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On a Traveling Salesman Problem with Dynamic Obstacles and
Integrated Motion Planning*

Anja Hellander1 and Daniel Axehill2

Abstract— This paper presents a variant of the Traveling
Salesman Problem (TSP) with nonholonomic constraints and
dynamic obstacles, with optimal control applications in the
mining industry. The problem is discretized and an approach
for solving the discretized problem to optimality is proposed.
The proposed approach solves the three subproblems (waypoint
ordering, heading at each waypoint and motion planning
between waypoints) simultaneously using two nested graph-
search planners. The higher-level planner solves the waypoint
ordering and heading subproblems while making calls to the
lower-level planner that solves the motion planning subproblem
using a lattice-based motion planner. For the higher-level
motion planner A* search is used and two different heuristics,
a minimal spanning tree heuristic and a nearest insertion
heuristic, are proposed and optimality bounds are proven. The
proposed planner is evaluated on numerical examples and com-
pared to Dijkstras algorithm. Furthermore, the performance
and observed suboptimality are investigated when the minimal
spanning tree heuristic cost is inflated.

I. INTRODUCTION

One of the classical problems within combinatorial op-
timization, with important optimal control applications, is
the Traveling Salesman Problem (TSP), where, given a set
of waypoints and their pairwise distances, the objective is
to find the shortest tour starting at one waypoint that visits
all other waypoints and then returns to the first waypoint.
In this work we will consider a variant of the TSP that
is similar to a TSP variant of the multi-vehicle routing
problem called MVRP-DDO [1]. We will not consider the
problem of finding a tour, but rather a path from a given
initial waypoint to a given terminal waypoint that visits all
waypoints in a given set. We will consider a nonholonomic
car-like vehicle that can move forwards, as well as in reverse,
i.e., a Reeds-Shepp car [2]. Like the MVRP-DDO, we will
assume that waypoints are dense compared to the size and
the minimal turning radius of the vehicle, and that waypoints
once they have been visited can not be visited again, i.e., they
become obstacles that the vehicle must not collide with. We
further constrain the vehicle such that it may only leave the
waypoints moving in the forward direction.

The studied optimization problem is of practical interest
for the mining industry, more specifically open-pit drill
mining as described in [1]. A drilling machine is given a
set of drill targets located within a given area. The drilling
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machine must navigate to each drill target, drill a hole and
fill it with explosives. When the drilling machine has drilled
a hole a small pile of dust is created around the hole. Drilling
machines such as the Pit Viper 351 manufactured by Epiroc
have a dust guard around the drill which can only be raised
in one direction; hence the drilling machine can only leave
the drill target in one direction. Driving over a hole that has
been drilled will result in the hole being filled again; hence
holes that have already been drilled become obstacles.

In [1], which considers motion planning for the open-
pit mine, considers a TSP instance where visited waypoints
become obstacles similat to that of this work. However,
their approach does not guarantee that a feasible solution is
found if one exists. Furthermore, the approach they present
has been tailored to a particular type of problem, by as-
suming that waypoints are placed in roughly parallel lines,
attempting to find these lines and moving along them. The
solution presented in this work makes no such assumptions
and can therefore easily be generalized to other waypoint
placements. Another difference is that they consider a multi-
vehicle problem where scheduling has to be taken into
account, whereas this work only considers a single-vehicle
problem. Furthermore, their presented solution only attempts
to find a feasible solution to a discretized problem rather
than a solution that is optimal or within proven suboptimality
bounds as considered in this work.

A related TSP variant is the Dubins TSP (DTSP) which
considers a Dubins car [3], i.e., only forward driving is
allowed. This requires the determination not only of the
relative ordering of the waypoints, but also of the vehicle
heading at each waypoint which requires continuous decision
variables. Most of the previous research on the DTSP has
focused on obstacle-free environments, such as [4], [5], [6],
[7], [8], [9]. In [10] static obstacles are considered; however,
the vehicle heading at each waypoint is the same and given
in advance. In [11] a Reeds-Shepp car was considered
and the headings at each waypoint were constrained to an
interval. In [12] a TSP problem with a unicycle model and
obstacles is solved to optimality without discretization by
reformulating the problem as a quadratically constrained
quadratic program. Scenarios with both static and dynamic
obstacles are considered, but unlike the problem considered
in this work the location of the obstacles depend only on
time and not on the order in which waypoints are visited.
Hence it would not solve the problem considered here.

Early work on the DTSP usually disregarded the non-
holonomic constraints initially and solved the problem as
if it were a Euclidean TSP (ETSP) using standard methods



for TSP such as the Lin-Kernighan heuristic [13] or the
Concorde TSP solver [14]. This gives the ordering of the
waypoints, and the headings were determined in a later step.
Examples of work that used this separation include [4], [6]
and [15]. In [16] the ordering is determined first and the
headings are determined in a separate step, although the
ordering is not based on the solution of the ETSP. Solving
the two problems separately is known to give a suboptimal
solution [5], so later work has focused more on solving
both the ordering and the heading problems simultaneously.
A common approach is to discretize the heading angles,
compute all possible distances and treat the problem as a
generalized traveling salesman problem, such as in [5] and
[11]. One approach that does not discretize the headings was
presented in [7], where a genetic algorithm approach is used.

Adding the constraint that the vehicle may not pass over
waypoints that have already been visited makes the problem
more difficult. Given two waypoints and their respective
headings, the shortest path in an obstacle-free environment
for a Dubins or Reeds-Shepp car can be computed analyti-
cally and is well known [3] [2]. When obstacles are present
the computational effort to find an optimal or near-optimal
path is much greater. Additionally, since the obstacles in the
current work are not static but depend on which waypoints
have already been visited it is not possible to compute the
distances between pairs of waypoints and headings, since
the optimal feasible path will depend on which obstacles are
present. Instead, the states between which distances are com-
puted must also include information about previously visited
waypoints, which increases the number of possible states
and hence the number of distances to compute substantially.
Suppose that there are n waypoints in total. Then for any
waypoint there are 2n−1 possible combinations of previously
visited nodes. Due to the large number of nodes and the
comparatively high computational effort of computing arc
costs, it might not be very effective to compute all arc costs
and use a standard TSP solver.

The contributions in this work are the following. We
present a new approach to the problem that discretizes the
problem and uses discrete graph search to find an optimal
solution to the discretized problem, whereas previous work
only attempted to find a feasible solution. Our approach
combines two different planners, one that plans in the space
of waypoint orderings and (discretized) headings, and one
that plans the (continuous) motion between given pairs of
waypoints and headings. For the first planner, we propose
the A* search algorithm [17] and propose two heuristics to
help guide the search: one based on the nearest insertion
algorithm, and one based on minimal spanning trees. We
show that the use of the minimal spanning tree heuristic
results in an optimal solution for the discretized search
problem and prove suboptimality bounds when the proposed
nearest insertion heuristic is used. We also consider using
the minimal spanning tree heuristic inflated with a factor and
show on numeric examples that this can result in much faster
computation time with small or no sacrifices on optimality.

II. PROBLEM FORMULATION
For a car-like vehicle an initial configuration qs =

(xs, ys, θs) and a final configuration qg = (xg, yg, θg) are
given, as well as a set of target points {p1, . . . , pn} where
the coordinates (xi, yi) are given for each target point pi. The
objective is to find the shortest path for the vehicle from qs
to qg that passes through each target p1, . . . , pn under the
constraint that when a target has been visited it becomes
an obstacle and the vehicle may not pass over that point
again. This requires the determination of the vehicle heading
θi at each point pi. Furthermore, although the vehicle in
general can drive forwards as well as backwards it must drive
forwards as it leaves a target point due to the fact that the
target point once reached is converted into an obstacle. There
may also be other (static) obstacles that limit the space that
the vehicle can freely move in. In addition, the path must
obey kinematic constraints.

The problem therefore consists of three dependent sub-
problems:

1) Decide the order in which p1, . . . , pn should be visited.
2) Decide the headings θi ∈ [0, 2π) for each target point

pi.
3) Decide the shortest path between the chosen configu-

rations.
Note that the problem contains a mixture of discrete

and continuous decision problems; the target ordering is a
discrete problem whereas the choice of headings as well as
the path planning are continuous problems.

III. METHOD
We start by restricting the headings to a set consisting of

k possible angles, thereby discretizing the heading problem.
To solve the three subproblems simultaneously, we use
two nested planners: one higher-level planner that searches
in the space of possible (discretized) headings and target
orderings, and one discrete lower-level planner that performs
the planning of the continuous motion between a pair of
configurations given a set of obstacles.

A. The higher-level planner

The higher-level planner is an A* planner [17]. A search
state is a triple z = (p, θ, S). The current position is
p = (x, y), which must coincide with either a target point,
the start configuration or the end configuration. The current
discretized heading is θ, and S is a set of positions (target
points, start configuration, end configuration) that have been
visited previously (the order in which they were visited does
not matter).

The search is performed backwards, i.e. starting from a
state zroot = (proot, θroot, Sroot) where proot = pg =
(xg, yg), θroot = θg , S = {pg}. The goal state is zgoal =
(pgoal, θgoal, Sgoal) where pgoal = ps = (xs, ys), θgoal =
θs, S = {ps, pg, p1, . . . , pn}. The reason for performing
backward search rather than forward search is the same as in
[1]: if targets are dense in comparison to the vehicle’s size
and minimum turning radius, then obstacles will be dense
as well for states where many targets have already been



visited. It can be expected that there will be many such states
where there are no feasible collision free paths to unvisited
targets. By performing the search backwards such states will
be encountered early during the search and pruned, whereas
if the search would have been performed forwards such states
would not have been found until much later in the search,
resulting in unnecessary exploration of states that will lead
to dead ends further on.

To be able to perform the A* search the planner must
be able to compute the cost-to-go function h(z) as well as
the cost-to-come function g(z). For the cost-to-go function
several different possible choices of heuristics are discussed
later in Section III-C. To update the cost-to-come function,
it is necessary to have a cost function c(z1, z2) that gives
the cost of moving from state z1 to z2, i.e., the length of the
shortest feasible path from (x2, y2, θ2) to (x1, y1, θ1). (Note
that due to the backward search, the vehicle will visit the
states in reverse order when executing the plan, hence the
path is planned from p2 to p1.) This path is computed by
the lower-level motion planner.

B. The lower-level planner

To compute the cost of moving between configurations
(x, y, θ), we use a lattice-based planner [18] based on A*
and motion primitives.

The heuristic used for the A* search is the Euclidean
distance to the goal state, which is an admissible heuristic
and guarantees that the resulting solution is optimal. In
order to handle obstacles the lower-level planner is called
with an initial state z = (p, θ, S). All target points in S
other than p are added as obstacles in the lattice-based
planner. The current position p can not be added as an
obstacle immediately since this would make the current state
infeasible. Instead, the lattice-based planner first performs a
single node expansion. After this first node expansion the
position p is added as an obstacle and the lattice-based
planner continues with the search. Since the vehicle is only
allowed to leave an obstacle driving forwards, only motion
primitives where the vehicle is driving forward are allowed
for the first expansion. For subsequent expansions motion
primitives where the vehicle is reversing are allowed. Since
the position p has then been added as an obstacle the planner
is prevented from trying to plan paths where p is passed. The
lattice-based planner itself prevents p being passed with the
same heading, since states cannot be revisited, but adding p
as an obstacle also prevents the planner from trying to pass
p at a different heading.

C. Heuristics for the higher-level planner

An important part of an A* planner is the choice of
heuristic h. Two important properties of a heuristic are
admissibility and consistency. A heuristic h is said to be
admissible if for any node n it holds that h(n) ≤ h∗(n)
where h∗(n) is the cost of an optimal path from n to a
goal state, i.e., an admissible heuristic never overestimates
the cost-to-go. When an admissible heuristic is used, the
resulting solution is optimal. A heuristic is said to be

consistent if for any pair of nodes n, n′ it holds that h(n) ≤
cost(n, n′) + h(n′). A consistent heuristic is guaranteed to
only expand each node once, whereas heuristics that are
not consistent may expand the same node multiple times,
resulting in inefficiency. Consistency implies admissibility,
but the converse does not hold [19].

For the problem of interest, given a current state consisting
of current position and a list of positions that have previously
been visited, the chosen heuristic should estimate the cost to
get from this state to the goal state. Since backward search
is used, the goal is the state where the current position
is the start configuration and no other positions have been
visited. The heuristic should therefore estimate the cost of
the shortest path from the start configuration to the current
configuration that passes through a given set of positions.
We consider three different heuristics: h = 0, a minimal
spanning tree heuristic and a nearest insertion heuristic.

If h = 0 is chosen, then A* reverts to Dijkstras algorithm
[20]. This heuristic is admissible, so the resulting solution is
optimal.

For the other two heuristics, consider the set of positions
S = {p̃0, . . . , p̃m−1} that have been visited, where p̃0 cor-
responds to the initial configuration and p̃m−1 is the current
configuration. Let G = (V,E) be a complete undirected
graph where each vertex vi corresponds to p̃i and the set
of edges E corresponds to the paths between them. Let the
cost d(vi, vj) of each edge (vi, vj) be the Euclidean distance
between p̃i and p̃j . Since this distance does not consider any
obstacles or any vehicle kinematics it is a lower bound on the
actual distance that the vehicle would have to travel between
the two positions.

For the minimal spanning tree heuristic we compute the
cost of a minimal spanning tree which can be found using for
example Prim’s algorithm [21] [20] or Kruskal’s algorithm
[22]. Since the optimal path from v0 to vm−1 that passes
through all other nodes is also a spanning tree, but not
necessarily minimal, the cost of a minimal spanning tree
gives an underestimate of the length of an optimal path
and hence the heuristic is admissible and optimality of the
solution is guaranteed.

For the nearest insertion heuristic, we modify the nearest
insertion heuristic for the standard (tour) TSP [23], such that
it returns a path with given start and end nodes instead
of a tour. The resulting algorithm becomes as follows:
start with a path T1 consisting only of v0 (the node that
corresponds to the start configuration), and create the path
T2 by adding vm−1 (the node that corresponds to the current
configuration in the A* search, and the end node for the
nearest insertion heuristic) such that T2 = {v0, vm−1}. For
each i = 2, . . . ,m − 1, find the vertex vk ∈ V \Ti with the
shortest distance to any node in Ti. Create the path Ti+1 by
inserting ai = vk into Ti at the place that gives the lowest
increase of cost. Here, the cost of a path is the sum of the
distances along the path. The cost of a path consisting of a
single node is defined as 0. When all nodes have been added
to the path, the algorithm returns the cost of the path. This
may very well result in an overestimate of the cost-to-go



and consequently the heuristic is not admissible. Although
the nearest insertion heuristic for the standard tour-TSP is
well-known, we are not aware of any work where the path-
TSP variant of it has been studied, nor of any previous work
where it has been used as a heuristic to guide a search
algorithm such as A*. We will show that there is a bound
on the suboptimality of the returned solution for the path-
TSP problem, namely that the cost of the returned solution is
strictly less than 3·OPTCOST where OPTCOST is the cost
of the optimal path. Furthermore, we will show that this
suboptimality bound extends to the solution returned by the
A* search algorithm.

D. Suboptimality bound for nearest insertion

To prove the suboptimality bound we will first establish
some lemmas.

Lemma 1. Let h(n) be a heuristic, not necessarily admis-
sible. Then, at any point before the search has terminated
there exists a node n′ in the set of open nodes such that n′

is on an optimal path and the predecessors of n′ are along
an optimal path, i.e., g(n′) = g∗(n′), where g(n) is the cost-
to-come and g∗(n) is the optimal cost-to-come.

Proof of Lemma 1. See the proof of Lemma 1 in [17].
Lemma 2. Let h(n) be a heuristic such that h(n) ≤

wh∗(n) for all n for some w > 1. For the cost of the solution
returned by A* using h(n) as heuristic, COST, and the cost
of an optimal solution OPTCOST the relation COST ≤ w·
OPTCOST holds.

Proof of Lemma 2. Suppose that the expansion of
nodes is along an optimal path. Then the cost of the found
solution is equal to the optimal cost and the lemma holds
trivially. Suppose therefore that the resulting solution was
not expanded along an optimal path. Let the node in the goal
set that was expanded be denoted ng . Immediately before
ng was expanded, by Lemma 1 there was some node n′

on an optimal path, in the set of open nodes, such that
g(n′) = g∗(n′). Since A* expands the node in the open set
that minimizes f(n) = g(n) + h(n), and ng was expanded
but n′ was not, it follows that we must have

f(ng) ≤ f(n′) ⇐⇒
g(ng) + h(ng) ≤ g(n′) + h(n′) ⇐⇒

g(ng) ≤ g∗(n′) + wh∗(n′) ⇐⇒
COST ≤ w(g∗(n′) + h∗(n′)) = w · OPTCOST, (1)

which proves the lemma.
For TSP problems on complete graphs where the distance

function satisfies the triangle inequality it is known that
the ratio between the cost of tours obtained by the nearest
insertion algorithm and the cost of the optimal tour is
bounded from above by 2 [23]. However, the TSP considered
in this work is not such a TSP since we are looking for a path
that starts in a given node and ends in a given node (distinct
from the start node). There are two differences between
the nearest insertion algorithm proposed in this work and
the standard TSP nearest insertion algorithm. Firstly, in this
work, the second node to be added is required to be the end

node which means that this node is not chosen in accordance
to the same criterion as the remaining nodes (i.e. that the
node closest to the path should be added). Secondly, since
the path considered here is a path and not a closed tour,
nodes may not be inserted between the end node and the
start node.

Lemma 3. Let ai be the node added to path Ti, i ≥ 2.
Then, for any node aj /∈ Ti and any node ak ∈ Ti it holds
that

cost(Ti+1)− cost(Ti) ≤ 2d(ak, aj), (2)

where d(aj , ak) is the cost of the edge between aj and ak.
Proof of Lemma 3. For i ≥ 2 the edge (ak, al) in Ti

that minimizes d(ak, ai) + d(ai, al) − d(ak, al) is chosen.
So for any edge (ak, al) we have cost(Ti+1) − cost(Ti) ≤
d(ak, ai)+d(ai, al)−d(ak, al). Since the edge costs satisfy
the triangle inequality we have d(ai, al) ≤ d(ai, ak) +
d(ak, al) ⇐⇒ d(ai, al) − d(ak, al) ≤ d(ai, ak) which
gives us cost(Ti+1) − cost(Ti) ≤ d(ak, ai) + d(ai, ak) =
2d(ai, ak). The triangle inequality also gives d(ak, ai) ≤
d(ak, al) + d(al, ai) ⇐⇒ d(ak, ai)− d(ak, al) ≤ d(al, ai)
which gives cost(Ti+1)− cost(Ti) ≤ d(ai, al)+ d(al, ai) =
2d(ai, al). Since this holds for any edge (ak, al) it means
that cost(Ti+1) − cost(Ti) ≤ 2d(ai, ak) for any node ak
in Ti. In particular it holds for whichever node ak′ that
minimizes d(ai, ak). For all nodes aj in V \Ti and all nodes
ak in Ti we have, d(ak, aj) ≥ d(ak′ , ai) and consequently
cost(Ti+1) − cost(Ti) ≤ 2d(ai, ak′) ≤ 2d(ak, aj) and the
lemma is proven.

Theorem 1. If a path of length NEAREST is obtained by
the proposed nearest insertion algorithm, and the length of
the optimal path is OPTIMAL, then NEAREST

OPTIMAL ≤ 3.
Proof of Theorem 1. Let M be a minimal spanning tree

on G, and let as before ai be the node that is added to the
path Ti in the nearest insertion algorithm. For any ai there is
a unique edge ei in M such that ei is an edge between one
node in Ti and one node not in Ti, and if i 6= j then ei 6= ej .
The proof for this can be found in the proof of Lemma 3 in
[23]. Then, by Lemma 3 it holds that for i ≥ 2,

cost(Ti+1)− cost(Ti) ≤ 2d(ei). (3)

The cost of the resulting path can be rewritten as

NEAREST =

n−2∑
i=1

cost(Ti+1)− cost(Ti) =

= cost(T2) +

n−2∑
i=2

cost(Ti+1)− cost(Ti) ≤

≤ cost(T2) + 2

n−2∑
i=2

d(ei). (4)

The sum on the right hand side is the sum of all edges except
for one of M , which is clearly no more than OPTIMAL.
The cost cost(T2) is the distance between the start and end
nodes. Since all distances obey the triangle inequality, no
path that starts at the start node and ends at the end node



can be shorter, so this is not greater than OPTIMAL. This
gives us

NEAREST ≤ OPTIMAL + 2 · OPTIMAL = 3 · OPTIMAL
(5)

which proves the statement.
It should be noted that this bound is conservative, i.e., will

not be achieved. If the cost cost(T2) is in fact equal to the
optimal length, then that must mean that all remaining nodes
can be inserted at zero cost, and the heuristic will find the
optimal path.

Theorem 2. Let NEAREST be the cost of a path obtained
by A* using the nearest insertion algorithm as heuristic,
and let OPTCOST be the cost of an optimal path. Then
NEAREST ≤ 3·OPTCOST.

Proof of Theorem 2. By Theorem 1 the nearest insertion
heuristic, hn satisfies hn(n) ≤ 3h∗(n) for all nodes n, where
h∗(n) is the true cost-to-go. It also satisfies hn(ng) = 0 for
all nodes ng in the goal region. The result now follows from
Lemma 2.

IV. NUMERICAL EXPERIMENTS

For numerical experiments we considered a drill rig mod-
eled as a simple car with state (x, y, θ, α, ω), where (x, y)
is the position of the center of the rear axle of the vehicle,
θ is the heading, α is the steering wheel angle, and ω is the
steering wheel angular rate. The control u is the derivative of
ω, i.e. the steering wheel angular acceleration. The velocity
is taken as 1 when driving forward and −1 when driving in
reverse. In forward mode the model dynamics are

ẋ = cos θ (6a)
ẏ = sin θ (6b)

θ̇ =
tanα

L
(6c)

α̇ = ω (6d)
ω̇ = u (6e)

where L is the wheel base of the vehicle.
The steering angle was constrained to −π4 ≤ α ≤ π

4 and
the wheel base was set to L = 2.912, which then equals
the minimal turning radius. The width of the vehicle was
set to w = 1.3, slighty less than half the wheel base. For
the lower-level lattice planner a grid resolution of 0.2 was
used and motion primitives were generated using CasADi
[24] and IPOPT [25]. The proposed planner was applied to
a few small-size examples with varying number of target
points and different feasible areas. In the examples, targets
were placed on a regular grid with resolution 3. This is
similar to the vehicle length and minimal turning radius, and
about twice the vehicle width, and the targets can therefore
be considered to be densely placed. For each example, the
three heuristics h = 0, the minimal spanning tree heuristic
and the nearest insertion heuristic were used in the higher-
level planner. The resulting computation times, path lengths,
number of node expansions performed by the higher-level
planner and number of calls to the lower-level planner from
the higher-level planner were noted.

TABLE I
COMPUTATION TIME, NUMBER OF NODE EXPANSIONS, NUMBER OF

CALLS TO THE LOWER-LEVEL PLANNER AND RESULTING PATH LENGTHS

FOR THE THREE HEURISTICS h = 0, MINIMAL SPANNING TREE (MST)
AND NEAREST INSERTION (NI) FOR AN EXAMPLE WITH 12 NODES.

h=0 h = MST h = NI

Computation time [s] 195.501 83.1209 60.7963
Node expansions 756 380 276

Calls to lower-level planner 13616 7264 5744
Path length 115.538 115.538 115.538

The first example considered consisted of twelve target
points placed regularly as shown in Figure 1. The start
configuration is (−3, 0, π2 ) and the end configuration is
(3, 9, π2 ). Heading angles were constrained to {0, π2 , π,

3π
2 }.

The resulting computation times, path lengths, number of
node expansions in the higher-level planner, and number of
calls to the lower-level planner for the three heuristics are
shown in Table I. All three heuristics result in the same path
length, 115.538, which is optimal since two of the heuristics
are admissible. The found path is shown in Figure 2. The
path is more complex than what might have been expected.
However, since the feasible area is so restricted and the target
points are so close to each other relative to the length and
width of the vehicle, the vehicle becomes very restricted in
which maneauvers that are feasible. For instance, if target
7 were drilled after target 3, it would not be possible for
the vehicle to drive to target 4 without leaving the feasible
area or driving over a target that has already been drilled,
which would not be a feasible solution. The proposed nearest
insertion heuristic has the lowest computation time (61
seconds) as well as the lowest number of node expansions
and calls to the lower-level planner. The basic heuristic h = 0
is by far the slowest, resulting in about 3 times as long
compution time as when the nearest insertion heuristic is
used.
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Fig. 1. The setup for the first example. The target points (blue stars) and
the boundary of the feasible area (red lines) as well as the boundary of the
increased feasible area (yellow lines).

A modification of this example where the feasible area
was increased was considered as well. The results are shown
in Table II. All heuristics resulted in the same optimal path
with length 72.219, which is about 60 % of the previous path
length. The resulting optimal path is shown in Figure 3. It
can be seen that the ordering of the target points is different



Fig. 2. The optimal path of the rear axle center found for the first example.
Waypoints are numbered according to the order in which they are visited.
The swept path of the vehicle is shown in purple.
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Fig. 3. The optimal path of the rear axle center found for the first example
with increased feasible area. Waypoints are numbered according to the order
in which they are visited. The swept path of the vehicle is shown in purple.
The blue lines denote the original feasible area.

compared to the previous example. With the increased area
it is now possible to continue straight a bit after the fourth
target point before reversing to the fifth target point without
driving over any previous target point or leaving the feasible
area, something that due to the length of the vehicle was
not previously possible. For both the minimal spanning tree
heuristic and the nearest insertion heuristic, the number of
node expansions decreased drastically compared to when the
previous feasible area was used, from 380 to 130 expansions
and from 276 to 87 expansions respectively. The number of
calls to the lower-level planner also decreased on similar
scales. For the h = 0 heuristic there was a slight decrease
in the number of node expansions and an increase in the
number of calls to the lower-level planner. For all three
heuristics the computation was much higher compared to
the previous example. For all heuristics, this indicates that
the average computation time for a call to the lower-level
planner increased when the feasible area increased. This can
be explained by that with an increased feasible area there are
now feasible paths between more states than previously. The
proportion of calls to the lower-level planner that actually
returns a feasible path would then be higher, resulting in
longer computation times since a path has to be computed
instead of the planner finding early in the search that the
problem is infeasible. With a larger area there are also more
possible nodes for the lattice-based planner to explore, and it
might therefore take longer time to discover that a problem
is infeasible.

TABLE II
COMPUTATION TIME, NUMBER OF NODE EXPANSIONS, NUMBER OF

CALLS TO THE LOWER-LEVEL PLANNER AND RESULTING PATH LENGTHS

FOR THE THREE HEURISTICS h = 0, MINIMAL SPANNING TREE (MST)
AND NEAREST INSERTION (NI) FOR AN EXAMPLE WITH 12 NODES WITH

INCREASED FEASIBLE AREA.

h=0 h = MST h = NI

Computation time [s] 1645.78 245.949 196.773
Node expansions 733 113 87

Calls to lower-level planner 17916 3112 2428
Path length 72.219 72.219 72.219

A second example with 16 target points was considered as
well. The target points were placed as shown in Figure 4. The
start configuration is (−6, 0, π2 ) and the end configuration is
(3, 0, 3π2 ), which coincide with two of the target points. The
heading angles were discretized in the same way as in the
previous example. The results are shown in Table III. All
heuristics found the same path which is optimal. The found
path is shown in Figure 5. Although the number of targets has
only increased with 33 %, the number of node expansions is
almost 10 times higher for both the minimal spanning tree
heuristic and the nearest insertion heuristic and more than 10
times higher for the zero heuristic. The increase in computa-
tion time is around 15 times for the nearest insertion and the
minimal spanning tree heuristics, and slightly higher for the
zero heuristic. This means that the average computation time
per node expansion has also increased, which for the nearest
insertion and minimal spanning tree heuristics is expected
since they run in O(n2) and O(n2 log n) respectively. The
feasible area is also larger than in the first example, which
might contribute to the increased computation time as seen
previously. In this example the zero heuristic is still by far
the slowest, and the nearest insertion heuristic the fastest.
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Fig. 4. The setup for the second example. The target points (blue stars)
and the boundary of the feasible area (red lines).

Since the studied problem clearly is a very difficult prob-
lem, the possibility for computing suboptimal solutions was
also considered. Inflating an admissible heuristic h with a
factor ε > 1, i.e., using the heuristic function hε = εh, is
known to result in a heuristic that returns a solution with a
cost no greater than ε times the optimal one [19]. Since h is
admissible, hε(n) ≤ εh∗(n), and Lemma 2 can be applied.
For the two numerical examples, the minimal spanning tree
heuristic inflated with ε = 1.5, ε = 2, ε = 3 were used. The



Fig. 5. The optimal path of the rear axle center found for the second
example. Waypoints are numbered according to the order in which they are
visited. The swept path of the vehicle is shown in purple.

TABLE III
COMPUTATION TIME, NUMBER OF NODE EXPANSIONS AND RESULTING

PATH LENGTHS FOR THE THREE HEURISTICS h = 0, MINIMAL SPANNING

TREE (MST) AND NEAREST INSERTION (NI) FOR AN EXAMPLE WITH 16
NODES.

h=0 h = MST h = NI

Computation time [s] 3581.17 1325.85 964.674
Node expansions 8827 3621 2721

Calls to lower-level planner 217036 94252 74232
Path length 145.741 145.741 145.741

results for the example with 12 targets are shown in Table
IV. For all three values of ε, the optimal path length is found.
For ε = 1.5 the performance in terms of computation time
and number of node expansions is about the same as for the
nearest insertion heuristic. For ε = 2 the computation time is
slightly below 75 % of the computation time for the nearest
insertion heuristic, and for ε = 3 the computation time is
about one third of the computation for the nearest insertion
heuristic.

The results for the example with 16 targets are shown in
Table V. Again, the optimal path length is found for all three
values of ε. Computation times are improved compared to the
uninflated minimal spanning tree heuristic; the computation
time for ε = 1.5 is 67 % of the computation time for the
uninflated heuristic (92 % of the the computation time for the
nearest insertion heuristic), the computation time for ε = 2 is
about 28 % of that of the uninflated heuristic, and for ε = 3
the computation time is only 5 % of the computation time
for the uninflated heuristic.

The results from both examples show that although the

TABLE IV
COMPUTATION TIME, NUMBER OF NODE EXPANSIONS, NUMBER OF

CALLS TO THE LOWER-LEVEL PLANNER AND RESULTING PATH LENGTHS

FOR THE INFLATED MINIMAL SPANNING TREE HEURISTIC FOR AN

EXAMPLE WITH 12 NODES.

ε = 1.5 ε = 2 ε = 3

Computation time [s] 57.2963 44.9409 19.8687
Node expansions 282 224 101

Calls to lower-level planner 5676 4648 1932
Path length 115.538 115.538 115.538

TABLE V
COMPUTATION TIME, NUMBER OF NODE EXPANSIONS, NUMBER OF

CALLS TO THE LOWER-LEVEL PLANNER AND RESULTING PATH LENGTHS

FOR THE INFLATED MINIMAL SPANNING TREE HEURISTIC FOR AN

EXAMPLE WITH 16 NODES.

ε = 1.5 ε = 2 ε = 3

Computation time [s] 885.436 376.218 60.8159
Node expansions 2400 1265 264

Calls to lower-level planner 63696 33516 6844
Path length 145.741 145.741 145.741

number of node expansions and the computation time do not
scale well with the problem size for the minimal spanning
tree heuristic or the nearest insertion heuristic, they offer
great improvement compared to using no heuristic at all. For
the examples that were tested the nearest insertion heuristic
resulted in optimal path length in all cases, despite that the
theory presented only guarantees a path length no greater
than 3 times the optimal one. Since the examples used have
densely placed targets the actual distance required for the
vehicle to move between targets can sometimes be much
greater than the Euclidean distance which is used in the
heuristics. This could then balance the fact that the heuristics
do not always return the optimal path given Euclidean
distances, and the actual distance returned might still be an
underestimate of the true cost-to-go, making the heuristics
admissible in practice in such cases.

The results from the numerical experiments also indicate
that the nearest insertion heuristic results in a computation-
ally faster search than the minimal spanning tree, but at
the cost of the loss of optimality guarantees. Inflating the
minimal spanning tree with a factor ε > 1 greatly improves
the computation time and number of node expansions, per-
forming better than the nearest insertion for all three values
of ε in both examples. This comes at the cost of loss of
optimality guarantees, but the cost of the found path is still
guaranteed to be within a factor ε of the optimal. In all cases
the optimal path length was achieved, indicating that the
approach has the potential to have a practical value. This also
shows that there is potential to increase the target size; even
if the computation times for the uninflated minimal spanning
tree and nearest insertion heuristics become too long for
those heuristics to be tractable, an inflated minimal spanning
tree heuristic could still be possible to use and might give
optimal or near optimal solutions in practice.

V. CONCLUSIONS

We have proposed an approach to a TSP with nonholo-
nomic constraints and dynamic constraints, with optimal
control applications. The solution proposed is a higher-level
planner that uses A* to search in the space of waypoints
ordering and discretized headings, and a lower-level planner
in the form of a lattice-based motion planner that performs
the motion planning between waypoints. Furthermore, a
minimal spanning tree heuristic as well as a path-TSP variant
of the nearest insertion heuristic that can be used as heuristics



in the higher-level planner in order to guide the A* search are
proposed. The minimal spanning tree heuristic was shown to
be admissible, and hence the resulting solution is guaranteed
to be optimal. For the nearest insertion heuristic, theoretical
bounds on the suboptimality were proven.

Results from the numerical experiments show that the
proposed method is of practical relevance, in particular
for small-size problems or if suboptimal solutions can be
accepted. The proposed minimal spanning tree and nearest
insertion heuristics offer great improvement in terms of
computation time and node expansions compared to using
no heuristic at all. Furthermore, numerical experiments show
that inflating the minimal spanning tree heuristic greatly
improves computation times while still returning optimal or
near optimal solutions in practice.

As future work, the path obtained from the discrete planner
might also be improved by adding a final optimization step
where local optimization is performed on the path, as in
[26]. Another possible future extension is to consider larger
problems where the targets are placed regularly according to
some pattern, and turn the higher-level planner into a lattice-
based planner with advanced motion primitives, computed
using the proposed solution in this work. Future work could
also include investigating if there are other problems where
the approach presented in this work could be applied.
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