

Coverage Path Planning in Large-scale
Multi-floor Urban Environments with
Applications to Autonomous Road
Sweeping

Daniel Engelsons, Mattias Tiger and Fredrik Heintz

Conference paper

Cite this conference paper as:

Engelsons, D., Tiger, M., Heintz, F. Coverage Path Planning in Large-scale Multi-floor
Urban Environments with Applications to Autonomous Road Sweeping, In (eds),
2022 International Conference on Robotics and Automation (ICRA), : Institute of
Electrical and Electronics Engineers (IEEE); 2022, pp. 3328-3334. ISBN:
9781728196817

DOI: https://doi.org/10.1109/ICRA46639.2022.9811941

Copyright: Institute of Electrical and Electronics Engineers (IEEE)
http://www.ieee.org/
©2022 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the
IEEE.

The self-archived postprint version of this conference paper is available at Linköping
University Institutional Repository (DiVA):
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-188562

https://doi.org/10.1109/ICRA46639.2022.9811941
http://www.ieee.org/
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-188562

Coverage Path Planning in Large-scale Multi-floor Urban Environments
with Applications to Autonomous Road Sweeping

Daniel Engelsons1 and Mattias Tiger1 and Fredrik Heintz1

Abstract— Coverage Path Planning is the work horse of
contemporary service task automation, powering autonomous
floor cleaning robots and lawn mowers in households and office
sites. While steady progress has been made on indoor cleaning
and outdoor mowing, these environments are small and with
simple geometry compared to general urban environments such
as city parking garages, highway bridges or city crossings. To
pave the way for autonomous road sweeping robots to operate
in such difficult and complex environments, a benchmark
suite with three large-scale 3D environments representative
of this task is presented. On this benchmark we evaluate
a new Coverage Path Planning method in comparison with
previous well performing algorithms, and demonstrate state-
of-the-art performance of the proposed method. Part of the
success, for all evaluated algorithms, is the usage of automated
domain adaptation by in-the-loop parameter optimization using
Bayesian Optimization. Apart from improving the performance,
tedious and bias-prone manual tuning is made obsolete, which
makes the evaluation more robust and the results even stronger.

I. INTRODUCTION

Enterprise and household robots routinely perform simple
service tasks, with a demand for better performance, less
maintenance and a wider set of tasks growing steadily [1].
Many of the most well-recognized automated service tasks
today such as lawn mowing, vacuuming and mopping are
powered by algorithms performing Coverage Path Planning
(CPP) [2]. The CPP task is to generate a path that covers
a map while avoiding obstacles. Steady progress has been
made both regarding faster planners, which generates better
(e.g. short) paths, and wider applicability [3]. CPP can be
divided into two types, the Sensor Coverage Problem and
the Footprint Coverage Problem [3]. Examples of the former
is 3D exploration [4], where a sensor has to be placed
at sufficient poses as to fully capture a map. Examples of
the latter is floor cleaning [5], where it is the robot, or its
actuator, that has to be placed to cover the entire map. The
Footprint Coverage Problem type of CPP is the focus here.

The CPP problem can be solved using A* search but it is
intractable to solve to optimum for even small toy problems
[6]. The reason for this is that CPP is NP-hard [7] and
therefore necessitate approximate or heuristic algorithms for

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, and by grants from the National Graduate School
in Computer Science (CUGS), Sweden, the Excellence Center at Linköping-
Lund for Information Technology (ELLIIT), the TAILOR Project funded by
EU Horizon 2020 research and innovation programme GA No 952215, and
Knut and Alice Wallenberg Foundation (KAW 2019.0350).

1Daniel Engelsons, Mattias Tiger and Fredrik Heintz are with the Depart-
ment of Computer and Information Science, Linköping University, Sweden.
mattias.tiger@liu.se, fredrik.heintz@liu.se

Fig. 1
Two-storey Garage point cloud. Coverage path, our approach.
Gray points are inaccessible and green points are traversable.
Top left: Concept example of a road sweeping robot.

solving CPP problems in practice. Algorithms have been
developed that are tailored to specific application contexts,
leveraging the specific circumstances such as flat surfaces
on single floors, rigid shapes and small scales, which permit
efficient use of grid representations. These are common char-
acteristics of most indoor environment and outdoor lawns.

In this paper we consider offline CPP in the context of real-
world urban environments. Such outdoor environments are
characterized by a combination of large scales and complex
surface geometry, with challenging aspects including non-flat
surfaces, being partially cluttered and possibly multi-floor. A
natural division between distinct rooms or floors are lacking,
in contrast with general indoor environments studied in most
of the literature [2], [3]. The surface geometry also differs
from the characteristic regular straight lines and rectangular
rooms of the indoor setting [3], and of the non-cluttered, rigid
or smooth geometry of the outdoor setting in agriculture,
such as croplands [8], [9], and customary lawns [10].

Real 3D environments are captured using LIDAR or 3D-
sensors as point clouds. Further discretization can be made,
e.g. using Octomap [11], but there are several benefits with
working directly on a point cloud. Good coverage can be
achieved while avoiding an intractably high voxel resolution,
given a fairly even point distribution over surfaces and that
the point density is kept down to manageable levels. Further-
more, while planar or voxel-based surface approximations

can be efficient representations, motion planning on such
approximations may lead to unfeasible plans, unless care is
taken. For example, a plan that seemed to be the shortest
of all explored alternatives can be impossible to follow, lead
to unsafe execution or be worse (e.g. take longer to follow)
than other plans which seem worse during planning [12].

The task investigated in this paper is that of CPP for
autonomous road sweeping (Figure 1), where the input is
a point cloud and the output is a collision free path with
highest possible coverage while minimizing path length and
total rotation. The main contributions of this paper are:

• A benchmark suite1 consisting of three large-scale urban
environments as point clouds, with and without labeled
points. They span a variety of multi-floor and complex
geometry, representative of outdoor road sweeping tasks
under difficult and varying real-world conditions.

• Evaluation of prominent CPP algorithms on the urban
outdoor CPP task.

• A proposed CPP algorithm that out-performs state-of-
the-art CPP algorithms at this task.

• Parameter optimization of CPP algorithms for automatic
domain adaptation, for evaluation and as part of an
enhanced offline meta-CPP algorithm.

The outline is as follows. In Section II the problem is
formally summarized, in Section III related work is discussed
and relevant background material is presented in IV. Section
V describe how 3D point clouds are analyzed to determine
the sets of points traversable and coverable by the robot. The
proposed CPP algorithm is detailed in Section VI, and the
benchmark suite including, three 3D point clouds represen-
tative for the urban road sweeping task, is presented in VII.
Section VIII contains the evaluation of CPP algorithms on
the benchmark and Section IX concludes the paper.

II. PROBLEM FORMULATION

Consider a robot with geometry R ⊂ R3 that can travel
over a surface with a maximum height difference of hR

max.
Given a bounded 3D world W ⊂ R3 and a starting point xS ,
the set Wcov ⊆ W contains all surface points coverable by
the robot. A surface point p is coverable if there is a point
x ∈ W for which the robot placed at x cover p with its
geometry R, and if x is reachable from xS without collisions.

The Coverage Path Planning (CPP) problem is to find a
path P of points x ∈ P such that every point p ∈ Wcov
must have been inside R at least once when placing R at
every position in P . The task here is to determine Wcov and
subsequent a path starting in xS that let the robot cover all
coverable points x ∈ Wcov while minimizing the path cost.

III. RELATED WORK

Coverage path planning is still an open problem in robotics
[13], with some of the issues being planning efficiency,
path optimality, handling dynamic obstacles and dealing with
complex environments. These issues are considered some
of the major challenges in robotics, and CPP particularly

1github.com/danneengelson/urbanroadsweeper

challenging in complex and large-scale environments. For
large-scale environments, offline CPP algorithms are the
most common due to limitations on onboard hardware [13].

The development of robots for floor cleaning and road
sweeping has a long history [14] and so does the develop-
ment of algorithms for coverage path planning for robotics
[2]. Although the mechatronic and control development of
road sweeping robots keep advancing [15], very little prior
work [16] exists on applying CPP to autonomous road
sweeping and none that we can find in a realistic setting. One
reason for the past dominance of CPP in the indoor setting
[2] can be due to the computational issues of scaling up
current methods [13], not least grid- and cell-based methods
[17], to the large scales of urban outdoor areas. Outdoor
urban environments pose many challenges even to standard
path planning [12], and thus also to coverage path planning.

A recent survey [3] of CPP methods for indoor floor
cleaning conclude after extensive empirical evaluations that
Boustrophedon motion is the most prominent performer on
covering single rooms. Multi-room single-floor apartments
are separated into individual rooms covered in isolation. In
[17] they note that a major weakness of BA* [18], which
apply Boustrophedon motion locally such as for each room,
is the long paths between the locally covered regions.

The general poor performance of grid-based methods on
large scale environments can be alleviated by rectangular
decomposition as a pre-processing step [17], making the pro-
posed method suitable for floor cleaning tasks in large scale
environments such as a gym, library, warehouse or airports.
They also consider cluttered indoor environments, e.g. gym
equipment and library book shelves. The environment is,
apart from these aspects, similar to the general characteristics
in the indoor literature with a single rectangular room, simple
and straight borders, and a planar and single floor.

The geometry of non-planar surfaces can be taken into
account to make the coverage path more energy efficient
[19], for example by driving orthogonal to the slope. The
drive direction can also affect the actual coverage achievable
in cases where elevation is projected down onto a grid and
solved using grid-based CPP methods [9]. By solving CPP
in 3D instead, such as directly on the point cloud, such
projection based issues are eliminated. Energy efficiency can
be taken into consideration directly in the motion planning
and it is straight forward to plan over multiple floors [12].

IV. BACKGROUND

Coverage path planning algorithms relevant for under-
standing the proposed algorithm are described here, followed
by the parameter optimization technique utilized in this work.

The CPP algorithms BA* [18] and Inward Spiral [20] are
representative of a family of methods which are well per-
forming in a variety of settings. The proposed algorithm (VI)
combine ideas from these. An overview of the algorithms are
presented here, see the references for further details.

A. CPP algorithm: BA*
BA* [18] is based on Boustrephedon motions [21], which

are a kind of zigzag motion. The idea is to cover a local

github.com/danneengelson/urbanroadsweeper

regions with a zigzag pattern, then find the shortest path to
the next uncovered position and repeat the behavior until
completeness. The algorithm consists of the following steps:

1) Starting at starting point xs, with main direction ϕ,
cover the local area using the Boustrophedon motion
(BM) algorithm until a critical point is reached and no
further Boustrophedon motion is possible.

2) Use a backtracking list to find the next starting point.
3) Use A* [22] to plan a collision free path to next point.
4) Shorten the path using the A*SPT [18] algorithm.
5) Follow the path and go to step 1 to cover a new area.

These steps are repeated until Step 2 can no longer find a new
uncovered starting point. Note that ϕ is a design-parameter.

B. CPP algorithm: Inward Spiral

Inward Spiral [20] apply counter-clockwise motion from
initial point xs. The algoritm consists of the following steps:

1) Starting at starting point, clean area in an inward spiral
motion until a dead zone is reached.

2) Find closest uncovered accessible point with BFS [22].
3) Find shortest path using A* to the closest uncovered

point, the next starting point, and go back to Step 1.
This cycle repeats until the area has been covered.

C. Parameter Optimization

Bayesian Optimization (BO) [23] is a gradient-free global
optimization method powered by probabilistic inference,
where the uncertainty of the objective function is modelled
across the input range. It is a sequential process: The next
input to evaluate is the most likely input candidate to produce
the lowest expected loss given all previously investigated
inputs so far. BO is much more sample efficient than other
types of optimization methods. It is well suited for situations
where it is costly to try a new input value, which makes it
important to try out as few as possible while still having a
reasonably high probability of finding a global minimum.

HyperOpt [24] is a widely used parameter optimization
library implementing Bayesian Optimization. It is most often
used for parameter tuning in machine learning, but the
applicability of BO is widespread [23] and in this work it is
used as an automatic method to adapt the CPP algorithms
to the specific domain. Tedious and ad hoc hand tuning is
replaced with a systematic and automatic modern method.

V. TERRAIN ASSESSMENT

To navigate a robot in a an environment, knowledge about
traversable positions is required. As in [12] we chose to keep
the terrain representation continuous and move between 3D
positions. Since we do both motion planning and covering,
coverable positions also needs to be known. See Figure 2
for examples. To guarantee that traversable and coverable
positions are drivable they are restricted to classified points.

The purpose of the terrain assessment is to classify points
in a given point cloud. Points are classified as:

• Inaccessible - Unreachable or can not overlap with
robot geometry due to collision or lack of information.

(a) View of floor 1. (b) View of floor 2.

Fig. 2
Terrain Assessment of the Two-storey Garage point cloud.
Green points represent traversable areas, yellow are non-
traversable but coverable and grey points are inaccessible.

• Traversable - Can be visited by the robot without
collision with an obstacle.

• Coverable - Can be covered by the range of the robot
from at least one traversable point.

Our method is based on robot specific properties such as
robot height, maximum navigable step height, covering range
and robot breadth. The covering range and the breadth are
assumed to be the same and defined by a radius from current
position of the robot.

1) Floor segmentation - Divide the point cloud into
different floors by splitting the points into vertically
stacked layers and finding heights with the largest
amount of points as in [25].

2) Cell segmentation - For each floor separately. Create
a Digital Elevation Model (DEM) of the floor by
splitting the point cloud into cells and finding the
elevation using the method in [25]. It looks for free
space between two points in a cell larger than the robot
height. If found, the elevation is set to the lowest point.

3) Cell classification - A Breadth First Search is then
used to find the biggest connected area of coverable
cells. The DEM is used to prevent steps where the
height difference between cells is too big.

4) Point Classification - Classify points with these steps:
a) Set all points that are not in the main coverable

area as Inaccessible
b) Set all points in the main coverable area that

are more than a robot radius away from an
Inaccessible point as Traversable.

c) Set all points that are within a robot radius from
a Traversable point as Coverable.

This method does not guarantee that every traversable
point is accessible from the main coverable area. Step 4b)
makes narrow passages nontraversable which separates clus-
ters of points from the main coverable area and consequently,
make 100% coverage unreachable.

The CPP methods in Section IV are designed for operation
on a grid or cell-network. To work on a point cloud it is
necessary to define how valid steps, from one traversable
point to another, is done. In this work we use 8-connectivity
on the virtual ground plane in the 3D point cloud manifold.
Each CPP algorithm has a step size λCPP and a visited
distance-threshold rvisited which controls valid expansions of

the algorithms. Given a traversable point, a neighbour point
is found in either direction by selecting the closest traversable
point λCPP away in the specific direction. The neighbour is
already visited if a previously expanded traversable point is
within a rvisited distance of the neighbour. Since rvisited is not
the the actual cleaning radius of the robot, it controls the
allowance of revisiting cleaned spots.

Algorithm 1: Sample Based BA* & Inward Spiral.
Data: Starting position xs. P = ∅. STSP = ∅.
Result: Path P to cover the area.

1 SBA* ← Sample BA* (Algorithm 2)
2 SIS ← Sample Inward Spiral (Algorithm 3)
3 S ← SBA* ∪ SIS
4 G← Empty fully-connected graph
5 for path Pi in S do
6 Add start and end point of Pi as nodes in G.
7 end
8 PTSP ← Cheapest route to visit all nodes in G
9 xcurr ← xs

10 for xi in PTSP do
11 if pi ̸= xcurr then
12 if xi is a start point then
13 Pi ← Path in S with xi as start point
14 else
15 Pi ← Reversed path in S with xi as end point
16 end
17 STSP ← STSP ∪ Pi

18 xcurr ← Last point in Pi

19 end
20 end
21 xcurr ← xs

22 for path Pi in STSP do
23 PA* ← Shortest path from xcurr to the start of Pi.
24 P ← P ⊕ PA* ⊕ Pi

25 xcurr ← Last point in Pi

26 end
27 return P

VI. PROPOSED METHOD
(SAMPLED BA* & INWARD SPIRAL)

1) Initialise an empty list of detached path segments S.
2) PART I: Line 5-12: For each of the 4 different main

directions ϕ, plan a local coverage path using the BA*
algorithm [18] starting from a traversable edge point
of a randomly sampled uncovered area. Stop covering
when the euclidean distance to the next starting point
in the backtracking list (IV-A) exceeds d1max .

3) If none of these 4 paths had a cost
coverage that were lower

than C1
min, set the points covered by the path with

the biggest coverage as explored (line 14). Otherwise,
choose the path with the lowest cost per coverage.
Add it to S and set its covered points as explored and
covered (line 16-17).

4) Repeat Step 2-3 until E of the points are explored.
5) PART II: Start covering using the Inward Spiral

algorithm [20] starting from a traversable edge point
of a randomly sampled uncovered area. Stop covering
when the distance to the next starting point (IV-B)

Algorithm 2: PART I: Sample BA*
Data: S = ∅.
Result: Set of paths S covering local regions.

1 while exploration goal E has not been reached do
2 x′ = random position in uncovered area
3 xr = closest edge point to x′ given by BFS
4 SBA* = ∅
5 for angle ϕ ∈ [0, π

2
, π, 3π

2
] do

6 xs ← xr

7 do
8 PBA* ← PBA* ∪ [xs, ..., pe] = BA*(xs, ϕ)
9 xs ←new starting point in backtracking list

10 while ||pe − xs|| < d1max;
11 SBA* = SBA* ∪ PBA*
12 end
13 if C1

min < max
PBA*∈SBA*

cost
coverage then

14 Mark PBA* ∈ SBA* with max coverage as explored
15 else
16 Pbest ← PBA* ∈ SBA* with lowest cost

coverage
17 Mark Pbest as explored and covered
18 S = S ∪ Pbest
19 end
20 end
21 return S

Algorithm 3: PART II: Sample Inward Spiral
Data: S = ∅.
Result: Set of paths S covering local regions.

1 while coverage ̸= C and exploration ̸= 1 do
2 x′ = random position in uncovered area
3 xs = closest edge point to x′ given by BFS
4 do
5 PSpiral ← PSpiral ∪ [xs, ..., pe] = Inward-Spiral(xs)

xs ← new starting point using BFS from pe
6 while ||pe − xs|| < d2max;
7 Mark PSpiral as explored
8 if (cost

coverage of PSpiral) < C2
min then

9 S ← S ∪ PSpiral
10 Mark PSpiral as covered
11 end
12 end
13 return S

exceeds d2max. Set the points that were covered by the
path as explored. If the cost per coverage is lower than
C2

min, add the path to S and set its covered points as
covered.

6) Repeat Step 5 until C of the points are covered or all
points have been explored.

7) PART III: Add the start and end positions of the paths
in S as nodes to a fully connected graph G. All nodes
are connected with edges with weights set to

• w = 0, if the edge is between the start and end
node of the same path in S.

• Otherwise, distance based according to equation

w = woffset + ||sA(x, y)− sB(x, y)||+
K||sA(z)− sB(z)||

where sA and sB are the positions of the two

nodes, woffset is a large number and K ≥ 1.

The purpose of woffset is to make sure that the trav-
eling salesman algorithm in the following step always
chooses to connect corresponding start and end nodes.
Since the environment could have multiple floors, extra
weight K is added to difference in height, to avoid
potential movement between floors.

8) Solve the TSP problem [26] of the cheapest visitation
order, PTSP, to visit all nodes in G.

9) Walk through every node in PTSP and create an ordered
list of paths STSP. For every node si,

• If si is start node, add corresponding path to STSP.
• If si is an end node, add the corresponding path,

but reversed, in S to STSP.

10) Create a continuous path P by following the paths in
STSP. Connect them with obstacle free smooth paths.

The algorithm parameters are listed in Table I.

TABLE I
Sampled BA* & Inward Spiral parameters.

Parameter Description
E Exploration goal for PART I
C Total coverage goal
d1max Max distance to next starting point in PART I
d2max Max distance to next starting point in PART II
C1

min Min coverage-normalized cost in PART I
C2

min Min coverage-normalized cost in PART II
λCPP Step size
rvisited Visited threshold

VII. AUTONOMOUS ROAD SWEEPING

Road sweeping is a challenging task due to a complex
environment, where the environment is somewhat unbounded
and may have rough terrain [16]. A particular difficulty
of contemporary CPP algorithms is that of large-scale en-
vironments [13], even with simple geometry. We consider
the challenging task of a road sweeping robot in an urban
setting, where offline CPP is sufficient but where CPP is

(a) Two-storey Garage (b) Highway Bridge (c) City Crossing

Fig. 3

(a) Two-storey Garage (b) Highway Bridge (c) City Crossing

Fig. 4
Generalization results to new starting points. Mean and 95% confidence interval over 10 random starting locations.

(a) BA* (b) Inward Spiral (c) Sampled BA* & Inwards Spiral

Fig. 5
Coverage paths on the Garage environment.

performed on a large-scale map with complex geometry.
The benchmark suite consists of three environments (VII-A)
which are realistically represented as point clouds, collected
from real urban environments. Part of the suite is also a
scenario description (VII-B) which include specifications
of a road sweeping robot, providing the necessary details
to perform terrain assessment (V) and to evaluate CPP
algorithms on the benchmark environments.

A. 3D Environments

The three urban environments (Figure 3) consist of 3D
point clouds that have been carefully selected from the large
Complex Urban Dataset [27]. These environments represent
different difficult, but typical, urban outdoor scenes.

The Two-storey Garage environment consists of a parking
lot with an underground garage right below. The point
cloud is a subset of urban05 [27]. The main challenges
are complex border geometry, multi-level aspect and the
transition between levels. It contains 2.6 M points and has a
total coverable area for the road sweeping robot of 1902 m2.
The Highway Bridge environment is a subset of urban17,
contains 2.4 M points and has a total coverable area for
the road sweeping robot of 2707 m2. The main challenges
are the very long curved drive-way together with its multi-
level aspect. The City Crossing environment is a subset of
urban02, contains 3.2 M points and has a total coverable area
for the road sweeping robot of 1296 m2. The main challenge
is the clutter and complex surface/border geometry.

B. Scenario

A 3D point cloud of an urban environment is available for
offline CPP. A road sweeping robot (e.g. Figure 1) of dimen-
sion length = 1m, breadth = 0.75m, height = 0.8m
is tasked with cleaning the ground surface of the target
environment. The actuators are most effective when driving
straight and quickly lose effectiveness when turning wide.

Given a point cloud and a starting point, traversable and
coverable points are classified and collected using terrain
assessment (V). A maximum a posteriori (with respect to
cost) path is found by optimizing a specified CPP algorithm
over its parameters using Bayesian Optimization (IV-C)
such as HyperOpt [24], based on prior distributions over
the parameters. The parameter optimization perform domain
adaptation, and a much better path for the given domain and
task is found than if an arbitrary parameter configuration is
used that has not been optimized for the problem instance.
This is a meta algorithm for domain adaptive offline CPP.
The resulting path is executed by a motion planner capable
of collision avoidance [12], [28]. To deal with new stationary
obstacles: plan repair [29] to next free node in CPP plan.

VIII. EVALUATION

The CPP algorithm parameters are optimized using Hyper-
Opt [24] based on a single starting position per environment.
Parameters are sampled from the distributions in Table II. We
ran 100 evaluations of HyperOpt for each algorithm, for each
environment, from the same start position. Table III lists the

results, where the proposed method is consistently signifi-
cantly better than the other two methods in cost and rotation
across all environments. The parameter optimization makes
a noticeable impact to the performance of all algorithms over
using the prior mean, E[Prior]. To evaluate the robustness of
the domain adaptation to other starting positions, i.e. measure
the generalization of the MAP parameters, another 10 start
points are randomized for respective environment and solved
using all three algorithms. The results are presented in Figure
4, where the proposed algorithm still outperforms BA* and
Inward Spiral, apart from for the highest degree of coverage
on Two-storey Garage. Examples are shown in Figure 5.

TABLE II
CPP parameters optimized using HyperOpt on start position.

BA*
Parameter Garage Bridge Crossing Prior
λCPP 0.634 m 0.557 m 0.524 m U(0.5, 1)
rvisited 0.473 m 0.453 m 0.404 m U(0.25, 0.5)
ϕ 4.65 rad 5.34 rad 4.70 rad U(0, 2π)

Inwards Spiral
Parameter Garage Bridge Crossing Prior
λCPP 0.628 m 0.737 m 0.665 m U(0.5, 1)
rvisited 0.499 m 0.483 m 0.500 m U(0.25, 0.5)

Sampled BA* & Inwards Spiral
Parameter Garage Bridge Crossing Prior
E 0.865 0.940 0.863 U(075, 0.95)
d1max 4.13 m 4.49 m 1.69 m U(1, 5)
d2max 6.94 m 7.06 m 4.48 m U(4, 10)
C1

min 8238 12773 6488 *
C2

min 13645 25989 8141 **
λCPP 0.548 m 0.619 m 0.554 m U(0.5, 1)
rvisited 0.373 m 0.389 m 0.258 m U(0.25, 0.5)

* Based on coverable area A: U(2.63A, 5.26A)
** Based on coverable area A: U(5.26A, 10.52A)

TABLE III
Result of meta-CPP domain adapted solution.

Env. Algorithm Cost (E[Prior]) Length Rotation
Garage Sampled BA*. . . 4077 (4422) 2999 m 1078 rad

BA* 4238 (5270) 2896 m 1342 rad
Inwards Spiral 5787 (9351) 3101 m 2686 rad

Bridge Sampled BA*. . . 5797 (6519) 4643 m 1154 rad
BA* 6385 (8545) 4562 m 1823 rad
Inwards Spiral 7213 (16637) 4440 m 2773 rad

Crossing Sampled BA*. . . 3001 (3248) 2186 m 815 rad
BA* 3262 (4058) 2249 m 1013 rad
Inwards Spiral 4054 (6647) 2239 m 1815 rad

IX. CONCLUSIONS

A realistic benchmark suite for advancing the CPP ca-
pabilities of service robot tasks in urban environments is
presented, together with a novel state-of-the-art algorithm
which combines the strengths of three other prominent CPP
algorithms. A rigid domain adaptation methodology for CPP
is proposed, and the generalization of the domain adaptation
is demonstrated in the evaluation. Using Bayesian optimiza-
tion we optimize the non-exact CPP algorithms for the best
possible path they can generate. The next step towards field
robotics is to evaluating the proposed algorithm and domain
adaptation approach in practice onboard a real robot sweeper.

REFERENCES

[1] C. B. Frey and M. A. Osborne, “The future of employment: How
susceptible are jobs to computerisation?” Technological forecasting
and social change, vol. 114, pp. 254–280, 2017.

[2] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[3] R. Bormann, F. Jordan, J. Hampp, and M. Hägele, “Indoor coverage
path planning: Survey, implementation, analysis,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
1718–1725.

[4] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto,
“An efficient sampling-based method for online informative path
planning in unknown environments,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1500–1507, 2020.

[5] R. Bormann, J. Hampp, and M. Hägele, “New brooms sweep clean-
an autonomous robotic cleaning assistant for professional office
cleaning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 4470–4477.

[6] S. Dogru and L. Marques, “A*-based solution to the coverage path
planning problem,” in Iberian Robotics conference. Springer, 2017,
pp. 240–248.

[7] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation al-
gorithms for lawn mowing and milling,” Computational Geometry,
vol. 17, no. 1-2, pp. 25–50, 2000.

[8] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of field robotics, vol. 26, no. 8,
pp. 651–668, 2009.

[9] I. A. Hameed, A. la Cour-Harbo, and O. L. Osen, “Side-to-side 3d
coverage path planning approach for agricultural robots to minimize
skip/overlap areas between swaths,” Robotics and Autonomous Sys-
tems, vol. 76, pp. 36–45, 2016.

[10] N. Einecke, J. Deigmöller, K. Muro, and M. Franzius, “Boundary wire
mapping on autonomous lawn mowers,” in Field and Service Robotics.
Springer, 2018, pp. 351–365.

[11] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous Robots, vol. 34, 04 2013.

[12] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point
clouds: Motion planning, trajectory optimization, and terrain assess-
ment in generic nonplanar environments,” Journal of Field Robotics,
vol. 34, no. 5, pp. 940–984, 2017.

[13] C. S. Tan, R. Mohd-Mokhtar, and M. R. Arshad, “A comprehensive
review of coverage path planning in robotics using classical and
heuristic algorithms,” IEEE Access, 2021.

[14] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini, “A short history
of cleaning robots,” Autonomous Robots, vol. 9, no. 3, pp. 211–226,
2000.

[15] M. M. Rayguru, R. E. Mohan, R. Parween, L. Yi, A. V. Le, and
S. Roy, “An output feedback based robust saturated controller design
for pavement sweeping self-reconfigurable robot,” IEEE/ASME Trans-
actions on Mechatronics, 2021.

[16] M.-S. Chang, J.-H. Chou, and C.-M. Wu, “Design and implementation
of a novel outdoor road-cleaning robot,” Advanced Robotics, vol. 24,
no. 1-2, pp. 85–101, 2010.

[17] X. Miao, J. Lee, and B.-Y. Kang, “Scalable coverage path planning
for cleaning robots using rectangular map decomposition on large
environments,” IEEE Access, vol. 6, pp. 38 200–38 215, 2018.

[18] H. H. Viet, V.-H. Dang, M. N. U. Laskar, and T. Chung, “Ba*:
an online complete coverage algorithm for cleaning robots,” Applied
intelligence, vol. 39, no. 2, pp. 217–235, 2013.

[19] S. Dogru and L. Marques, “Towards fully autonomous energy efficient
coverage path planning for autonomous mobile robots on 3d terrain,”
in 2015 European Conference on Mobile Robots (ECMR). IEEE,
2015, pp. 1–6.

[20] H. Zhang, W. Hong, and M. Chen, “A path planning strategy for intel-
ligent sweeping robots,” in International Conference on Mechatronics
and Automation (ICMA). IEEE, 2019, pp. 11–15.

[21] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and service robotics. Springer, 1998,
pp. 203–209.

[22] S. J. Russell and P. Norvig, Artificial intelligence : a modern approach.
Boston: Pearson, 2020.

[23] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[24] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International conference on machine learning.
PMLR, 2013, pp. 115–123.

[25] V. Sakenas, O. Kosuchinas, M. Pfingsthorn, and A. Birk, “Extraction
of semantic floor plans from 3d point cloud maps,” in 2007 IEEE
International Workshop on Safety, Security and Rescue Robotics, 2007,
pp. 1–6.

[26] F. Goulart, “Python tsp solver,” 2021. [Online]. Available: https:
//github.com/fillipe-gsm/python-tsp

[27] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” International Journal of Robotics Research, vol. 38, no. 6,
pp. 642–657, 2019.

[28] O. Andersson, O. Ljungqvist, M. Tiger, D. Axehill, and F. Heintz,
“Receding-horizon lattice-based motion planning with dynamic obsta-
cle avoidance,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 4467–4474.

[29] M. Wzorek, J. Kvarnström, and P. Doherty, “Choosing replanning
strategies for unmanned aircraft systems,” in International Conference
on Automated Planning and Scheduling (ICAPS), vol. 2, no. 3, 2010.

https://github.com/fillipe-gsm/python-tsp
https://github.com/fillipe-gsm/python-tsp

	Försättsbladet
	Tiger_fulltext
	INTRODUCTION
	Problem Formulation
	Related Work
	Background
	CPP algorithm: BA*
	CPP algorithm: Inward Spiral
	Parameter Optimization

	Terrain Assessment
	Proposed Method(Sampled BA* & Inward Spiral)
	Autonomous Road Sweeping
	3D Environments
	Scenario

	Evaluation
	Conclusions
	References

