a position estimation Kalman filter (position estimate x̂, innovation ν) to the
appearance of bias on the measurement of a non-redundant position sensor takes the form
of Fig. 1.

It is clear from the Kalman filter response that the bias is observable during a limited
time T, which is the length of the transient (see Fig. 1) and depends on the observer gains.
Although not uniformly observable, the system is observable for k< t< k+ T if k is known.

2.3. Superposition and fault signatures
When a bias appears on a measurement with white noise, the measurement error

becomes coloured noise. To estimate the bias, it is intuitive to pose the problem as a super-
position of a nominal part, where only the stochastic uncertainty (white noise) applies, and
a faulty part where the effect of the bias appears (Willsky and Jones 1974), that is,

xt = xnt + xft

yt = ynt + yft
with

xft+1 = 0

yft+1 = FΓy,t+1−kb
(3)

where n corresponds to the nominal stochastic dynamics and f to the deterministic fault
effect. Furthermore, a Kalman filter, based on the hypothesis of white noise, can be applied
to estimate the fault-free state ðx̂nt ∼N ðxnt ,PtÞÞ using a classical recursion

Prediction Correction

x̂+t+1 = Ax̂t + But x̂t+1 = x̂+t+1 + Kt+1νt+1

P+t+1 = APtAT + Q Pt+1 = ½I − Kt+1C�P+t+1
(4)

The prediction error ν, called the innovation, its covariance S, and the correction gain K are
calculated as

νt+1 = yt+1 − Cx̂+t+1 St+1 = CP+t+1C
T + R Kt+1 = P+t+1C

TS−1t+1(5)

Using this recursion, the response of a Kalman filter based on the fault-free system at the
occurrence of a bias on the measurement can be calculated. This response is commonly
called the fault signatures of the state and the innovation, denoted Φt,k and ϕt,k, respectively.

Fig. 1. INS/GNSS Kalman filter response to a GNSS measurement bias.
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Again thanks to linearity of the Kalman filter, the fault effect can be separated from the
unbiased estimation

x̂t+1 = x̂nt+1 + x̂ft+1
νt+1 = νnt+1 + νft+1

with
x̂ft+1 =Φt+1,kb

νft+1 = ϕt+1,kb
(6)

The fault signatures can be calculated recursively as

Φt+1,k = AΦt,k + Kt+1ϕt+1,k

ϕt+1,k = FYt+1−k − CAΦt,k

Φt+1,k ∈ Rn×nb ,ϕt+1,k ∈ Rm×nb(7)

with Φk,k = 0. Note especially that the innovation is written

νt+1 = ϕt+1,kbt+1 +wν,t+1(8a)

where wν,t+1 = νnt+1 is Gaussian zero-mean in the absence of bias, with time-varying covari-
ance matrix St+1. An estimate of the bias can be calculated if the appearance time, k, of
the bias is known, since the fault signature ϕt+1,k can then be calculated deterministically.

If the innovation noise is zero, this estimate is easily calculated by inverting eq. (8a). If
the noise is significant, or the bias amplitude small, it is appropriate to calculate a LS esti-
mate over a sliding observation window of length L, OL

t+1 = ft + 2 − L, : : : ,t + 1g, that is, solve
½ν�Lt+1 = ½ϕk�Lt+1bt+1 + ½wν�Lt+1(8b)

The bracket notation represents the respective quantities in the entire observation win-
dow, that is,

½ν�Lt =

0
B@ νt

..

.

νt+1−L

1
CA ½ϕk�Lt =

0
B@ ϕt,k

..

.

ϕt+1−L,k

1
CA ½w�t =

0
B@ wν,t

..

.

wν,t+1−L

1
CA

The covariance matrix St can be used to scale the LS estimate. Since the estimation of b
can only be done deterministically once k is known, we say that b is conditionally estimated
on k. To estimate b we therefore first need to estimate k. Methods for determining k fall
under the category of change detection, an overview of which can be found in
Gustafsson (2000).

2.4. Accuracy, consistency, and integrity
The estimation error is defined as εt ≜ xt − x̂t. Given that x̂t is unbiased, εt ∼N ð0,PtÞ. The

estimated covariance Pt is used to calculate the protection level, PL, which represents the
maximum estimation error given an integrity risk Pir. That is, the minimum PL that satisfies

Pðjεj > PLÞ ≤ Pir(9)

The protection level should be bounded by the alert limit, AL, which is the PL found at equal-
ity in eq. (9) (i.e., the largest admissible error without emitting an integrity alarm). See
Supplementary Data1 for details on how to calculate PL.

Three criteria are important to evaluate the estimation error: accuracy, consistency, and
integrity.

1Supplementary data are available with the article at https://doi.org/10.1139/dsa-2022-0010.
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• Accuracy: The estimation error ε and the estimated covariance P should be as small as possible.
• Consistency: The estimated error covariance should reflect the covariance of the estimation

error (cov(ε)≤ P).
• Integrity: The protection level is inferior to the alert limit (PL < AL).

The algorithms in this paper will be evaluated in light of these three criteria.

3. GLR algorithm for bias estimation

One change detection method, which doubles as a bias estimation algorithm, is the GLR
algorithm (Willsky and Jones 1974). This algorithm handles the bias detection and estima-
tion simultaneously by matching a bank of fault signatures against a Kalman filter innova-
tion sequence using a bank of regressors, fault signatures, and LS filters, each of which
assumes the appearance of a bias at a different time k ∈ {0,t}.

3.1. Principle
In its online implementation, the number of filters is not linearly growing with time but

limited to covering the sliding observation window Ot+1. In discrete applications, L is usu-
ally defined as the number of measurement samples during the observable period T, but
can be chosen to be lower for computational purposes.

The principle of the online GLR algorithm (Willsky and Jones 1974; Gustafsson 2000) is as
follows:

• Estimate the biased state using a Kalman filter under the hypothesis “H0: No bias on
measurement”, i.e., ½ν�Lt+1 = ½wν�Lt+1.

• Calculate L estimates of the bias b̂t+1, using a bank of L LS-filters, each under a hypothesis “Hk:
Bias appearance at time k”, i.e., eq. (8).

Each filter calculates the fault signature matrices Φt+1,k and ϕt+1,k using eq. (7), given a
particular k. Using the innovations in the observation window νk,k ∈ OL

t+1 and the
corresponding covariances Sk, a bias estimate b̂t+1,k and a corresponding information matrix
Λk are calculated with

b̂t+1,k = b̂t,k + Gðνt+1 − ϕt+1,kb̂t,kÞ with G = Λ−1
t+1,kϕ

T
t+1,kS

−1
t+1 Λt+1,k = Λt,k + ϕT

t+1,kS
−1
t+1ϕt+1,k(10)

initialised using b̂t,t = 0nb×1 and Λt,t = 0nb×nb . Note that this is also an information form of a
Kalman filter based on state space model bt+1,k = bt,k and eq. (8) as measurement model.

The LR statistic for each LS filter is then given by

lLR,t+1,k = b̂Tt+1,kΛt+1,kb̂t+1,k(11)

This statistic is χ2(nb) distributed since b̂t+1,k is Gaussian with covariance Λ−1
t+1,k.

• Determine the maximum likelihood estimate of the bias by maximising over the entire filter
bank, that is,

k̂ = argmaxkflLR,t+1,kg lGLR,t+1 = lLR,t+1,k̂ b̂t+1 = b̂t+1,k̂

• Detect a bias (with estimated occurrence time k̂ and amplitude b̂ = b̂t+1) if the maximum
likelihood ratio lGLR crosses a predefined threshold lGLR,det, noting that the test statistic under
H0 is χ

2-distributed with nb degrees of freedom,
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lGLR,t+1 ≷
b̂=0

b̂=b̂t+1
lGLR, det(12)

• Compute the corrections to the measurement, the state estimate, and its covariance matrix
using the estimated bias and the related state fault signature,

Δcyn = Fb̂ Δcx̂n =Φn,k̂b̂ ΔcPn =Φn,k̂Λ
−1
n,k̂
ΦT

n,k̂
(13)

• Apply them according to a chosen correction rule.

The principle of the GLR algorithm is seen in Fig. 2. Note that the way in which the
corrections are applied is not apparent from the figure. Applying the GLR algorithm to
the bias sequence in Fig. 1 gives the result seen in Fig. 3 (L= 4 s).

The classical GLR adds the correction terms only once, when the estimated bias occur-
rence time leaves the observation window (i.e., at time k̂ + L), and using the bias estimated
at this time

yn←yn − Δcyn x̂n←x̂n − Δcx̂n P←Pn + ΔcPn with b̂ = b̂n,k̂ at n = k̂ + L(14)

This correction rule optimises the accuracy on b̂ by maximising the observation range of its
impact on ν. However, on the range ½k̂,k̂ + L − 1�, the state estimate is wrong andmust be cor-
rected before being output:

Fig. 2. Principle of Willsky’s GLR.

Fig. 3. Typical estimation error using GLR at the occurence of a single bias.
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x̂cn = x̂n − Δcx̂n Pcn = Pn + ΔcPn with b̂ = b̂n,k̂∀k̂ ≤ n < k̂ + L(15)

3.2. The multi-bias case and sequential bias detection
If several biases appear in the scope of a single observation window, the classical GLR

algorithm degrades since it assumes at most one bias change in the observation window
(cf., Fig. 4). This degradation is trivially understood by looking at the innovation sequence
of the Kalman filter (Fig. 5). In this case, the innovation can no longer be described by white
noise with a signature of a single bias occurrence at time k, but is rather described by a
sequence of Nb bias occurrences fKg = fk1, : : : ,kNb

g, that is,

νt+1 =
XNb

i=1

ϕt+1,kibki +wν,t+1(16)

An ad hoc solution to this degradation was also proposed by Willsky, which is to freeze
the estimation of each bias upon detection and directly apply the correction to the state
and measurement. So it adds the correction terms only once, at the time of bias detection,
and using the bias estimated at this date

yt+1←yt+1 − Δcyt+1 x̂t+1←x̂t+1 − Δcx̂t+1 Pt+1←Pt+1 + ΔcPt+1 with b̂ = b̂t+1,k̂(17)

and obviously the filter output need not be corrected anymore. It is equal to the estimate at
any time: x̂c = x̂, Pc= P. Note this correction rule cancels out the innovation. Thus, after the

Fig. 4. Multiple biases in the observation window.

Fig. 5. A Kalman filter innovation response to multiple subsequent measurement biases.
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jump induced by the bias appearance, a new jump appears on the ν signal due to its com-
pensation. An erroneous detection could be induced. This is avoided by resetting the GLR
detector (i.e., the stored ν sequence is erased).

This solution has a few drawbacks, however:

1. Biases are not estimated until the end of their observability. ⇒ Loss of accuracy.
2. The uncertainty of each bias estimation is not properly estimated, due to point 1. ⇒ Loss of

consistency.
3. Bias estimation errors are accumulated, thus PL is no longer representative of the integrity

risk. ⇒ Loss of integrity.

An illustration of the difference between the classical GLR and the ad hoc sequential esti-
mation GLR is seen in Fig. 6.

The ad hoc modified GLR exhibits smoother behaviour than the classical GLR in the
multi-bias case since it compensates, albeit poorly over time, for the changing bias.

3.3. Active GLR algorithm
An improved solution to the ad hoc GLR, proposed in Jamouli et al. (2012) showed that a

two-stage Kalman filter based on the augmented state model (2) optimally implements a
sequential detection and estimation of biases from a false detection point of view. This is
known as the active-GLR (AGLR).

The working principle of the AGLR is as follows:

• Predict the estimated state using a Kalman filter based on the augmented model.
• Estimate the change value of the bias state using a GLR detector (Section 3).
• If a bias change is detected, update the bias state (b̂) of the augmented Kalman filter with the

detected amplitude and correct the predicted nominal state (x̂) with the corresponding fault
signature. Also update the covariance P to account for the uncertainty of the bias estimation
at detection.

b̂+t+1←b̂+t+1 + b̂t+1,k̂ x̂+t+1←x̂+t+1 −Φt+1,k̂b̂t+1,k̂ P+t+1←P+t+1 +Φt+1,k̂Λt+1,k̂Φ
T
t+1,k̂

• Correct the Kalman filter state using the updated state and covariance.

Fig. 6. Comparison of classical GLR and ad-hoc GLR for sequential bias detection.
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The flaw in this solution for handling measurement biases is that it is based on an aug-
mented model, which is unobservable if the measurement is non-redundant. It thus follows
that the process noise term vb,t should be low to limit the drift of the estimated bias b since
the augmented model is unobservable for b ≠ 0 if k is unknown. This is contradictory to the
need for a certain flexibility of the bias state to account for bad detection estimates.

A comparison between Willsky’s GLR and Jamouli’s AGLR is shown in Fig. 7, the bias
sequence from Fig. 4 is used, with 300 different measurement and input noise sequences
of equal power. As expected, the behaviour of the AGLR approximates Willsky’s GLR; how-
ever, if the bias process covariance starts from zero, the unobservability of the augmented
model becomes apparent.

4. MGLR algorithm

To improve the accuracy of the bias estimation compared to the one-shot bias
corrections present in Willsky’s GLR and the AGLR, we propose to separate the bias
detection, estimation, and compensation.

The principle is simple: A GLR detector working on a corrected innovation sequence
detects bias jump times. A LS estimator is then used to re-identify the bias jump amplitudes
using the set of detected jump times and the uncorrected innovation from the Kalman fil-
ter. The total innovation correction calculated from the identified biases is then fed back
to correct the innovation to be used for subsequent detection.

It is noteworthy that the MGLR (as well as the nominal GLR) is supposed to be triggered
in steady state before faulty conditions appear (i.e., when the Kalman filter’s initial conver-
gence is done and hypothesis H0 can be trusted). For example, in GNSS applications, in
open-sky conditions and not to close to the ground. This will guarantee that the hypothesis
H0 holds when entering a degraded environment (subject to strong occlusion, multipath
effects, etc.). If this cannot be achieved (detection and estimation filters started simultane-
ously) a large initialisation error would require an equally bloated covariance matrix P0
for the Kalman filter in order not to detect the initial convergence as a bias (given that
the subsequent measurements are coherent with the true state and not the initial state).
See, for example, Lu et al. (2015).

Fig. 7. Standard deviation of estimation error for AGLR over time for 300 runs using the bias sequence in Fig. 4.

0 5 10 15 20
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4.1. Multiple bias detection
By resetting the Kalman state at each new detection, the classical GLR and the AGLR

remove the effect of a bias jump on the Kalman innovation, allowing for a subsequent jump
detection; however, if the Kalman filter state is not reset at detection, we can still apply a
feedback compensation to the innovation using the estimated signatures of all previously
detected bias jumps, that is,

νct+1 = νt+1 − Δνct+1

The correction term, Δνct , is split into a long-term correction, Δνc,ltt+1, applied for all biases
no longer in the observation window, and a short term correction, Δνc,stt+1, applied for all
biases still in the observation window:

Δνct+1 =
X

k̂i≤t+1−L

ϕt+1,k̂i
b̂t+1,k̂i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δνc,ltt+1

+
X

t+1−L<k̂i≤t+1

ϕt+1,k̂i
b̂t+1,k̂i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δνc,stt

The long-term correction is explicit here, but is implicitly handled by resetting the
Kalman filter state once a detection time k̂i leaves the observation window. The corrected
innovation including all Nb detected bias jumps currently in the observation window is
therefore written

νct+1 = νt+1 −
XNb̂

i=1

ϕt+1,k̂i
b̂t+1,k̂i(18)

This corrected innovation is then used by a GLR-detector to detect a subsequent bias
jump, which is then added to the set of detected bias jump times k̂i.

4.2. Multiple bias re-identification
The objective of the re-identification is to minimise the covariance of corrected innova-

tion over the observation window. At any time t+ 1 we therefore have to solve a system of
L linear equations to find the set of estimated bias jumps

n
b̂k̂i

o
=
n
b̂k̂1 , : : : ,b̂k̂N

b̂

o
:

½ν�t+1 =
h
ϕk̂i

i
t+1

h
bk̂i

i
t+1

+
h
w
i
t+1

(19)

where the bracket notation represents the respective quantities in the entire observation
window, that is,

½ν�t+1 =

0
B@ νt+1

..

.

νt−L+1

1
CA h

ϕk̂i

i
t+1

=

0
BBB@

ϕt+1,k̂1
: : : ϕt+1,k̂N

b̂

..

. . .
. ..

.

ϕt−L+1,k̂1
: : : ϕt−L+1,k̂N

b̂

1
CCCA

h
bk̂i

i
t+1

=

0
BBB@

bt+1,k̂1
..
.

bt+1,k̂N
b̂

1
CCCA

h
w
i
t+1

=

0
B@ wν,t+1

..

.

wν,t−L+1

1
CA

This system is in principle easy to solve by a LS estimator, the algorithm is then called
MGLR-LS. For online applications, solving the above LS problem can be computationally
costly, and a recursive LS method, MGLR-RLS, can be used instead. For any k̂j in fk̂ig, the
recursion is given by
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b̂t+1,k̂j = b̂t,k̂j + G

 
νt −

XNb̂

i=1

ϕt+1,k̂i
b̂t,k̂i

!
G = Λ−1

t+1,k̂j
ϕT
t+1,k̂j

S−1t Λt+1,k̂j
= Λt,k̂j

+ ϕT
t+1,k̂j

S−1t ϕt+1,k̂j
(20)

This recursion is initialised with the detected bias b̂det given by the GLR detector.
After having identified all detected biases in the observation window, the predicted

correction for the innovation is calculated as per eq. (18). And a subsequent bias jump can
be detected.

Note that the total estimated bias in the observation window is in turn the sum of the
estimated bias vector, that is,

b̂t+1 =
XNb̂

i=1

b̂t+1,k̂i(21)

whereas the total observed bias on the measurement also adds the accumulated bias esti-
mates having left the observation window:

b̂t+1,
P = b̂t+1 +

X
k̂i≤t+1−L

b̂t+1,k̂i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b̂acc

(22)

4.3. Corrected state and its covariance
Once a single bias is detected and its appearance time estimated, the appropriate correc-

tions to find the unbiased state estimate are calculated as

Δx̂ct+1 ≜ Φt+1,k̂b̂k̂

This gives an expression of the corrected state using eq. (6),

x̂t+1 = x̂nt+1 + x̂ft+1 −Φt+1,k̂b̂k̂(23)

If the appearance time is very well estimated (i.e., we can assume k̂ = k) we get

x̂t+1 = x̂nt+1 +Φt+1,k̂ðbk̂ − b̂k̂Þ(24)

The estimated covariance of this corrected state is thus given by the combination of the
nominal state covariance and the covariance of the bias estimation, that is,

Pt+1←Pt+1 +Φt+1,k̂Λ
−1
t+1,k̂

ΦT
t+1,k̂

(25)

It follows that the total state correction of all biases in the observation window is the
sum of all individual corrections, and the covariance is the accumulated covariance, that is,

x̂ct+1 = x̂t+1 +
XNb̂

i=1

Φt+1,k̂i
b̂t+1,k̂i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Δc x̂st

Pct+1 = Pt+1 +
XNb̂

i=1

Φt+1,k̂i
Λ−1
t+1,k̂i

ΦT
t+1,k̂i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔcPst

(26)

When a bias jump time k̂j leaves the observation window, it is no longer observed by the
identifications stage and is definitely removed from the measurement vector. The state esti-
mate and its covariance ðx̂, PÞ are also reset accordingly:
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ym←ym − Fb̂k̂j x̂t+1←x̂t+1 −Φt+1,k̂j
b̂t+1,k̂j Pt+1←Pt+1 +Φt+1,k̂j

Λ−1
t+1,k̂j

ΦT
t+1,k̂j

(27)

An overview of the MGLR working principle is shown in Fig. 8.

4.4. Tuning considerations
The parameters to tune for the MGLR algorithm are the same as for the classical GLR

algorithm, that is, the observation window length, L, the detection threshold, ldet, and pos-
sibly a minimum detection delay, M. The window L is optimally chosen as the steady state
response time of the Kalman filter, whereas 0 ≤M < L is tuned to improve robustness to
impulsive noise. If impulsive noise is not an issue, one usually takes M = 0. The detection
threshold ldet is tuned with a probability of false alarm PFA and is otherwise found as a stan-
dard χ2-threshold with nb degrees of freedom. As for any detection threshold, the lower PFA
the more reactive the detector is to high frequency changes; this comes at the cost of more
false detection, which may lead to a drift of the corrected estimate.

4.5. Integrity of the corrected state
To evaluate the integrity of the corrected state x̂c given by the MGLR we must first assess

the meaning of its covariance Pc. Indeed, Pc represents the covariance of the unbiased state
estimation error plus the estimation errors of all detected and estimated bias jumps
currently being observed. However, from an integrity point of view, we must also consider
all Nb̂acc

past bias jumps, having previously been detected, estimated, and corrected.
Following this reasoning, the total accumulated state estimation covariance is given by

Ptott+1 = Pct+1 +
XNb̂acc

i=1

Φt+1,k̂j
Λ−1
t+1,k̂j

ΦT
t+1,k̂j

(28)

The total number of detected biases increases monotonically, and the covariance
contribution of each bias estimate is strictly positive. It follows that from an integrity point
of view, the uncertainty of the corrected state can only grow over time. It is therefore
necessary to apply some kind of elimination mechanism, which removes combinations of
bias jumps that add up to zero, to limit the growth of the corrected state estimate error
covariance over time.

This is the object of the following section.

5. Bias elimination

Intuitively one can say that in a sequence of bias jumps, adding some of them together
may result in a residual jump near zero, or this may even apply to the entire sequence, as

Fig. 8. Working principle of the MGLR algorithm, changes compared to Willsky’s GLR marked in the blue dashed
areas.
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in Fig. 4. This kind of behaviour is often seen in urban navigation, where multi-path effects
and partial signal blocking temporarily causes shifts in the position measurement, which
then disappear as soon as the obstacle (or satellite) disappears. Removing such sequences
from the set of accumulated biases naturally reduces the accumulative uncertainty term
in eq. (28). This process can of course be done at any moment during the estimation, but a
natural point is when the most recent bias leaves the observation window. When removing
only a subset of the accumulated bias set, it is called sequential elimination, whereas when
the whole set of biases is removed it is called global elimination.

5.1. Accumulated bias estimation
Let us denote the set of estimated biases that have left the observation window

(i.e., accumulated biases) fb̂acc,ig and the corresponding set of information matrices
{Λacc,i}. In the MGLR, once a bias leaves the observation window of the identification stage,
it is added to these sets along with its information matrix. At this point, the measurement
vector is also corrected by this additional bias estimation, that is,

yct = ynt + yft − Fb̂k̂ = ynt + Fðbt − b̂acc,tÞ

where the total accumulated bias and its information are given by

b̂acc,t =
XNdet

i=1

b̂acc,i Λacc,t =

0
@XNdet

i=1

Λ−1
acc,i

1
A−1

From the correction of the measurement, we see that a badly estimated bias sequence
will lead to a drift of the state estimate, since it is unbiased with respect to the biased meas-
urement. This fact, together with the accumulated state uncertainty, is the basis of the
elimination stage of the MGLR.

5.2. Global bias elimination
The conceptually simplest elimination method is to assume that when no more biases

are being estimated, a test can be performed to see whether the accumulated bias sequence
satisfies the hypothesis of zero-mean. If this test passes, the accumulated bias bacc,t and its
associated information matrix Λ−1

acc,t are reset to zero, in turn effectively reducing the uncer-
tainty of the corrected state x̂ct+1.

The estimated accumulated bias is written as the actual accumulated bias plus the accu-
mulated bias estimation errors (due to missed detection, finite observations, noise, etc.),

b̂acc,t = bacc,t +
XNb

i=1

ϵb,i

where Nb is the number of actual biases, and ϵb,i the estimation errors. Note that for a
missed detection of bj, we have ϵb,i= bj. Since we do not have access to the actual estimation
errors {ϵb,i}, we have to assume that all significant biases have been detected and that all
non-detections are zero-mean. In this case, we can say that the accumulated estimation
error is zero-mean with covariance Λ−1

acc,t. To test the global elimination we can then assume
the zero-hypothesis

H0∶b̂acc,t ∼N ð0,Λ−1
acc,tÞ

which is satisfied if the accumulated estimated bias is near zero, that is, if

Öman Lundin et al. 357

Published by Canadian Science Publishing

D
ro

ne
 S

ys
t. 

A
pp

l. 
D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

L
IN

K
O

PI
N

G
S 

U
N

IV
E

R
SI

T
E

T
SB

IB
L

IO
T

E
K

 o
n 

09
/0

6/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



b̂Tacc,tΛacc,tb̂acc,t < lGLR, det(29)

The tuning threshold is set as the same threshold used by the GLR detector, implying that
only an accumulated bias smaller than the smallest detectable one should be
eliminated. If this test is passed, the accumulated sets fb̂acc,ig and {Λacc,i} are set to zero.
By resetting the accumulated bias estimation, the corresponding correction is removed
from the measurement:

ym←ym − Fb̂acc

The bias b̂acc is only approximately zero. When we reset the accumulated bias, it is as if the
Kalman filter is reset with a state estimate that is slightly biased compared to the measure-
ment. The innovation νt+1 of the subsequent iteration can therefore be slightly non-zero,
that is,

νt+1 = ym,t+1 − Cx̂+t+1 ∼N ð0,CP+t+1CT + RÞ − Fb̂acc ∼N ð−Fb̂acc,CP+t+1CT + RÞ

To avoid a false detection due to this bias accumulation reset, the uncertainty of the accu-
mulated (and removed) bias can be transferred to the current Kalman state covariance, Pt,
that is, at the moment of resetting we set

Pt←Pt + ΔPt

The term ΔPt is found by equating the innovation covariance before and after the reset:

CðAPtAT + Q ÞCT + R + FΛ−1
accFT = C½AðPt + ΔPtÞAT + Q �CT + R

This gives ΔPt as

ΔPt = ðCAÞ†FΛ−1
accFTðCTATÞ†

where (.)† signifies the pseudo inverse of a matrix. Note that this compensation lacks math-
ematical rigour since we confuse a shift in the mean with an increased covariance; however,
experience shows that it works well in practice.

It is easy to find bias sequence examples where the global bias elimination will not work
very well. For example, in an urban GNSS environment where a brutal constellation change
is followed by a sequence of minor multipath biases. The accumulated bias in that case will
not change significantly over time; however, the uncertainty of the estimated bias accumu-
lation will. This can then lead to a false rejection of the large initial bias jump.

5.3. Sequential bias elimination
A smoother way of eliminating biases is to see if there are any combinations of accumu-

lated biases that add up to near-zero. Each time a bias jump leaves the observation window,
we can compare it to the set of previously estimated ones. Let us denote by Bacc the matrix
whose columns are the elements of fb̂acc,ig

Bacc = ½b̂acc;1, : : : ,b̂acc,Nacc
�(30)

The goal is to find the combination of biases previously accumulated that adds up closest to
b̂acc,t. This combination is Baccrwhere r is a binary vector (r ∈ f0,1gNacc ). The residual bias and
its covariance are
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εtðrÞ = b̂t,k̂ − Baccr Λ−1
t,εðrÞ = Λ−1

t,k̂
+
XNacc

i=1

Λ−1
acc,iri(31)

The criterion we minimise is

r* = min
r∈f0,1gNacc

���εtðrÞ���2(32)

If a non-zero solution is found, the resulting residual, εt(r*), and its covariance, Λ−1
t,εðr*Þ, can

be used as for the global bias elimination to test whether the residual is sufficiently small to
be neglected:

εTt ðr*ÞΛt,εðr*Þεtðr*Þ < lGLR, det(33)

If this test is passed, the corresponding biases and their information matrices are removed
from fb̂acc,ig and {Λacc,i}, and the measurement correction as well as the Kalman state and
its covariance.

6. Monte Carlo simulation

To evaluate the added value of the MGLR compared to Willsky’s GLR and the AGLR and
also the presented elimination strategies, a Monte Carlo simulation was conducted. The
results of the simulation are shown in Figs. 9 and 10 in the form of the position estimation
error and the protection level. The underlying process is a random walk of x driven by a
noise v ∼N ð0,ð1=3Þ2Þ, and measured with a noisy measurement y polluted by
w ∼N ð0,ð1=3Þ2Þ,
xt+1 = xt + vtΔt, xð0Þ = 0 yt+1 = xt+1 + wt+1 + Yt+1−kb

A measurement bias sequence fbk1 , : : : ,bkNg is drawn with a mean time between biases of 1 s
starting at 5 s and ending at 15 s, with bias amplitudes drawn randomly from 5σw to 10σw.
The GLR algorithms are all tuned with an observation window of L = 2 s and a probability
of false alarm PFA= 10−4.

To evaluate the Monte Carlo simulations, three informative numbers can be computed.
The first one is the mean of error standard deviations (i.e., σ of the position estimation
error ε), which gives a global idea of the position error of the simulation batch:

σ ≜
1
M

XM
i=1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j=0

ε2tj

vuut
1
CA

The second number is the integrity rate rint, for lack of a better word, expressed as the per-
centage of time during the simulation batch when the estimation error is superior to the
protection level. From an integrity point of view, this must be minimised. Clearly during
this time the integrity cannot be evaluated, unless the protection level itself crosses the
alert limit.

rint ≜
#samples when ε > PL

Total#samples

The third number is the ratio between the mean protection level at the beginning of the
bias sequence and the end of the simulation, rPL (i.e., rPL= PL(tend)/PL(t0)). This number gives
an indication of the capacity of the estimator to guarantee an integrity over time. Indeed, if
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Fig. 9. Position estimation error comparison for Willsky, AGLR, and MGLR with different elimination methods
(SEQ = sequential, GLOBAL = global) for 900 Monte Carlo simulations. The black curves represent the 3σ time
sample uncertainty.

Fig. 10. Protection level comparison for Willsky, AGLR, and MGLR with different elimination methods
(SEQ = sequential, GLOBAL = global) for 900 Monte Carlo simulations.
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a bias sequence leads to a net increase of the protection level (rPL> 1), the availability of the
position estimation from an integrity point of view (PL< AL) will degrade over time.

From the above Monte Carlo batch, we get the results in Table 1.
From the curves and the quantitative results, we can discern three tendencies:

• The MGLR significantly reduces the estimation error over time as compared to the GLR and
AGLR algorithms.

• The protection level of the MGLR (all versions) better reflects the evolution of the estimation
error during the bias sequence compared to the GLR and the AGLR.

• The bias elimination strategies have a significant impact on the net protection level growth
but a marginal impact on the estimation error. The dual elimination is in the example the
most promising strategy for reducing the error and the protection level, but this is by no rate
a general result.

7. Experimental evaluation

An experimental evaluation using a car-mounted low-cost IMU and GNSS receiver was
performed in an urban environment, the city centre of Toulouse, France, to evaluate the
MGLR algorithm in a realistic scenario and compare it to the classical GLR (Willsky’s GLR)
using ad hoc sequential bias detection. The version of the MGLR that is evaluated uses a
LS-based re-identification step with global and sequential bias elimination.

7.1. GLR algorithm tuning
The Kalman filter of the GLR algorithms (Willsky’s GLR and the MGLR) uses the GNSS

position and velocity (Doppler) as output measurements, and the IMU acceleration in the
absolute frame as the input. The IMU is sampled at 50 Hz while the GNSS position and veloc-
ity are available at 5 Hz (given that four or more satellites are tracked). The GNSS position
measurement standard deviations are set to 5/3 m. The standard deviation of the GNSS
velocity measurements are set to 1/3 m/s on all axes. The acceleration standard deviation
is set to 5/3 m/s2 on all axes. These values are found by studying the sensor outputs in the
absence of a degrading environment.

The GLR detection and observation windows are set to L= 5 s and the probability of false
alarm is set to PFA= 10−4.

7.2. Evaluation criteria
In this experiment no ground truth is available, and the consistency of the estimation

error is therefore unrealistic to assess; however, by post-treating the data with non-causal
filtering and filling in the blanks by integrating non-causally de-biased speed measure-
ments, a reference position was obtained. This reference position is used to qualitatively

Table 1. Mean of error standard deviations,
rate of integrity, and protection level ratio for
900 Monte Carlo simulations.

σ̄ rint rPL

GLR 0.3339 0.1382 1.2971
AGLR 0.3685 0.1383 0.9687
MGLR 0.1889 0 3.4644
MGLR-SEQ 0.1674 0.0001 2.0099
MGLR-GLOBAL 0.2032 0.0048 1.1514
MGLR-DUAL 0.1737 0.0036 1.1313

Note: The lowest (best) values are shown in
boldface.
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judge whether apparent measurement biases are detected and estimated and whether the
bias elimination is effective in identifying absence of bias. The main focus of the evaluation
therefore lies on the integrity, which is evaluated through the protection level relative to
the alert level.

The alert level is set to 20 m. It can be argued that urban aerial navigation for drones can
be compared to a permanent precision approach for an aircraft. In this case, the horizontal
(north and east axes) alert limit is 40 m and the vertical (down axis) alert limit is 10–35 m. A
general alert level of 20 m therefore seems appropriate.

The experimental results are evaluated according to accuracy, consistency, and integrity, as
mentioned in the introduction. Only the results for the north and east axes are shown since
the reconstructed ground truth for the down axis was of bad quality.

The GPS position measurement error is shown in Fig. 11. The nature of the faults affect-
ing the GPS are clearly shown: it is a combination of bias jumps followed by drifts, and occa-
sional impulsive noises. The GPS speed measurements, shown in Fig. 12, on the other hand,
are not perturbed by the same phenomena as the position and remain healthy throughout
the experiment, apart from occasional outliers (e.g., around 50 s).

Fig. 11. GPS measurement error using the reconstructed reference.

Fig. 12. GPS speed measurements from Doppler shift.
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7.3. Estimation along the north axis
Accuracy: The accuracy is similar for Willsky’s GLR (see Fig. 13) and the MGLR (see

Fig. 14).
Consistency: Overall for both algorithms, the confidence set is badly estimated. The

MGLR is slightly better off due to the bias elimination, but the overall consistency is not
satisfactory.

Integrity: The protection level is well estimated for the MGLR and overestimated for
Willsky’s GLR, apart from one occasion around 150 s due to the burst of measurement
jumps seen at this occasion in Fig. 11.

7.4. Estimation along the east axis
Accuracy: Both Willsky’s GLR (see Fig. 15) and the MGLR (see Fig. 16) have a generally

small estimation error. However, Willsky’s GLR shows a drift of the confidence interval
whereas for the MGLR it is better adapted apart from around the 200 s mark.

Consistency: The consistency is better for Willsky’s GLR than the MGLR due to the
confidence interval drift described above.

Integrity: Willsky’s GLR showcases a typical behaviour where the estimation error
remains low, but the protection level increases due to bias detections. The MGLR keeps
the integrity of the position estimate throughout the scenario. It can be noted that the bias

Fig. 13. Estimation result forWillsky’s GLR along the north axis in the urban navigation scenario. Estimation error
(black), confidence interval (blue dash-dotted), protection level (green), and alert level (red dashed).
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Fig. 14. Estimation result for the MGLR-LS with global and sequential elimination along the north axis. Estimation
error (black), confidence interval (blue dash-dotted), protection level (green), and alert level (red dashed).
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elimination helps keep the protection level near its nominal value in steady state. Note also
that the varying height of the protection level peaks for the MGLR, which depends partially
on the number of biases currently being estimated.

8. Conclusion and future work

In this paper we have presented the problem of state estimation with non-redundant
measurements subject to frequently appearing and disappearing bias jumps intermittent
bias. We have proposed an extension of the GLR algorithm, named MGLR, for high-integrity
state estimation over time using continuous estimation of detected biases and different
bias elimination strategies. The resulting algorithm has been tested against the classical
GLR algorithm in a realistic scenario of urban navigation. The objective of the evaluation
was to assess the estimation accuracy, the error consistency, and the estimation integrity.

Some general conclusions can be drawn:

• The MGLR reduces the drift of the estimation error as compared toWillsky’s GLR when biases
appear in a rapid succession or are hidden in noise.

• The re-identification step of the MGLR both serves as a refinement of the bias estimation, and
as an improvement of the protection level estimation, which is otherwise truncated.

Fig. 15. Estimation result for Willsky’s GLR along the east axis. Estimation error (black), confidence interval (blue
dash-dotted), protection level (green), and alert level (red dashed).
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Fig. 16. Estimation result for the MGLR-LS with global and sequential elimination along the east axis. Estimation
error (black), confidence interval (blue dash-dotted), protection level (green), and alert level (red dashed).
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• The proposed bias elimination works fairly well in most cases and reduces the residual
estimation error and protection level over time compared to Willsky’s GLR and the AGLR.

• Continuous estimation of bias jumps and their covariance allows proper assessment of the
impact of the bias estimation on the integrity of the corrected state. Table 1 clearly indicates
that the MGLR (all versions) ensures a significantly higher integrity than the classical GLR and
the AGLR.

The major identified drawbacks are:

• The MGLR re-identification step assumes Gaussian noise and is rapidly degraded if this
condition is not met, or if the measurement covariance is badly tuned.

• The estimated error covariance post-fault seems to have no physical relevance in the verifica-
tion of the continued error consistency in the case of faults. It does, however, play a role in
the calculation of the protection levels, which seem properly estimated in most cases.

• The MGLR re-identification relies on deterministic fault signatures to identify the bias
amplitudes, which is also true for the GLR detector itself. If one has to consider a vast number
of different bias shapes (ramp, sinusoidal, sigmoids, etc.) the complexity of the algorithm
may be a problem (the complexity increases linearly with the number of fault signatures).

8.1. Future work
The MGLR algorithm, as an extension of the GLR algorithm, points to interest in combin-

ing detection and identification to overcome the fundamental problem of measurement
biases on non-redundant measurements.

In this paper, it was applied to the case of disturbed GNSS measurements in a complex
environment to cancel position jumps. The proposed approach improves the accuracy of
the localization and the consistency of uncertainties. This is particularly promising for
urban safe navigation (even without redundant measurements) because the protection
levels are reliable and do not grow indefinitely as with classical GLR in such a situation.
For example, this makes it possible to find a safe path between obstacles that would rapidly
lead to no solution with classical GLR due to protection levels becoming too large.

However, the method is still very constrained in terms of noise characteristics and fault
signatures, which limits the application domains.

Future work to improve the algorithm, or the class of such algorithms, should address
these drawbacks as a priority. For example, one can imagine applying data-driven methods
to whiten the innovation signal used by the detector, or simply replace the detector by a
data-driven one based on a neural architecture. The re-identification step can be improved
in coloured noise cases by replacing the LS estimation by M-estimation (see, e.g., Faurie
and Giremus (2010)), or some other iterative optimisation based technique. Alternatively,
one could resort to data-driven regression based directly on biased innovation data, a
powerful tool for regression with coloured noise (e.g., Brossard et al. (2020)).
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