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Profiling of mRNA expression is an important method to identify biomarkers but

complicated by limited correlations between mRNA expression and protein

abundance. We hypothesised that these correlations could be improved by

mathematical models based on measuring splice variants and time delay in

protein translation. We characterised time-series of primary human naïve CD4+

T cells during early T helper type 1 differentiation with RNA-sequencing and

mass-spectrometry proteomics. We performed computational time-series

analysis in this system and in two other key human and murine immune cell

types. Linear mathematical mixed time delayed splice variant models were used

to predict protein abundances, and the models were validated using out-of-
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sample predictions. Lastly, we re-analysed RNA-seq datasets to evaluate

biomarker discovery in five T-cell associated diseases, further validating the

findings for multiple sclerosis (MS) and asthma. The new models significantly

out-performing models not including the usage of multiple splice variants and

time delays, as shown in cross-validation tests. Our mathematical models

provided more differentially expressed proteins between patients and

controls in all five diseases. Moreover, analysis of these proteins in asthma

and MS supported their relevance. One marker, sCD27, was validated in MS

using two independent cohorts for evaluating response to treatment and

disease prognosis. In summary, our splice variant and time delay models

substantially improved the prediction of protein abundance from mRNA

expression in three different immune cell types. The models provided

valuable biomarker candidates, which were further validated in MS and asthma.

KEYWORDS

proteomics, RNA-seq, T-cell differentiation, biomarkers, multiple sclerosis

1 Introduction

Identifying biomarkers that can be used in clinical routine to

diagnose patients, monitor disease and response to treatment is

required for more precision-based medicine (Mayeux, 2004;

Chase Huizar et al., 2020). The complex etiology behind many

diseases, potentially involving multiple genes and proteins across

multiple cell types, renders biomarker discovery for most

complex diseases challenging (Rifai et al., 2006).

Proteins are regarded as optimal biomarkers as they are

often directly connected to patho-physiological processes as

well as serving as targets for many therapeutic interventions (Ek

et al., 2021). Whereas measuring global protein levels in a

clinical setting remains challenging, gene expression profiling

can be readily performed on the limited amount of material

obtained from most clinical sampling procedures.

Combinations of mRNAs can have high diagnostic efficacy

in multiple diseases (Gustafsson et al., 2014; Mao et al., 2018;

Gawel et al., 2019; Cha et al., 2020). Ideally, mRNA profiling of

clinical samples could be used to identify protein biomarkers

for diagnoses, subtyping of diseases and evaluating treatment

response.

mRNA expression has often been used to determine

corresponding protein levels, even though the accuracy of

such estimations can be very imprecise (Gygi et al., 1999;

Fortelny et al., 2017). Indeed, the correlation between mRNA

and protein expression is often poor (Gygi et al., 1999; de

Sousa Abreu et al., 2009; Maier et al., 2009; Vogel and

Marcotte, 2012; Fortelny et al., 2017), which becomes

highly problematic when using mRNA expression as proxy

for protein levels. Several strategies have been proposed to

circumvent this issue using more dynamic approaches, as

compared to steady-state approximations, accounting for

example for spatial and temporal variations in both mRNA

and protein expression (Liu et al., 2016; Kuchta et al., 2018).

The discrepancy between mRNA and protein abundance is

also due to several other factors, including but not limited to

differences in the rates of translation and degradation between

proteins and cell types (Wethmar et al., 2010). The large

number of potential transcript isoforms that can be

generated from the same gene due to alternative splicing as

well as cell type-specific differences in splice variant use

represent additional layers of complexity that complicate

the correlation between mRNA to protein (Barbosa-Morais

et al., 2012; Floor and Doudna, 2016). To our knowledge,

leveraging the contribution and dynamics of different splice

variants to infer protein abundance remains largely

unexplored.

Here, we developed a novel method incorporating time

delay and splice variants to improve protein level inference

from mRNA expression. To test our approach, we performed

RNA-seq and mass spectrometry proteomics analysis during

early human TH1 differentiation and used a machine learning

modelling approach to infer the relationship between mRNA

and protein abundance. TH differentiation is an optimal

model system to dissect the relationship between mRNA

and protein as 1) primary human naïve TH (NTH) cells

can be isolated with high purity and in large quantity from

human blood (ii), all NTH cells are synchronised in the G1

phase of the cell cycle, further reducing inter-cell

heterogeneity (Sprent and Tough, 1994) and 3) easy access

to large quantities of material enabling relative quantification

of mRNA and associated protein abundance to be assayed

over time (Schmidt et al., 2018). Moreover, TH cells are

important regulators of immunity and thereby associated

with many complex diseases, and TH1 differentiation itself

is pathogenetically relevant in several diseases (Raphael et al.,

2015). The utilised models were based on a time delayed

linear model between mRNA splice variants of the same gene

and protein levels. We generalised the model by applying it
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onto recent data from human regulatory T (Treg) cell and

murine B cell differentiation. By combining the strength of

time-series analysis and RNA-sequencing, we noted a much

better agreement between our mRNA-based measures and

proteomics. To test our models, we showed the potential

clinical usefulness by predicting potential biomarkers in five

complex diseases using our derived models. Analysis of these

predicted proteins in asthma and multiple sclerosis (MS)

supported their biological relevance. Finally, we validated

one of the predicted biomarkers, sCD27, using two

independent cohorts of MS patients, which showed a

remarkably better stratification between patients and

controls than any of our previously reported protein

biomarkers. The application of our approach to multiple

different cell types, species and diseases shows its general

applicability to increase the power of mRNA-based studies

for biomarker discovery.

2 Materials and methods

2.1 Isolation of naïve CD4+ T helper cells
and TH1 polarization

Peripheral blood mononuclear cells (PBMC) were isolated

from blood donor derived buffy coats (n = 12), purchased at the

blood bank facility at Linköping University Hospital, through

gradient centrifugation using Lymphoprep™ (Axis Shields

Diagnostics, Dundee, Scotland). Naïve CD45RA+ CD4+ T cells

were isolated with negative immunomagnetic selection using the

“Naive CD4+ T Cell Isolation Kit II, human” (Miltenyi Biotec,

Bergisch Gladbach, Germany) according to the instructions

provided by the manufacturer. Cells were suspended in RPMI

1640 media containing L-glutamine, 10%FBS and 1% Penicillin/

Streptomycin mixture (all from Gibco, Thermo Fisher Scientific,

Waltham, MA, United States) and subsequently activated and

FIGURE 1
RNA-seq and mass-spectrometry analysis of TH1 differentiation revealed highly variable correlations. (A) Experimental design. (B) Heat map of
transcript and protein abundance dynamics in genes that show significant negative (left) and positive (right) correlations. Genes of particular
relevance for T cells and T cell differentiation are highlighted in the figure. (C) Examples of transcript splice variants showing that both STX12 (left) and
IL7R (right) were significantly negatively and positively correlated with protein levels. (D) Illustration of themodelling procedure for resolving the
poor correlation, using STX12 as an example.
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polarized towards TH1 using Dynabeads™ Human T-Activator

CD3/CD28 (1 bead/cell) (Dynal AS, Lillestøm, Norway), 5 ng/μl

recombinant human IL-12p70, 10 ng/μl recombinant human IL-

2 and 5 μg/μl anti-IL-4 antibodies (clone MAB204; all three from

Bio-Techne, Minneapolis, MN, United States). The cells were

cultured and differentiated at 37°C, with 5% CO2 for 0 min, 0.5, 1,

2, 6 and 24 h for RNA-seq and 0 min, 1, 2, 6, 24 h and 5 days for

proteomics (Figure 1A). The earliest time point for the RNA-seq

time series was determined based on the change in expression of

IL2, IFNG and TBX21 at 3, 5, 10, 15, 30 and 60 min of

TH1 differentiation, measured by qPCR, where the expression

of IL2 and IFNG was significantly increased after 30 and 60 min

(p < 0.05, Student’s t-test) (See Supplementary Methods and

Supplementary Figure S1). After cell culture, the cells were

processed for RNA and protein extraction. An overview of the

study is shown in Figure 1A and Supplementary Figure S2.

2.2 RNA-sequencing

2.2.1 Extraction of RNA
RNA was isolated using the ZR-Duet DNA/RNA kit (Zymo

Research, Irvine, CA, United States) following the protocol

provided by the manufacturer. The RNA was stored at −80°C

until library preparation.

2.2.2 Library preparation and sequencing
The RNA library preparation and subsequent RNA-

sequencing (RNA-seq) were carried out by the Beijing

Genomics Institute (https://www.bgi.com/global/). Library

preparation was performed using the TruSeq RNA Library

Prep Kit v2 (Illumina, San Diego, CA, United States). Each

sample was sequenced to the depth of 40 million reads per

samples with pair end sequencing and a read length of 100 bp on

an Illumina 2500 instrument (Illumina).

2.2.3 RNA-seq analysis
All RNA-seq data, both in-house and public, were processed

similarly using the following pipeline: Sample qualities were

assessed with fastQC (Version 0.11.8) and the mRNA reads

were subsequently aligned using STAR (version 2.6.0c) (Dobin

et al., 2013), with the parameter “--outSAMstrandField

intronMotif” and “--out Filter Intron Motifs Remove

Noncanonical,” to the “Homo_sapiens.GRCh37.75.dna.

primary_assembly.fa” from Ensemble. The resulting read

alignment bam files were assembled into transcripts with

StringTie (version 1.3.4d) (Pertea et al., 2015), with default

parameters, using the GRCh37.75 gtf annotation from

Ensemble. To evaluate mRNA to protein relationship, the

mRNA reads were mapped to the mass spectrometry signal of

protein abundance using the Homo.sapiens and Mus.musculus

package in R (BC., T., 2015a; BC., T., 2015b). Correlations were

calculated using Pearson correlations across gene expressions,

i.e., one coefficient per gene.

2.3 Mass spectrometry

2.3.1 Protein extraction
The cells were thawed and resuspended in 100 μl of 8 MUrea

in 40 mM Tris-HCl (pH 7.6) (Sigma-Aldrich, Saint Louis, MO,

United States). Ten million cells per time point and biological

replicate were pooled from 3–5 samples from different

individuals to reach the necessary amount of material

required for subsequent analysis steps. In total, cells were

isolated from 12 different individuals to achieve the necessary

amount of material. The suspension was sonicated using focus

sonicator (Sonic Dismembrator 500, Thermo Fisher Scientific,

Waltham, MA, United States) for 3 cycles of 10 s pulse with 10 s

intervals at 10% of power. After sonication, a magnetic rack was

used to remove the T-Activator beads used for the polarization.

Protein concentration was measured using the Pierce™ BCA

Protein Assay Kit (Thermo Fisher Scientific). 40 ug of each

sample were used for digestion.

2.3.2 In solution digestion
Reduction and alkylation of disulfide bonds on proteins were

carried out using 1 M dithiothreitol (Roche, Switzerland; final

sample concentration 10 mM) for 45 min and 1 M

Iodoacetamide (Sigma-Aldrich; final sample concentration

30 mM) for 30 min in a dark, respectively. Following

alkylation and reduction, the samples were diluted with

ammonium bicarbonate buffer (pH 8.0) until the urea

concentration was 1 M (Sigma-Aldrich). The proteins were

digested with trypsin (MS grade; Promega, Madison, WI,

United States) overnight at 37°C at an enzyme to protein ratio

of 1:20. Finally, the peptides were acidified with 100%

Trifluoroacetic acid (TFA; Sigma-Aldrich) to a final

concentration of 1% TFA and then desalted using macro spin

columns (Harvard apparatus, Holliston, MA, United States).

2.3.3 TMT labeling
Peptides were labeled with 6-plex TMT reagent using

manufacturer’s protocol with some modification (Thermo

Fisher Scientific). The six peptide samples from each time series

were resuspended in 100 μl of 100 mM TEAB buffer (pH 8.0;

Sigma-Aldrich) and a unit of each TMT reagent was resuspended

in 40 μl of acetonitrile. Subsequently, the prepared TMT reagent

was transferred to the peptide sample and then vortexed. The

samples were incubated for 2 h at room temperature (RT). The

labelled peptide samples from each time series were pooled and

concentrated by vacuum centrifugation. The labelled sample was

resuspended 100 μl with 10 mM ammonium formate (Sigma-

Aldrich) in water (pH 10).
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2.3.4 High pH fractionation
The TMT labelled samples were separated using an analytical

column (Xbridge, Waters, MA, United States; C18, 5 μm,

4.6 mm × 250 mm) on the Agilent 1200 series HPLC system

(Agilent Technologies, Santa Clara, CA, United States). Peptides

were eluted using following gradient over 115 min: 0–10 min 0%

B, 10–20 min 5% B, 20–80 min 35% B, 80–95 min 70% B,

95–105 min 70% B, 105–115 min 0% B; 10 mM ammonium

formate (pH 10; Sigma-Aldrich) was mobile phase A, and

10 mM ACN (pH 10) was mobile phase B. The 96 fractions

were added up into 24 fractions, vacuum dried and stored

at −80°C after desalting.

2.3.5 LC-MS analysis
The fractionated peptides were analysed on an Orbitrap

Fusion Lumos Tribrid Mass Spectrometer (Thermo Fisher

Scientific) coupled with the Easy-nLC 1200 nano-flow liquid

chromatography system (Thermo Fisher Scientific). The peptides

from each fraction were reconstituted in 0.1% formic acid and

loaded on an Acclaim PepMap100 Nano-Trap Column

(100 μm × 2 cm; Thermo Fisher Scientific) packed with

5 μmC18 particles at a flow rate of 5 μl per minute. Peptides

were resolved at 250-nl/min flow rate using a linear gradient of

10%–35% solvent B (0.1% formic acid in 95% acetonitrile) over

95 min on an EASY-Spray column (50 cm × 75 µm ID), PepMap

RSLC C18 and 2 µm C18 particles (Thermo Fisher Scientific),

which was fitted with an EASY-Spray ion source that was

operated at a voltage of 2.3 kV. Mass spectrometry analysis

was carried out in a data-dependent manner with a full scan

in the mass-to-charge ratio (m/z) range of 350 to 1,800 in the

“Top Speed” setting, 3 seconds per cycle. MS1 and MS2 were

acquired for the precursor ions and the peptide fragmentation

ions, respectively. MS1 scans were measured at a resolution of

120,000 at anm/z of 200. MS2 scan was acquired by fragmenting

precursor ions using the higher-energy collisional dissociation

method and detected at a mass resolution of 30,000, at an m/z of

200. Automatic gain control for MS1 was set to one million ions

and forMS2 was set to 0.1 million ions. Amaximum ion injection

time was set to 50 ms for MS1 and 100 ms for MS2. Higher-

energy collisional dissociation was set to 35 for MS2. Precursor

isolation window was set to 0.7m/z. Dynamic exclusion was set

to 35 s, and singly charged ions were rejected. Internal calibration

was carried out using the lock mass.

2.3.6 Peptide and protein identification
The obtained data were analysed using MaxQuant (version

1.6.0.1). MS raw data were searched using Andromeda algorithm

with matching to the Uniprot human reference (released in

November 2017). A specificity of trypsin was determined at

up to 2 missed cleavages. In modification,

carbamidomethylation, TMT 6-plex modification at lysine and

N-termination were set as the fixed modifications, and oxidation

of methionine was set as a variable modification. The false

discovery rate (FDR) for peptide level was evaluated to

0.01 for removing false positive data. For highly confident

quantifications of protein, protein ratios were calculated from

two or more unique quantitative peptides in each replicate. Data

was normalized and removed contaminant and razor peptide. To

enrich differentially expressed proteins (DEPs), we analysed the

quantitative ratios (as the Log2 value). The fold-change ratio cut

off was more than 2 or less than 0.5 based on intensity of 0 min.

Searched data went through statistical process with Perseus

(version 1.5.1.6).

2.4 Mathematical modelling

2.4.1 Splice variant model construction
We hypothesized that protein abundance could be predicted

using a linear combination of the corresponding splice variants.

To predict protein abundance, we used the Sklearn (Pedregosa

et al., 2011) implementation of the LASSO (Tibshirani, 1996), an

L1-penalized linear regression model.

min
β, ∈ Re

{ 1
N

����Y − βX
����2 + λ

����β����1}

Here, the time series of one protein is denoted the vector Y,

and the corresponding time series of the splice variants are

denoted by the matrix X. The rate constant for each splice

variant is contained in the vector β. Furthermore, the λ
parameter regulates the influence of the L1 term and was

determined individually for each protein. The λ term was

chosen to minimize the prediction error of a leave-one-out

cross validation. In the TH1 dataset, the time points differed

such that the mRNA abundance also had a measurement at

t = 30 min, while the protein data instead had a measurement

of t = 120 h. For comparison, the protein data for 30 min was

interpolated, while the 120 h time point was omitted. The

same procedure was performed using the Treg data from

(Schmidt et al., 2018) where Treg were induced by either

TGF-β, TGF-β and ATRA, or TGF-β and butyrate. Lastly, the

same procedure was performed for mice B cells where B cell

differentiation was induced by the Ikaros transcription factor

(Gomez-Cabrero et al., 2019) (GSE75417).

2.4.2 Time delay analysis
The effect of time delays between mRNA and protein was

analysed since this might affect the prediction of protein

abundance. First, we considered the TH1 data and linearly

interpolated between 0 and 24 h for both the mRNA

expression and protein abundance data with a quadratically

increasing distribution between the time delays. In total,

200 time series were interpolated, such that the difference

between the first time points was 43 s, and the difference
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between the last samples was 15 min. In the updated model, we

added a protein specific time delay τ to regulate which time point

of splice variant expression should be used. As an example, a τ =
0.5 h would result in splice variant abundance of t = [0, 1, 2, 6,

24 h] predict protein abundance interpolated at t = [0.5, 1.5, 2.5,

6.5, 24.5 h]. Full details on the models can be found in

Supplementary Table S1.

min{ 1
N

����Y(t + τ) − βX(t)����2 + λ
����β����1}

2.4.3 Cross validation
To select the values of λ and τ, a double cross-validation was

performed (Supplementary Figure S3). First, one of the time

points of the protein measurements was removed from the set,

leaving only 5 data points. Secondly, a leave-one out cross-

validation was performed on the remaining 5 time points,

giving an estimate of the accuracy of the model approach

given a time delay and a lambda value for the penalty term in

the Lasso operator. We used the 200-time delays ranging between

0 and 24 h, and a varying set of lambda parameters (increased

until all parameters equaled zero). Thirdly, the time delay and

penalization that generated the smallest average squared

residuals between the second cross-validation and the data

were chosen and used to predict the sixth data point from

splice variants. Fourth, this double cross-validation procedure

was repeated for all 6 data points.

2.5 Differential expression analysis

The raw counts of each transcript were z normalized, and, in

the case of predicted protein, combined using the transcript-

specific coefficient from the linear model. Next, differential

expression was analysed using a non-parametric Kruskal-

Wallis test as implemented in the SciPy Python package. We

used the Benjamini Hochberg false discovery rate (FDR) when

accounting for multiple testing.

2.6 Disease prediction

Disease relevance of the splice variant models was tested by

re-analysis of RNA-seq case and control material of samples

containing conventional CD4+ T-cells, i.e., CD4+ T-cells with all

its sub-types. We found T-cell prolymphocytic leukaemia

(T-PLL, GSE100882), asthma in obese children (GSE86430),

and allergic rhinitis/asthma (GSE75011) studies through a

Gene Expression Omnibus (GEO) repository search and MS

through collaboration (James et al., 2018). For each of the studies,

we used the TH1 and Treg derived models on how to combine

mRNA splice variants to predict protein abundance. The

resulting sets of predicted protein levels were tested for

differential expression between patients and controls using a

non-parametric Kruskal-Wallis test. We also applied Kruskal-

Wallis tests to the individual splice variants that were used by the

models. We assessed model effects by measuring the increase in

nominally differential expression from model predictions

compared to ingoing splice variants into the model. In the

study of MS, we performed a specific gene selection and

performed FDR correction using the Benjamini Hochberg

selection procedure (FDR < 0.05). Using protein data from

two of the largest biomarker studies in MS (Huang et al.,

2020; Mahler et al., 2020), we compared the protein

measurements with our predicted proteins. One study

reported 36 out of 92 proteins as significant (Huang et al.,

2020) and another study (Mahler et al., 2020) reported the

expression of four proteins whereof two were significant. We

found that the expression of all our predicted differentially

expressed protein agreed with the two studies (9/9 negatively

reported from first study and 1/1 negatively and 1/1 positively

reported from second study) and the corresponding P-value was

calculated as ((92–36)/92)9 x (2/4)2 = 2.9 × 10−3.

2.7 Protein validation

2.7.1 Patients and controls
Cerebrospinal fluid (CSF) was collected from a cohort of

41 patients with newly diagnosed clinically isolated syndrome

(CIS) or relapsing remitting MS (RRMS) (Supplementary Table

S2) that has been described in more detail elsewhere (Håkansson

et al., 2018). All patients fulfilled the revised McDonald criteria

from 2010 (Polman et al., 2011). The patients were followed, and

new samples obtained after one, two and 4 years. Disease activity

was assessed using “no evidence of disease activity” (NEDA),

defined by no clinical relapses, no sustained EDSS progression

and no new T2 or Gadolinium enhancing lesions. 12 patients at

the two year- and 7 patients at the 4-year follow-up were

classified as NEDA, whereas patients with relapses, brain MRI

activity and sustained disease progression were classified as

“evidence of disease activity” (EDA; n = 27 and n = 32 at two

and 4 years, respectively). Two patients did not complete the

study (Håkansson et al., 2018). Twenty-three healthy age-and

sex-matched blood donors were included as controls. A second

cohort of CSF samples from 16 Natalizumab-treated patients

with RRMS or secondary progressive MS (SPMS) was also

included. CSF samples were obtained (out of a total of

≈70 included patients with RRMS or SPMS) before and after

1 year of treatment with Natalizumab (Supplementary Table S2).

This study cohort has been described previously (Mellergård

et al., 2010; Mellergård et al., 2013; Gustafsson et al., 2014). All
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patients were recruited at the Department of Neurology,

Linköping, University Hospital Sweden and both patients and

controls gave written consent prior to inclusion. The study was

approved by The Regional Ethics Committee in Linköping.

2.7.2 Protein measurements
Quantification of sCD27 was performed using the Human

Instant ELISA™ kit from eBioscience (Thermo Fischer Scientific)

according to the instructions provided by the manufacturer. The

optical densities (O.D.) were read at 450 nm with a wavelength

correction at 620 nm in a Sunrise™ microplate reader (Tecan,

Männedorf, Switzerland). Data acquisition was performed using

Magellan™ version 7.1 computer software (Tecan). The lowest

detection limit was 0.63 U/ml and values below the detection

limit were given half the value of the detection limit. Statistical

differences were determined using Mann-Whitney U-test or

Wilcoxon matched-pairs signed rank test (Graphpad Prism

v7.04, San Diego, CA, United States). Annexin A1, measured

by the human Annexin A1 ELISA kit (Abcam, Cambridge,

United Kingdom), was undetectable in all analysed samples

(n = 32, of whom n = 16 samples were included before and

n = 16 after 1 year of treatment with Natalizumab). Multiplex

Bead Technology (MILLIPLEX®MAP Kit, Cat. #: HCYTOMAG-

60K-01, Merck Millipore, Burlington, MA, United States) was

used to measure soluble CD40L according to the manufacturer’s

description. The samples were analysed on a Luminex®200™
instrument (Invitrogen, Carlsbad, CA, United States) and data

was collected using xPONENT 3.1™ (Luminex Corporation,

Austin, TX, United States) analysed using the MasterPlex®

Reader Fit (MiraiBio Group, Hitachi Solutions America Ltd.,

San Bruno, CA, United States). The lowest detection limit was

1.6 pg/ml and values below the detection limit were given half the

value of the detection limit. sCD40L concentration was below the

lowest detection limit in 71 out of 96 samples (74% undetectable)

and was therefore considered as undetectable.

3 Results

3.1 A significant portion of T-cell genes
showed diverse correlations between RNA
splice variants and proteins

To generate accurate mRNA and proteinmodels, considering

the major factors of time delay and splice variant usage, we first

developed a model by analysing early TH1differentiation. This

was done by performing time series transcriptomic (RNA-seq)

and proteomics (mass spectrometry) analysis at six different time

points, from 30 min to 5 days, during TH1 differentiation,

whereof five time points were paired between the omics and

could be further used to infer correlations between mRNA and

protein (Figure 1A and Supplementary Figures S3, S4). We found

a total of 15,699 genes and 6,909 proteins to be expressed during

early TH1 differentiation. Out of the 6,909 expressed proteins,

5,749 could be mapped to genes and out of those, 4,920 were also

found to be expressed at the transcriptomic level. As expected, a

significant proportion of the 4,920 genes showed a significant

positive correlation between mRNA and protein levels (n = 407,

expected 123 out of 4,920, binomial test p < 10–93) during TH1 cell

differentiation. Interestingly, a significant fraction of negatively

correlated genes was also observed (n = 205, expected 123, p <
10–11) (Figure 1B and Supplementary Table S1). Notably, the

overall median Pearson correlation (rho) between mRNA and

protein was only 0.21. Analysis of the distribution of the

correlation coefficients revealed significant enrichments of

both positive and negative correlations between splice variants

and their corresponding proteins (binomial test for enrichment

of significant negative correlation p < 1.3 × 10–3, odds ratio =

1.48) (Figure 1C and Supplementary Figure S5). For example, the

known T-cell associated genes, IL7R and STX12 (Kanduri et al.,

2015), contained multiple splice variants, of which several were

positively or negatively correlated to their corresponding protein

levels (Figure 1C). Given the large variation in correlation

between different splice variants of a given gene and its

corresponding protein, we proceeded to construct predictive

splice variant models of protein abundance.

3.2 A linear model combining the
expressions of multiple splice variant
transcripts showed substantially stronger
correlations with protein abundance than
individual transcripts

In order to construct generally applicable and predictive

mRNA-to-protein models, we applied a simple linear relation

between the protein abundance of a gene and its associated

mRNA splice variants. Furthermore, we allowed for different

translation times for each gene. Firstly, we used a cross-validated

L1 penalised linear regression model to favour simple models

using single splices without any time delays (Figure 1D). The

rationale for the L1 penalty was to effectively remove splice

variants that carry little or no predictive power over protein

abundance. In practice this resulted in maximum of three splice

variants per protein for the TH1 model, which is a method

limitation due to the few data points and our regularisation.

This simple model resulted in a median gene-protein correlation

of rhoTH1 = 0.86 using cross-validated predictions (Figure 2A).

Likewise, to test the generality of the approach we also trained

similar models for two existing mRNA-protein time-series

datasets with similar results, that is from human Treg cells

(Schmidt et al., 2018) (rhoTreg = 0.79) and mice B cells

(Gomez-Cabrero et al., 2019) (GSE75417) (rhoBcell = 0.94)

(Figure 2A). Next, to test whether the increase in correlation

was due to the incorporation of negatively correlating splice

variants, multiple transcripts, or time delay, we also constructed
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such models without each of these parameters. Importantly, our

model outperformed the models using only the most highly

correlated splice variant for each gene (rhoTH1 = 0.71, rhoTreg =

0.44, rhoBcell = 0.52), and the models using multiple transcripts

but without a time delay (rhoTH1 = 0.74, rhoTreg = 0.69, rhoBcell =

0.45) (Figures 2B,C), thus demonstrating that both multiple

dynamical splice variants and time delay increase the fit of

data and are needed for optimal performance.

To define the optimal time delays between splice variants and

proteins, we analysed the time delay distributions and found it to

have a mean of 8 h 17 min, 6 h 18 min and 8 h 49 min for TH1,

Treg and mice B cells, respectively. The detailed parameters of our

models are fully displayed in Supplementary Table S1. Next, by

using double cross-validation we confirmed that our models

could do out-of-sample prediction significantly better than

conventional gene expression-based models of protein

abundance (binomial test; pTH1 = 10–297 (expected 14.4 of

28.9, observed 18.0), pTreg = 10–247 (expected 21.2 of 43.5,

observed 25.2), pmice B = 10–59 (expected 2.3 of 5.5, observed

3.3)), and better than static splice variant models which did not

include time delays (pTH1 = 10–1459 (expected 14.8 of 29.6,

observed 21.8), pTreg = 10–8 (expected 22199 of 44397,

observed 22811), pmice B = 5 × 10–4 (expected 2.6 of 5.5,

observed 2.9), Figure 2C). Moreover, we used time-point

scrambling and dynamical correlation analysis to show that

our analysis was not seriously affected by time-dependences

within the time-series (data not shown). In summary, we have

identified simple linear models of mRNA splice variants and time

FIGURE 2
Multiple transcripts and time delays increased mRNA and protein correlations significantly in multiple cell types. (A) Gene/protein Pearson
correlations in TH1 (left), Treg (middle), and murine B-cell (right) differentiation. In the histogram, the grey curve shows the correlation distribution
when the sumof all splice variant expressions of a transcript (Fortelny et al., 2017) is used to quantifymRNA abundance (median: dashed line), while in
the blue histogram our time delayed multiple splice variant based models are used (medians: solid lines at 0.86, 0.79, and 0.94 for TH1, Treg and
murine B-cells, respectively). Only cross-validated protein predictions are shown for the proteins for which the null-model could be rejected. (B)
Out-of-sample cross validation prediction of the three models. Aiming to quantify the predictive power of each added input to the model, we
observed that a linear model with gene-specific time delays was themodel that generated predictions with the smallest sumof squared residuals. (C)
Median correlation coefficients (rho) for different mathematical protein prediction models derived from mRNA with increasing protein abundance
correlations. P-values were derived from predictions using leave-one-out cross-validation.
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delay which could be used to model the time courses in T- and

B-cell differentiation (see the full models in Supplementary Table

S1). We would like to emphasize that this is a minimal

requirement for mRNA-protein models to be meaningful, so

we proceeded to analyse if the models were useful to translational

research by identifying biomarkers in complex diseases.

3.3 The models showed increased
biomarker sensitivity which were further
verified in multiple sclerosis and asthma

Lastly, we aimed to test the potential usefulness of our

derived models for the identification of protein biomarkers by

applying them on available RNA-seq datasets from human total

CD4+ T cells. We found datasets for five different diseases

(Seumois et al., 2016; James et al., 2018; Johansson et al.,

2018; Rastogi et al., 2018); asthma, allergic rhinitis, obesity-

induced asthma, pro-lymphocytic leukaemia, and MS, as well

as corresponding controls. Because our models correlated well to

protein abundances, we hypothesised that differential expression

tests using the predicted proteins between patients and controls

would be more sensitive than testing directly on the mRNA

expression for all splice variants individually. Indeed, we

observed that the fraction of nominally differentially expressed

genes was higher than using an individual differential expression

analysis in all comparisons (binomial p < 9.8 × 10–4). Moreover,

we consistently observed a higher enrichment for the TH1 model

compared to the Treg model (p < 0.03) (Figure 3A), with the

highest enrichments in MS and asthma. We therefore proceeded

to use our TH1 model on MS and asthma.

First, we compared our MS findings with previously reported

proteins using two large biomarker studies (Huang et al., 2020;

Mahler et al., 2020) of MS and found a significant agreement

comparing our nominal predictions (binomial p < 2.9 × 10–3; see

Methods). Then, we found 20 genes with FDR<0.05, of which
none were detected at 20% FDR level by testing for differential

expression on the mRNA expression data directly

(Supplementary Table S3). Interestingly, eight of the 20 genes

had previously been associated with MS (Figure 4 and

Supplementary Table S3). To further justify the relevance of

the added genes we analysed if CSF levels of these proteins were

related to clinical outcome and immunomodulatory treatment in

two independent cohorts, newly diagnosed MS patients

(clinically isolated syndrome (CIS) and relapsing/remitting

MS, n = 41) vs. healthy controls (HC, n = 23), and response

to Natalizumab treatment in relapsing remittingMS patients (n =

16). In both cohorts, only sCD27 was present in CSF at a

detectable level (Supplementary Table S4), while Annexin

A1 and sCD40L were not. Analysis of all patients (n = 57) vs.

HC (n = 23) showed high separation (AUC = 0.88, non-

parametric p = 3.0 × 10–8, Figure 3B), and treatment with

Natalizumab reduced the sCD27 levels by 34% (p = 4.9 ×

10–4). Notably, sCD27 levels at baseline of newly diagnosed

MS and CIS patients were able to predict disease activity after

4 years follow up (AUC = 0.87, p = 1.2 × 10–3, Figure 3C), which

was a stronger prediction than that of all our previously reported

14 biomarkers (Håkansson et al., 2018). Taken together, using

the splice variants-to-protein model we were able to uniquely

identify and validate biomarkers of MS in an independent patient

cohort, while these genes could not be discovered using previous

state-of-the-art test for differential gene expression.

For asthma we found six of the top 20 genes that were

differentially expressed (determined by conventional mRNA

expression) to be previously associated with the disease

(Supplementary Table S5). Next, we analysed asthma-

associated genes uniquely identified by our model and found

seven additional genes to be associated with asthma

FIGURE 3
Proteins models led to the discovery of new potential biomarkers of complex diseases that were validated in multiple sclerosis (MS). (A)
Differential predicted protein (PP) analysis of five diseases using the TH1 (light blue) and Treg (dark blue) models showed higher fraction of nominally
significant genes than that of normal differential gene expression tests. (B)Measurement of actual protein levels of the predicted proteins in a cohort
of patients with early MS [clinically isolated syndrome (CIS)] vs. healthy controls (HC) (left side of the figure) and from a cohort of MS patients pre
vs. post 1-year treatment with Natalizumab (right side of the figure). sCD27 was measured in cerebrospinal fluid (CSF) using ELISA. (C) Receiver
operating curve using sCD27 concentration as a single prognostic marker of NEDA at four (solid line) and 2 years (dashed line) after CIS.

Frontiers in Molecular Biosciences frontiersin.org09

Magnusson et al. 10.3389/fmolb.2022.916128

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.916128


(Supplementary Table S6). Interestingly, these genes had

previously also been reported to be relevant for the disease

(Enomoto et al., 2009; Nestor et al., 2014; Poole et al., 2014;

Dreymueller et al., 2015; Persson et al., 2015; Ferreira et al., 2017),

and are currently being evaluated as potential therapeutic targets

(Figure 4). Examples of those genes include NDRG1, which

regulates TH2 differentiation, a key driver in asthmatic

disease, downstream of the mTORC2 complex (Murray et al.,

2004; Heikamp et al., 2014), ADAM17, a metalloproteinase

involved in lung inflammation (Dreymueller et al., 2015),

PIEZ O 1, a mechanosensor regulating T cell activation (Liu

et al., 2018) and pulmonary inflammatory responses (Solis et al.,

2019), and the P-selectin ligand encoding gene SELPLG,

important for recruitment of lymphocytes to the airways

(Leath et al., 2005; Purwar et al., 2011). Furthermore, the

immunomodulatory genes TNFAIP8 and ARHGAP15 were

identified in GWAS studies as shared risk variants for several

IgE-mediated diseases including asthma, allergic rhinitis and

atopic eczema (Ferreira et al., 2017). Thus, we have validated

that our model can identify relevant biomarker candidates and

therapeutical targets also in the context of another immune-

mediated disease, i.e., asthma.

4 Discussion

In the present study we have shown that simple mRNA-

protein models, in which the protein expression is defined as a

linear combination of the splice variants of a gene with a time

delay accounting for the dynamical effect induced by post-

transcriptional processes and protein synthesis, can improve

our ability to predict protein abundance from mRNA

expression. Furthermore, we demonstrated the impact that

this finding can have within genome medicine by predicting

and validating biomarkers for MS and asthma. Throughout the

paper we aimed to increase the sensitivity in RNA-seq differential

expression analysis. Sensitivity was measured using the fraction

of nominally (p < 0.05) differentially expressed genes. This

FIGURE 4
Overview of detected potential biomarkers in asthma and MS. The model identified several proteins that have previously been identified in MS
and asthma. The upper panel shows the potential biomarkers identified in MS and the lower panel shows the same in asthma. *mRNA expression, ¤
identified in mice. PBMCs, peripheral blood mononuclear cells. References stated in the figure aColamatteo A et al., J Immunol, 2019; bAchiron A
et al., Ann N Y Acad Sci, 2007; cvan der Vuurst de Vries RM et al., JAMA Neurol, 2017; dWong YYM et al., Mult Scler, 2018; eMasuda H et al., J
Neuroimmunol, 2017; fde JG-GJ et al., Immunobiology, 2018; gBomprezzi R et al., HumMol Genet, 2003; hWanke F et al., Cell Rep, 2017; iAquino DA
et al., J Neuropathol Exp Neurol, 1997; jBonetti B et al., Am J Pathol, 1999; kEnomoto Y et al., J Allergy Clin Immunol, 2009; lFerreira MA et al., Nat
Genet. 2017; mPersson H et al., J Allergy Clin Immunol, 2015; nMurray JT et al., Biochem J, 2004; oNestor CE et al., PLoS Genet, 2014; pPurwar R et al.,
PLoS One, 2011.
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application revealed significantly more predicted biomarkers

than by using off-the-shelf methods for RNA-seq data analysis

only, which suggests increased sensitivity.

Despite being part of the central dogma and of uttermost

importance in biology and medicine, the prediction of protein

levels from mRNA levels has long been associated with low

precision, which has been a matter of debate (Fortelny et al.,

2017). Due to the complex process of mRNA-to-protein

translation, there are several aspects that need to be

considered (Liu et al., 2016). In this paper we thoroughly

addressed two presumed main aspects; 1) how to incorporate

splice variants into the prediction protein expression, and 2) how

to deal with the time delay of the translation between mRNA and

protein expression. Interestingly, both aspects were found to

impact prediction of protein abundance, as shown in our

combined model, although the incorporation of splice variants

influenced the protein abundance prediction the most. Herein,

we report splice variants to have a wider correlation profile, both

positive and negative, than what would be expected, and our

novel approach takes advantage of this anti-correlation between

splice variants and proteins. In previous work, the impact of

incorporating splice variants into protein predictions has been

analysed. These studies have focused on mechanistic cell type

independent factors such as splice variant-specific degradation

rates (Eraslan et al., 2019). Instead, we found that the correlations

were cell type-specific, and we constructed data-driven predictive

models. To construct those models, we performed activation of

NTH cells followed by time-series analysis, which enabled us to

infer the system based on its dynamics. A necessary requirement

for such as model was dynamical data covering a decent number

of time-points that allowed for the possibility of including

modelling of intermediate time-points and the inference of

time delays. However, the resulting Pearson correlations from

our model need to be taken cautiously as we could not do a

complete test as parts of the longitudinal data was visible to the

model. From our models we proposed a biomarker discovery

strategy which was validated in three steps. First, we found that

usage of these models in complex disease enabled identification

of more differentially expressed genes, which we therefore

predicted as potential biomarkers. Second, we noted that many

of the predicted proteins had previously been associated with MS

and asthma, confirming that our strategy predicts relevant disease

genes. Third, we validated one such protein as a biomarker in MS,

namely sCD27.While sCD27 has already been associated with MS

(van der Vuurst de Vries et al., 2017; Wong et al., 2018; Mahler

et al., 2020), our clinical analysis of two independent cohorts

yielded novel findings of remarkably good prognostic capabilities

for treatment response and 4 years disease activity, which is

important areas for early MS treatment selection.

Although incorporating splice variant information into the

model was the main influential factor on the correlation, time

delay also had an impact. The kinetics in translation of mRNA to

protein is of general interest given its crucial importance in the

design of experiments, for example in verifying relevance of

mRNA expression to protein expression. Such models should

ideally be functionally validated based on mechanistic principles,

described by ordinary differential equations, such as the ones

presented by for example Jovanovic et al. (2015). However, given

that time-series experiments are time- and labor intensive, as well

as expensive and predictive large-scale models are highly needed

for biomarker discoveries, a database that provides the relevant

time delay between mRNA expression and the expression of its

corresponding protein would be immensely valuable. Here, we

present such an atlas, comprising almost 5000 gene expression-

to-protein translation kinetics (Supplementary Table S1).

A limitation with the paper is that we investigated few key cell

types, namely TH1 cells, TREG cells and B cells whereof wet lab

experiments was only performed in one of these cell types. However,

we were able to transfer the approach to two other cell type re-using

data of other studies, demonstrating the robustness of the model

assumptions. Furthermore, the chosen cell types are central in

regulation of immune responses, and the TH cells indeed are

involved in many complex and common illnesses, like infectious,

allergic, autoimmune and cardiovascular diseases and cancer

(Farber, 2020).

In conclusion, we have constructed data-driven linear models

incorporating splice variant information and time delay to

predict protein expression from mRNA. We showed the

general applicability of our approach by developing robust

models for datasets from several cell types, and therefore the

general principle of the model should be applicable to other cell

types. For example, we expect this modelling strategy to be

generally applicable to other cellular differentiation systems,

such as embryonic stem cell differentiation, and to be

increasingly useful for understanding basic biology and

identification of new biomarkers as more RNA-seq and

proteomic data sets become publicly available. Finally, we

have shown that our proposed approach is of clinical

relevance for prediction of validated biomarkers.
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