

Overall Complexity Cer�fica�on of a Standard
Branch and Bound Method for Mixed-Integer
Quadra�c Programming
Shamisa Shoja, Daniel Arnström and Daniel Axehill

The self-archived postprint version of this conference paper is available at Linköping
University Institutional Repository (DiVA):
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-188903

N.B.: When citing this work, cite the original publication.
Shoja, S., Arnström, D., Axehill, D., (2022), Overall Complexity Certification of a Standard Branch and
Bound Method for Mixed-Integer Quadratic Programming, 2022 AMERICAN CONTROL
CONFERENCE (ACC), 4957-4964. https://doi.org/10.23919/ACC53348.2022.9867176

Original publication available at:
https://doi.org/10.23919/ACC53348.2022.9867176

©2022 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the
IEEE.

http://www.ieee.org/

https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-188903
https://doi.org/10.23919/ACC53348.2022.9867176
http://www.ieee.org/

Overall Complexity Certification of a Standard Branch and Bound
Method for Mixed-Integer Quadratic Programming

Shamisa Shoja, Daniel Arnström, and Daniel Axehill

Abstract— This paper presents a method to certify the com-
putational complexity of a standard Branch and Bound method
for solving Mixed-Integer Quadratic Programming (MIQP)
problems defined as instances of a multi-parametric MIQP.
Beyond previous work, not only the size of the binary search
tree is considered, but also the exact complexity of solving the
relaxations in the nodes by using recent results from exact
complexity certification of active-set QP methods. With the
algorithm proposed in this paper, a total worst-case number
of QP iterations to be performed in order to solve the MIQP
problem can be determined as a function of the parameter in
the problem. An important application of the proposed method
is Model Predictive Control for hybrid systems, that can be
formulated as an MIQP that has to be solved in real-time. The
usefulness of the proposed method is successfully illustrated in
numerical examples.

I. INTRODUCTION

The main motivation for this work is model predictive
control (MPC) for discrete-time hybrid systems. MPC is
a model-based control strategy with the aim to design an
optimal controller for multi-variable constrained systems,
[1]. In MPC, a finite-horizon optimal control problem is
solved at each sampling time, starting at the current state.
Measurements are used to update the problem at the next
sample, and the optimization is repeated over the shifted
horizon.

Hybrid systems arise naturally in applications where
physical principles interact with discrete events. There are
different models for hybrid systems, the one that will be
considered in this work is Mixed-Logical Dynamical (MLD)
systems, [2]. In these models, both real-valued variables and
binary-valued variables exist in the optimization problem to
be solved online in each sample. The result is an optimization
problem in the form of a Mixed-Integer Quadratic Program
(MIQP), which are non-convex problems known to be NP-
hard [3], and hence potentially more challenging to solve
than the LP or QP required for linear MPC.

The MIQPs can in MPC either be solved in real-time
online or be formulated as a multi-parametric MIQP (mp-
MIQP) and solved offline parametrically for a range of states.
Once the problems have been solved offline, the necessary
computations online are reduced to evaluating a look-up
table, [4]–[6]. However, it is very challenging to solve and
compute an efficient data structure for a parametric solution
of an mp-MIQP. Furthermore, the memory requirement for
the look-up table of the solution in the embedded system is

S. Shoja, D. Arnström, and D. Axehill are with the Division of Au-
tomatic Control, Department of Electrical Engineering, Linköping Univer-
sity, Sweden. (Email: {shamisa.shoja, daniel.arnstrom,
daniel.axehill}@liu.se)

potentially large. For these reasons, the online approach is
often the only realistic solution. For that approach to also
be considered reliable for more critical applications, a priori
guarantees for that the computational requirements of the
problem at hand do not exceed the hardware capabilities are
desirable. Similar work for LPs and QPs can be found in [7]
and [8]–[10], respectively. The first work in that direction for
MIQPs can be found in [11]. The strategy to achieve this, and
to obtain a significantly more practically useful complexity
analysis than the conservative classical one, is to consider
a specific set of MIQP problems encoded as an mp-MIQP.
Each MIQP problem to be solved online is an instance of
the mp-MIQP for a fixed parameter. Furthermore, beyond
the traditional algebraic theoretical analysis, a certification
algorithm is developed and used offline to analyze the
complexity of all problems that might be requested to be
solved online.

In this work, the optimization problem online is to be
solved using a branch-and-bound-based MIQP solver. To
compute the solution of an MIQP with integer variables mod-
eled as binaries, a straightforward approach is to enumerate
all possible combinations of binary variables and solve a
QP for each such combination. As the number of binary
variables increases, however, the computational effort for
this approach grows exponentially. An alternative solution
strategy commonly offering a remedy to this problem is
the branch and bound (B&B) method [11]–[14], in which
a sequence of relaxed QP problems are ordered and solved
in a binary search tree to find an optimal mixed-integer
solution. In the worst case, this method still requires the
solution of exponentially many QPs, however, the complexity
observed in practice is often significantly lower than explicit
enumeration. The objective with the work in this paper is to
continue the work in [11] where useful sufficiently exact
complexity guarantees are computed a priori for branch-
and-bound focusing on the size of the binary search tree.
The main contribution in this work is to also analyze the
complexity of the QP problems for the relaxations in the
nodes of the binary search tree. This is done using recently
presented state-of-the-art methods for exact complexity cer-
tification for active-set QP solvers, [8], [10], where the exact
bound on the worst-case number of iterations required by
an active-set QP solver is determined. Hence, the focus in
this work is on the overall worst-case complexity in a B&B-
based MIQP solver, in terms of the accumulated worst-case
number of QP iterations in the subproblems necessary to
solve in order to compute the optimal mixed-integer solution.
This knowledge enables us to compute relevant complexity

bounds on the worst-case complexity of MIQP solvers based
on B&B, which is of significant importance in the context
of real-time MPC for hybrid systems.

The organization of the paper is as follows. Section II
introduces the mp-MIQP problem formulation. Some back-
ground theory and the B&B algorithm for solving MIQPs are
revisited in Section III. The main contribution of the paper,
i.e., an algorithm for certification of MIQP, is presented in
Section IV. Finally, numerical experiments are provided in
Section V to illustrate the result of the proposed algorithm.

II. PROBLEM FORMULATION

For an MLD system, by considering the state variables
as parameter vector θ and control actions as optimization
variables x, the hybrid MPC problem can be cast into an
mp-MIQP problem as follows [2], [11],

min
x

1

2
xTHx+ fTx+ θT fT

θ x, (1a)

PMI(θ) : s.t. Ax 6 b+Wθ, (1b)
xi ∈ {0, 1}, ∀i ∈ B (1c)

where the decision variable consists of nc continuous and
nb binary variables, i.e., x = [xT

c , x
T
b]

T ∈ Rnc × {0, 1}nb ,
n = nc+nb, and the parameter vector is θ ∈ Θ0 ⊂ Rnθ . The
set Θ0 is assumed to be polyhedral. The MIQP problem, is
given by H ∈ Sn++, f ∈ Rn, fθ ∈ Rn×nθ , and the feasible
set is determined by A ∈ Rm×n, b ∈ Rm, and W ∈ Rm×nθ .
Since the nb optimization variables indexed by the set B are
binary-valued, the problem is no longer convex and is known
to be NP-hard [3].

Throughout this paper, the notation {Di}Ni=1 denotes a
finite collection {D1, . . .DN} of N elements. When N is
unimportant, we use the notation {Di}i instead.

III. OPTIMIZATION PRELIMINARIES

In this section, some useful optimization preliminaries to
be able to understand B&B is briefly discussed.

A. Quadratic Programming

The QP problem considered in this work is given by,

min
x

1

2
xTHx+ fTx, (2a)

s.t. Ax 6 b, (2b)
AEx = bE (2c)

where x ∈ Rn, f ∈ Rn, b ∈ Rm, bE ∈ Rp and matrices
H ∈ Sn++, A ∈ Rm×n, and AE ∈ Rp×n. There are several
methods to compute the solution to (2), such as active-
set methods, interior-point methods, and various gradient
methods, [15]. In this paper the (dual) active-set method in
[16] is applied, since this type of method is known to be
very suitable in branch-and-bound [17]. Even though this
work does not currently consider that aspect, the active-set
methods’ warm starting capabilities are of great interest in
branch and bound. Another important reason for this choice
of method is that there exist recently presented certification
methods for this solver, [8], [10].

Active constraints is an important concept in this type
of methods which defines whether a constraint holds with
equality, e.g., constraint i in (1b) is active if Aix(θ) =
bi +Wiθ, where subscript i denotes the ith row of a matrix
or vector. The optimal active set, denoted by A, is defined
as the set containing the indices of all constraints active at
the optimal solution.

The idea of the active-set method is to iteratively make
steps towards the optimal solution by solving a sequence of
equality constrained QPs, in which some of the inequality
constraints are imposed as active. These constraints are said
to be included in the working set. See [15] for a detailed
description of the active-set method. In this work, the number
of equality constrained QPs that the active-set solver solves
to find the optimal solution of the QPs will be called the
iteration number. In [10], it is shown how this number can
be found a priori and also how the relevant sequences of
working-set changes can be computed as a function of the
parameters in an mp-QP.

B. Mixed-Integer Quadratic Programming

Consider the following MIQP problem,

min
x

1

2
xTHx+ f̄Tx, (3a)

PMI(θ̄) : s.t. Ax 6 b̄, (3b)
xi ∈ {0, 1}, ∀i ∈ B (3c)

Each instance obtained from the original problem (1) by
fixing the parameters to a specific value θ̄ will be a problem
in the form in (3), with f̄ = f + fθ θ̄ and b̄ = b+Wθ̄. The
decision variables, H,A, and B in (3) are defined as in (1).

In this work, the branch and bound (B&B) method is
used to solve the optimization problem in (3). In the B&B
search tree, the binary constraints are relaxed into interval
constraints forming a so-called relaxation given by,

min
x

1

2
xTHx+ f̄Tx, (4a)

P(θ̄,B0,B1) : s.t. Ax 6 b̄, (4b)
0 6 xi 6 1, ∀i ∈ B, (4c)
xi = 0,∀i ∈ B0, xi = 1,∀i ∈ B1 (4d)

that is a convex QP problem in the form in (2), where
B0,B1 ⊆ B and B0 ∩ B1 = ∅.

The procedure of B&B is as follows. Starting in the root
node, all binary constraints (3c) in PMI(θ̄) are relaxed to
(4c) resulting in a fully relaxed QP problem P(θ̄, ∅, ∅) which
is solved. At the next level in the tree, one of the relaxed
binary-constrained variables is fixed to 0 and 1, resulting into
two new subproblems that form two new nodes in the B&B
tree which are called the children of the parent node. The
procedure is repeated and new nodes are explored further
down in the tree. In the bottom of the tree the leaf nodes are
found in which all binary constraints have been fixed.

An important property of B&B is that the relaxation in
a certain node gives a lower bound on the optimal integer
solution for the subtree below that node, whereas an integer

feasible solution provides an upper bound on the value
function valid in the entire tree. To use the result from the
relaxations to prune parts of the search tree from explicitly
being explored is a fundamental idea in B&B. When the
solution to a relaxation in a node is shown to satisfy one of
the following cut conditions, then all nodes in the subtree
below that node can be shown to be of no use and can
therefore be disregarded, i.e., the tree is cut in that node
[13]:

1) The relaxation is infeasible. Adding constraints will
not change that. Hence, the entire subtree below that
node is infeasible.

2) The optimal objective function value of the relaxation
is greater than the one of the best known integer
solution so far. Adding constraints will not decrease
the objective function value. Hence, a better objective
function value cannot be found in the subtree below
that node.

3) The solution to the relaxation is integer feasible.
Adding constraints will not decrease the objective
function value. Hence, an optimal solution for the
entire subtree below that node has already been found.

In this work, we assign the value function of an infeasible
relaxed problem to infinity. Therefore, the first and second
cut conditions can be tested simultaneously. In comparing
the value function with the upper bound, if the comparison
holds, that is if the node has an objective function value
that is worse than the best known integer solution, the node
will be cut. The integer feasibility cut condition is tested by
looking at the active set, such that if the binary constraints
(3c) are active, i.e., all the binary decision variables are either
0 or 1, then the solution is integer feasible and the tree can
be pruned and the upper bound is updated if improved. If
none of the cut conditions hold, the node is split into two new
subproblems by fixing a relaxed binary variable indexed by k
to 0 and 1, forming two new subproblems P(θ̄,B0∪{k},B1)
and P(θ̄,B0,B1∪{k}), respectively. These two subproblems
are inserted in the sorted list T , implementing a priority
queue, to be analyzed as the tree is explored. The priority
used in T is determined by the choice of the tree exploration
strategy (e.g., depth-first) and whether the left or right branch
should be explored first.

Algorithm 1 summarizes the B&B method for solving
problem (3). In this algorithm, the sorted list T stores the
subproblems to be solved in a user-defined exploration order,
x̄ is the best integer feasible solution so far, and J̄ is its
corresponding objective function value (the upper bound).
Moreover, x and J are the associated optimal solution and
objective function value of the relaxation, respectively. As
mentioned earlier, if the solution of a subproblem turns out
to be infeasible, we set J =∞.

The QP relaxation (4) is solved using an active-set method
as outlined in Section III-A. Of particular interest in this
work is the number of QP iterations required to solve a
relaxation, and the sum of all such QP iterations over the
entire B&B tree for each choice of the parameter.

Algorithm 1 Branch and Bound for MIQP
Input: MIQP problem PMI(θ̄) for θ̄ given
Output: J̄ , x̄

1: J̄ ←∞, x̄← void
2: T ← ∅
3: Push P(θ̄, ∅, ∅) to T
4: while T ̸= ∅ do
5: Pop P(θ̄,B0,B1) from T
6: J, x← Solve P(θ̄,B0,B1)
7: if J ≥ J̄ then
8: There exists no feasible solution to P(θ̄,B0,B1)

which is better than x̄

9: else if all binary variables are active then
10: Better integer feasible solution has been found
11: J̄ ← J
12: x̄← x
13: else
14: Select k : k ∈ B, k /∈ (B0 ∪ B1)
15: Push P(θ̄,B0 ∪ {k},B1) and P(θ̄,B0,B1 ∪ {k})

to T
16: end if
17: end while

IV. COMPLEXITY CERTIFICATION OF MIQP

In this section, an algorithm that analyzes the B&B method
in Algorithm 1 for all values of the parameter θ is presented.
As mentioned, in hybrid MPC, these parameters could be
system states or/and reference signals. The main idea behind
the complexity certification method is to keep track of the
complexity measure of interest parametrically as a function
of θ. An interpretation of this is running Algorithm 1
parametrically and partitioning Θ0 into regions containing
parameters which yield for example the same working-set
changes when employing the active-set method in [10] as
the inner solver in B&B. In particular, the framework to be
presented is able to rigorously analyze and upper bound the
computational complexity for the process, in terms of e.g.,
the size of the B&B tree or the total number of QP iterations.

Algorithm 2 represents the proposed parametric B&B-
based MIQP certification algorithm with the aim of certifying
the solution process of the problem in (1) in detail. An
important property of the algorithm is that it iteratively
divides and explores the parameter space based on the poly-
hedral partition from a QP certification algorithm. It therefore
receives the mp-MIQP problem (1) and the parameter region
Θ0 as inputs and outputs a partitioning of the parameter
space {Θi}Nf

i=1 together with the corresponding complexity
measure κi(θ) for solving all the encountered QP relaxations
(4) for θ ∈ Θi. In addition to the usual sorted list T in
B&B, there are two additional lists of tuples in Algorithm
2. One is the list S holding regions in the parameter
space where the analysis has not yet terminated. It contains
tuples

(
Θ, κ, T , J̄(θ)

)
, where Θ is the associated polyhedral

parameter set, T is the normal list (cf. Algorithm 1) of B&B
to store subproblems, κ is the complexity measure for θ ∈ Θ,
and J̄(θ) is a collection of the upper bounds on the value

function. Another related list is F which contains regions
in the parameter space where the process has terminated,
i.e., F holds the final partition. It consists of a tuple with
the information (Θ, κ) for every terminated region with the
associated complexity measure.

For what follows, the following definition is required.

Definition 1: A set of polyhedra {Ri}Ni=1 is a polyhedral
partition of Θ if R̊i ∩ R̊j = ∅, i ̸= j, and ∪Ni=1Ri = Θ,
where R̊i denotes the interior of the region Ri.

At each iteration of Algorithm 2, a region Θ will be
popped from S. If the list T associated to that region
is empty, the exploration of the tree has been completed
for all parameters in Θ and is, hence, added to the final
partition F (Step 8). Otherwise a node in T will be selected
and the corresponding mp-QP relaxation will be solved and
certified over Θ in Step 11. The function QPCERT here is
any complexity certification algorithm for QPs, e.g. [10],
which takes an mp-QP problem P(θ,B0,B1) and a param-
eter region Θ as inputs and returns a polyhedral partition
{Θj}Nj=1 of Θ. In each region j, the function provides the
computational complexity κj for solving P(θ,B0,B1) for all
parameters in Θj , as well as the explicit solution of the mp-
QP relaxation including the optimal active set Aj and the
value function Jj(θ) which is piecewise quadratic over the
polyhedral region. If P(θ) is infeasible in Θj , we encode
that by Jj(θ) =∞.

After the mp-QP relaxation has been processed, the sorted
list T is updated in the CUTCONDEVAL procedure for each
new region based on the optimal active set Aj and the value
function Jj . The update consists of testing the three cut
conditions described in Section III-B parametrically. If none
of these conditions are invoked for Θj , two new nodes are
created according to standard B&B (based on Aj and the
binaries that are fixed in the current node) and added to T j .

The B&B algorithms in this work satisfy the following
assumptions.

Assumption 1: The tree exploration strategy is depth-first
in Algorithms 1 and 2. Moreover, the branch variable order
is fixed (e.g., parameter independent) and known beforehand,
and the order in which the 0 and 1 branch will be explored
is fixed and known beforehand in both algorithms.

The proposed certification method is formally analyzed in
the following subsections as follows. The spatial decomposi-
tion employed in Algorithm 2 is described in Section IV-A.
Properties of the parametric B&B search tree are formalized
in Section IV-B and finally, the main contributions of the
proposed algorithm are stated in Theorems 1 and 2 in Section
IV-C.

Algorithm 2 Certification of Branch and Bound for MIQP
Input: mp-MIQP problem PMI(θ), and Θ0

Output: Partition F = {(Θi, κi)}Nf

i=1

1: κ0 ← 0, J̄0 ← {∞}
2: T ← ∅, S ← ∅, F ← ∅
3: Push P (θ, ∅, ∅) to T
4: Push (Θ0, κ0, T , J̄) to S
5: while S ̸= ∅ do
6: Pop

(
Θ, κ, T , J̄

)
from S

7: if T = ∅ then
8: Push (Θ, κ) to F and goto Step 5
9: end if

10: Pop P (θ,B0,B1) from T
11: {(Θj , κj ,Aj , Jj)}Nj=1 ← QPCERT(P(θ,B0,B1),Θ)
12: for j ∈ {1, . . . , N} do
13: T j , J̄j ← CUTCONDEVAL(T ,Θj ,Aj , Jj , J̄)
14: Push

(
Θj , κ+ κj , T j , J̄j

)
to S

15: end for
16: end while
17:
18: procedure CUTCONDEVAL(T ,Θ,A, J, J̄)
19: if ∃J̄ ∈ J̄ : J(θ) ≥ J̄(θ), ∀θ ∈ Θ then
20: There exists no θ for which a feasible solution

of P provides better solution
21: else if all binary variables are in A then
22: Potentially better integer feasible solution has

been found
23: J̄(θ)← J̄(θ) ∪ {J(θ)}
24: else
25: Select k : k ∈ B, k /∈ (B0 ∪ B1)
26: Push P(θ,B0 ∪ {k},B1) and P(θ,B0,B1 ∪ {k})

to T
27: end if
28: return T , J̄
29: end procedure

A. Decomposition of the parameter space

As mentioned above, an interpretation of Algorithm 2 is
that it performs iterations of Algorithm 1 parametrically. As a
result, the parameter space will be partitioned depending on,
for example, how the exploration of the B&B tree differs
for different parameters, but also the certification of the
relaxations. We clarify how this partitioning occurs and some
of its properties in this subsection.

At Step 11, after processing a node, the node is divided
spatially into N subproblems with corresponding regions Θj

by the QP certification algorithm, each holding a copy of
the B&B-list T . The CUTCONDEVAL procedure, which tests
the pruning conditions parametrically, is then individually
applied for each local tree of the N subproblems.

The infeasibility and integer feasibility cut condi-
tions can directly be applied to the output from
QPCERT (P(θ,B0,B1),Θ), given by Jj(θ) = ∞ and the
active set Aj for the region, respectively, with no additional
spatial partitioning. In the dominance cut condition however,
if it is performed exactly, further spatial partitioning is im-

posed by Jj(θ) ≥ J̄(θ), additionally splitting the node spa-
tially into two new subproblems with finer regions. To make
the certification more tractable by maintaining the polyhedral
structure of the partition, at the price of conservatism, the
spatial partitioning originating from the dominance cut can
be avoided by only cutting if the condition is satisfied for the
entire region, i.e., Jj(θ) ≥ J̄(θ), ∀θ ∈ Θj , similarly to what
was done in [11]. Note that the framework is in principle
capable of exact certification, however, for the MIQP case the
price for that is that the geometry becomes non-polyhedral
and will in general include regions described by quadratic
functions. To investigate the details of the less tractable exact
case is therefore decided to be beyond the scope of this
work. The price for not considering the exact case is that
some conservatism will be included in the certification result
and multiple upper bounds related to what in parametric
programming for MIQPs is known as “overlaps” have to be
introduced. Note that, however, the result from Algorithm
2 is guaranteed to upper bound the online complexity. The
end result of the proposed algorithm is many local B&B
trees, which represent all possible B&B trees that are used
to compute the solution of the problem for all parameter
values online.

In the following, we ensure that the partitioning made in
Algorithm 2 is correct, i.e., the generated regions cover the
entire Θ0 and have no overlap among themselves.

Lemma 1 (Maintenance of complete partition): At an ar-
bitrary iteration of Algorithm 2, the union of regions in F
and S forms a partition of Θ0.

Proof: We will prove the lemma by induction. Let
{Θi

S}i and {Θi
F}i denote the regions contained in S and

F , respectively, at the start of an iteration. Similarly, let
{Θi

S′}i and {Θi
F ′}i denote the regions contained in S and

F , respectively, at the end of the iteration. Finally, let T and
Θ denote the list and region, respectively, that are selected
from S at the start of the iteration.

If T = ∅ we get {Θi
F ′}i = {Θi

F}i ∪ {Θ} and {Θi
S′}i =

{Θi
S}i \ {Θ} after Step 8 is executed. Clearly {Θi

F ′}i and
{Θi

S′}i will form a partition of Θ0 if {Θi
F}i and {Θi

S}i do,
since we have the same underlying regions (only a single
region Θ has been moved from S to F during the iteration).

Next, consider the case when T ̸= ∅. Then the regions in
F remain unchanged and we will partition Θ into {Θi}i in
Step 11. Hence, we get {Θi

S′}i =
(
{Θi

S}i \ {Θ}
)
∪ {Θi}i.

Then, since ∪iΘi = Θ from the properties of QPCERT, it
follows that ∪iΘi

S′ = ∪iΘi
S . Moreover, since Θi ⊆ Θ ∀i and

that Θ̊i∩Θ̊j = ∅ if i ̸= j (both, again, from the properties of
QPCERT), all regions in {Θi

S′}i and {Θi
F ′}i are disjoint if

the regions {Θi
S}i and {Θi

F}i are. In conclusion, the regions
in S and F at the end of an iteration will form a partition
of Θ0 if the regions in S and F do so at the start of the
iteration (completing the induction step).

For the base case we have that F = ∅ and S only contains
Θ0 at the start of the algorithm, which trivially forms a
partition of Θ0.
As a special case, Lemma 1 ensures that the entire region of
interest Θ0 will be considered before termination.

Corollary 1 (Complete partition at termination):
Assume that Algorithm 2 has terminated with the partition
{(Θi, κi)}i. Then ∪iΘi = Θ0 and Θ̊i ∩ Θ̊j = ∅ for i ̸= j.
That is, Θi is a partition of Θ0.

Proof: Follows from Lemma 1 and that Algorithm 2
terminates when S = ∅.

B. Properties of the search tree

As mentioned in Section IV-A, the parametric analysis
of the dominance cut is performed approximately in this
work since the cost of an exact analysis would be quadratic
regions. To ensure that Algorithm 2 still provides correct
upper complexity bounds, despite this approximation, we
review some fundamental properties of the B&B tree below,
which we then use in Section IV-C to prove the correctness
of the proposed method.

Let a node be characterized by a tuple η , (B0,B1), where
B0 and B1 are defined in (4d). The following definition is
required to formalize the properties of the parametric B&B.

Definition 2: The node η = (B0,B1) is a descendant to
node η̂ = (B̂0, B̂1), denoted by η ∈ D(η̂), if B0 ⊇ B̂0 and
B1 ⊇ B̂1.

Lemma 2: Let J∗
η (θ) denote the value function for the

mp-QP relaxation in node η and let δ ∈ D(η), then J∗
η (θ) ≤

J∗
δ (θ).

Proof: It directly follows from standard arguments from
B&B that the feasible set for the mp-QP relaxation in node
δ is a subset of the feasible set for the mp-QP relaxation in
node η, since some additional equality constraints have been
added in δ.

Let Bη(θ) be the set of nodes which have yielded an
integer feasible solution up until node η is processed, given
an ordering of T . Moreover, let J̄η(θ) denote the lowest (i.e.,
best) upper bound found up until η is processed, i.e.,

J̄η(θ) , min
η̃∈Bη(θ)

J∗
η̃ (θ) (5)

The following lemma shows that if the dominance cut con-
dition is invoked for node η, the best upper bound J̄η(θ) will
not be changed (in particular not improved) by processing
any descendant of η.

Lemma 3: Assume that J∗
η (θ) ≥ J̄η(θ) in a node η. Then

the dominance cut condition will be satisfied in that node
and

min
η̃∈Bη(θ)∪D(η)

J∗
η̃ (θ) = J̄η(θ) (6)

Proof: We have that

min
η̃∈Bη(θ)∪D(η)

J∗
η̃ (θ) = min

{
min

η̃∈Bη(θ)
J∗
η̃ (θ), min

δ∈D(η)
J∗
δ (θ)

}
= min

{
J̄η(θ), min

δ∈D(η)
J∗
δ (θ)

}
= J̄η(θ)

where the last equality follows from J∗
δ (θ) ≥ J∗

η (θ) ≥ J̄η(θ)
∀δ ∈ D(η), i.e., from Lemma 2 and the premise.
Hence, processing descendants of a node for which the
dominance cut was invoked would not change the best known
upper bound. As a result, the exploration of, and application

of cut conditions in, the rest of the tree will not be affected
if T ∪D(η) is used instead of T after the dominance cut is
invoked in node η. We formalize this notion in the following
corollary.

Corollary 2 (Futility of processing dominated descendants):
Consider two cases of the list T after the dominance cut is
invoked when processing node η,

1) T is used (normal operation)
2) T ← T ∪ D(η) is used (redundant addition)

Let B1 be the set of all nodes explored during case 1 and
let B2 be the set of all nodes explored during case 2. Then
B2 \ B1 = D(η). That is, exploring the nodes in D(η) does
not affect the subsequent exploration of nodes in the tree.

Proof: The only thing that might alter the exploration is
if the upper bound is changed by processing additional nodes
(which could prune nodes that would otherwise be explored).
However, from Lemma 3 processing any descendants of η
can never change the best upper bound, which in turn means
that further exploration is unaffected by processing any δ ∈
D(η).

C. Properties of the certification algorithm

So far we have shown the parametric behavior of Algo-
rithm 2 and the properties of the search tree. In this subsec-
tion, the properties of the proposed certification algorithm
are derived in the following theorems.

Theorem 1: Assume Assumption 1 holds. Let B(θ) denote
the set of all nodes explored to solve the problem in (3) for
a fixed θ using Algorithm 1. Moreover, let B̂k(θ) denote
all nodes explored in Algorithm 2 for region Θk before
terminating. Then B(θ) ⊆ B̂k(θ), ∀θ ∈ Θk.

Proof: First, for the analysis to be meaningful, we
stress that it is implicitly assumed that QPCERT certifies
the QP solver correctly. In particular, this means that the
active set and feasibility is correctly identified for each
parameter value. As a result, the correctly identified active
set and infeasibility directly leads to correctly invoked integer
feasibility and infeasibility cuts, respectively. What remains
is the dominance cut condition, which will now be analyzed
in more detail. Consider the processing of node η on region
Θ in Algorithm 2 and assume that a conservative upper
bound J̃(θ) on Θ is used for the dominance cut (i.e., J̃(θ) ≥
J̄η(θ),∀θ ∈ Θ). Then we have the following cases that could
occur in Step 19 of Algorithm 2:

1) J∗
η (θ) ≥ J̃(θ) ∀θ ∈ Θ → dominance cut invoked

correctly ∀θ ∈ Θ.
2) ∃θ̃ ∈ Θ such that J∗

η (θ̃) < J̃(θ)

a) J∗
η (θ) < J̄η(θ) ∀θ ∈ Θ → dominance cut

dismissed correctly for all θ ∈ Θ.
b) Otherwise dominance cut is dismissed incorrectly

for all θ ∈ Θϵ , {θ ∈ Θ : J∗
η (θ) ≥ J̄η(θ)}

The most critical situation is in 2b), where we might
explore descendants to η in the certification algorithm,
while these would be pruned in Algorithm 1 pointwise.
The possible extra nodes in the analysis are added to T k

according to Assumption 1 and consequently, when a new

node is popped from the list in Step 10 of Algorithm 2
to be analyzed, it is either a relevant one that would be
solved in the online solver for a specific parameter in the
corresponding region, or a redundant one which has been
cut away in Algorithm 1. For parameters with redundant
nodes where case 2b) in the proof of Theorem 1 occurs, we
have that J∗

η (θ) ≥ J̄η(θ). According to Corollary 2, the extra
exploration of descendants to η will not affect the exploration
of future nodes. Therefore, B̂k(θ) ⊇ B(θ), ∀θ ∈ Θk.

Theorem 2: Assume Assumption 1 holds. Let κ(θ) be
a complexity measure for solving the QP relaxation
P(θ,B0,B1) returned by QPCERT (P(θ,B0,B1),Θ) and that
it satisfies κj = κ(θ), ∀θ ∈ Θj ⊆ Θ, ∀j. Moreover, let
{Θi, κi

tot}
NF
i=1 be the collection of tuples in F returned by

Algorithm 2 and let κ∗
tot(θ) be the total complexity for

solving all QP relaxations encountered in Algorithm 1 for
a specific θ ∈ Θ0. Then κi

tot ≥ κ∗
tot(θ), ∀θ ∈ Θi.

Proof: Based on the result from Theorem 1, the QP
relaxations considered in Algorithm 2 for a single point θ
will be a superset of the QP relaxations that would be solved
in Algorithm 1. This in turn means that the total complexity
{κi

tot}i returned by Algorithm 2 will be an upper bound on
the total complexity of Algorithm 1 (pointwise), i.e., κi

tot ≥
κ∗
tot(θ), ∀θ ∈ Θi.
Remark 1: There is a freedom in the choice of complexity

measure and Algorithm 2 is not restricted to a specific
such measure. If the QP certification in [10] is employed
in Step 11, then the complexity measure κj will be the
iteration number, that is the total number of linear system
of equations that have to be solved. In other words, κj will
be the number of equality constrained QPs that an active-
set method requires to solve to reach the optimal solution.
Another alternative is to fix κj to 1. Then the complexity
measure will be the total number of nodes required to be
explored in the B&B tree, i.e., the number of relaxations
(as in [11]). Another important choice is if κj holds the
number of floating point operations (flops) for solving the
relaxations, given by the QP certification algorithm. It then
results in the total number of operations performed to solve
all the relaxations in B&B.

V. NUMERICAL EXPERIMENTS

In this section, the proposed algorithm is tested in numeri-
cal experiments to illustrate its usefulness. To experimentally
verify the analysis result, the upper bound on the complexity
from Algorithm 2 in a given θ is compared with the result of
the online solver implementing Algorithm 1. In the experi-
ment, the complexity measure κ(θ) is chosen as the number
of QP iterations. That is, for each value of θ ∈ Θ0, the
presented end result is the upper bound of the accumulated
number of QP iterations from all relaxations necessary to
solve in order to solve the mixed-integer problem for that
particular value of θ. In the experiments, the QP certification
algorithm from [10] was used to certify the relaxations in
Step 11 of Algorithm 2.

For the evaluation, ten random mp-MIQPs have been
generated with nc = 2, nb = 4, m = 6, and nθ = 2. The

mp-MIQPs have the following form

H = H̄ × H̄T , f ∼ N (0, 1), fθ ∼ N (0, 1),

A ∼ U([0, 1]), b ∼ U([1, 2]), W ∼ U([0, 2]).
(7)

where H̄ ∼ N (0, 1), i.e., the Hessian matrices have been
chosen such that they are symmetric and positive definite.
Furthermore, the parameter set considered is −1 ≤ θ ≤ 1.

Note that in the experiments, the conservative comparison
is performed in the dominance cut in Algorithm 2 and as a
result the partition will be polyhedral. The computation time
required for the complexity certification of each one of the
ten random examples are listed in Table I, when executed on
an Intelr Core 1.8 GHz i7-8565U CPU. Furthermore, the
worst-case overall QP iteration count κmax of terminated
regions is provided in Table I. All numerical experiments
were implemented in MATLAB and Gurobi 9.0.2 [18] was
used to solve the potentially indefinite QP optimization
problem in Step 19 of Algorithm 2.

TABLE I
RESULTS FROM A PROOF-OF-CONCEPT MATLAB IMPLEMENTATION OF

ALGORITHM 2 FOR 10 RANDOMLY GENERATED MP-MIQPS. κmax IS

THE WORST-CASE ACCUMULATED ITERATION NUMBER, AND tcert

DENOTES THE COMPUTATION TIME FOR THE CERTIFICATION IN

SECONDS.

mp−MIQP tcert[s] κmax

1 12 27
2 231 41
3 97 51
4 332 51
5 143 46
6 173 38
7 399 48
8 572 47
9 327 47
10 785 58

The resulting partitioning of the parameter space based
on the total number of iterations for one of the examples of
random mp-MIQPs is shown in Fig. 1, where parameters in a
region that share the same number of iterations are illustrated
using the same color.

In order to verify the result from the certification,
the worst-case iteration bounds obtained by the presented
method were compared with results from Monte-Carlo (MC)
simulations, i.e., applying Algorithm 1 to the same MIQP
problems (3) for some specific parameters from the parame-
ter set. To have the same complexity measure also online, the
dual-active set method in [16] was applied to solve the QP
relaxations in Step 6 of Algorithm 1, and for each evaluated
parameter value, the accumulated number of QP iterations
in all relaxations necessary to solve was recorded.

Fig. 2 demonstrates the result of solving the online
MIQP problem using Algorithm 1 for 10000 samples on
a deterministic grid in the parameter space, for the same
example as in Fig. 1. The Chebychev centers of regions in
Fig. 1 were also included as sample points to guarantee
that there was at least one sample from each region. In

Fig. 1. Results from Algorithm 2 applied to a random example. The colors
illustrate the accumulated number of QP iterations for a specific θ.

the experiments, the performed iterations by the QP solver
have also been considered in the case when the problem is
infeasible [10]. As the figures indicate, the result from the
complexity certification coincides with the online algorithm
in all sample points, despite that the conservative upper
bound is used in Algorithm 2. The conclusions from the
experiments are that the quality of the upper bound is clearly
practically useful and the bound seems to be close to tight.

Fig. 2. The accumulated number of QP iterations for 10000 samples
specified by * in the parameter space derived by applying Algorithm 1 to
the same example as in Fig. 1. Points with the same color share the same
number of complexity numbers.

To illustrate the amount of conservativeness that can be
expected when the bound is not tight, two more experiments
have been performed. In the first case, we increased the
number of binary decision variables and inequality con-
straints to 8 (nb = m = 8), with the same number of
real-valued variable and parameters as the first run and a
random mp-MIQP was generated in the form of (7) with
the appropriate dimensions, and Algorithm 2 was applied to
certify the problem. The maximum total iteration count in the
worst region here was recorded as κmax = 126. To verify
the result, the online MIQP problem was solved in 10000
sample points on a deterministic grid in the parameter space.
The results verified that the certification algorithm did never

underestimate the number of performed QP iterations online,
as expected. In 7% of the analyzed points, the analysis turned
out not to be exact and was conservative. In the second exper-
iment, the dimension of parameters increased to nθ = 3 and
another mp-MIQP was generated randomly with the variables
similar to the first experiment dimension-wise. Here, the
recorded overestimation difference between the certification
and online results when running Algorithm 1 for 1000
parameters taken deterministically from the parameter space
as well as 8400 Chebychev centers of the terminated regions
was 6%. The differences originate from the dominance cut
condition in Step 19 of Algorithm 2, which as described
in Section IV-A, is somewhat conservative. However, it is
considered highly useful in most applications.

VI. CONCLUSION

In this paper, complexity certification of a standard branch
and bound method for MIQPs has been addressed. An algo-
rithm for computing a useful upper bound of the worst-case
computational complexity for solving any possible MIQP
that can arise from a specific parameter in a polyhedral
parameter set has been presented. Compared to the previous
work, the current work uses recent algorithms for exact
complexity certification of active-set QP methods, enabling
also taking into account the complexity originating from
solving the relaxations in the nodes. Even though the main
focus in this work has been a complexity measure in terms
of accumulated number of QP iterations, there is a freedom
in this choice and alternatives such as flops and the size of
the search tree can in principle be considered. Results from
numerical experiments illustrate that the result is in general
somewhat conservative but still practically useful. In fact, in
many of the considered examples, the computed bound is
tight. In future work, MILPs will be considered, the details
of exact non-conservative application of the dominance cut
condition will be studied, and more general branching-rules
will be considered.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[2] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[3] L. A. Wolsey, Integer programming. John Wiley & Sons, 2020.
[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-

plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[5] V. Dua, N. A. Bozinis, and E. N. Pistikopoulos, “A multiparametric
programming approach for mixed-integer quadratic engineering prob-
lems,” Computers & Chemical Engineering, vol. 26, no. 4-5, pp. 715–
733, 2002.

[6] D. Frick, A. Domahidi, and M. Morari, “Embedded optimization for
mixed logical dynamical systems,” Computers & Chemical Engineer-
ing, vol. 72, pp. 21–33, 2015.

[7] M. N. Zeilinger, C. N. Jones, and M. Morari, “Real-time suboptimal
model predictive control using a combination of explicit mpc and on-
line optimization,” IEEE Transactions on Automatic Control, vol. 56,
no. 7, pp. 1524–1534, 2011.

[8] G. Cimini and A. Bemporad, “Exact complexity certification of
active-set methods for quadratic programming,” IEEE Transactions
on Automatic Control, vol. 62, no. 12, pp. 6094–6109, 2017.

[9] ——, “Complexity and convergence certification of a block principal
pivoting method for box-constrained quadratic programs,” Automatica,
vol. 100, pp. 29–37, 2019.

[10] D. Arnström and D. Axehill, “A unifying complexity certification
framework for active-set methods for convex quadratic programming,”
IEEE Transactions on Automatic Control, 2022.

[11] D. Axehill and M. Morari, “Improved complexity analysis of branch
and bound for hybrid mpc,” in 49th IEEE Conference on Decision and
Control (CDC). IEEE, 2010, pp. 4216–4222.

[12] W. Zhang, “Branch-and-bound search algorithms and their computa-
tional complexity.” USC/Information Sciences Institute, Tech. Rep.,
1996.

[13] S. Almér and M. Morari, “Efficient online solution of multi-parametric
mixed-integer quadratic problems,” International Journal of Control,
vol. 86, no. 8, pp. 1386–1396, 2013.

[14] D. Axehill, T. Besselmann, D. M. Raimondo, and M. Morari, “A
parametric branch and bound approach to suboptimal explicit hybrid
mpc,” Automatica, vol. 50, no. 1, pp. 240–246, 2014.

[15] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[16] D. Arnström, A. Bemporad, and D. Axehill, “A dual active-set solver
for embedded quadratic programming using recursive LDL’ updates,”
IEEE Transactions on Automatic Control, 2022.

[17] D. Axehill and A. Hansson, “A mixed integer dual quadratic program-
ming algorithm tailored for mpc,” in Proceedings of the 45th IEEE
Conference on Decision and Control. IEEE, 2006, pp. 5693–5698.

[18] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

	Försättsblad.Overall Complexity Certification of a Standard Branch and Bound Method for Mixed
	1700424

